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Abstract

Differentially private multiple testing procedures can protect the information of individuals
used in hypothesis tests while guaranteeing a small fraction of false discoveries. In this
paper, we propose a differentially private adaptive FDR control method that can control
the classic FDR metric exactly at a user-specified level α with a privacy guarantee, which
is a non-trivial improvement compared to the differentially private Benjamini-Hochberg
method proposed in Dwork et al. (2021). Our analysis is based on two key insights: 1)
a novel p-value transformation that preserves both privacy and the mirror conservative
property, and 2) a mirror peeling algorithm that allows the construction of the filtration
and application of the optimal stopping technique. Numerical studies demonstrate that the
proposed DP-AdaPT performs better compared to the existing differentially private FDR
control methods. Compared to the non-private AdaPT, it incurs a small accuracy loss but
significantly reduces the computation cost.

Keywords: Selective inference, differential privacy, false discovery rate, model-free.

1. Introduction

1.1 Differential privacy

With the advancement of technology, researchers are able to collect and analyze data on
a large scale and make decisions based on data-driven techniques. However, privacy issues
could be encountered without a proper mechanism for data analysis and may lead to serious
implications. For example, in bioinformatics, genomic data are usually very sensitive and
irreplaceable, and it is of great importance to protect the individual’s privacy in genome
analysis, including GWAS (Kim et al., 2020). Many countries have classified genomic data
as sensitive and must be handled according to certain regulations, such as the HIPAA in
the USA and the Data Protection Directive in the European Union. The leak of individual
genetic information can have severe consequences. It may underpin the trust of data-
collecting agencies and discourage people or companies from sharing personal information.
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The leak of individual genetic information may also lead to serious social problems, such as
genome-based discrimination (Kamm et al., 2013).

In recent literature, a popular procedure to protect privacy is to apply differentially
private algorithms in data analysis. First proposed by Dwork et al. (2006), the concept
of differential privacy has seen successful applications in numerous fields, including but
not limited to healthcare, information management, government agencies, etc. Privacy is
achieved by adding proper noise to the algorithm (Fuller, 1993) and obscuring each individ-
ual’s characteristics. A differentially private procedure guarantees that an adversary can not
judge whether a particular subject is included in the data set with high probability; thus is
extremely useful in protecting personal information. During the past decades, considerable
effort has been devoted to developing machine learning algorithms to guarantee differential
privacy, such as differentially private deep learning (Abadi et al., 2016) or boosting (Dwork
et al., 2010). In the statistics literature, Wasserman and Zhou (2010) estimated the con-
vergence rate of density estimation in differential privacy. Other applications include but
are not limited to differential privacy for synthetic data generation (Awan and Cai, 2020),
functional data (Hall et al., 2013), network data (Karwa and Slavković, 2016), mean estima-
tion, linear regression (Cai et al., 2021), etc. More recently, Dwork et al. (2021) proposed
the private Benjamini-Hochberg procedure to control the false discovery rate in multiple
hypothesis testing. We refer readers to the classic textbook by Dwork et al. (2014) for a
comprehensive review of differential privacy.

1.2 False Discovery Rate Control

In modern statistical analysis, large-scale tests are often conducted to answer research ques-
tions from scientists or the technology sector’s management team. For example, in bioin-
formatics, researchers compare a phenotype to thousands of genetic variants and search for
associations of potential biological interest. It is crucial to control the expected proportion
of falsely rejected hypotheses, i.e., the false discovery rate (Benjamini and Hochberg, 1995).
Controlling the false discovery rate (FDR) lets scientists increase power while maintaining
a principled bound on the error. Let R be the number of total rejections and V be the
number of false rejections; the FDR is defined as

FDR = E
[

V

max{R, 1}

]
. (1)

The most famous multiple-testing procedure is the Benjamini–Hochberg (BH) procedure
(Benjamini and Hochberg, 1995). Given n hypotheses and their ordered p-values p(1) <
p(2) < · · · < p(n), the BH procedure rejects any null hypothesis whose p-value is non-greater
than max{p(i) : p(i) ≤ αi/n}, where α is a user-specified target level for FDR. Benjamini and
Yekutieli (2001) extended the BH procedure to the setting where all the test statistics have
positive regression dependency. Recent works focus on settings where prior information or
extra data for hypotheses are available. The side information can be integrated to weighting
the p-values (Genovese et al., 2006; Dobriban et al., 2015), exploring the group structures
(Hu et al., 2010) or natural ordering (Barber and Candès, 2015; Li and Barber, 2017)
among hypotheses, etc. Adaptively focusing on the more promising hypotheses can also
lead to powerful multiple-testing procedures (Lei and Fithian, 2018; Tian and Ramdas,
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2019). More recently, researchers developed sample-splitting-based procedures to control
the false discovery rate (Dai et al., 2022; Tong et al., 2022).

Most multiple-testing procedures put assumptions on the p-values. A natural and mild
assumption is that the p-values under the null hypothesis follow the uniform distribution on
the interval [0, 1]. Because many statistical tests tend to be conservative under the null (Cai
et al., 2022a; Cai, 2023), it is also common to assume that the p-values are stochastically
larger than the uniform distribution, or super-uniform: P(pi ≤ t) ≤ t, ∀ t ∈ [0, 1] for i ∈ H0,
where H0 denotes the true null hypotheses, see for example, Li and Barber (2017); Ramdas
et al. (2019). Adaptive online FDR control procedure tends to require stronger assumptions.
Tian and Ramdas (2019) assumes that all the null p-values are uniformly conservative, i.e.,
P(pi/τ ≤ t | pi ≤ τ) ≤ t, ∀ t, τ ∈ (0, 1) for i ∈ H0. The AdaPT procedure proposed by Lei
and Fithian (2018) assumes that the null p-values are mirror conservative:

P(pi ∈ [a1, a2]) ≤ P(pi ∈ [1− a2, 1− a1]), ∀ 0 ≤ a1 ≤ a2 ≤ 0.5. (2)

Those assumptions on null p-values all cover the uniform distribution as a special case and
hold under various scenarios, as discussed in the literature. Intuitively, mirror-conservatism
allows us to control the quantity of small null p-values by referencing the number of large
null p-values, thereby providing a way to control the FDR. It is important to note that
mirror-conservatism doesn’t automatically result in super-uniformity, and likewise, super-
uniformity doesn’t guarantee mirror-conservatism. Null p-values with a convex CDF or a
monotonically increasing density are uniformly conservative, and such conservatism implies
both super-uniformity and mirror-conservatism. This paper will build on the mirror con-
servative assumption to develop an adaptive differentially private FDR control procedure.

1.3 Related Work and Contributions

The most related work to our paper is the differentially private BH procedure proposed in
Dwork et al. (2021). Dwork et al. (2021) provides conservative bounds for FDRk := E[V/R |
V ≥ k], k ≥ 2, and FDRk := E[V/R | R ≥ k], k ≥ 1. However, conservatism is unavoidable
in the approach proposed in Dwork et al. (2021) due to the additional noise required for
privacy. Specifically, their procedure can only bound FDRk (or FDRk) to be non-greater
than Ckα, where Ck is a constant larger than 1.

In this paper, we propose an adaptive differentially private FDR control method that can
control the FDR in the classical sense: FDR ≤ α, without any conditional component for
the false discovery proportions or the constant term that inflates α. Our work is based on a
novel private p-value transformation mechanism that can protect the privacy of individual
p-values while maintaining the mirror conservative assumption on the null p-values. By
further developing a mirror peeling algorithm, we can define a filtration and apply the
optimal stopping technique to prove that the proposed DP-AdaPT method controls FDR at
any user-specified level α with finite samples. Theoretically, the proposed method provides
a stronger guarantee of false discovery rate control compared to the differentially private
BH method. Numerically, the proposed method works as well as the differentially private
BH method when only the p-values are available for each test and performs better when
side information is available. The proposed method is also model-free when incorporating
the side information for each hypothesis test. Lastly, the method is shown to only incur a
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small accuracy loss compared to the non-private AdaPT (Lei and Fithian, 2018) but at the
same time reduces huge computation costs.

This paper is organized as follows. Section 2 defines the basic concepts of differential
privacy and briefly introduces the AdaPT procedure of FDR control. Section 3 provides
the private p-value transformation mechanism, the definition of sensitivity for p-values, the
DP-AdaPT algorithm, and the guaranteed FDR control. We demonstrate the numerical
advantage of DP-AdaPT through extensive simulations in Section 4 and conclude the paper
with some discussion on future work in Section 5.

2. Preliminaries

2.1 Differential Privacy

We first introduce the background for differential privacy. A dataset S = {x1, . . . ,xn}
is a collection of n records, where xi ∈ X for i = 1, . . . , n and X is the domain of x.
The random variable {xi}ni=1 does not have to be independent. Researchers are usually
concerned with certain statistics or summary information based on the dataset, denoted as
T (S). For example, one might be interested in the sample mean, the regression coefficients,
or specific test statistics. When the dataset S is confidential and contains private individual
information, researchers prefer to release a randomized version of T (S), which we denote as
M (S). A neighboring dataset to S is denoted by S ′ = {x′1, . . . ,x′n}, with the requirement
that only one index j ∈ {1, . . . , n} satisfies that xj 6= x′j . The classic (ε, δ)-differential
privacy (Dwork et al., 2006) is defined as follows.

Definition 1 A randomized mechanism M (·) is (ε, δ)-differentially private for ε > 0 and
δ > 0, if for all neighboring datasets S and S ′, and any measurable set E,

P(M (S) ∈ E) ≤ eεP(M
(
S ′
)
∈ E) + δ. (3)

When δ = 0, Definition 1 is the pure differential privacy and denoted by ε-DP. When δ > 0,
it is called the approximate differential privacy. The two neighboring datasets are treated
as fixed, and the mechanism M(·) contains randomness that is independent of the dataset
and protects privacy. The set E is measurable with respect to the random variable M(·).
In the definition, the two parameters ε and δ control the difference between the likelihood
of M(S) and M(S ′). A small value of ε and δ indicates that the difference between the
distribution of M(S) and M(S ′) is small and, as a result, using the outcome from the
mechanismM, one can hardly tell whether a single individual is included in the dataset S.
Thus, privacy is guaranteed with high probability for each individual in the dataset S.

Dong et al. (2022) proposed to formulate privacy protection as a hypothesis-testing
problem for two neighboring datasets S and S ′:

H0 : the underlying dataset is S, versus H1 : the underlying dataset is S ′. (4)

Let xj denote the only individual in S, but not in S ′. Accepting the null hypothesis implies
identifying the presence of xj in the dataset S, and rejecting the null hypothesis implies
identifying the absence of xj . Thus privacy can be interpreted by the power function of
testing (4). Specifically, the µ-Gaussian differential privacy is defined as a test that is at
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least as hard as distinguishing between two normal distributions N(0, 1) and N(µ, 1) based
on one random draw of the data. For the readers’ convenience, we rephrase the formal
definition from Dong et al. (2022).

Definition 2 (Gaussian Differential Privacy) 1. A mechanism M is f -differential
private (f -DP) if any α-level test of (4) has power function β(α) ≤ 1 − f(α), where
f(·) is a convex, continuous, non-increasing function satisfying f(α) ≤ 1 − α for all
α ∈ [0, 1].

2. A mechanism M is µ-Gaussian Differential Privacy (µ-GDP) if M is Gµ-DP, where
Gµ(α) = Φ(Φ−1(1−α)−µ) and Φ(·) is the cumulative distribution function of N(0, 1).

The new definition has several advantages. For example, privacy can be fully described
by a single mean parameter of a unit-variance Gaussian distribution, and this makes it
easy to describe and interpret the privacy guarantees. The privacy definition maintains
a tight privacy guarantee under multiple compositions of private mechanisms. Thus, it is
particularly useful for statistical methods that require multiple or iterative operations of the
data. We will use the definition of µ-GDP throughout the rest of this paper. The proposed
method can be easily extended to the classic (ε, δ)-DP by Corollary 1 in Dong et al. (2022).

2.2 Adaptive False Discovery Rate Control

In this subsection, we introduce the AdaPT procedure proposed by Lei and Fithian (2018),
which is described in Algorithm 1 for completeness. Assume we have p-values pi and side
information xi for each hypothesis Hi, i = 1, . . . , n. The procedure contains an iterative
update of covariate-specific thresholds. At each step t = 0, 1, . . . , a rejection threshold st(x)
is decided based on the covariate x. Let Rt = |{i : pi ≤ st(xi)}|, At = |{i : pi ≥ 1− st(xi)}|
and the estimated false discovery rate F̂DR = (1 + At)/(Rt ∨ 1). If F̂DR ≤ α, then we
stop and reject all the Hi with pi ≤ st(xi). Otherwise, we update the thresholds st+1 � st,
where st+1 � st denotes st+1(x) ≤ st(x) for every x in the domain of s(·). The information
that are used to update st+1 contains At, Rt and (xi, ppm,i)

n
i=1, where

ppm,i =

{
pi st(xi) < pi < 1− st(xi)
{pi, 1− pi} otherwise,

is the partially masked p-value and the subscript pm denotes “partially masked”. The
partially censored p-values restrict the analyst’s knowledge and enable the application of
the optional stopping technique widely used in the FDR literature (Storey et al., 2004;
Barber and Candès, 2015; Li and Barber, 2017). In this paper, we will develop a mirror-
peeling algorithm that builds on this novel technique and prove the desired FDR guarantee
under differential privacy.

3. Methodology

Consider n hypotheses H1, H2, . . . ,Hn, and researchers can observe side information xi and
estimate a p-value for each hypothesis Hi. In this section, we aim to develop a differentially
private algorithm that protects the privacy of individual p-values and controls the FDR at
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Algorithm 1 AdaPT (Lei and Fithian, 2018)

Require: {xi, pi}ni=1, initialization s0, target FDR level α.
for t = 0 to . . . do

F̂DR← 1+At
Rt∨1

if F̂DR ≤ α
Reject {Hi : pi ≤ st(xi)}
Return st

end if
st+1 ← Update[(xi, ppm,i)

n
i=1, At, Rt, st]

end for

the same time. The analysis does not rely on the threshold model s (x) and is model-free.
We assume that the auxiliary information x is public and is not subject to privacy concerns.
This assumption is reasonable because the auxiliary information is usually from scientific
knowledge or previous experiments. With a specific model for the threshold function s (x),
the proposed method can also be easily extended to further protect the privacy of x.

3.1 Private p-value

Following Lei and Fithian (2018), we assume that all the null p-values satisfy the mirror-
conservative property as defined in (2). We first propose a novel differentially private
mechanism on the individual p-values that protects privacy while still satisfying the mirror-
conservative property. This is a crucial property because it helps us avoid the traditional
technique in the differential privacy literature (e.g., Dwork et al. (2021)) that derives con-
servative error bounds on the noise added for privacy.

The proposed mechanism is based on the quantile function and cumulative distribution
function of some symmetric distributions. Specifically, let U ∈ R+ be the boundary and
can take the value of ∞. Let g(·) : (−U,U) → R+ be an integrable function satisfying the
following conditions:

1. Non-negative: g(x) ≥ 0 for x ∈ (−U,U), g(x) = 0 for x /∈ (−U,U) and the measure
of the set {x ∈ (−U,U) : g(x) = 0} is zero with respect to the measure µ on R;

2. Symmetric: g(x) = g(−x) for x ∈ (−∞,∞);

3. Unity:
∫∞
−∞ g(x)µ(dx) = 1.

The primitive function of g(·) is denoted by G(x) =
∫ x
−∞ g(x)µ(dx). The function g(·) can

be viewed as a symmetric probability density function, and the function G(·) can be viewed
as a strictly increasing cumulative distribution function. The function G(·) is a one-to-
one mapping from (−U,U) to [0, 1], which guarantees the existence of a quantile function
G−1(·). We will use G−1(·) and G(·) to transform the p-values. When the distribution of
p-value is continuous, the measure µ can be chosen as the Lebesgue measure.

Theorem 3 Let the p-value p be mirror-conservative, and Z be an independent Gaussian
random variable with mean zero and positive variance. Then the noisy p-value

p̃ := G
{
G−1(p) + Z

}
(5)
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is also mirror-conservative.
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Figure 1: Empirical density estimate of both the original and the transformed p-values.
Case a: the null p-values follow the uniform distribution; case b: the null p-values
have density f (p) = 2p for p ∈ [0, 1]. In both cases, G(·) = Φ(·) and Z follows
the standard normal distribution. The density curves are estimated by 100 000
samples.

The proof of Theorem 3 is provided in the appendix. Although Theorem 3 is based on
the Gaussian noise, one can easily extend the theory to the case where Z follows Laplace
distribution which is frequently used in the classic (ε, δ)-DP setting, see the discussions in
Theorem 10. We provide two illustrative examples in Figure 1, where the empirical density
estimates of both the original and the transformed p-values are plotted. On the top row, we
show that when the original p-values follow the uniform distribution, the transformed noisy
p-values are symmetric around 0.5. On the bottom row, we show that when the original
p-values are strictly stochastically larger than the uniform distribution, the transformed
noisy p-values also tend to concentrate on the right side of the curve. Figure 1 visually
demonstrates that the two commonly encountered p-values can preserve the mirror conser-
vative property. Note that in Figure 1, we implemented the standard normal distribution to
transform the p-values: G(·) = Φ(·) and g(·) = φ(·). The normal density φ(·) is monotone
on either the positive or negative part of the horizontal axis. As a result, the transformed
noisy p-values will concentrate on the two endpoints 0 and 1.

It is also interesting to note that Theorem 3 does not necessarily hold for the other
conservative assumptions on p-values, such as the super uniform assumption or the uni-
formly conservative assumption as discussed in the introduction. One can easily construct
a counterexample that violates the requirements. The mirror conservative condition is the
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most appropriate in the sense of preserving differential privacy. Throughout the rest of the
paper, we will use p̃ to denote the noisy p-values defined in (5).

3.2 Sensitivity of p-values

The transformation in Theorem 3 is useful in preserving the mirror-conservative property,
but we need to calibrate the variance of noise Z in order to provide a privacy guarantee with
minimal losses on accuracy. In this section, we provide a definition for the sensitivity of
p-values that directly fits into the framework of the transformation in Theorem 3. We begin
with defining the sensitivity for any deterministic real-valued functions. The definition
provides an upper bound of the difference in the outcome due to the change of one item in
the dataset.

Definition 4 Let g : X n → R be a deterministic function from the data set S to R. The
sensitivity of g(·) is defined by

∆(g) := sup
∀ S,S′

‖g(S)− g(S ′)‖,

where S ′ is a neighboring dataset of S, and ‖ · ‖ is the Euclidean norm.

In this paper, we consider the case where the p-value is estimated from a non-randomized
decision rule, and thus the p-value is a deterministic real-valued function of the data. How-
ever, due to its nature, the relative change of a p-value on two neighboring datasets is usually
very small. Thus directly adding noise to p-values may easily overwhelm the signals and
lead to unnecessary power losses. For example, Dwork et al. (2021) controls the sensitivity
of p-value based on a truncated log transformation, and the truncation parameter has to
be carefully tuned to make a tradeoff between privacy and accuracy.

In this paper, we define the sensitivity by considering a transformed p-value based on
the function G−1(·). The transformation is motivated by the fact that the p-values are
usually obtained based on the limiting null distribution of the test statistics, which are, in
most cases, asymptotically normal. For example, the p-value of a one-sided mean test is
the quantile function of a normal distribution evaluated at the sample mean. We provide
the formal definition as follows.

Definition 5 (Sensitivity) The sensitive of p-value function p is ∆G if for all neighboring
dataset S and S ′,

sup
∀ S,S′

‖G−1{p(S)} −G−1{p(S ′)}‖ ≤ ∆G.

The choice of G (·) function in the Definition 5 is flexible. For example, if the density
of the test statistics under the null hypothesis is symmetric, then one can choose G (·) as
the CDF of the test statistic. We provide the following examples where the desired ∆G is
calculated under mild conditions.

Example 1 Assume X1, X2, . . . , Xn are i.i.d. random variables with mean β, variance 1,
and are uniformly bounded by M . To test null H0 : β ≥ 0 against alternative H1 : β < 0,
we use the statistics T =

∑n
i=1Xi/

√
n. With a large sample size, the p-value is estimated

as p̂ = Φ(T ). The G(·) function in Definition 5 can be chosen as Φ(·), and ∆G = 2M/
√
n.
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Example 2 Assume X1, X2, . . . , Xn are i.i.d. random variables with mean β, variance 1,
and are uniformly bounded by M . To test null H0 : β = 0 against alternative H1 : β 6= 0,
we also use the statistics T =

∑n
i=1Xi/

√
n. With a large sample size, the p-value is

estimated as p̂ = 2Φ(−|T |). Let supp{g(x)} ⊂ [−M,M ] with bounded density and g(M) =
g(−M) > 0, G(x) =

∫ x
−∞ g(x)dx. For example, g(·) can be the density of a truncated

normal distribution supported on [−M,M ]. Then ∆G = 2MC/
√
n, where C is a constant.

Detailed proofs are provided in the appendix.

Example 3 Assume X1, X2, . . . , Xn are i.i.d. random variables with mean β, variance σ2,
and are uniformly bounded by M . Let h(X1, X2) = X1X2 and

Un =

(
n

2

)−1∑
i<j

h(Xi, Xj),

Then we have
nUn
σ2

d→ χ2
2 − 1,

as n → ∞. In this case, the p-value for testing the null H0 : β = 0 against the alternative
H1 : β 6= 0 is based on the statistics T = nUn/σ

2 + 1. The G(·) function in Definition 5
can be chosen as Φ(·) and the sensitivity is bounded by

∆G = M2/nC1 +
C2

1/2− δ
(M2/n)1/2−δ,

where C1 and C2 are constants, and 0 < δ < 1/2. Detailed proofs are provided in the
appendix.

The sensitivity in Example 1 is tight due to the nature of the one-sided test and normal
transformation of the p-value. In Example 2, we used the truncated normal distribution to
perform the transformation to simplify the technical calculation. In Example 3, the ∆G is
approximately the square root of the original sensitivity ∆ because of the imperfect match
between the tail of the transformation function (normal distribution) and the tail of the
χ2 distribution. In fact, the normal transformation, i.e., G(·) = Φ(·), works well for most
cases, as we will show in the numerical studies.

3.3 The Differentially Private AdaPT Algorithm

In this section, we propose the DP-AdaPT algorithm. We begin the discussion by intro-
ducing the Gaussian mechanism. To report a statistic T (S) with the privacy guarantee,
Gaussian mechanism adds noise to the target statistics T (S), with the scale of noise cal-
ibrated according to the sensitivity of T (S). We summarize some appealing properties of
the Gaussian mechanism in Lemma 6.

Lemma 6 The Gaussian Mechanism has the following properties (Dong et al., 2022):

1. GDP guarantee. The Gaussian mechanism that outputs M(T ) = T (S) +Z preserves
µ-GDP, where Z is drawn independently from N (0,∆(T )2/µ2) and ∆(T ) is the sen-
sitivity of T defined in the Definition 4.
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2. Composition. Let M1 and M1 be two algorithms that are µ1-GDP and µ2-GDP,
respectively. The composition algorithm M1 ◦M2 is

√
µ2

1 + µ2
2-GDP.

3. Post-processing. Let f (·) be a deterministic function and M be a µ-GDP algorithm.
Then the post-processed algorithm f ◦M is µ-GDP.

In multiple testing, a common scenario is that the number of hypotheses is very large.
If we report all the p-values under the private parameter µ, the standard deviation of the
noise is proportional to the square root of the number of hypotheses by the composition
lemma. Thus, in large-scale hypothesis testing, reporting all p-values adds very large noise
to the signal and weakens the power of tests. To overcome the difficulty, the first step of our
algorithm is to select a subset of p-values with more potential to be rejected, and the second
step is to report the subset of p-values with a privacy guarantee. It is also common in real
practice that the true signals are only a small subset of the total hypotheses. For example,
only a few genes are truly related to the phenotype of interest. The following report noisy
min algorithm (Dwork et al., 2021) builds the foundation of the selection algorithm.

Algorithm 2 The Report Noisy Min Algorithm

Require: data S, p-values p1, . . . , pn each with sensitivity at most ∆, privacy parameter
µ.
for j = 1 to n do

set f̃j = G[G−1(pj(S)) + Zj ], where Zj is an independent sample from normal distri-
bution with mean 0 and variance 8∆2/µ2;
end for
Output: j∗ = arg minj f̃j and p̃j∗ := G[G−1(pj∗(S)) + Z], where Z is an independent,
afresh drawn sample from the normal distribution with mean 0 and variance 8∆2/µ2.

Lemma 7 The Report Noisy Min Algorithm, as detailed in Algorithm 2, is µ-GDP.

A traditional way to select the most important signals is the peeling algorithm (Cai et al.,
2021; Dwork et al., 2021), which repeats the report noisy min algorithm for a fixed number
of times. However, the peeling algorithm creates complex dependent structures among the
selected p-values and further complicates the analysis of FDR control. We believe it is the
main issue in Dwork et al. (2021) that prevented the authors from bounding the classic
FDR criterion and instead worked on the conditional quantity FDRk, with k ≥ 2.

In this paper, we propose a novel mirror peeling algorithm that perfectly suits the
situation of adaptive FDR control. The selection procedure is based on the partially masked
p-values and simultaneously selects both the largest and the smallest p-values. The largest
p-values will be used to estimate the false discovery proportion as the control, which is a
widely used technique in the multiple testing literature.

Lemma 8 The Mirror Peeling Algorithm, as presented in Algorithm 3, is µ-GDP.

The size m in the mirror peeling algorithm denotes the number of selected p-values. In
practice, we suggest choosing a slightly large m to prevent potential power loss. Now we
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Algorithm 3 The Mirror Peeling Algorithm

Require: p-values p1 . . . , pn each with sensitivity at most ∆, privacy parameter µ, size
m.
let S = {1, . . . , n} be the index set of p-values;
for j = 1 to m do

let ij be the returned index of the report noisy min algorithm applied to partially
masked p-values

{min (pi, 1− pi)}i∈S ,

with privacy parameter µ/
√
m;

let p̃ij be the noisy pij defined in (5) with Z following independent normal noise with
mean 0 and variance 8m∆2/µ2;

Update S = S\{ij};
end for

Output:

{
(i1, p̃i1), . . . , (im, p̃im)

}
.

are ready to state the DP-AdaPT procedure in Algorithm 4, which controls the FDR at a
user-specified level α with guaranteed privacy. Theorem 9 follows directly by Lemma 7 and
8 and the post-processing property of GDP algorithms.

Algorithm 4 The DP-AdaPT Algorithm

Require: target FDR level α, {xi, pi}ni=1, p-values with sensitivity at most ∆, privacy
parameter µ and size m.

Apply the mirror peeling algorithm and obtain

{
(i1, p̃i1), . . . , (im, p̃im)

}
.

for t = 0, 1, . . . do
Let Rt = |{ij , j = 1, . . . ,m : p̃ij ≤ st(xij )}|,

At = |{ij , j = 1, . . . ,m : p̃ij ≥ 1− st(xij )}|
F̂DR← 1+At

Rt∨1

if F̂DR ≤ α
Reject {Hij : p̃ij ≤ st(xij )};
Return st;

end if
st+1 ← Update[(xij , p̃pm,ij )

m
j=1, At, Rt, st], where

p̃pm,ij =

{
p̃ij st(xi) < p̃ij < 1− st(xi)
{p̃ij , 1− p̃ij} otherwise.

end for

Theorem 9 The DP-AdaPT algorithm described in Algorithm 4 is µ-GDP.
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For completeness of the discussion, we provide a classic (ε, δ)-private version of the
proposed DP-FDR control algorithm. By the relation between µ-GDP and (ε, δ)-DP, the
Algorithm 4 is (ε, δ)-DP for ∀ ε > 0 and δ = Φ(−ε/µ + µ/2) − eεΦ(−ε/µ − µ/2). With
pre-specified private parameters ε and δ, we proposed a modification of Algorithm 4 which
uses the Laplace mechanism in The Report Noisy Min Algorithm. Theorem 10 shows the
proposed modified algorithm is (ε, δ)-DP.

Theorem 10 Given private parameters ε ≤ 0.5, δ ≤ 0.1, the peeling size m ≥ 10 and
sensitivity at most ∆, the DP-AdaPT algorithm described in Algorithm 4 with Zj and Z in
Algorithm 2 following Laplace noise of scale λ = ∆

√
10m log(1/δ)/ε is (ε, δ)-differentially

private.

Although the FDR control procedure of the proposed DP-AdaPT method is very differ-
ent from the BH method used by Dwork et al. (2021), the privacy is protected by a similar
procedure-the peeling mechanism. With the same sensitivity parameter ∆, the peeling size
m, and privacy parameters (ε, δ), our modified DP-AdaPT procedure uses the same level
of noise as the DP-BH procedure proposed by Dwork et al. (2021). With the same noise
level, our proposed method is superior to the DP-BH method in terms of the exact valid
FDR control and the higher power of detecting the true hypothesis.

3.4 FDR Control

There are a few challenges in deriving the FDR bound for differentially private algorithms.
Firstly, the privacy-preserving procedure is required to be randomized with noise inde-
pendent of the data. However, most classic FDR procedures implement fixed thresholds
to decide the rejection regions and are unsuitable for noisy or permuted private p-values.
Secondly, the mirror peeling algorithm creates complicated dependence structures among
the selected p-values. Classic tools in the literature that are used for proving FDR con-
trol crucially rely on the independence assumption or the positive dependence assumptions
on the p-values, thus becoming inapplicable for differentially private algorithms. Thirdly,
without the martingale technique (Storey et al., 2004), it is, in general, difficult to derive
finite sample results with differential privacy. In fact, it is still unclear how to obtain valid
finite sample FDR control for the differential private BH procedure. The DP-BH algo-
rithm proposed in Dwork et al. (2021) addressed the challenges by conservatively bounding
the noise and derived the upper bound for an unusual conditional version of FDR, i.e.,
FDRk := E [V/R;V ≥ k].

In this paper, we prove that the DP-AdaPT algorithm controls the FDR in finite sam-
ples. Our proof adopted the similar optional stopping argument in the multiple testing
literature (Storey et al., 2004; Barber and Candès, 2015; Li and Barber, 2017; Lei and
Fithian, 2018). We show that the adaptive procedure and the mirror conservative assump-
tion work perfectly with the additional noise required to protect privacy. By only using
partial information in the mirror peeling algorithm, we can construct a filtration and apply
the martingale technique.

We first introduce the notations. For each hypothesis Hi, we observe p-value pi and
auxiliary information xi. Given a pre-specified sparsity level m ≤ n, the DP-AdaPT algo-
rithm first applies the mirror peeling algorithm, and we use P to denote the index returned
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by the mirror peeling algorithm. Let Ft for t = 0, . . . , denote the filtration generated by all
information available to the analyst at step t:

Ft = σ ({xi, p̃pm,t,i}i∈P , At, Rt)

where

p̃pm,t,i =

{
p̃i st (xi) < p̃i < 1− st (xi)

{p̃i, 1− p̃i} otherwise.

The initial σ field is defined as F−1 = σ ({xi, {p̃i, 1− p̃i}}i∈P). The two updating thresholds
principles: st+1 � st and st+1 ∈ Ft, ensure that the {Ft}∞t=−1 is a filtration, i.e., Ft ⊂ Ft+1

for t ≥ −1.

Theorem 11 Assume that all the null p-values are independent of each other and of all the
non-null p-values, and the null p-values are mirror-conservative. The DP-AdaPT procedure
controls the FDR at level α.

Theorem 11 has several important implications. First of all, it can control the FDR
at a user-specified level α with a differential privacy guarantee while the existing DP-BH
method fails. Secondly, due to the definition of filtration and the application of martingale
tools, the DP-AdaPT can control the FDR for a finite number of tests. And lastly, when
the side information is available to the hypothesis, the DP-AdaPT shares a similar property
to the original AdaPT and can borrow the side information in a model-free sense to increase
power. We demonstrate the numerical utilities in the next section.

3.5 The Two-groups Working Model and Selection Procedure

Our proposed DP-AdaPT procedure successfully controls FDR regardless of the strategy
used in the threshold updating. In other words, it also enjoys the model-free property. But
it is still important to provide a practical and powerful solution to update the threshold. Lei
and Fithian (2018) proposed a two-group working model and used the local false discovery
rate as the threshold. In this subsection, we illustrate a greedy procedure based on a two-
group working model. Our procedure is similar to the method proposed by Lei and Fithian
(2018) but has a simple illustration.

We begin with the working model specification. Assume that the distribution of hypoth-
esis indicator Hi given side information xi follows Bernoulli distribution with probability
π(xi), Hi | xi ∼ Bernoulli(π(xi)), where Hi = 1 if the ith hypothesis is true and Hi = 0
otherwise. The distribution of noisy p-value p̃i given Hi and xi satisfies:

p̃i | Hi,xi ∼

{
f0(p̃i | xi) if Hi = 0

f1(p̃i | xi) if Hi = 1
.

In addition, we assume the data {(xi, p̃i, Hi)}ni=1 is mutually independent with {Hi}ni=1

missing or being unobserved. The π(·), f0(· | x) and f1(· | x) are unknown functions and
can be estimated by any user-specified methods. Lei and Fithian (2018) suggested using
exponential families to model the π(·), f0(· | x) and f1(· | x). As mentioned by Lei and
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Fithian (2018), the model {π(·), f0(· | x), f1(· | x)} is not identifiable, and we use uniform
distribution as the working model for the null hypothesis, f0(p | x) = 1 for p ∈ [0, 1].

At the t-th iteration with available information Ft, the first step is to fit the model using
the data {xi, p̃pm,t,i}i∈P . The complete log-likelihood at t-th iteration is

lt(π(·), f1(·)) =
∑
i∈P

[Hi log(π(xi)) + (1−Hi) log(1− π(xi))]

+
∑
i∈P

[Hi log(f1(p̃i | xi))], (6)

where we use the fact log(f0(p̃i | xi)) = log(1) = 0. Because all Hi’s and parts of p̃i’s
are not observed, the Expectation-Maximization (EM) algorithm is an iterative algorithm
to maximize the observed log-likelihood. For more information about missing data, see
Chapter 3 in (Kim and Shao, 2021). We use Tt to denote the index set, Tt := {i ∈ P :
st(xi) < p̃i < 1 − st(xi)}. The p̃i is known for i ∈ Tt at the t-th iteration. The detailed
procedure is shown in Algorithm 5.

Algorithm 5 The EM Algorithm

Require: data {xi, p̃pm,t,i}i∈P , initial value {π̂(0)(·), f̂ (0)
1 (· | x)}, number of iteration k;

for r = 1, . . . , k − 1 do

[E-step]: Calculate E[lt(π̂
(r)(·), f̂ (r)

1 (· | x)) | {xi, p̃pm,t,i}i∈P ];
For i ∈ P and i ∈ Tt:
Ĥ

(r)
i =

π(r)(xi)f̂
(r)
1 (p̃i|xi)

π(r)(xi)f̂
(r)
1 (p̃i|xi)+1−π(r)(xi)

;

l̂og(f1(p̃i | xi))(r) = log(f1(p̃i | xi));
For i ∈ P and i /∈ Tt:
Ĥ

(r)
i =

π(r)(xi)[f̂
(r)
1 (p̃i|xi)+f̂

(r)
1 (1−p̃i|xi)]

π(r)(xi)[f̂
(r)
1 (p̃i|xi)+f̂

(r)
1 (1−p̃i|xi)]+2[1−π(r)(xi)]

;

l̂og(f1(p̃i | xi))(r) =
f̂
(r)
1 (p̃i|xi) log(f1(p̃i|xi))+f̂

(r)
1 (1−p̃i|xi) log(f1(1−p̃i|xi))

f̂
(r)
1 (p̃i|xi)+f̂

(r)
1 (1−p̃i|xi)

;

[M-step]: Solve

{π̂(r+1)(·), f̂ (r+1)
1 (· | x)} = arg maxE[lt(π̂

(r)(·), f̂ (r)
1 (· | x)) | {xi, p̃pm,t,i}i∈P ]

= arg max
∑
i∈P

[Ĥ
(r)
i log(π(xi)) + (1− Ĥ(r)

i ) log(1− π(xi))]

+
∑
i∈P

[Ĥ
(r)
i l̂og(f1(p̃i | xi))(r)];

end for
Output: {π̂(k)(·), f̂ (k)

1 (· | x)}.

At the t-th iteration with fitted model {π̂(k)(·), f̂ (k)
1 (· | x)}, the second step is to select

one hypothesis from T ct := {i ∈ P : p̃i ≤ st(xi)} and reject. The estimated probability of
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H = 0 conditional on (x, p) is

P(H = 0 | x, p, {π̂(k)(·), f̂ (k)
1 (· | x)}) =

1− π(k)(x)

π(k)(x)f̂
(k)
1 (p | x) + 1− π(k)(x)

. (7)

We propose to select the hypothesis with the largest probability defined in equation (7)
among the candidate set T ct . Because all p-values in the candidate set are partially masked,
we use the minimum elements in each pair and let p̃′pm,t,i = min{p̃i, 1− p̃i} for i ∈ T ct . As
a consequence, we reject the i-th hypothesis for i ∈ T ct satisfying

i = arg max
j∈T ct

P(H = 0 | xi, p̃′pm,t,i, {π̂(k)(·), f̂ (k)
1 (· | x)}). (8)

We remark that the proposed selection criterion (8) is slightly different from the criterion
in the AdaPT procedure by Lei and Fithian (2018). Under the conservative identifying
assumption that

1− π(x) = inf
p∈[0,1]

[π(x)f1(p | x) + (1− π(x))f0(p | x)]

= π(x)f1(1 | x) + (1− π(x))f0(1 | x),

the proposed selection criterion coincides with equation (23) in (Lei and Fithian, 2018).

4. Numerical Illustrations

In this section, we numerically evaluate the performance of the proposed DP-AdaPT in
terms of false discovery rate and power. We compare with three other methods: the original
AdaPT without privacy guarantee as proposed by Lei and Fithian (2018), the differentially
private Benjamini–Hochberg procedure (“DP-BH”) proposed by Dwork et al. (2021), and
the private Bonferroni’s method (“DP-Bonf”) as discussed in Dwork et al. (2021).

4.1 Without Side Information

We first consider the case where only the p-values are obtained for each hypothesis and
side information is unavailable. To ensure a fair comparison, we adopt the same simulation
settings as in Dwork et al. (2021) and apply the noises with the same variance for all the
differentially private methods. Specifically, we set the total number of hypotheses to be
n = 100 000, with the number of true effects t = 100. We select m = 500 in the peeling
step. Let pi = Φ(ξi − β) for i = 1, . . . , t, where Φ(·) is the CDF of standard normal
distribution and ξ1, . . . , ξm are i.i.d. standard normal distribution. We set the signal β
to be 4 and the significance level α = 0.1. Other parameters are required for the DP-BH
algorithm, which is summarized in Algorithm 6. Two parameters are used to control the
sensitivity of the p-values in the DP-BH algorithm: the multiplicative sensitivity η and
the truncation threshold ν. We set η as 0,000 1 and ν = 0.5α/n, which are the same as
Dwork et al. (2021). The privacy parameters are also set to be the same as in Dwork et al.
(2021): ε = 0.5 and δ = 0,001. For our proposed DP-AdaPT procedure, we set the privacy
parameter µ = 4ε/

√
10 log(1/δ). We use Gaussian CDF as the sensitivity transformation
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Figure 2: The FDR of DP-BH, DP-Bonf, and DP-AdaPT for varying parameters and av-
eraged over 100 independent trials.

G(·) = Φ(·) and set the sensitivity parameter ∆G = η. The variance of the noise in our
proposed DP-AdaPT procedure is the same as the variance of the noise in DP-BH.

We first consider the situation where the null p-values all follow an independent uniform
distribution. Specifically, we generate pi for i = t+ 1, . . . , n independently from U(0, 1). In
Figure 2, we report the empirical FDR control for all the methods by varying the signal
parameter β, the privacy parameter ε, the sensitivity parameter η and the number of true
effects t. Clearly, all methods successfully control the FDR below the specified level α =
0.1. We report the power of all the methods in Figure 3. The naive DP-Bonf method is
too conservative in detecting any positive signals. The power of DP-BH and DP-AdaPT
performs similarly to each other in most cases. When the sensitivity parameter η is large,
the proposed method has better power than the DP-BH procedure. The rationale is that
when η is large, the variance of the noise is large, and the correction term in Algorithm 6,
i.e., η

√
10m log(1/δ) log(6m/α)/ε, is large. The correction term plays the role of ruling out

the influence of adding noise and guarantees FDR control with high probability. However,
the additional correction term is proportional to the standard deviation of noise multiplying
log(m), where m is the number of p-values selected by peeling. This is the main weakness
of the DP-BH procedure. On the other hand, the proposed DP-AdaPT is based on the
symmetry of p-values and provides valid finite sample FDR control, which is more robust
both theoretically and practically.

Next, we consider the situation where the null p-values follow conservative distributions
compared to the uniform, which is a common phenomenon in practice. Specifically, we
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Figure 3: The power of DP-BH, DP-Bonf, and DP-AdaPT for varying parameters and
averaged over 100 independent trials.

generate pi for i = t+ 1, . . . , n independently from the Beta distribution with shape param-
eters (2, 2). The empirical FDR and power of all the methods are summarized in Figure 4
and Figure 5. All methods successfully control the FDR below the α = 0.1. DP-BH and
DP-Bonf have nearly zero false discovery rates. Though Dwork et al. (2021) only have a
theoretical proof for FDR control when the p-value of null hypotheses follows the uniform
distribution. It is not surprising that the DP-BH procedure controls FDR at the target
level because the false discovery rates of conservative null hypotheses are easier to control
than non-conservative null hypotheses in principle. The power of our proposed method is
uniformly better than the DP-BH procedure. In general, our proposed method has power
close to 0.90 when the number of true effects is smaller than the number of invocations, and
the signal size is reasonably strong.

4.2 With Side Information

In this subsection, we consider the case where the auxiliary side information is available
for the hypothesis. We use similar simulation settings as in Lei and Fithian (2018). The
auxiliary covariates (x1i, x2i)’s are generated from an equispaced 100× 100 grid in the area
[−100, 100] × [−100, 100]. The p-values are generated i.i.d. from pi = 1 − Φ(zi), where
zi ∼ N(µi, 1) and Φ(·) is the CDF of N(0, 1). For i ∈ H0, we set βi = 0, and for i ∈ H1, we

17



Xia and Cai

log10 η number of non null effects

β ε

−5.0 −4.5 −4.0 −3.5 −3.0 100 200 300

2 3 4 5 6 7 0.25 0.50 0.75 1.00

0.000

0.025

0.050

0.075

0.100

0.125

0.000

0.025

0.050

0.075

0.100

0.125

F
D

R

method

DP−BH

DP−Bonf

Adapt

DP−Adapt

Figure 4: The FDR of DP-BH, DP-Bonf, and DP-AdaPT for varying parameters and av-
eraged over 100 independent trials under conservative p-values.

set βi = β for β > 0. Three different patterns of i ∈ H1 are considered.

i ∈ H1 ⇔


x2

1i + x2
2i ≤ 150 I

(x1i − 65)2 + (x2i − 65)2 ≤ 150 II

2(x1i + x2i)
2/1002 + (x2i − x1i)

2/152 ≤ 0.1 III

The number of the true signals H1 are 120, 116 and 118 for case 1, case 2, and case 3,
respectively. The number of selections in the peeling algorithm is set to m = 500. For our
proposed DP-AdaPT procedure, we use Gaussian CDF as the sensitivity transformation
G(·) = Φ(·) and set the sensitivity parameter ∆G = 0.0001. We set the privacy parameter
µ = 0.24, which matches the noise scale in Dwork et al. (2021). We compare the DP-
AdaPT with the DP-BH method to evaluate the advantage of using side information. We
also compare our proposed DP-AdaPT with the non-private AdaPT procedure to examine
the privacy and accuracy tradeoff. For the AdaPT procedure, we follow a similar algorithm
as in Lei and Fithian (2018) and fit two-dimensional Generalized Additive Models in M-
step, using R package mgcv with the knots selected automatically in every step by GCV
criterion. The procedure replicates 100 times, and the results are reported in terms of the
average of 100 replications.

Figure 6 and Figure 7 present the empirical FDR and power of AdaPT, DP-BH, and
DP-AdaPT, respectively. All methods can control the FDR at the desired level. The
proposed DP-AdaPT procedure has larger power than the DP-BH procedure when the
target FDR is greater than 0.03. Especially when the strength of signals is not very strong,
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Figure 5: The power of DP-BH, DP-Bonf, and DP-AdaPT for varying parameters and
averaged over 100 independent trials under conservative p-values.

our proposed method has more than 50% larger power than the DP-BH procedure. When
the strength of signals is large enough, all procedures have similar powers, and AdaPT is
slightly better than others. Compared to the original AdaPT, the proposed DP-AdaPT has
uniformly smaller power, which is due to noise added for privacy guarantee. To be precise,
the proposed procedure contains two pre-processing steps, peeling and adding noise. In the
peeling algorithm, a subset of the original hypothesis is selected for further consideration.
The selection procedure has two intrinsic weaknesses. First, some important variables can
be potentially ignored due to random errors. Second, only 5% data are used in the model
fitting procedure of the DP-AdaPT. In the simulation settings, the side information is
perfect for separating null hypotheses and alternative hypotheses. Adding noise to the p-
values after selection attenuates the strength of a valid signal, which bring difficulties in
rejecting the null hypothesis. To sum up, it is not surprising that DP-AdaPT is less efficient
than AdaPT. However, the loss is relatively mild and is the cost of privacy.

We also consider the case where the null p-values are conservative. We modify the
previous settings and generate pi for i ∈ H0 from density function f(p) = 4p3, p ∈ [0, 1].
Figure 8 and Figure 9 present the empirical FDR and power of AdaPT, DP-BH, and DP-
AdaPT, respectively. The distribution of null p-values is very conservative, and thus all
methods successfully control the FDR. The proposed DP-AdaPT procedure has larger power
than the DP-BH procedure when the target FDR is greater than 0.05. Especially when the
strength of the signal is not very strong, our proposed method is around 70% better than
the DP-BH procedure. Compared to the AdaPT procedure, the proposed DP-AdaPT has
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Figure 6: The FDR of DP-BH, AdaPT, and DP-AdaPT for varying signal strength and
averaged over 100 independent trials under uniform p-values.
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Figure 7: The power of DP-BH, AdaPT and DP-AdaPT for varying signal strength and
averaged over 100 independent trials under uniform p-values.

uniformly smaller power. When the strength of signals is reasonably strong, the difference
between the power of our proposed DP-AdaPT and the power of AdaPT is smaller when
the null is conservative. The power of the AdaPT procedure in the conservative case is
smaller than that in the uniform case. Because the ratio of the density of p-values under
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the null hypothesis near 1 and 0 is very large when the density function is f (p) = 4p3,
and thus the AdaPT is too conservative. However, the DP-AdaPT procedure uses noise to
stable the ratio of the density of noisy p-values under the null hypothesis near 1 and 0, as
illustrated in Figure 1. Thus, our proposed procedure is more robust to the distribution of
p-values.

Although DP-AdaPT is not as accurate as the original AdaPT, the computation time
of the proposed DP-AdaPT is much faster due to the mirror peeling algorithm. The model
updating in AdaPT is computationally costly and should be performed every several steps.
Thus when the dataset is large, the computation of AdaPT can be very slow. We provide
the computation time in Table 1. The computation time is based on an HPC cluster with
CPU Model Intel Xeon Gold 6152 and RAM 10 GB. From the table, the computation of
DP-AdaPT is much faster than AdaPT because the data size of DP-AdaPT is only 5% of
the data size of AdaPT. This provides a way to accelerate the computation of AdaPT in
practice: when applying the AdaPT procedure to massive datasets, the proposed algorithm
can be utilized to reduce the computation cost by applying noiseless screening of masked
p-values.
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Figure 8: The FDR of DP-BH, AdaPT, and DP-AdaPT for varying signal strength and
averaged over 100 independent trials under conservative p-values.

4.3 Empirical Example

The Bottomly data set is an RNA-seq data set collected by Bottomly et al. (2011) to detect
differential striatal gene expression between the C57BL/6J (B6) and DBA/2J (D2) inbred
mouse strains. An average of 22 million short sequencing reads were generated per sample
for 21 samples (10 B6 and 11 D2). The Bottomly data was analyzed by Ignatiadis et al.
(2016) using DESeq2 package (Love et al., 2014) and performing an independent hypothesis
weighting (IHW) method. Approximate Wald test statistics were used to calculate p-values.
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Figure 9: The power of DP-BH, AdaPT, and DP-AdaPT for varying signal strength and
averaged over 100 independent trials under conservative p-values.

β = 2.5 β = 3.5 β = 4.5

Uniform Null AdaPT DP-AdaPT AdaPT DP-AdaPT AdaPT DP-AdaPT

I 1254.47 18.22 1100.75 20.06 1043.71 23.50
II 1512.54 23.82 1314.59 23.01 1215.09 25.58

III 1515.57 25.42 1090.52 16.74 1165.79 22.62

Conservative Null AdaPT DP-AdaPT AdaPT DP-AdaPT AdaPT DP-AdaPT

I 1810.04 30.34 1638.76 28.60 1662.77 26.49
II 1798.20 26.85 1508.15 32.04 1770.05 29.97

III 1921.82 31.59 1717.81 31.23 1675.85 25.46

Table 1: Computation Time in seconds averaged over 100 replications

The logarithm of each gene’s average normalized counts (across samples) is used as auxiliary
information (Lei and Fithian, 2018). After removing missing records, the data set contains
n = 13932 genes (p-values).

We pre-processed the data set by the DESeq2 package and used our proposed DP-AdaPT
to identify differentially expressed genes while controlling the FDR at a pre-set level α =
0.01, . . . , 0.1. Because p-values are calculated based on Wald statistics, we used the standard
normal CDF G (·) = Φ (·) as illustrated in Example 1. The privacy parameter was µ =
0.25. The same privacy parameter was used by Avella-Medina et al. (2021). The sensitive
parameter is ∆ = 3×10−5, which is roughly the inverse of the square root of the total sample
size. The corresponding standard deviation of the added noise is

√
2
√

8m∆2/µ2 ≈ 0.024.
The number of pre-selected hypotheses in the peeling algorithm was m = 2500, which is
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18% of the total number of hypotheses. We compare our proposed DP-AdaPT method with
the non-private Adapt and private DP-BH methods. The results are shown in Figure 10.
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Figure 10: Bottomly dataset: number of rejections of DP-BH, AdaPT, and DP-AdaPT for
varying FDR

Our proposed DP-AdaPT and Adapt methods have significantly more discoveries than
the DP-BH method because the auxiliary variable is highly correlated with hypotheses.
The proposed DP-AdaPT procedure complies with the Adapt procedure, which matches
the illustration in the simulation.

5. Discussion

In this paper, we propose a differentially private FDR control algorithm that accurately con-
trols the FDR at a user-specified level with a privacy guarantee. The proposed algorithm
is based on adding noise to a transformed p-value, and preserves the mirror conservative
property of the p-values. By further integrating a mirror peeling algorithm, we can define
a nice filtration and apply the classic optimal stopping argument. Our analysis provides a
new perspective in analyzing differentially private statistical algorithms: instead of conser-
vatively controlling the noise added for privacy, researchers can design transformations or
modifications that can preserve the key desired property in the theoretical analysis.

There are several open problems left for future research. For example, one commonly
assumed conditions on the null p-values in multiple testing is the uniformly conservative
property: P(pi/τ ≤ t | pi ≤ τ) ≤ t, ∀ t, τ ∈ (0, 1). However, it is still unknown whether
a similar transformation can be applied. If given a positive answer, then many existing
multiple testing procedures can be easily extended to the differentially private version. It
is an open question whether mirror conservative or uniformly conservative assumption is
necessary for differentially private FDR control. The other commonly assumed conditions
is the super uniform property: P(pi ≤ t) ≤ t, ∀ t ∈ [0, 1]. Developing a differentially private

23



Xia and Cai

algorithm with finite sample FDR control under a super uniform framework remains an
open problem. Lastly, it is also interesting to further develop other differentially private
modern statistical estimation and inference tools based on the similar idea of designing
transformations. Examples include but are not limited to sliced inverse regression (Cai
et al., 2020), covariance estimation(Cai et al., 2022b), test of independence (Cai et al.,
2023), etc.

Acknowledgments

The authors thank Jing Lei, Lihua Lei, and Linjun Zhang for helpful discussions and sug-
gestions. Zhanrui Cai’s research is supported by the Seed Fund for Basic Research for New
Staff at the University of Hong Kong.

Appendix A.

Appendix A. Algorithm of the Private BHq procedure

Algorithm 6 The Private BHq procedure (Dwork et al., 2021)

Require: dataset S, p-values p1, . . . , pn, threshold ν > 0, multiplicative sensitivity η,
significant level α, privacy level (ε, δ), number of invocations m and Laplace noise scale
λ = η

√
10m log(1/δ)/ε

Output: a set of up to m rejected hypotheses
Apply the transformation and denote fi = log max{ν, pi(S)} for i = 1, . . . , n.
Perform the Peeling Mechanism and Report Noisy Min algorithm with Laplace noise with

scale at λ. The results are denoted by

{
(i1, f̃i1), . . . , (im′ , f̃im)

}
.

for j = m to 1 do
if f̃ij > log(αj/n)− η

√
10m log(1/δ) log(6m/α)/ε

continue
else

reject pi1 , . . . , pij and halt
end if

end for

Appendix B. Proof of Theorem 3

Proof Without loss of generality, we assume the bound U = ∞ and the measure µ is
the Lebesgue measure. All other cases can be proved using the same technique by using a
suitable measure.

We first observe that the random variable p̃ is supported in [0, 1]. For any 0 ≤ a1 ≤
a2 ≤ 0.5, it remains to show the mirror-conservative condition,

P (p̃ ∈ [a1, a2]) ≤ P (p̃ ∈ [1− a2, 1− a1]) .
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By the definition, p̃ = G{G−1 (p) + Z}, the mirror-conservative condition is equivalent to

P
(
G−1 (p) + Z ∈

[
G−1 (a1) , G−1 (a2)

])
≤ P

(
G−1 (p) + Z ∈

[
G−1 (1− a2) , G−1 (1− a1)

])
,

where we substitute p̃ in the equation and apply the function G−1 (·) to both sides. By the
symmetry of g (·), we have for x < 0,

G (x) =

∫ x

−∞
g (t) dt =

∫ x

−∞
g (−t) dt =

∫ ∞
−x

g (t) dt = 1−
∫ −x
−∞

g (t) dt = 1−G (−x) ,

where we use the fact g (x) = g (−x) and
∫∞
−∞ g (x) = 1. After subtracting 1/2 on both

sides, we have 1/2−G (x) = −1/2 +G (−x). Noticing that G (x) < 1/2 for x < 0, we have

G−1 (1/2− t) = −G−1 (1/2 + t) ,

where t = G (x) ∈ (0, 1/2) and we apply G−1 (·) to both sides. It follows that G−1 (1− a1) =
−G−1 (a1) and G−1 (1− a2) = −G−1 (a2) by substituting t by 1/2 − a1 and 1/2 − a2,
respectively. The mirror-conservative condition is equivalent to

P
(
G−1 (p) + Z ∈

[
G−1 (a1) , G−1 (a2)

])
≤ P

(
G−1 (p) + Z ∈

[
−G−1 (a2) ,−G−1 (a1)

])
,

where we use the relation G−1 (1− a1) = −G−1 (a1) and G−1 (1− a2) = −G−1 (a2).
To prove the mirror-conservative condition, we first perform a decomposition of the

distribution of p and use the convolution formula. Let µp be the corresponding probability
measure generated by the distribution of p. We define a symmetric measure µs on [0, 1],
which satisfies that µs (a, b] = µ (a, b] for 0 ≤ a ≤ b ≤ 1/2 and µs (a, b] = µ (1− b, 1− a]
for 1/2 ≤ a ≤ b ≤ 1. Carathéodory’s extension theorem guarantees the existence of
µs. Intuitively, the µs is the mirror-symmetric part of µp. We have the decomposition
µp = µs + µr, where µz is defined by µr := µp − µs. The µr is a positive measure by the
fact that µp is mirror-conservative. Let µz be the probability measure generated by the
standard normal distribution. It follows that

P
(
G−1 (p) + Z ∈

[
G−1 (a1) , G−1 (a2)

])
− P

(
G−1 (p) + Z ∈

[
−G−1 (a2) ,−G−1 (a1)

])
= (µp ◦G)⊗ µz

[
G−1 (a1) , G−1 (a2)

]
− (µp ◦G)⊗ µz

[
−G−1 (a2) ,−G−1 (a1)

]
= (µs ◦G)⊗ µz

[
G−1 (a1) , G−1 (a2)

]
− (µs ◦G)⊗ µz

[
−G−1 (a2) ,−G−1 (a1)

]
+ (µr ◦G)⊗ µz

[
G−1 (a1) , G−1 (a2)

]
− (µr ◦G)⊗ µz

[
−G−1 (a2) ,−G−1 (a1)

]
,

where µp ◦ G is the probability measure generated by the random variable G−1 (p) and ⊗
is the convolution operator.

We consider the first line in the above equation. For all −∞ ≤ a ≤ b ≤ 0, using the
fact that the two intervals [G (a) , G (b)] and [G (−b) , G (−a)] = [1−G (b) , 1−G (a)] are
symmetric around 1/2 and the measure µs is symmetric around 1/2, we know µs ◦G [a, b] =
µs ◦ G [−b,−a]. Thus, the measure µs ◦ G is symmetric around 0. By the fact that µz is
symmetric around 0, the convolution (µs ◦G) ⊗ µz is also symmetric around 0. Thus, we
have

(µs ◦G)⊗ µz
[
G−1 (a1) , G−1 (a2)

]
= (µs ◦G)⊗ µz

[
−G−1 (a2) ,−G−1 (a1)

]
.
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It remains to consider the second line of the equation,

(µr ◦G)⊗ µz
[
G−1 (a1) , G−1 (a2)

]
− (µr ◦G)⊗ µz

[
−G−1 (a2) ,−G−1 (a1)

]
.

By the decomposition of µp, we have µr (a, b] = 0 for 0 ≤ a ≤ b ≤ 1/2. By the fact that
G (x) ≤ 1/2 for x ≤ 0, we conclude that (µr ◦G) [a, b] = 0 for all a, b ≤ 0. Let φ (·) = dµz/dµ
be the probability density function of standard normal distribution, and we have

(µr ◦G)⊗ µz
[
G−1 (a1) , G−1 (a2)

]
− (µr ◦G)⊗ µz

[
−G−1 (a2) ,−G−1 (a1)

]
=

∫ ∞
−∞

1

{
x ∈

[
G−1 (a1) , G−1 (a2)

]}∫ ∞
−∞

φ (x− y) d (µr ◦G) (y) dµ (x)

−
∫ ∞
−∞

1

{
x ∈

[
−G−1 (a2) ,−G−1 (a1)

]}∫ ∞
−∞

φ (x− y) d (µr ◦G) (y) dµ (x)

=

∫ G−1(a2)

G−1(a1)

∫ ∞
0

φ (x− y) d (µr ◦G) (y) dx−
∫ −G−1(a1)

−G−1(a2)

∫ ∞
0

φ (x− y) d (µr ◦G) (y) dµ (x)

=

∫ G−1(a2)

G−1(a1)

∫ ∞
0

φ (x− y) d (µr ◦G) (y) dx−
∫ G−1(a2)

G−1(a1)

∫ ∞
0

φ (−x− y) d (µr ◦G) (y) dµ (x)

=

∫ G−1(a2)

G−1(a1)

∫ ∞
0

[φ (x− y)− φ (−x− y)] d (µr ◦G) (y) dµ (x)

= −
∫ G−1(a2)

G−1(a1)

∫ −2x

0
φ (−x− y) d (µr ◦G) (y) dµ (x) .

Remembering that G−1 (a1) , G−1 (a2) < 0, we have x < 0. We conclude

−
∫ G−1(a2)

G−1(a1)

∫ −2x

0
φ (−x− y) d (µr ◦G) (y) dx < 0.

So,
P (p̃ ∈ [a1, a2]) ≤ P (p̃ ∈ [1− a2, 1− a1]) ,

and p̃ is mirror conservative.

Appendix C. Proof of Example 2 and 3

C.1 Example 2

Proof For two-sided testing, we let the support supp{g (x)} ⊂ [−M,M ] and g (M) =
g (−M) > 0, and G (x) =

∫ x
−∞ g (x) dx. We have

G−1{2Φ
[
−
∣∣T (S ′)∣∣]} −G−1{2Φ [− |T (S)|]}

=

∫ −|T (S′)|

−|T (S)|

dG−1 [2Φ (t)]

dt
dt =

∫ −|T (S′)|

−|T (S)|

dG−1 [2Φ (t)]

d2Φ (t)

d2Φ (t)

dt
dt

=

∫ −|T (S′)|

−|T (S)|

2φ (t)

g (G−1 (2Φ (t)))
dt.
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The function 2φ (t) /g
(
G−1 (2Φ (t))

)
is continuous on (−∞, 0). As t→ −∞,

lim
t→−∞

2φ (t)

g (G−1 (2Φ (t)))
=

√
π

2
lim

t→−∞

exp
(
−t2/2

)
g (−M)

= 0,

where we used L’Hospital’s rule. As t→ 0−,

lim
t→0−

2φ (t)

g (G−1 (2Φ (t)))
= lim

t→0−

2φ (0)

g (G−1 (2Φ (t)))
=

2φ (0)

g (M)
,

where we used L’Hospital’s rule again. Thus, the function is bounded by a constant C, and∣∣G−1{2Φ [− |T (S)|]} −G−1{2Φ
[
−
∣∣T (S ′)∣∣]}∣∣ ≤ ∣∣∣∣∣

∫ −|T (S)|

−|T (S′)|
C

∣∣∣∣∣
≤C‖ |T (S)| −

∣∣T (S ′)∣∣ ‖ ≤ C‖T (S)− T
(
S ′
)
‖ ≤ 2CM/

√
n,

where we use the fact sup ‖T (S ′)− T (S) ‖ ≤M/
√
n by the sensitivity of statistic T .

C.2 Example 3

Proof We let G (·) = Φ (·), ξ (x) = (2π)−1/2 x−1/2e−x/2 be the density function of χ2
1

distribution and Ξ be the CDF of χ2
1 distribution. We have

Φ−1{1− Ξ [T (S)]} − Φ−1{1− Ξ
[
T
(
S ′
)]
}

=

∫ T (S′)

T (S)

dΦ−1 [1− Ξ (t)]

dt
dt =

∫ T (S′)

T (S)

dΦ−1 [1− Ξ (t)]

d [1− Ξ (t)]

d [1− Ξ (t)]

dt
dt

=

∫ T (S)

T (S′)

ξ (t)

φ (Φ−1 (1− Ξ (t)))
dt.

The function ξ (t) /φ
(
Φ−1 (1− Ξ (t))

)
is continuous on (0,∞). We will use L’Hospital’s rule

to evaluate the limiting behavior of the function. The derivative of the denominator is,

dφ
(
Φ−1 (1− Ξ (t))

)
dt

=
dφ
(
Φ−1 (1− Ξ (t))

)
dΦ−1 (1− Ξ (t))

dΦ−1 (1− Ξ (t))

d (1− Ξ (t))

d (1− Ξ (t))

dt

=− Φ−1 (1− Ξ (t))φ
(
Φ−1 (1− Ξ (t))

)
× 1

φ (Φ−1 (1− Ξ (t)))
× [−ξ (t)]

=Φ−1 (1− Ξ (t)) ξ (t) ,

where we use the fact

dφ (t)

dt
= −t

exp
(
−t2/2

)
√

2π
= −tφ (t) .

As t→∞,

lim
t→∞

ξ (t)

φ (Φ−1 (1− Ξ (t)))
= lim

t→∞

1√
2π

−1
2 t
−3/2e−t/2 − 1

2 t
−1/2e−t/2

Φ−1 (1− Ξ (t)) ξ (t)

= lim
t→∞
−1

2

1
t + 1

Φ−1 (1− Ξ (t))

u:=1−Ξ(t)
= lim

u→0+
−1

2

1

Φ−1 (u)
= 0.
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As t→ 0+, the function ξ (t) /φ
(
Φ−1 (1− Ξ (t))

)
diverges, which means we can not bound

the sensitivity using the method in Example 2. We investigate the limiting behavior of the
function ξ (t) /φ

(
Φ−1 (1− Ξ (t))

)
by multiplying a power of t. For 0 < δ < 1/2,

lim
t→0+

t1/2+δ ξ (t)

φ (Φ−1 (1− Ξ (t)))
= lim

t→0+

1√
2π

tδe−t/2

φ (Φ−1 (1− Ξ (t)))

L’Hospital’s rule
= lim

t→0+

tδe−t/2√
2π

δt−1 − 1/2

Φ−1 (1− Ξ (t)) ξ (t)
= lim

t→0+

(
δt−1 − 1/2

)
tδ+1/2

Φ−1 (1− Ξ (t))

= lim
t→0+

δtδ−1/2

Φ−1 (1− Ξ (t))
.

To deal with the denominator, we use Chebyshev’s approximation for the inverse of the
Gaussian CDF (Blair et al., 1976). Specifically, Φ−1 (1− Ξ (t)) =

√
−2 log Ξ (t)(1 + o(1))

for Ξ (t)→ 0. Thus we have

lim
t→0+

δtδ−1/2

Φ−1 (1− Ξ (t))
= lim

t→0+

δtδ−1/2√
−2 log Ξ (t)

.

We approximate the CDF function Ξ (t) by the limiting of Ξ (t) as t → 0+. The CDF
function Ξ (t) = γ (1/2, t/2) /Γ (1/2), where γ (·, ·) is the incomplete gamma function and
Γ (·) is the gamma function. Using the approximation of the incomplete gamma function,
we have γ (1/2, t/2) =

√
2t(1 + o(1)) as t→ 0+, and

lim
t→0+

δtδ−1/2√
−2 log Ξ (t)

= lim
t→0+

δtδ−1/2

√
− log t

= 0.

Now we are ready to prove the statement on sensitivity. Because the function ξ(t)
φ(Φ−1(1−Ξ(t)))

is continuous and converges to 0 as t → ∞, there exists a threshold C3 > 0 and the
function ξ(t)

φ(Φ−1(1−Ξ(t)))
has an upper bound C1 > 0 on [C3,∞). By the fact that the

function t1/2+δ ξ(t)
φ(Φ−1(1−Ξ(t)))

is continuous and converges to 0 as t → 0. For the enough

small threshold C3 > 0, the function t1/2+δ ξ(t)
φ(Φ−1(1−Ξ(t)))

has an upper bound C2 > 0 on

(0, C3]. Thus, the function ξ(t)
φ(Φ−1(1−Ξ(t)))

is bounded by C2t
−1/2−δ on (0, C3]. Then, we have
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inequality,∣∣Φ−1{1− Ξ [T (S)]} − Φ−1{1− Ξ
[
T
(
S ′
)]
}
∣∣

≤

∣∣∣∣∣
∫ T (S)

T (S′)

ξ (t)

φ (Φ−1 (1− Ξ (t)))
dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ max{T (S),C3}

max{T (S′),C3}

ξ (t)

φ (Φ−1 (1− Ξ (t)))
dt

∣∣∣∣∣+

∣∣∣∣∣
∫ min{T (S),C3}

min{T (S′),C3}

ξ (t)

φ (Φ−1 (1− Ξ (t)))
dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ max{T (S),C3}

max{T (S′),C3}
C1dt

∣∣∣∣∣+

∣∣∣∣∣
∫ min{T (S),C3}

min{T (S′),C3}
C2t
−1/2−δdt

∣∣∣∣∣
≤C1‖max{T

(
S ′
)
, C3} −max{T (S) , C3}‖+ C2

∣∣∣∣∣
∫ min{T (S′),T (S),C3}+‖T (S)−T (S′)‖

min{T (S′),T (S),C3}
t−1/2−δdt

∣∣∣∣∣
≤M2/nC1 + C2

∣∣∣∣∣
∫ ‖T (S)−T (S′)‖

0
t−1/2−δdt

∣∣∣∣∣
≤M2/nC1 +

C2

1/2− δ
(
M2/n

)1/2−δ
,

where in the fourth inequality, we use the fact that t−1/2−δ is decreasing, and in the fifth
inequality, we use the fact that sup ‖T (S ′)− T (S) ‖ ≤M2/n.

Appendix D. Proof of Lemma 7

Proof We first show that report noisy min algorithm is (ε, δ (ε))-DP, where ε > 0 and

δ (ε) = Φ

(
− ε
µ

+
µ

2

)
− eεΦ

(
− ε
µ
− µ

2

)
.

Using the idea in Dwork et al. (2014), we first fix any i ∈ {1, . . . , n}. Let f1 = G−1 (p1) , . . . , fn =
G−1 (p1) to denote the functions when the data is S and f ′1 = G−1 (p′1) , . . . , f ′n = G−1 (p′n)
to denote the functions when the data is S ′, where S ′ is a neighborhood of S. By the fact
that the G function is monotone increasing, it is enough to consider reporting the noisy
minimum of {f1, . . . , fn}.

Fix the random noise Zi, Z1, . . . , Zi−1, Zi+1, . . . , Zn, which are draw independently from
N
(
0, 8∆2/µ2

)
. Define

Z∗ = max
Zi

: fi + Zi ≤ fj + Zj ∀j 6= i.

Then, i will be the algorithm’s output when the data is S if and only if Zi ≤ Z∗.
We have for j 6= i,

fi + Z∗ ≤ fj + Zj

⇒ −∆ + f ′i + Z∗ ≤ fi + Z∗ ≤ fj + Zj ≤ f ′j + Zj + ∆

⇒ f ′i + Z∗ − 2∆ ≤ f ′j + Zj .
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Then, if Zi ≤ Z∗ − 2∆, i will be the algorithm’s output when the data is S ′. We
propose the following claim: 1 − Φ (x+ µ) ≥ e−ε [1− Φ (x)− δ (ε)], where ε > 0 and
δ (ε) = Φ (−ε/µ+ µ/2)− eεΦ (−ε/µ− µ/2). By the claim and letting x = −Z∗µ/

(
23/2∆

)
,

it follows that,

P (Zi ≥ Z∗ + 2∆) ≥ e−ε [P (Zi ≥ Z∗)− δ (ε)]

⇒ P
(
i | S ′,Z−i

)
≥ P (Zi ≥ Z∗ + 2∆) ≥ e−ε [P (Zi ≥ Z∗)− δ (ε)] ≥ e−ε [P (i | S,Z−i)− δ (ε)] ,

where we use P (i | S,Z−i) and P (i | S ′,Z−i) to denote the probabilities of output i using
data S and S ′, respectively. We use Z−i to denote {Z1, . . . , Zi−1, Zi, . . . , Zm}. Then, after
taking the expectation of Z−i, we conclude,

P (i | S) ≤ eεP
(
i | S ′

)
+ δ (ε) .

Then, we turn to prove the claim. Let g (x) = 1− Φ (x+ µ)− e−ε [1− Φ (x)− δ (ε)]. Take
the derivative of g (x), we have

d

dx
g (x)

∣∣∣∣
x= ε

µ
−µ

2

= 0, g (x) < 0 if x <
ε

µ
− µ

2
, g (x) > 0 if x >

ε

µ
− µ

2
.

Then we conclude that g (x) reaches global minimize at x = ε
µ −

µ
2 , and g

(
ε
µ −

µ
2

)
= 0

by calculus. Then the claim holds. By Corollary 2.13 in Dong et al. (2022), report noisy
min index is 2−1/2µ-GDP. Using the composition theorem, we conclude report noisy min
algorithm is µ-GDP.

Appendix E. Proof of Theorem 10

Proof The Report Noisy Min algorithm with Laplace noise λ = ∆
√

10m log (1/δ)/ε is(
2ε/
√

10m log (1/δ), 0
)

-differential private by Lemma 2.4 in Dwork et al. (2021).

Lemma 12 (Advanced Composition Theorem by Dwork et al. (2014)) For all ε, δ ≥
0 and δ′ > 0, running l mechanisms sequentially that are each (ε, δ)-differentially private

preserves
(
ε
√

2l log (1/δ′) + lε (eε − 1) , lδ + δ′
)

-differential privacy.

By Lemma 12, the peeling algorithm is (ε̃, δ)-differentially private, where

ε̃ =
2ε√

10m log (1/δ)

√
2m log (1/δ) +m

2ε√
10m log (1/δ)

(
e

2ε√
10m log(1/δ) − 1

)
=

[
2√
5

+
2
√
m√

10 log (1/δ)

(
e

2ε√
10m log(1/δ) − 1

)]
ε

≤

(
2√
5

+ 1.034
2
√
m√

10 log (1/δ)

2ε√
10m log (1/δ)

)
ε

=

(
2√
5

+ 1.034
4ε

10 log (1/δ)

)
ε,
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where we use the relation ex − 1 ≤ 1.034x for 0 ≤ x ≤ 0.0660 and 2ε/
√

10m log (1/δ) ≤
0.0660 for ε ≤ 0.5, δ ≤ 0.1 and m ≥ 10. Furthermore,

ε̃ ≤
(

2√
5

+ 1.034
4× 0.5

10 log (10)

)
ε ≤ ε.

Then by post-processing property of (ε, δ)-differential privacy, the DP-AdaPT algorithm
with Laplace noise is (ε, δ)-differential privacy.

Appendix F. Proof of Theorem 11

Proof We begin with a technique lemma. Let [n] denote the set {1, . . . , n}.

Lemma 13 (Lei and Fithian (2018)) Suppose that, conditionally on the σ-field G−1,
b1, . . . , bn are independent Bernoulli random variables with P (bi = 1 | G−1) = ρi ≥ ρ > 0,
almost surely. Also, suppose that [n] ⊇ C0 ⊇ C1 ⊇ . . . , with each subset Ct measurable with
respect to

Gt = σ

(
G−1, Ct, (bi)i/∈Ct ,

∑
i∈Ct

bi

)
.

If t̂ is an almost-surely finite stopping time with respect to the filtration (Gt)t≥0, then

E

[
1 + |Ct̂|

1 +
∑

i∈Ct̂bi

∣∣ G−1

]
≤ ρ−1.

Let t̂ denote the step at which we stop and reject. Then

FDPt̂ =
Vt̂

Rt̂ ∨ 1
=

1 + Ut̂
Rt̂ ∨ 1

Vt̂
1 + Ut̂

≤
1 +At̂
Rt̂ ∨ 1

Vt̂
1 + Ut̂

≤ α
Vt̂

1 + Ut̂
,

where we define

Ut =
∣∣{ij , j = 1, . . . ,m : Hij is null and p̃ij ≥ 1− st

(
xij
)
}
∣∣ ,

and
Vt =

∣∣{ij , j = 1, . . . ,m : Hij is null and p̃ij ≤ st
(
xij
)
}
∣∣ ,

and we use the fact Ut ≤ At and the stopping criterion (1 +At̂) / (Rt̂ ∨ 1) ≤ α. It is enough
to consider Vt̂/ (1 + Ut̂).

We use p̃ij to denote the noisy p-values that are subject to release, for j = 1, . . . ,m. Let
m̃ij = min{p̃ij , 1 − p̃ij}, bij = 1{p̃ij ≥ 0.5} and p̃ij = bij

(
1− m̃ij

)
+
(
1− bij

)
m̃ij . We use

P to denote the indexes returned by the mirror peeling algorithm. Let Ct = {i ∈ H0, i ∈
P : p̃i /∈ (st (xi) , 1− st (xi))} be the index of the null p-values which are unavailable to the
analyst. Then, we have the relation Ut =

∑
i∈Ct bi and Vt =

∑
i∈Ct (1− bi) = |Ct| − Ut.

We then construct the auxiliary filtration (Gt)t≥−2. First, define the σ-field,

G−2 = σ ({xi,mi}ni=1) ,
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where mi = min{pi, 1 − pi}. In the mirror-peeling mechanism, we use p̃i,j to denote the
noisy p-value of p̃i in the j-th peeling mechanism. Define the peeling σ-field,

G−2 ⊆ G−2+ 1
m+1
⊆ · · · ⊆ G−1− 1

m+1
,

where G−2+ j
m+1

= σ
(
G−2+ j−1

m+1
, {m̃i,j}ni=1

)
and m̃i,j = min{p̃i,j , 1− p̃i,j}. It is not difficult

to see the j-th peeling mechanism is measurable with respect to G−2+ j
m+1

. Then, we define

G−1 = σ
(
G−1− 1

m+1
, {m̃i}ni=1, (bi)i/∈H0

)
,

and

Gt = σ

(
G−1, Ct, (bi)i/∈Ct ,

∑
i∈Ct

bi

)
.

The assumptions of independence and mirror-conservatism guarantee P (bi = 1 | G−1) ≥ 0.5
almost surely for each i ∈ H0. The reasons are

P (bi = 1 | G−1) = P (p̃i ≥ 0.5 | G−1) = P
(
p̃i ≥ 0.5 | m̃i,mi, {mi,j}mj=1

)
= P (p̃i ≥ 0.5 | m̃i) ,

and that p̃i is mirror-conservative by Theorem 3.
Notice that p̃i ∈ Gt for p̃i ∈ (st (xi) , 1− st (xi)), At = Ut+|i /∈ H0, i ∈ P : p̃i ≥ 1− st (xi)|

and Rt = Vt + |i /∈ H0, i ∈ P : p̃i ≤ st (xi)|. Then, we conclude Ft ⊆ Gt. It follows that

t̂ = min{t : F̂DPt ≤ α} is a stopping time with respect to Gt. Then we have

E [FDP | G−1] ≤ αE
[

Vt̂
1 + Ut̂

| G−1

]
= αE

[
1 + |Ct̂|
1 + Ut̂

− 1 | G−1

]
≤ α.

Finally, notice that F−1 ⊂ G−1 and use the tower property of conditional expectation.
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