
Journal of Machine Learning Research 24 (2023) 1-26 Submitted 1/23; Revised 9/23; Published 12/23

Fourier Neural Operator with Learned Deformations
for PDEs on General Geometries

Zongyi Li zongyili@caltech.edu
Computing and Mathematical Science
California Institute of Technology
Pasadena, CA 91125, USA

Daniel Zhengyu Huang huangdz@bicmr.pku.edu.cn
Beijing International Center for Mathematical Research
Peking University
Beijing, 100871, China

Burigede Liu bl377@cam.ac.uk
Department of Engineering
University of Cambridge
Cambridge, CB2 1PZ, UK

Anima Anandkumar anima@caltech.edu
Computing and Mathematical Science
California Institute of Technology
Pasadena, CA 91125, USA

Editor: Lorenzo Rosasc

Abstract

Deep learning surrogate models have shown promise in solving partial differential equations
(PDEs). Among them, the Fourier neural operator (FNO) achieves good accuracy, and is
significantly faster compared to numerical solvers, on a variety of PDEs, such as fluid flows.
However, the FNO uses the Fast Fourier transform (FFT), which is limited to rectangular
domains with uniform grids. In this work, we propose a new framework, viz., Geo-FNO,
to solve PDEs on arbitrary geometries. Geo-FNO learns to deform the input (physical)
domain, which may be irregular, into a latent space with a uniform grid. The FNO model
with the FFT is applied in the latent space. The resulting Geo-FNO model has both the
computation efficiency of FFT and the flexibility of handling arbitrary geometries. Our
Geo-FNO is also flexible in terms of its input formats, viz., point clouds, meshes, and
design parameters are all valid inputs. We consider a variety of PDEs such as the Elasticity,
Plasticity, Euler’s, and Navier-Stokes equations, and both forward modeling and inverse
design problems. Comprehensive cost-accuracy experiments show that Geo-FNO is 105

times faster than the standard numerical solvers and twice more accurate compared to
direct interpolation on existing ML-based PDE solvers such as the standard FNO.

Keywords: Neural operator, numerical partial differential equation, Inverse design,
Adaptive meshes, Geometric Transform.

c©2023 Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, Anima Anandkumar.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/23-0064.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/23-0064.html

Li, Huang, Liu, Anandkumar

1. Introduction

Data-driven engineering design has the potential to accelerate the design process by orders
of magnitude compared to conventional methods. It can enable extensive exploration of the
design space and yield new designs with far greater efficiency. This is because the conventional
design process requires repeated evaluations of partial differential equations (PDEs) for
optimization, which can be time-consuming. Examples include computational fluid dynamics
(CFD) based aerodynamic design and topology optimization for additive manufacturing. Deep
learning approaches have shown promise in speeding up PDE evaluations and automatically
computing derivatives, hence accelerating the overall design cycle. However, most deep
learning approaches currently focus on predicting a few important quantities in the design
process, e.g. lift and drag in aerodynamics, as opposed to completely emulating the entire
simulation (i.e., pressure or Mach number fields in aerodynamics). This limits the design
space to be similar to the training data, and may not generalize to new geometries and
scenarios. In contrast, we develop an efficient deep learning-based approach for design
optimization, which emulates the entire PDE simulation on general geometries leading to a
versatile tool for exploring the design space.

Deformable meshes. Solutions of PDEs frequently have high variations across the problem
domain, and hence some regions of the domain often require a finer mesh compared to other
regions for obtaining accurate solutions. For example, in airfoil flows, the region near the
airfoil requires a much higher resolution for accurately modeling the aerodynamics, as shown in
Figure 8. To address such variations, deformable mesh methods such as adaptive finite element
methods (FEM) have been developed. Two adaptive mesh methods are commonly used:
the adaptive mesh refinement method that adds new nodes (and higher-order polynomials),
and the adaptive moving mesh method that relocates the existing nodes Babuška and Suri
(1990); Huang and Russell (2010). While mesh refinement is popular and easy to use with
traditional numerical solvers, it changes the mesh topology and requires special dynamic
data structures, which reduce speed and make it hard for parallel processing. On the other
hand, the adaptive moving mesh methods retain the topology of the mesh, making it possible
to integrate with spectral methods. Spectral methods solve the equation on the spectral
space (i.e., Fourier, Chebyshev, and Bessel), which usually have exponential convergence
guarantees when applicable Gottlieb and Orszag (1977). However, these spectral methods
are limited to simple computational domains with uniform grids. When the mesh becomes
non-uniform, spectral basis functions are no longer orthogonal and the spectral transform is
no longer invertible, so the system in the deformed Fourier space is not equivalent to the
original one anymore. Thus, traditional numerical methods are slow on complex geometries
due to computational constraints.

Neural operators. Deep learning surrogate models have recently yielded promising results
in solving PDEs. One class of such models is data-driven, and they directly approximate
the input-output map through supervised learning. Such models have achieved significant
speedups compared to traditional solvers in numerous applications (Zhu and Zabaras, 2018;
Bhatnagar et al., 2019). Among them, the graph neural networks have not been studied
for complex geometries (Allen et al., 2022; Sanchez-Gonzalez et al., 2020) Recently, a new
class of data-driven models known as neural operators aim to directly learn the solution

2

Geometric Fourier Neural Operator

operator of the PDE in a mesh-convergent manner. Unlike standard deep learning models,
such as convolutional neural networks from computer vision, neural operators are consistent
to discretization and hence, better suited for solving PDEs. They generalize the previous
finite-dimensional neural networks to learn operator mapping between infinite-dimensional
function spaces. Examples include Fourier neural operator (FNO) (Li et al., 2020c), graph
neural operator Li et al. (2020b), and DeepONet (Lu et al., 2019). We consider FNO (Li
et al., 2020a) in this paper due to its superior cost-accuracy trade-off (De Hoop et al.,
2022). FNO implements a series of layers computing global convolution operators with
the fast Fourier transform (FFT) followed by mixing weights in the frequency domain
and inverse Fourier transform. These global convolutional operators are interspersed with
non-linear transformations such as GeLU. By composing global convolution operators and non-
linear activations, FNO can approximate highly non-linear and non-local solution operators.
FNO and its variants are able to simulate many PDEs such as the Navier-Stokes equation
and seismic waves, do high-resolution weather forecasts, and predict CO2 migration with
unprecedented cost-accuracy trade-off (Pathak et al., 2022; Yang et al., 2021; Wen et al.,
2022).

Limitations of FNO on irregular geometries. While FNO is fast and accurate, it has
limitations on the input format and the problem domain. Since FNO is implemented with
FFT, it can be only applied on rectangular domains with uniform meshes. When applying it
to irregular domain shapes, previous works usually embed the domain into a larger rectangular
domain (Lu et al., 2022). However, such embeddings are less efficient and wasteful, especially
for highly irregular geometries. Similarly, if the input data is in the form of non-uniform
meshes such as triangular meshes, previous works use basic interpolation methods between
the input non-uniform mesh and a uniform mesh on which FFT is computed Li et al. (2020a).
This can cause large interpolation errors, especially for non-linear PDEs.

Our contributions. To address the above challenges, we develop a geometry-aware Fourier
neural operator (Geo-FNO) and we summarize our contributions below:

1. We propose a geometry-aware discretization-convergent FNO framework (Geo-FNO)
that works on arbitrary geometries and a variety of input formats such as point clouds,
non-uniform meshes, and design parameters.

2. Geo-FNO deforms the irregular input domain into a uniform latent mesh on which the
FFT can be applied. Such deformation can be fixed or learned with the FNO architecture
in an end-to-end manner. For the latter case, we design a neural network to model the
deformation and train it end-to-end with Geo-FNO.

3. We experiment on different geometries for the Elasticity, Plasticity, Advection, Euler’s,
and Navier-Stokes equations on both forward modeling and inverse design tasks. The
cost-accuracy experiments show that Geo-FNO has up to 105 acceleration compared to the
numerical solver, as well as half the error rate compared to previous interpolation-based
methods as shown in Figure 3. Further, Geo-FNO maintains discretization-convergence.
The model trained on low resolution datasets can be directly evaluated at high resolution
cases.

3

Li, Huang, Liu, Anandkumar

Figure 1: Geometry-aware FNO
Top: The Geo-FNO model deforms the input functions from irregular physical space to a uniform
latent space. After the standard FNO Li et al. (2020a) is applied, the Geo-FNO will deform the

latent solution function back to the physical space. P , Q are lifting and projection. F and F−1 are
the Fourier transforms. K is a linear transform (18). Bottom: The deformation, either given or

learned, defines a correspondence between the physical space and computational space. It induces an
adaptive mesh and a generalized Fourier basis on the physical space.

Geo-FNO thus learns a deformable mesh along with the solution operator in an end-
to-end manner by applying a series of FFTs and inverse FFTs on a uniform latent mesh,
as shown in Figure 1. Thus, Geo-FNO combines both the computational efficiency of the
FFT and the flexibility of learned deformations. It is as fast as the original FNO but can
represent the variations in solutions and domain shapes more efficiently and accurately. The
learned deformation from the physical irregular domain to a uniform computational domain
is inspired by the traditional adaptive moving mesh method (Huang and Russell, 2010).
However, the adaptive moving mesh method has not had much success with traditional
numerical solvers due to the loss of orthogonality of the spectral transform. On a deformed
mesh, the system in the Fourier space is no longer equivalent to the original system, so it
does not make sense to solve the PDE in the deformed Fourier space. However, Geo-FNO
does not have this limitation. It does not involve solving equations in the Fourier space.
Instead, Geo-FNO approximates the solution operator via the computation on Fourier space
in a data-driven manner.

In principle, our Geo-FNO framework can be directly extended to general topologies.
Given complex input topology we can apply the decomposition techniques such as triangle
tessellation to divide the domain into sub-domains such as each sub-domain is regular.
Similarly, for other input formats such as the signed distance functions (SDF), we can sample
collocation points. Furthermore, it is possible to extend the Geo-FNO framework to the
physics-informed neural operator setting which incorporates PDE constraints (Li et al.,
2021). Since the deformation is parameterized by a neural network, we can obtain the exact
derivatives and apply the chain rule to compute the residual error.

4

Geometric Fourier Neural Operator

2. Problem Settings and Preliminaries

Problem settings. In this work, we consider parametric partial differential equations
defined on various domains. Assume the problem domain Da is parameterized by design
parameters a ∈ A, which follows some distribution a ∼ µ. For simplicity, we assume all the
domains are bounded, orientable manifolds embedded in some background Euclidean space
Ω (e.g., R3). We consider both stationary problems and time-dependent problems of the
following forms:

du

dt
= R(u), in Da × T

u = u0, in Da × {0}
u = ub, in ∂Da × T

(1)

where u0 ∈ U(0) is the initial condition; ub is the boundary condition; and u(t) ∈ U(t) for
t > 0 is the target solution function. R is a possibly non-linear differential operator. We
assume that u exists and is bounded for all time and for every u0 ∈ U(t) at every t ∈ T . This
formulation gives rise to the solution operator G† : (a, u0, ub) 7→ u. Prototypical examples
include fluid mechanics problems such as the Burgers’ equation and the Navier-Stokes equation
and solid mechanics problems such as elasticity and plasticity defined on various domain
shapes such as airfoils and pipes. In this paper, we assume the initial condition u0 and the
boundary condition ub are fixed. Specifically, we also consider stationary problem R(u) = 0
where u0 is not necessary. In this case, the solution operator simplifies to G† : a 7→ u.

Input formats. In practice, the domain shape can be parameterized in various ways. It
can be given as meshes, functions, and design parameters. In the most common cases, the
domain space is given as meshes (point clouds) a = T = {xi}N ⊂ Ω, such as triangular
tessellation meshes used in many traditional numerical solvers. Alternatively, the shapes
can be described by some functions a = f : Ω → R. For example, if the domain is a 2D
surface, then it can be parameterized by its boundary function f : [0, 1]→ ∂Da. Similarly,
the domain can be described as signed distance functions (SDF) or occupancy functions.
These are common examples used in computer vision and graphics. At last, we also consider
specific design parameters a ∈ Rd. For example, it can be the width, height, volume, angle,
radius, and spline nodes used to model the boundary. The design parameters restrict the
domain shape in a relatively smaller subspace of all possible choices. This format is most
commonly used in a design problem, which is easy to optimize and manufacture. For the
latter two cases, it is possible to sample a mesh T based on the shape.

2.1 Learning the solution operator

Given a PDE as defined in (1) and the corresponding solution operator G†, one can use a
neural operator Gθ with parameters θ as a surrogate model to approximate G†. Usually we
assume a dataset {aj , uj}Nj=1 is available, where G†(aj) = uj and aj ∼ µ are i.i.d. samples
from some distribution µ supported on A. In this case, one can optimize the solution operator
by minimizing the relative empirical data loss on a given data pair

Ldata(u,Gθ(a)) =
‖u− Gθ(a)‖L2
‖u‖L2

=

√∫
Da
|u(x)− Gθ(a)(x)|2dx∫

Da
u(x)2dx

(2)

5

Li, Huang, Liu, Anandkumar

The operator data loss is defined as the average error across all possible inputs

Jdata(Gθ) = Ea∼µ[Ldata(G†(a),Gθ(a))] ≈ 1

N

N∑
j=1

√∫
Da
|uj(x)− Gθ(aj)(x)|2dx∫

Da
uj(x)2dx

. (3)

When the prediction u is time-dependent, the L2 integration should also account for the
temporal dimension.

2.2 Neural operator

In this work, we will focus on the neural operator model designed for the operator learning
problem. The neural operator, proposed in (Li et al., 2020c), is formulated as a generalization
of standard deep neural networks to operator setting. Neural operators compose linear
integral operator K with pointwise non-linear activation function σ to approximate highly
non-linear operators.

Definition 1 (Neural operator Gθ) Define the neural operator

Gθ := Q ◦ (WL +KL + bL) ◦ · · · ◦ σ(W1 +K1 + b1) ◦ P (4)

where P : Rda → Rd1, Q : RdL → Rdu are the pointwise neural networks that encode the
lower dimension function into higher dimensional space and vice versa. The model stack
L layers of σ(Wl +Kl + bl) where Wl ∈ Rdl+1×dl are pointwise linear operators (matrices),
Kl : {D → Rdl} → {D → Rdl+1} are integral kernel operators, bl : D → Rdl+1 are the bias
term made of a linear layer, and σ are fixed activation functions. The parameters θ consists
of all the parameters in P,Q,Wl,Kl, bl.

Definition 2 (Fourier integral operator K) Define the Fourier integral operator

(
K(φ)vt

)
(x) = F−1

(
Rφ · (Fvt)

)
(x) ∀x ∈ D (5)

where Rφ is the Fourier transform of a periodic function κ : D̄ → Rdv×dv parameterized by
φ ∈ ΘK.

The Fourier transform F is defined as

(Fv)(k) = 〈v, ψ(k)〉L(D) =

∫
x
v(x)ψ(x, k)µ(x) ≈

∑
x∈T

v(x)ψ(x, k) (6)

where ψ(x, k) = e2iπ〈x,k〉 ∈ L(D) is the Fourier basis and T is the mesh sampled from the
distribution µ. In Li et al. (2020c), the domain D is assumed to be a periodic, square
torus and the mesh T is uniform, so the Fourier transform F can be implemented by the
fast Fourier transform algorithm (FFT). In this work, we aim to extend the framework to
non-uniform meshes and irregular domains.

6

Geometric Fourier Neural Operator

3. Geometry-Aware Fourier Neural Operator

The idea of the geometry-aware Fourier neural operator is to deform the physical space
into a regular computational space so that the fast Fourier transform can be performed
on the computational space. Formally, we want to find a diffeomorphic deformation φa
between the input domain Da and the unit torus Dc = [0, 1]d. The computational mesh
Dc is shared among all input space Da. It is equipped with a uniform mesh and standard
Fourier basis. Once the coordinate map φa is determined, the map induces an adaptive mesh
and deformed Fourier basis on the physical space. In the community of numerical PDEs, the
diffeomorphism corresponds to the adaptive moving mesh (Huang and Russell, 2010).

3.1 Deformation from the physical space to the computational space.

Let Da be the physical domain and Dc be the computational domain. Let x ∈ Da and
ξ ∈ Dc be the corresponding mesh points. Denote the input meshes as Ta = {x(i)} ⊂ Da

and the computational meshes as T c = {ξ(i)} ⊂ Dc. For simplicity, we assume the output
mesh is the same as the input mesh. The adaptive moving mesh is defined by a coordinate
transformation φa that transforms the points from the computational mesh to the physical
mesh, as shown in Figure 1 (b)

φa : Dc → Da

ξ 7→ x
(7)

Ideally, φa is a diffeomorphism, meaning it has an inverse φ−1a , and both φa and φ−1a are
smooth. When such a diffeomorphism exists, there is a correspondence between the physical
space and the computational space. Let T c ⊂ Dc be the uniform mesh and ψc ∈ L(Dc) be the
standard spectral basis defined on the computational space. The coordinate transformation
φa ⊂ Da induces an adaptive mesh Ta and adaptive spectral basis ψa ∈ L(Da) (pushforward)

Ta := φa(T c)
ψa(x) := ψc ◦ φ−1a (x)

(8)

It can be interpreted as solving the system R(v) = 0 with adaptive mesh Ta and generalized
basis ψa. Conversely, for any function defined on the physical domain v ∈ L(Da), it can be
transformed to the computational domain vc ∈ L(Dc) (pullback)

vc(ξ) := v(φa(ξ)) (9)

Similarly, for any system of equations R(v) = 0 such as (1) defined on the physical domain
Da, the transformation φa induced a new deformed system of equations Rc(vc) = 0. It
can be interpreted as solving the deformed system Rc(vc) = 0 with uniform mesh T c and
standard basis ψc.

Examples: Chebyshev Basis. Chebyshev method is a standard spectral method for
solving PDE with non-periodic boundary Driscoll et al. (2014). It can be induced from
the standard cosine basis (in discrete cosine transform) with a cosine grid. The Chebyshev
polynomials on domain [−1, 1] has the form of

φkcheb := cos(k · cos−1(x)), k = 0, 1, 2 . . .

7

Li, Huang, Liu, Anandkumar

It’s equivalent to apply the cosine deformation φa : [0, π]→ [−1, 1]

φa(x) = cos(x)

to the basis of cosine series

φkcos := cos(k · x), k = 0, 1, 2 . . .

in the same manner as a deformed basis (8)

φkcheb = φkcos ◦ φ−1a (x)

Intuitively, the cosine deformation places more grid points around the boundary −1 and 1,
which addresses the stability issue around the boundary. Notice, in practice the discrete
cosine transform on [0, π] can be implemented by the faster Fourier transform using an
extended domain [−π, π] and restricts to real coefficients. We will discuss the use of extended
domain in Section 3.4 Fourier continuation. Therefore, GeoFNO equipped with the cosine
deformation can implement the Chebyshev method. However, it’s hard to deform the Fourier
basis into spherical basis, since the underlying domain is not homeomorphic. For these
non-homeomorphic domain we will use domain decomposition as discussed in Section 3.5.

3.2 Geometric Fourier transform

Based on the deformation, we can define the spectral transform in the computational space.
Fourier transforms conducted in the computational domain are standard, since we have a
uniform structured mesh in the computational domain. In this subsection, We will introduce
a geometric spectral transform between the function v(x) in the physical domain Da and the
function v̂(k) in the spectral space of the computation domain Dc.

To transform the function v(x) from the physical domain to the spectral space of the
computation domain, we define the forward transform:

(Fav)(k) :=

∫
Dc

vc(ξ)e−2iπ〈ξ,k〉dξ (10)

=

∫
D
v(x)e−2iπ〈φ

−1
a (x),k〉|det[∇xφ−1a (x)]|dx (11)

≈ 1

|Ta|
∑
x∈Ta

m(x)v(x)e−2iπ〈φ
−1
a (x),k〉 (12)

where the weight m(x) = |det[∇xφ−1a (x)]|/ρa(x) and ρa is a distribution from which the input
mesh Ta is sampled. Notice, in many cases, we have an input mesh Ta so that computational
mesh φ−1a (Ta) = T c is uniform. In this case, |det[∇xφ−1a (x)]| = ρa(x), and m(x) = 1 can
be omitted. Other choices can be made, for example, we can define m(x) using heuristics
depending on the solution u(x) or residual error. The weight m(x) corresponds to the monitor
functions in the literature of adaptive meshes, where the adaptive mesh is finer near x, when
m(x) is large.

To transform the spectral function v̂(k) from the spectral space of the computation
domain to the physical domain, we define the inverse transform

(F−1a v̂)(x) = (F−1v̂)(φ−1a (x)) =
∑
k

v̂(k)e2iπ〈φ
−1
a (x),k〉 (13)

8

Geometric Fourier Neural Operator

It is worth mentioning that Fa ◦F−1a = I, since both are defined on the computational space.

(Fa ◦ F−1a v̂)(k) =

∫
Dc

(F−1a v̂)c(ξ)e−2iπ〈ξ,k〉dξ (14)

=

∫
Dc

∑
k

v̂(k)e2iπ〈ξ,k〉e−2iπ〈ξ,k〉dξ = v̂(k) (15)

Notice both Fa (12) and F−1a (13) only involve the inverse coordinate transform φ−1a :
Da → Dc. Intuitively, in the forward Fourier transform Fa, we use φ−1a to transform the
input function to the computational space, while in the inverse Fourier transform F−1a , we
use φ−1a to transform the query point to the computational space to evaluate the Fourier
basis. It makes the implementation easy in that we only need to define φ−1a .

3.3 Architecture of Geo-FNO and the deformation neural network

We consider two scenarios: (1) the coordinate map is given, and (2) learning a coordinate map.
In many cases, the input mesh Ta is non-uniform but structured. For example, the meshes of
airfoils are usually generated in the cylindrical structure. If the input mesh is structured,
meaning it can be indexed as a multi-dimensional array Ta[i1, . . . , id] with 0 ≤ ik ≤ sk ∀k,
then its indexing induces a canonical coordinate map

φ−1a : Ta[i1, . . . , id] 7→ (i1/s1, . . . , id/sd) (16)

In this case, (i1/s1, . . . , id/sd) forms a uniform mesh within a unit cube, allowing for the
direct application of the FFT. And Geo-FNO reduces to a standard FNO directly applied to
the input meshes.

When we need to learn a coordinate map, we parameterize the coordinate map φ−1a as a
neural network and learn it along with the solution operator Gθ in an end-to-end manner
with loss (3).

φ−1a : (x1, x2, · · · , xd, a) 7→ (ξ1, ξ2, · · · , ξd) (17)

We parameterize the deformation as φ−1a (x, a) = x + f(x, a), where f is a standard feed-
forward neural network. Specially, f takes input (x1, x2, · · · , xd, a), where a is the geometry
parameters. This formulation initializes φ−1a around an identity map, which is a good initial
choice. Following the works of implicit representation (Mildenhall et al., 2020), (Sitzmann
et al., 2020), we use sinusoidal features in the first layers sin(Bx), B = 2i to improve
the expressiveness of the network. Concretely, we define f as a three-layer feed-forward
neural network with a width of 32. The input to this network comprises a combination of
components, namely x and a, alongside a series of trigonometric terms such as sin(21x),
cos(21x), sin(22x), cos(22x), · · · , sin(2Kx) and cos(2Kx), which are applied coordinatewisely.
And a can represent the coordinates of the point clouds that encode the design geometry.
Finally, φ−1a is used to compute Fa and F−1a (See (12) and (13)).

As shown in Figure 1, Geo-FNO has a similar architecture as the standard FNO, but
with a deformation in the input and output

Gθ := Q ◦ (WL +KL(φa) + bL) ◦ · · · ◦ σ(W1 +K1(φa) + b1) ◦ P (18)

9

Li, Huang, Liu, Anandkumar

Here, we begin by employing P to lift (encode) the input to a higher channel dimension.
Subsequently, the first Fourier convolution operator K1 employs the geometric Fourier
transform Fa (12), while the last layer KL employs the inverse geometric Fourier transform
F−1a (13). To finalize the process, we utilize Q to project (decode) the output back to the
desired dimension. In the case where the input is presented as a structured mesh, we define
the coordinates as (16). Under this circumstance, both Fa and F−1a reduce to the standard
FFT, leading to Geo-FNO being reduced to the standard FNO.

3.4 Fourier continuation

For some PDE problems, the input domain has an irregular topology that is not homeomorphic
to a disk or a torus. Consequentially, there does not exist a diffeomorphism between Da and
Dc. In this case, we will first embed the input domain into a larger regular domain

Da
i
↪−→ D̄a

so that D̄a is diffeomorphic to Dc. For example, the elasticity problem section 4.1 has a hole
in its square domain. We can first embed the domain into a full square by completing the
hole. Such embedding corresponds to the Fourier continuation (Bruno et al., 2007) techniques
used in conventional spectral solvers. Usually it requires to extend the function u ∈ U(Da)
to ū ∈ U(D̄a) by fitting polynomials. However, in the data-driven setting, a such extension
can be done implicitly during the training. We only need to compute the loss on the original
space Da and discard the extra output from the underlying space D̄a. This continuation
technique is universal. According to the Whitney embedding theorem, any m-dimensional
manifold can be smoothly embedded into a Euclidean space R2m.

3.5 Domain decomposition

For complex topologies, another technique is to decompose the domain into multiple sub-
domains such that each of the domains is equipped with a standard topology. We mainly
consider 2-dimensional manifolds in our experiments, although the technique is applicable
for any dimension. Given any 2-manifoldM, we apply the decomposition

M = D1# · · ·#Dn

where # is the connect-sum, and each Di is homeomorphic to either a sphere S2 or torus T 2.
We then train n sub-models G1 · · · Gn, each equipped with a deformation map φa1 · · ·φan .
This domain decomposition is also universal since any orientable compact 2-dimensional
manifold is homeomorphic to a sphere or a n-genus torus, where n-genus torus can be
naturally decomposed into n tori. Compared to continuation, the decomposition method
does not require raising the dimensionality, but it needs multiple sub-models. A numerical
example is included in Section 4.3.

4. Numerical Examples

In this section, we study Geo-FNO numerically, and compare the Geo-FNO against other
machine-learning models on PDEs with various geometries, including hyper-elastic problem

10

Geometric Fourier Neural Operator

Figure 2: Elasticity (a) and plasticity problems (b) introduced in sections 4.1 and 4.2. The
comparison is shown between the reference obtained using a traditional solver (left)
and the Geo-FNO result (right).

10 2 10 1 100 101 102 103

Time (s)

10 2

10 1

Re
l.

L
 e

rro
r

Implicit scheme (CPU)
Geo-FNO (GPU)
Interp-UNet (GPU)

Explicit scheme (CPU)
Geo-FNO (CPU)
Interp-UNet (CPU)

Figure 3: The cost-accuracy trade-off for Geo-FNO/UNet and traditional numerical solver
with implicit/explicit temporal integrators on the airfoil problem.

11

Li, Huang, Liu, Anandkumar

in section 4.1, plastic problem in section 4.2, advection equation on a sphere problem in
section 4.3, airfoil problem in section 4.4, and pipe problem in section 4.5. We demonstrate
that Geo-FNO can be applied on irregular domains and non-uniform meshes (See figs. 2 and 8)
and show it is more accurate than combining direct interpolation with existing ML-based
PDE solvers such as the standard FNO (Li et al., 2020a) and UNet(Ronneberger et al., 2015),
as well as mesh-free methods such as Graph neural operators (GNO) (Li et al., 2020c) and
DeepONet (Lu et al., 2019) (See table 1 and table 2). Meanwhile, Geo-FNO perseveres the
speed of standard FNO. It can accelerate the numerical solvers up to 105 times on the airfoil
problem (See section 4.4). All experiments are performed on a single Nvidia 3090 GPU.
With no special mention, we train all the models with 500 epochs with an initial learning
rate of 0.001 which decays by half every 100 epochs. We use the relative L2 error for both
the training and testing. And the standard Adam optimizer is used. The code is available at
https://github.com/neuraloperator/Geo-FNO.

4.1 Hyper-elastic problem.

The governing equation of a solid body can be written as

ρs
∂2u

∂t2
+∇ · σ = 0

where ρs is the mass density, u is the displacement vector, σ is the stress tensor. Constitutive
models, which relate the strain tensor ε to the stress tensor, are required to close the system.
We consider the unit cell problem Ω = [0, 1] × [0, 1] with an arbitrary shape void at the
center, which is depicted in Figure 2 (a). The prior of the void radius is r = 0.2 + 0.2

1+exp(r̃)

with r̃ ∼ N(0, 42(−∇+ 32)−1), which embeds the constraint 0.2 ≤ r ≤ 0.4. The unit cell is
clamped on the bottom edge and tension traction t = [0, 100] is applied on the top edge. The
material is the incompressible Rivlin-Saunders material Pascon (2019) and the constitutive
model of the material is given by

σ =
∂w(ε)

∂ε
w(ε) = C1(I1 − 3) + C2(I2 − 3)

where I1 = tr(C) and I2 = 1
2 [(tr(C)2− tr(C2)] are scalar invariants of the right Cauchy Green

stretch tensor C = 2ε+ I. And energy density function parameters are C1 = 1.863 × 105

and C1 = 9.79× 103. We generate 1000 training data and 200 test data with a finite element
solver Huang et al. (2020b) with about 100 quadratic quadrilateral elements. It takes about
5 CPU seconds for each simulation. The inputs a are given as point clouds with a size of
around 1000. The target output is the stress field.

The elasticity problem has an unstructured input format. We compare the mesh-
convergent methods such as Geo-FNO, Graph neural operator (GNO), and Deep operator
network (DeepONet), as well as interpolation-based ML methods including uniform meshes
(FNO, UNet) and heuristic adaptive meshes (R-mesh, O-mesh). The details of these methods
are listed below.

• GNO: Since the graph structure is flexible on the problem geometry, graph neural
networks have been widely used for complex geometries (Sanchez-Gonzalez et al., 2020;

12

https://github.com/neuraloperator/Geo-FNO

Geometric Fourier Neural Operator

Pfaff et al., 2020). In this work, we compare with the graph kernel operator (Li et al.,
2020c,b), which is a graph neural network-based neural operator model. It implements
the linear operator K by message passing on graphs. We build a full graph with edge
connection radius r = 0.2, width 64, and kernel with 128.

• DeepONet: the deep operator network (Lu et al., 2019) is a line of works designed with
respect to the linear approximation of operator as shown in (Chen and Chen, 1995).
It has two neural networks a trunk net and a branch net to represent the basis and
coefficients of the operator. Both DeepONets and neural operators aim to parameterize
infinitely dimensional solution operators, but neural operators directly output the full
field solution functions, while DeepONets output the solution at specific query points.
This design difference gives neural operators, especially FNO, an advantage when the
data are fully observed while DeepONet has an advantage when the data are partially
observed. In this work, we use five layers for both the trunk net and branch net, each
with a width of 256.

• FNO interpolation: as a baseline, we simply interpolate the input point cloud into a
41-by-41 uniform grid and train a plain FNO model (Li et al., 2020a). As shown in
figure 4 (c), the interpolation causes an interpolation error, which loses information on
the singularities (the red regions). As a result, the testing error is constantly higher
than 5%.

• UNet interpolation: Similarly, we train a UNet model (Ronneberger et al., 2015) on
the interpolated uniform grid. As FNO-interpolation, the error is constantly higher
than 5% as shown in the figure 4 (d).

• Geo-FNO (R mesh): We consider a heuristic adaptive mesh method for each input
geometry by deforming a uniform 41 by 41 grid, as shown in the figure 4 (a). The
stretching is applied in the radial direction originated at the void center (0.5, 0.5) to
attain a finer mesh near the interface of the void. Let r denote the radial distance of
mesh points, the deformation map is

r →

{
rs + α(r − rs) + (1− α) (r−rs)

2

re−rs r ≥ rs
rs − α(rs − r)− (1− α) (rs−r)

2

rs
r ≤ rs

where rs and re denote the void radius and the unit cell radius in this radial direction,
α = 0.2 denotes the stretching factor, where the ratio of mesh sizes between these
near the void interface and these near the unit cell boundary is about α

2−α . It is worth
mentioning that the deformation map remains void interface, the origin, and the unit
cell boundary. Once the adaptive meshes are generated, we interpolate the input data
to the adaptive meshes. The surrogate model is learned on the adaptive meshes. We
used four Fourier layers with mode 12 and width 32.

• Geo-FNO (O mesh): Similarly, we design another heuristic adaptive mesh method
with cylindrical meshing, as shown in the figure 4 (b). A body-fitted O-type mesh is
generated for each geometry with 64 points in the azimuth direction and 41 points
in the radial direction. The points in the azimuth direction are uniformly located

13

Li, Huang, Liu, Anandkumar

Model mesh size model size training time training error testing error
Geo-FNO (learned) 972 1546404 1s 0.0125 0.0229
GraphNO 972 571617 32s 0.1271 0.1260
DeepONet 972 1025025 45s 0.0528 0.0965

Geo-FNO (R mesh) 1681 1188417 0.6s 0.0308 0.0536
Geo-FNO (O mesh) 1353 1188385 0.5s 0.0344 0.0363
FNO interpolation 1681 1188353 0.5s 0.0314 0.0508
UNet interpolation 1681 7752961 0.9s 0.0089 0.0531

Table 1: Benchmark on the elasticity problem. Inputs are point clouds. The table presents
the mesh size as the number of input mesh points, the model size as the quantity
of training parameters, the training time for each epoch, and the relative training
and test errors.

between 0 and 2π, and the points in the radial direction are uniformly located between
rs and re, where rs and re denote the void radius and the unit cell radius. Again, we
interpolate the input data to the adaptive meshes. The surrogate model is learned on
the adaptive meshes. We used four Fourier layers with mode 12 and width 32.

As shown in Table 1, for the elasticity problem, the Geo-FNO model has a significantly
lower error compared to combining direct interpolation with existing ML-based PDE solvers
such as the standard FNO(Li et al., 2020a) and UNet(Ronneberger et al., 2015). Both
FNO+interpolation and UNet+interpolation methods have a test error larger that 5%, which
is likely caused by the interpolation error. Geo-FNO also has a lower error compared to
mesh-free methods such as Graph neural operators (GNO) (Li et al., 2020c) and DeepONet
(Lu et al., 2019) due to the advantages of the spectral transform, similar to standard FNO
(De Hoop et al., 2022). Notice that the Geo-FNO with a learned deformation has better
accuracy compared to Geo-FNO with fixed heuristic deformations (R-mesh) and (O-mesh).

Remark 3 (Visualization of φ−1a) Figure 5 shows the effects of the coordinate transform,
where (a) is the prediction Gθ(a)(x) on the original physical mesh and (b) is the prediction on
the computational mesh (without transforming back to the physical space) Gθ(a)(φ−1a (x)). The
top row visualizes the solution on the original mesh T i and φ−1a (T i), while the bottom row is
the full field solution on T c directly evaluated on the Fourier coefficients. The solution on the
latent space has more "white region", which is latent encoding that does not show up in the
final solution. This latent encoding is similar to the Fourier continuation, making the solution
easier to be represented with the Fourier basis. As shown in the figure, the solution function
on the computational mesh has a cleaner wave structure and is more periodic compared to the
physical space, allowing it to be better represented by the Fourier basis. Interestingly, there
exists a vertical discontinuity on the latent space around x = 0.5 in the latent encoding. Since
most features are horizontal, the vertical discontinuity does not affect the output. The gap
can be seen as a result of encoding in the high-dimensional channel space.

14

Geometric Fourier Neural Operator

Figure 4: Interpolation into different meshes for the elasticity problem
The first column is the original unstructured input; the second column is the interpolated input; the
third column is the prediction; the last column is the error. As shown in the figures, interpolation

causes an error, which is less accurate than geometry-aware methods.

15

Li, Huang, Liu, Anandkumar

Figure 5: Visualization of φ−1a
The left column is the prediction of Geo-FNO on the physical space Gθ(a)(x); the right column is the
prediction of Geo-FNO on the computational space Gθ(a)(ξ) = Gθ(a)(φ−1

a (x)). The top row is the
solution on the input mesh. The bottom row is the full-field solution. The latent space has a cleaner

wave structure.

4.2 Plastic problem

We consider the plastic forging problem where a block of material Ω = [0, L] × [0, H] is
impacted by a frictionless, rigid die at time t = 0. The die is parameterized by an arbitrary
function Sd ∈ H1([0, L];R) and traveled at a constant speed v. The block is clamped on the
bottom edge and the displacement boundary condition is imposed on the top edge. The
governing equation is the same as the previous example but with an elasto-plastic constitutive
model given by

σ = C : (ε− εp)
ε̇p = λ∇σf(σ)

f(σ) =

√
3

2
|σ − 1

3
tr(σ) · I|F − σY

where λ is the plastic multiplier constrained by λ ≥ 0, f(σ) ≤ 0, and λ · f(σ) = 0. The
isotropic stiffness tensor C is with Young’s modulus E = 200 GPa and Poisson’s ratio

16

Geometric Fourier Neural Operator

Figure 6: Geo-FNO on Plasticity
The top row is the truth and the bottom row is the prediction. The five columns represent the

changes in time. The color represents the norm of displacement.

0.3. The yield strength σY is set to 70 MPa with the mass density ρs = 7850kg · m−3.
We generate 900 training data and 80 test data by using the commercial Finite Element
software ABAQUS Smith (2009), using 3000 4-node quadrilateral bi-linear elements (CPS4R
in ABAQUS’s notation). Without lose of generality, we fix L = 50mm, H = 15mm, and
v = 3 ms−1. For each sample, we generate a random function Sd by randomly sampling
Sd(xk) on {xk = kL/7; k = 0, .., 7} with a uniform probability measure. The die geometry is
then generated by interpolating Sd(xk) using piecewise Cubic Hermit Splines. It takes about
600 CPU seconds for each simulation. The target solution operator maps from the shape of
the die to the time-dependent mesh grid and deformation. The data is given on the 101× 31
structured meshe with 20 time steps.

The plastic forging problem is a time-dependent problem, so we used the FNO3d model
as the backbone to do convolution in both spatial dimension and temporal dimensions. Since
the data is given on a structured mesh, the deformation (16) has an analytical form, so
there is no need to learn a deformation. Geo-FNO is equivalent to directly applying the
standard FNO on the structured mesh, and hence it perseveres the speed of standard FNO
with an inference time of around 0.01 second per. In this experiment, Geo-FNO outputs
both the position of the grid as well as the displacement at each grid point. As shown in
fig. 6, Geo-FNO correctly predicts the evolution of the shape and the displacement. It has
a moderate error on the top of the material, which is flat in the ground truth but curved
in the prediction. Overall, Geo-FNO serves as an efficient surrogate model with test error
0.0074 (See table 2).

4.3 Advection equation on unit sphere

We consider the cos bell test introduced in Rasch (1994), where a cos bell c(0, x) =

hc(1.0 + cos(π dist(x,xc)
r)) is randomly generated and centered at xc = (λc, θc) with radius

r ∼ U[10π128 ,
20π
128] and height hc ∼ U[0.5, 1.5] on the unit sphere. Here dist denotes great-circle

distance, λc, θc ∼ U[−π3 ,
π
3] denote longitude and latitude. The cos bell is advected following

∂c

∂t
+∇(vc) = 0,

17

Li, Huang, Liu, Anandkumar

Model Airfoil Pipe Plasticity
training testing training testing training testing

Geo-FNO 0.0134 0.0138 0.0047 0.0067 0.0071 0.0074
FNO interpolation 0.0287 0.0421 0.0083 0.0151 − −
UNet interpolation 0.0039 0.0519 0.0109 0.0182 − −

The Plasticity requires the mesh as a target output, so interpolation methods do not apply.

Table 2: Benchmark on airfoils, pipe flows, and plasticity. Inputs are structured meshes.

Model topology mesh size model size training error testing error
FNO2D T 2 128x64 2368001 0.0119 0.0381
FNO3D D3 64x64x64 35397665 > 100% > 100%

Geo-FNO2D D2#D2 128x64 4736002 0.0119 0.0332
UNet2D D2 128x64 7752961 0.1964 0.3132
DeepONet - 128x64 2624769 0.1113 0.1599

Table 3: Advection equation on sphere

here the advective speed v(λ, θ) =
(
cosβ + sinβ tan θ cosλ,−U sinβ sinλ

)
with β = π/2

and U = 2π/256. We generate 1000 training data and 200 test data with a finite volume
solver. The inputs c(0, x) are given as point clouds with a size of around 8000 on the unit
sphere. The target output is the solution c(t, x) at t = 256/3.

As shown in Figure 7 and table 3, Geo-FNO can work on topology differently than
torus or disk. Through domain decomposition, particularly by splitting the sphere into
the northern and southern hemispheres, we can apply FFT2D for the spherical problem
without raising dimensionality. It outperforms baseline models such as the original FNO and
UNet models applied on the 2D spherical map projection, whose topology is not a sphere.
We also compare against the FNO3D model that embeds the sphere into R3. It exhibits a
remarkably high level of test error, which we attribute to the considerably larger training
data and resolution demands associated with 3D learning. This underscores the significance
of selecting an appropriate latent computation domain.

4.4 Airfoil problem with Euler’s equation.

We consider the transonic flow over an airfoil, where the governing equation is the Euler
equation, as follows,

∂ρf

∂t
+∇ · (ρfv) = 0,

∂ρfv

∂t
+∇ · (ρfv ⊗ v + pI) = 0,

∂E

∂t
+∇ ·

(
(E + p)v

)
= 0

where ρf is the fluid density, v is the velocity vector, p is the pressure, and E is the total
energy. The viscous effect is ignored. The far-field boundary condition is ρ∞ = 1, p∞ =
1.0,M∞ = 0.8, AoA = 0 where M∞ is the Mach number and AoA is the angle of attack,
and at the airfoil, no-penetration condition is imposed. The shape parameterization of the
airfoil follows the design element approach Farin (2014). The initial NACA-0012 shape

18

Geometric Fourier Neural Operator

Figure 7: Advection equation on the unit sphere. It shows that 2D Geo-FNO with domain
decomposition can simulate PDE on general topologies.

Figure 8: The airfoil flows (a) and pipe flows (b) introduced in sections 4.4 and 4.5; The
comparison is shown between the reference obtained using a traditional solver (top)
and the Geo-FNO result (bottom).

is mapped onto a ‘cubic’ design element with 8 control nodes, and the initial shape is
morphed to a different one following the displacement field of the control nodes of the design
element. The displacements of control nodes are restricted to vertical direction only with prior
d ∼ U[−0.05, 0.05]. We generate 1000 training data and 200 test data with a second-order
implicit finite volume solver. The C-grid mesh with about (200× 50) quadrilateral elements
is used, and the mesh is adapted near the airfoil but not around the shock. It takes about 1
CPU-hour for each simulation. The mesh point locations and Mach number on these mesh
points are used as input and output data.

Similar with the plastic problem, the data for the airfoil problem is given on a structured
mesh (Omesh), the deformation (16) is prescribed, so there is no need to learn a deformation.
Geo-FNO is equivalent to directly applying the standard FNO on the structured mesh. The
prediction of Geo-FNO on a sample test is presented in fig. 8-a, although there are two shocks
induced by the airfoil, the Geo-FNO prediction matches well with the reference. We also

19

Li, Huang, Liu, Anandkumar

compare Geo-FNO with the interpolation-based ML methods, which directly interpolates
the target on a larger rectangular space. As shown in table 2, Geo-FNO outperforms both
FNO and UNet with interpolation. In the following discusses, we explore discretization
convergence of Geo-FNO model, throughly compare the cost-accuracy trade-off between
Geo-FNO and traditional Euler solvers. And finally we demonstrate that we can conduct
real-time design optimization with the trained Geo-FNO model.

Discretization Convergence Discretization-convergence is an important property for
surrogate models (Kovachki et al., 2021b). It means the model can be applied to any
discretizations and resolutions, and further, the same set of parameters can be transferred
to different discretizations and resolutions. Such a design philosophy guides the research
on neural operators to model the target solution operator as a mapping between function
spaces, not just a specific model at one testing resolution. The graph neural operator and
Fourier neural operator (with discrete Fourier transform) are both discretization-convergent.
However, when implemented with the Fast Fourier transform, Fourier neural operator is
restricted to the uniform grids and therefore it loses the discretization-convergent property.
The proposed Geo-FNO model, on the other hand, extends FNO (with FFT) to non-uniform
meshes, and retains discretization-convergence. Geo-FNO can be trained on a low-resolution
dataset and evaluated at a higher resolution. On the Airfoil problem, we train Geo-FNO on
a 56× 51 mesh. It achieves test errors of 0.0147, 0.0329, and 0.0428 on 56× 51, 111× 51,
and 221× 51 meshes, respectively. Conventional deep learning methods such as U-Nets are
not capable of transferring among different resolutions.

Cost-Accuracy Study Geo-FNO is used as the surrogate model to efficiently approximate
expensive PDE simulations. Such surrogate modeling is an enabling methodology for many-
query computations in science and engineering, e.g., design optimization. In principle, the
relative merits of different surrogate models can be evaluated by understanding, for each
one, the cost required to achieve a given level of accuracy. De Hoop et. al. demonstrates
in (De Hoop et al., 2022), that FNO has a superior cost-accuracy trade-off among different
neural operator approaches. In this section, we study the cost-accuracy trade-off in comparison
with traditional numerical solvers with different resolutions. Specifically, we consider the
Euler equation airfoil test 4.4, where the reference data are generated by a 220× 50 grid
with 2000 implicit backward-Euler pseudo-time-stepping iterations. For comparison, we use
the same solver but with different spatial resolutions: 220× 50, 110× 20, and 44× 5 grids,
and different time integrators, including implicit backward-Euler and explicit Runge-Kutta-2
schemes, with different pseudo time-stepping iterations. For each setup, we estimate the
error and CPU time by an average of 10 runs sampled from the data set. The cost-accuracy
trade-off is depicted in Figure 3. Geo-FNO is at least 104x faster while having the same
accuracy, for the presented test. We should also mention, the speed-up of Geo-FNO is due
to the avoidance of time-stepping iterations, Euler flux computation, and GPU acceleration.

Inverse design Once the Geo-FNO model is trained, it can be used to do the inverse design.
We can directly optimize the design parameters to achieve the design goal. For example, as
shown in fig. 9, the shape of the airfoil is parameterized by the vertical displacements of
seven spline nodes. We set the design goal to minimize the drag lift ratio. We first train the
model mapping from the input mesh to the output pressure field, then program the maps
from the vertical displacement of spline nodes to input mesh and from the output pressure

20

Geometric Fourier Neural Operator

Figure 9: The inverse design for the airfoil flow problem with end-to-end optimization.
The optimal design using the simulation from the numerical solver matches the
prediction from Geo-FNO.

field to the drag lift ratio and finally optimize the vertical displacement of spline nodes in an
end-to-end manner. As shown in the figure, the resulting airfoil becomes asymmetry with
larger upper camber over the optimization iteration, which increases the lift coefficient and
matches the physical intuition. Finally, we use the traditional numerical solver to verify
optimized design shape. For the optimized design shape, both Geo-FNO and traditional
numerical solver lead to a drag coefficient of 0.04 and a lift coefficient of 0.29.

4.5 Pipe problem with Navier-Stokes equation

Finally, we consider the incompressible flow in a pipe, where the governing equation is the
incompressible Navier-Stokes equation, as follows,

∂v

∂t
+ (v∇)v = −∇p+ ν∇2v, ∇ · v = 0

where v is the velocity vector, p is the pressure, and ν = 0.005 is the viscosity. The parabolic
velocity profile with maximum velocity v = [1, 0] is imposed at the inlet, the free boundary
condition is imposed at the outlet, and no-slip boundary condition is imposed at the pipe
surface. The pipe is of length 10 and width 1, and the centerline of the pipe is parameterized
by 4 piecewise cubic polynomials, which are determined by the vertical positions and slopes
on 5 spatially uniform control nodes. The vertical position at these control nodes obeys
d ∼ U[−2, 2] and the slop at these control nodes obeys d ∼ U[−1, 1]. We generate 1000
training data and 200 test data with an implicit finite element solver with about 4000
Taylor-Hood Q2-Q1 mixed elements Huang et al. (2020a). It takes about 70 CPU seconds
for each simulation. The mesh point locations (129× 129) and horizontal velocity on these
mesh points are used as input and output data.

Similar with the plastic problem, the data for the pipe problem is given on a structured
mesh, the deformation eq. (16) has an analytical form, so there is no need to learn a
deformation. Geo-FNO is equivalent to directly applying the standard FNO on the structured
mesh. The prediction of Geo-FNO on a sample test is presented in fig. 8-b, the Geo-FNO
is able to capture the boundary layer, and the prediction matches well with the reference.

21

Li, Huang, Liu, Anandkumar

Geo-FNO also outperforms these interpolation-based ML ethods, which directly interpolates
the target on a larger rectangular space, as shown in table 2.

5. Conclusion and future works

In this work, we propose a geometry-aware FNO framework (Geo-FNO) that applies to
arbitrary geometries and a variety of input formats. The Geo-FNO deforms the irregular
input domain into a uniform latent mesh on which the FFT can be applied. Such deformation
can be fixed or learned with the FNO architecture in an end-to-end manner. The Geo-
FNO combines both the computational efficiency of the FFT and the flexibility of learned
deformations. It is as fast as the original FNO but can represent the variations in solutions
and domain shapes more efficiently and accurately. In the end, we also discussed several
potential extensions of Geo-FNO.

Physics-informed settings. In this work, we mainly consider learning surrogate models
in the data-driven setting. However, the dataset may not always be available. In this case,
we can use the physics-informed setting by optimizing the physics-informed equation loss.
Given a fixed input a, the output function u = Gθ(a) can be explicitly written out using the
formula (18) and (13). The derivative of the deformed basis ψa = e2iπ〈φ

−1
a (x),k〉 can be exactly

computed using chain rule with the auto-differentiation of the neural network φ−1a . Using the
exact gradient, one can minimize the residual error R(Gθ(a)) to find out the parameter Gθ(a)
that represents the solution function. The Geo-PINO method will be an optimization-based
spectral method for general geometry.

General topologies. In this work, we mainly studied simple topologies of 2D disks or
2D disks with holes. If the problem topology is more challenging, there does not exist a
diffeomorphism from the physical space to the uniform computational space. Thankfully,
we can use the Fourier continuation and decomposition to convert the problem domain
into simpler ones. It is known that 2D connected orientable surfaces can be classified as
either a sphere or an n-genus torus. For spheres, it is natural to use the unit sphere as the
computational space and the spherical harmonics as the computational basis. For n-genus
torus (n ≥ 2), usually, there do not exist useful harmonics series, but we can decompose
the domain, which requires training multiple FNO models on each of the sub-domain in a
coupled manner. We leave the domain decomposition as exciting future work.

Theoretical guarantees. In the end, it will be interesting to extend the universal approx-
imation bound of Fourier neural operator(Kovachki et al., 2021a) to the solution operator of
PDEs defined on general geometries. In Kovachki et al. (2021a), the approximation is achieved
by using existing pseudo-spectral solvers. Since FNO’s architecture can approximate the
operation in the pseudo-spectral solvers, FNO can approximate the target solution operators.
For general domains, usually, there does not exist a pseudo-spectral solver. However, we can
transform the problem into a computational space. By applying the universal approximation
bound on the deformed equation Rc = 0, as well as the approximation bound for the neural
network φ−1a , it is possible to obtain a bound for Geo-FNO. We also leave this direction as
future work.

22

Geometric Fourier Neural Operator

Table 4: table of notations

Notation Meaning
Fourier neural operator
u ∈ U The solution function.
G† The target solution operator.
F ,F−1 Fourier transformation and its inverse.
R The linear transformation applied on the lower Fourier modes.
W The linear transformation (bias term) applied on the spatial domain.
k Fourier modes / wave numbers.
Physical Domain
a ∈ A the geometry parameters
Da the physical domain.
x ∈ Da the spatial coordinate of the physical domain.
Ta = {xi} the meshes of the physical domain
u, v ∈ U(Da) functions defined on the physical domain
ψa ∈ L(Da) the deformed Fourier basis defined on the physical domain.
Computational Domain
φa the coordinate transform maps from the computational domain

to the physical domain.
Dc the computational domain (unit torus).
ξ ∈ Dc the spatial coordinate of the computational domain.
T c = {ξi} the meshes of the computational domain (a uniform mesh).
uc, vc ∈ U(Dc) functions defined on the computational domain.
ψc ∈ L(Dc) the standard Fourier basis defined on the computational domain.

References

Kelsey R Allen, Tatiana Lopez-Guevara, Kimberly Stachenfeld, Alvaro Sanchez-Gonzalez,
Peter Battaglia, Jessica Hamrick, and Tobias Pfaff. Physical design using differentiable
learned simulators. arXiv preprint arXiv:2202.00728, 2022.

Ivo Babuška and Manil Suri. The p-and hp versions of the finite element method, an overview.
Computer methods in applied mechanics and engineering, 80(1-3):5–26, 1990.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik.
Prediction of aerodynamic flow fields using convolutional neural networks. Computational
Mechanics, pages 1–21, 2019.

Oscar P Bruno, Youngae Han, and Matthew M Pohlman. Accurate, high-order representa-
tion of complex three-dimensional surfaces via fourier continuation analysis. Journal of
computational Physics, 227(2):1094–1125, 2007.

23

Li, Huang, Liu, Anandkumar

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical systems.
IEEE Transactions on Neural Networks, 6(4):911–917, 1995.

Maarten De Hoop, Daniel Zhengyu Huang, Elizabeth Qian, and Andrew M Stuart.
The cost-accuracy trade-off in operator learning with neural networks. arXiv preprint
arXiv:2203.13181, 2022.

Tobin A Driscoll, Nicholas Hale, and Lloyd N Trefethen. Chebfun guide, 2014.

Gerald Farin. Curves and surfaces for computer-aided geometric design: a practical guide.
Elsevier, 2014.

David Gottlieb and Steven A Orszag. Numerical analysis of spectral methods: theory and
applications. SIAM, 1977.

Daniel Z Huang, Will Pazner, Per-Olof Persson, and Matthew J Zahr. High-order partitioned
spectral deferred correction solvers for multiphysics problems. Journal of Computational
Physics, 412:109441, 2020a.

Daniel Z Huang, Kailai Xu, Charbel Farhat, and Eric Darve. Learning constitutive relations
from indirect observations using deep neural networks. Journal of Computational Physics,
416:109491, 2020b.

Weizhang Huang and Robert D Russell. Adaptive moving mesh methods, volume 174. Springer
Science & Business Media, 2010.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation
and error bounds for fourier neural operators. Journal of Machine Learning Research, 22:
Art–No, 2021a.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps between
function spaces. arXiv preprint arXiv:2108.08481, 2021b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Multipole graph neural operator for parametric
partial differential equations, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for
partial differential equations. arXiv preprint arXiv:2003.03485, 2020c.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning
partial differential equations. arXiv preprint arXiv:2111.03794, 2021.

24

Geometric Fourier Neural Operator

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators
for identifying differential equations based on the universal approximation theorem of
operators. arXiv preprint arXiv:1910.03193, 2019.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators
(with practical extensions) based on fair data. Computer Methods in Applied Mechanics
and Engineering, 393:114778, 2022.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoor-
thi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In
European conference on computer vision, pages 405–421. Springer, 2020.

João Paulo Pascon. Large deformation analysis of plane-stress hyperelastic problems via trian-
gular membrane finite elements. International Journal of Advanced Structural Engineering,
11(3):331–350, 2019.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopad-
hyay, Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli,
et al. Fourcastnet: A global data-driven high-resolution weather model using adaptive
fourier neural operators. arXiv preprint arXiv:2202.11214, 2022.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning
mesh-based simulation with graph networks, 2020.

Philip J Rasch. Conservative shape-preserving two-dimensional transport on a spherical
reduced grid. Monthly weather review, 122(6):1337–1350, 1994.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, pages 234–241. Springer, 2015.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter W Battaglia. Learning to simulate complex physics with graph networks. arXiv
preprint arXiv:2002.09405, 2020.

Vincent Sitzmann, Julien NP Martel, Alexander W Bergman, David B Lindell, and Gordon
Wetzstein. Implicit neural representations with periodic activation functions. arXiv preprint
arXiv:2006.09661, 2020.

Michael Smith. ABAQUS/Standard User’s Manual, Version 6.9. Dassault Systèmes Simulia
Corp, United States, 2009.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson.
U-fno–an enhanced fourier neural operator-based deep-learning model for multiphase flow.
Advances in Water Resources, page 104180, 2022.

Yan Yang, Angela F Gao, Jorge C Castellanos, Zachary E Ross, Kamyar Azizzadenesheli,
and Robert W Clayton. Seismic wave propagation and inversion with neural operators.
The Seismic Record, 1(3):126–134, 2021.

25

Li, Huang, Liu, Anandkumar

Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder–decoder networks
for surrogate modeling and uncertainty quantification. Journal of Computational Physics,
2018. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.04.018. URL http://www.
sciencedirect.com/science/article/pii/S0021999118302341.

26

http://www.sciencedirect.com/science/article/pii/S0021999118302341
http://www.sciencedirect.com/science/article/pii/S0021999118302341

	Introduction
	Problem Settings and Preliminaries
	Learning the solution operator
	Neural operator

	Geometry-Aware Fourier Neural Operator
	Deformation from the physical space to the computational space.
	Geometric Fourier transform
	Architecture of Geo-FNO and the deformation neural network
	Fourier continuation
	Domain decomposition

	Numerical Examples
	Hyper-elastic problem.
	Plastic problem
	Advection equation on unit sphere
	Airfoil problem with Euler's equation.
	Pipe problem with Navier-Stokes equation

	Conclusion and future works

