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Abstract

In the face of uncertainty, the need for probabilistic assessments has long been recognized
in the literature on forecasting. In classification, however, comparative evaluation of classi-
fiers often focuses on predictions specifying a single class through the use of simple accuracy
measures, which disregard any probabilistic uncertainty quantification. I propose proba-
bilistic top lists as a novel type of prediction in classification, which bridges the gap between
single-class predictions and predictive distributions. The probabilistic top list functional is
elicitable through the use of strictly consistent evaluation metrics. The proposed evalua-
tion metrics are based on symmetric proper scoring rules and admit comparison of various
types of predictions ranging from single-class point predictions to fully specified predictive
distributions. The Brier score yields a metric that is particularly well suited for this kind
of comparison.

Keywords: Brier score, consistent scoring functions, evaluation metrics, probabilistic
multi-class classification, symmetric proper scoring rules

1. Introduction

In the face of uncertainty, predictions ought to quantify their level of confidence (Gneiting
and Katzfuss, 2014). This idea has been recognized for decades in the literature on weather
forecasting (Brier, 1950; Murphy, 1977) and probabilistic forecasting (Dawid, 1984; Gneiting
and Raftery, 2007). Ideally, a prediction specifies a probability distribution over potential
outcomes. Such predictions are evaluated and compared by means of proper scoring rules,
which quantify their value in a way that rewards truthful prediction (Gneiting and Raftery,
2007). In statistical classification and machine learning, the need for reliable uncertainty
quantification has not gone unnoticed, as exemplified by the growing interest in the cali-
bration of probabilistic classifiers (Guo et al., 2017; Vaicenavicius et al., 2019). However,
classifier evaluation often focuses on the most likely class (i.e., the mode of the predictive
distribution) through the use of classification accuracy and related metrics derived from the
confusion matrix (Tharwat, 2020; Hui and Belkin, 2021).

Probabilistic classification separates the prediction task from decision making. This
enables informed decisions that account for diverse cost-loss structures, for which decisions
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based simply on the most likely class may lead to adverse outcomes (Elkan, 2001; Gneiting,
2017). Probabilistic classification is a viable alternative to classification with reject option,
where classifiers may refuse to predict a class if their confidence in a single class is not
sufficient (Herbei and Wegkamp, 2006; Ni et al., 2019).

In this paper, I propose probabilistic top lists as a way of producing probabilistic clas-
sifications in settings where specifying entire predictive distributions may be undesirable,
impractical, or even impossible. While multi-label classification serves as a key example
of such a setting, the theory presented here applies to classification in general. I envision
the probabilistic top list approach to be particularly useful in settings eluding traditional
probabilistic forecasting, where the specification of probability distributions on the full set
of classes is hindered by a large number of classes and missing (total) order. Consistent
evaluation is achieved through the use of proper scoring rules.

Whereas in traditional classification an instance is associated with a single class (e.g., cat
or dog), multi-label classification problems (as reviewed by Tsoumakas and Katakis, 2007;
Zhang and Zhou, 2014; Tarekegn et al., 2021) admit multiple labels for an instance (e.g., cat
or dog or cat and dog).1 Applications of multi-label classification include text categorization
(Zhang and Zhou, 2006), image recognition (Chen et al., 2019), and functional genomics
(Barutcuoglu et al., 2006; Zhang and Zhou, 2006). Multi-label classification methods often
output confidence scores for each label independently, and the final label set prediction
is determined by a simple cut-off (Zhang and Zhou, 2014). As this approach does not
account for label correlations, computing label set probabilities in a postprocessing step
can improve predictions and probability estimates (Li et al., 2020) over simply multiplying
probabilities to obtain label set probabilities. Probabilistic top lists offer a flexible approach
to multi-label classification, which embraces the value of probabilistic information. In fact,
the BR-rerank method introduced by Li et al. (2020) produces top list predictions. Yet,
comparative performance evaluation focuses on (set) accuracy and the improper instance
F1 score. This discrepancy has been a key motivation for this research.

In probabilistic forecasting, a scoring rule assigns a numerical score to a predictive distri-
bution based on the true outcome (Gneiting and Raftery, 2007). It is proper if the expected
score is optimized by the true distribution of the outcome of interest. Popular examples
in classification are the Brier (or quadratic) score and the logarithmic (or cross-entropy)
loss (Gneiting and Raftery, 2007; Hui and Belkin, 2021). When one is not interested in full
predictive distributions, simple point predictions are frequently preferred. A meaningful
point prediction admits interpretation in terms of a statistical functional (Gneiting, 2011).
Point predictions are evaluated by means of consistent scoring or loss functions. Similar
to proper scoring rules, a scoring function is consistent for a functional if the expected
score is optimized by the true functional value of the underlying distribution. For example,
accuracy (or, equivalently, misclassification or zero-one loss) is consistent for the mode in
classification (Gneiting, 2017).

Probabilistic top lists bridge the gap between mode forecasts and full predictive distri-
butions in classification. In this paper, I define a probabilistic top-k list as a collection of k
classes deemed most likely together with confidence scores quantifying the predictive prob-
ability associated with each of the k classes. The key question tackled in this work is how

1. Multi-label classification is a special case of classification if classes are (re-)defined as subsets of labels.
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to evaluate such top list predictions in a consistent manner. To this end, I propose what I
call padded symmetric scores, which are based on proper symmetric scoring rules. I show
that the proposed padded symmetric scores are consistent for the probabilistic top-k list
functional. The padded symmetric score of a probabilistic top list prediction is obtained
from a symmetric proper scoring rule by padding the top list to obtain a fully specified
distribution. The padded distribution divides the probability mass not accounted for by
the top list’s confidence scores equally among the classes that are not included in the list.
Padded symmetric scores exhibit an interesting property, which allows for balanced com-
parison of top lists of different length as well as single-class point predictions and predictive
distributions. Notably, the expected score of a correctly specified top list only depends on
the top list itself and is invariant to other aspects of the true distribution. Comparability
of top lists of differing length is ensured as the expected score does not deteriorate upon
increasing the length of the predicted top list. Nonetheless, if the scoring function is based
on the Brier score, there is little incentive to provide unreasonably large top lists. In the
case of a single-class prediction, the padded version of the Brier score reduces to twice the
misclassification loss. Hence, the padded Brier score essentially generalizes classification
accuracy.

The remainder of the paper proceeds as follows. Section 2 recalls the traditional multi-
class classification problem with a focus on probabilistic classification and suitable evalua-
tion metrics. A short introduction to the multi-label classification problem is also provided.
Section 3 introduces probabilistic top lists, and related notation and terminology used
throughout this work. Section 4 introduces some preliminary results on symmetric proper
scoring rules and some results relating to the theory of majorization. These results are used
in Section 5 to show that the padded symmetric scores yield consistent scoring functions for
the top list functionals. Section 6 discusses the comparison of various types of predictions
using the padded Brier and logarithmic scores. A theoretical argument as well as numer-
ical examples illustrate that the padded Brier score is well suited for this task. Section 7
concludes the paper.

2. Statistical Classification

The top list functionals and the proposed scoring functions are motivated by multi-label
classification, but they apply to other classification problems as well. Here, I give a short
formal introduction to the general classification problem and related evaluation metrics
from the perspective of probabilistic forecasting. In what follows, the symbol L refers to
the law or distribution of a given random variable.

2.1 Traditional Multi-Class Classification

In the classical (multi-class) classification problem, one tries to predict the distinct class Y
of an instance characterized by a vector of features X. Formally, the outcome Y is a random
variable on a probability space (Ω,A,P) taking values in the set of classes Y of cardinality
m ∈ N, and the feature vector X is a random vector taking values in some feature space
X ⊆ Rd. Ideally, one learns the entire conditional distribution p(X) = L(Y | X) of Y given
X through a probabilistic classifier c : X → P(Y) mapping the features of a given instance
to a probability distribution from the set of probability distributions P(Y) on Y. The set
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P(Y) of probability distributions is typically identified with the probability simplex

∆m−1 = {p ∈ [0, 1]m | p1 + · · ·+ pm = 1}

by (arbitrarily) labeling the classes as 1, . . . ,m, and probability distributions are represented
by vectors p ∈ ∆m−1, where the i-th entry pi is the probability assigned to class i for
i = 1, . . . ,m. To ease notation in what follows, vectors in ∆m−1 are indexed directly by the
classes in Y without explicit mention of any (re-)labeling.

Proper scoring rules quantify the value of a probabilistic classification and facilitate the
comparison of multiple probabilistic classifiers (Gneiting and Raftery, 2007). A scoring rule
is a mapping S: P(Y) × Y → R, which assigns a, possibly infinite, score S(p, y) from the
extended real numbers R = R ∪ {±∞} to a predictive distribution p if the true class is y.
Typically, scores are negatively oriented in that lower scores are preferred. A scoring rule S
is called proper if the true distribution p = L(Y ) of Y minimizes the expected score, i.e.,

E[S(p, Y )] ≤ E[S(q, Y )] for Y ∼ p and p, q ∈ P(Y). (1)

It is strictly proper if inequality (1) is strict unless p = q. Prominent examples are the
logarithmic score

Slog(p, y) = − log py (2)

and the Brier score

SB(p, y) = (1− py)2 +
∑
z 6=y

p2z = 1− 2py +
∑
z∈Y

p2z. (3)

Frequently, current practice does not focus on learning the full conditional distribution
but, rather, on simply predicting the most likely class, i.e., the mode of the conditional
distribution p(X). This practice is formalized by a hard classifier c : X → Y aspiring to
satisfy the functional relationship c(X) ∈ Mode(p(X)), where the mode functional is given
by

Mode(p) = arg max
y∈Y

py = {z ∈ Y | pz = max
y∈Y

py} (4)

for p ∈ ∆m−1. Other functionals may be learned as well. When it comes to point forecasts of
real-valued outcomes, popular choices are the mean or a quantile, see for example Gneiting
and Resin (2021). Formally, a statistical functional T: P(Y) → 2T reduces probability
measures to certain facets in some space T . Note that the functional T maps a distribution
to a subset in the power set 2T of T owing to the fact that the functional value may not be
uniquely determined. For example, the mode (4) of a distribution is not unique if multiple
classes are assigned the maximum probability. The probabilistic top lists introduced in
Section 3 are a nonstandard example of a statistical functional, which lies at the heart of
this work.

Similar to the evaluation of probabilistic classifiers through the use of proper scoring
rules, predictions aimed at a statistical functional are evaluated by means of consistent
scoring functions. Given a functional T, a scoring function is a mapping S: T × Y → R,
which assigns a score S(t, y) to a predicted facet t if the true class is y. A scoring function S

4



Probabilistic Top Lists

is consistent for the functional T if the expected score is minimized by any prediction that
is related to the true distribution of Y by the functional, i.e.,

E[S(t, Y )] ≤ E[S(s, Y )] for Y ∼ p, t ∈ T(p), p ∈ P(Y), and s ∈ T . (5)

It is strictly consistent for T if inequality (5) is strict unless s ∈ T(p). A functional T is
called elicitable if a strictly consistent scoring function for T exists.2 For example, the mode
(4) is elicited by the zero-one scoring function or misclassification loss (Gneiting, 2017)

S(x, y) = 1{x 6= y} =

{
1, if x 6= y,

0, if x = y,
,

which is simply a negatively oriented version of the ubiquitous classification accuracy. As
discussed by Gneiting (2017) and references therein, decisions based on the mode are subop-
timal if the losses invoked by different misclassifications are not uniform, which is frequently
the case.

(Strictly) Proper scoring rules arise as a special case of (strictly) consistent scoring
functions if T is the identity on P(Y). Furthermore, any consistent scoring function yields
a proper scoring rule if predictive distributions are reduced by means of the respective
functional first (Gneiting, 2011, Theorem 3). On the other hand, a point prediction x ∈ Y
can be assessed by means of a scoring rule as the classes can be embedded in the probability
simplex by identifying a class y ∈ Y with the point mass δy ∈ P(Y) in y. For example,
applying the Brier score to a class prediction in this way yields twice the misclassification
loss, SB(x, y) = SB(δx, y) = 2 · 1{x 6= y}.

Naturally, the true conditional distributions are unknown in practice, and expected
scores are estimated by the mean score attained across all instances available for evaluation
purposes.

2.2 Multi-Label Classification

In multi-label classification problems, an instance may be assigned multiple (class) labels.
Here, I frame this problem as a special case of multi-class classification instead of an entirely
different problem.

Let L be the set of labels and Y ⊆ 2L be the set of label sets, i.e., classes are subsets
of labels. In this setting, it may be difficult to specify a sensible predictive distribution on
Y, even for moderately sized sets of labels L, since the number of classes may grow expo-
nentially with the number of labels. Extant comparative evaluation practices in multi-label
classification focus mainly on hard classifiers ignoring the need for uncertainty quantifica-
tion through probabilistic assessments (e.g., Tsoumakas and Katakis, 2007; Zhang and Zhou,
2014; Li et al., 2020; Tarekegn et al., 2021) with the exception of Read et al. (2011), who
also consider a sum of binary logarithmic losses to evaluate the confidence scores associated
with individual labels.

2. The notion of elicitability used in this work is termed “selective elicitability” by Fissler et al. (2021). In
contrast, they call a functional “exhaustively elicitable” if a strictly consistent scoring function 2T ×Y →
R for set-valued predictions exists. The functionals discussed in this work are selectively elicitable, which
precludes them from being exhaustively elicitable (Fissler et al., 2021, Theorem 3.9).
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Classification accuracy is typically referred to as (sub-)set accuracy in multi-label clas-
sification. Other popular evaluation metrics typically quantify the overlap between the
predicted label set and the true label set. For example, the comparative evaluation by Li
et al. (2020) reports instance F1 scores in addition to set accuracy, where instance F1 of a
single instance is defined as

SF1(x, y) =
2
∑

`∈L 1{` ∈ x}1{` ∈ y}∑
`∈L 1{` ∈ x}+

∑
`∈L 1{` ∈ y}

.

(and the overall score is simply the average across all instances as usual). Note that this
metric is positively oriented, i.e., higher instance F1 scores are preferred. Caution is advised
as the instance F1 score is not consistent for the mode, as illustrated by the following
example. Hence, evaluating the same predictions using set accuracy and instance F1 seems
to be a questionable practice.

Example 1 Let the label set L = {1, 2, 3, 4, 5} consist of five labels and the set of classes
Y = 2L be the power set of the label set L. Consider the distribution p ∈ P(Y) that assigns
all probability mass to four label sets as follows:

p{1,2} = 0.28, p{1,3} = 0.24, p{1,4} = 0.24, p{1,5} = 0.24.

Then the expected instance F1 score of the most likely label set {1, 2},

E[SF1({1, 2}, Y )] = 0.64,

given Y ∼ p is surpassed by predicting only the single label {1},

E[SF1({1}, Y )] = 2
3 .

3. Probabilistic Top Lists

In what follows, I develop a theory informing principled evaluation of top list predictions
based on proper scoring rules. To this end, a concise mathematical definition of probabilistic
top lists is fundamental.

Let k ∈ {0, . . . ,m} be fixed. A (probabilistic) top-k list is a collection t = (Ŷ , t̂ ) of a
set Ŷ ⊂ Y of k = |Ŷ | classes together with a vector t̂ = ( t̂y)y∈Ŷ ∈ [0, 1]k of confidence

scores (or predicted probabilities) indexed by the set Ŷ whose sum does not exceed one,
i.e.,

∑
y∈Ŷ t̂y ≤ 1, and equals one if k = m. Let Tk denote the set of probabilistic top-k

lists. On the one hand, the above definition includes the empty top-0 list t∅ = (∅, ()) for
technical reasons. At the other extreme, top-m lists specify entire probability distributions
on Y, i.e., Tm ≡ P(Y). The proxy probability

π(t) :=
1−

∑
y∈Ŷ t̂y

m− k

associated with a top-k list t = (Ŷ , t̂ ) ∈ Tk of size k < m is the probability mass not
accounted for by the top list t divided by the number of classes not listed. For a top-m
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list t ∈ Tm, the proxy probability π(t) ≡ 0 is defined to be zero. The padded probability
distribution t̃ = ( t̃y)y∈Y ∈ ∆m−1 associated with a probabilistic top-k list t = (Ŷ , t̂ ) ∈ Tk
assigns the proxy probability π(t) to all classes not in Ŷ , i.e.,

t̃y =

{
t̂y, if y ∈ Ŷ ,
π(t), if y /∈ Ŷ

(6)

for y ∈ Y.
A top-k list t = (Ŷ , t̂ ) is calibrated relative to a distribution p = (py)y∈Y ∈ ∆m−1 if the

confidence score t̂y of class y matches the true class probability py for all y ∈ Ŷ . A top-k

list t = (Ŷ , t̂ ) is true relative to a distribution p ∈ P(Y) if it is calibrated relative to p
and Ŷ consists of k most likely classes. There may be multiple true top-k lists for a given
k ∈ N if the class probabilities are not pairwise distinct (i.e., if some classes have the same
probability). References to the true distribution of the outcome Y are usually omitted in
what follows. For example, a calibrated top list is understood to be calibrated relative to
the distribution L(Y ) of Y . The (probabilistic) top-k list functional Tk : P(Y) → Tk maps
any probability distribution p ∈ P(Y) to the set

Tk(p) =

(Ŷ , (py)y∈Ŷ ) ∈ Tk

∣∣∣∣∣∣ Ŷ ∈ arg max
S⊂Y:|S|=k

∑
y∈S

py


of top-k lists that are true relative to p. The top-m list functional Tm identifies P(Y) with
Tm. A top-k list t ∈ Tk is valid if it is true relative to some probability distribution, i.e.,
there exists a distribution p ∈ P(Y) such that t ∈ Tk(p). Equivalently, a top-k list t = (Ŷ , t̂ )
is valid if the associated proxy probability does not exceed the least confidence score, i.e.,
min

y∈Ŷ t̂y ≥ π(t). Hence, the proxy probability associated with a valid top-k list is simply

the mean confidence score of the bottom (m − k) classes. Let T̃k ⊂ Tk denote the set of
valid top-k lists. The following is a simple example illustrating the previous definitions.

Example 2 Let k = 2, m = 4, Y = {1, 2, 3, 4}, and Y ∼ p = (0.5, 0.2, 0.2, 0.1), i.e.,
P(Y = y) = py. There are two true top-2 lists, namely, T2(p) = {({1, 2}, (0.5, 0.2)),
({1, 3}, (0.5, 0.2))}. The list s = ({1, 4}, (0.5, 0.1)) is calibrated (relative to p) but fails to
be valid because it cannot be true relative to a probability distribution on Y. On the other
hand, the list r = ({1, 4}, (0.5, 0.2)) is valid as it is true relative to q = (0.5, 0.2, 0.1, 0.2)
but fails to be calibrated.

An invalid top-k list t = (Ŷ , t̂ ) contains a largest valid sublist t′ = (Ŷ ′, ( t̂y)y∈Ŷ ′).
The largest valid sublist is uniquely determined by recursively removing the class z ∈
arg min

y∈Ŷ t̂y with the lowest confidence score from the invalid list until a valid list re-

mains. Removing a class x ∈ Ŷ with π(t) > t̂x cannot result in a valid top list t′ =
(Ŷ \ {x}, ( t̂y)y∈Ŷ \{x}) as long as there is another class z such that t̂x ≥ t̂z because π(t) >

π(t′) > t̂x ≥ t̂z. Similarly, removing a class x ∈ Ŷ with π(t) ≤ t̂x cannot prevent the removal
of a class z if π(t) > t̂z, because it does not decrease the proxy probability, π(t′) ≥ π(t).
Hence, no sublist containing a class with minimal confidence score in the original list is
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valid, and removal results in a superlist of the largest valid sublist. Notably, the largest
valid sublist may be the empty top-0 list t∅.

In what follows, I show how to construct consistent scoring functions for the top-k
list functional using proper scoring rules. Recall from Section 2.1 that a scoring function
S: Tk × Y → R is consistent for the top list functional Tk if the expected score under any
probability distribution p ∈ P(Y) is minimized by any true top-k list t ∈ Tk(p), i.e.,

E[S(t, Y )] ≤ E[S(s, Y )]

holds for Y ∼ p and any s ∈ Tk. It is strictly consistent if the expected score is minimized
only by the true top-k lists t ∈ Tk(p), i.e., the inequality is strict for s /∈ Tk(p). The
functional Tk is elicitable if a strictly consistent scoring function for Tk exists. In what
follows, such a scoring function is constructed, giving rise to the following theorem.

Theorem 1 The top-k list functional Tk is elicitable.

Proof The theorem is an immediate consequence of either Theorem 9 or 10.

As the image of Tk is T̃k by definition, invalid top-k lists may be ruled out a priori, and
the domain of S may be restricted to T̃k × Y in the above definitions. On the other hand,
the use of a consistent scoring function on the larger domain Tk × Y merely encourages
valid predictions, but it does not preclude invalid predictions. Any scoring function that
is consistent for valid top list predictions can be extended by assigning an infinite score
to any invalid top list regardless of the observation. This extension effectively precludes
invalid predictions as an invalid prediction cannot outperform any arbitrary valid prediction,
thereby disqualifying it in comparison. In what follows, I focus on the construction of
consistent scoring functions for valid top lists at first and then propose a way of extending
such scoring functions to invalid top lists that is less daunting than simply assigning an
infinite score.

4. Mathematical Preliminaries

This section introduces some preliminary results, which are used heavily in the next section.

4.1 Symmetric Scoring Rules

The proposed scoring functions are based on symmetric proper scoring rules. Recall from
Gneiting and Raftery (2007) that (subject to mild regularity conditions) any proper scoring
rule S: P(Y)→ R admits a Savage representation,

S(p, y) = G(p)− 〈G′(p), p〉+G′y(p), (7)

in terms of a concave function G : ∆m−1 → R and a supergradient G′ : ∆m−1 → Rm of G,
i.e., a function satisfying the supergradient inequality

G(q) ≤ G(p) + 〈G′(p), q − p〉 (8)
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for all p, q ∈ ∆m−1. Conversely, any function of the form (7) is a proper scoring rule. The
function G is strictly concave if, and only if, S is strictly proper. It is called the entropy
(function) of S, and it is simply the expected score G(p) = E[S(p, Y )] under the posited
distribution, Y ∼ p. The supergradient inequality (8) is strict if G is strictly concave and
p 6= q (Jungnickel, 2015, Satz 5.1.12).

Let Sym(Y) denote the symmetric group on Y, i.e., the set of all permutations of Y. A
scoring rule is called symmetric if scores are invariant under permutation of classes, i.e.,

S((py), y) = S((pτ−1(y)), τ(y))

holds for any permutation τ ∈ Sym(Y) and all y ∈ Y, p ∈ P(Y). Clearly, the entropy
function G of a symmetric scoring rule is also symmetric, i.e., invariant to permutation in
the sense thatG(p) = G((pτ(y))) holds for any permutation τ ∈ Sym(Y) and any distribution
p ∈ P(Y). Vice versa, any symmetric entropy function admits a symmetric proper scoring
rule.

Proposition 2 Let G : P(Y)→ P(Y) be a concave symmetric function. Then there exists
a supergradient G′ : P(Y)→ Rm such that the Savage representation (7) yields a symmetric
proper scoring rule.

Proof Let Ḡ′ be a supergradient of G. Using the shorthand vτ = (vτ−1(y))y∈Y for vectors
v = (vy)y∈Y ∈ Rm indexed by Y and permutations τ ∈ Sym(Y), define G′ by

G′(p) =
1

|Sym(Y)|
∑

τ∈Sym(Y)

Ḡ′τ−1(pτ )

for p ∈ P(Y). By symmetry of G and the supergradient inequality,

G(q) = G(qτ ) ≤ G(pτ ) + 〈Ḡ′(pτ ), qτ − pτ 〉 = G(p) + 〈Ḡ′τ−1(pτ ), q − p〉

holds for all p, q ∈ P(Y) and τ ∈ Sym(Y). Summation over all τ ∈ Sym(Y) and division by
the cardinality of the symmetric group Sym(Y) yields

G(q) ≤ 1

| Sym(Y)|
∑

τ∈Sym(Y)

(G(p) + 〈Ḡ′τ−1(pτ ), q − p〉) = G(p) + 〈G′(p), q − p〉

for any p, q ∈ P(Y). Therefore, G′ is a supergradient, and the Savage representation (7)
yields a symmetric scoring rule since

G′(p) =
1

| Sym(Y)|
∑

τ∈Sym(Y)

Ḡ′τ−1(pτ ) =
1

|Sym(Y)|
∑

τ∈Sym(Y)

Ḡ′(τ◦ρ)−1(pτ◦ρ)

=
1

| Sym(Y)|
∑

τ∈Sym(Y)

Ḡ′ρ−1◦τ−1(pτ◦ρ) =
1

| Sym(Y)|
∑

τ∈Sym(Y)

(Ḡ′τ−1(pτ◦ρ))ρ−1

=

 1

|Sym(Y)|
∑

τ∈Sym(Y)

Ḡ′τ−1((pρ)τ )


ρ−1

= G′ρ−1(pρ)
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and
〈G′(p), p〉 = 〈G′ρ−1(pρ), p〉 = 〈G′(pρ), pρ〉

holds for any permutation ρ ∈ Sym(Y) and all p ∈ P(Y).

On the other hand, not all proper scoring rules with symmetric entropy function are
symmetric. The following result provides a necessary condition satisfied by supergradients
of symmetric proper scoring rules.

Lemma 3 Let S be a symmetric proper scoring rule. If p ∈ ∆m−1 satisfies px = pz for
x, z ∈ Y, then the supergradient G′(p) = (G′y(p))y∈Y at p in the Savage representation (7)
satisfies G′x(p) = G′z(p).

Proof Let τ = (x z) be the permutation swapping x and z while keeping all other classes
fixed. Using notation as in the proof of Proposition 2, the equality S(p, x) = S(pτ , τ(x))
holds by symmetry of S. Since p = pτ , the Savage representation (7) yields G′x(p) =
G′τ(x)(p) = G′z(p).

The Brier score (3) and the logarithmic score (2) are both symmetric scoring rules. The
entropy function of the Brier score is given by

G(p) = 1−
∑
y∈Y

p2y, (9)

whereas the entropy of the logarithmic score is given by

G(p) = −
∑
y∈Y

py log(py)

(see Gneiting and Raftery, 2007).

4.2 Majorization and Schur-Concavity

In this section, I adopt some definitions and results on majorization and Schur-concavity
from Marshall et al. (2011). The theory of majorization is essentially a theory of inequalities,
which covers many classical results and a plethora of mathematical applications not only in
stochastics.

For a vector v ∈ Rm, the vector v[ ] := (v[i])
m
i=1, where

v[1] ≥ · · · ≥ v[m]

denote the components of v in decreasing order, is called the decreasing rearrangement of
v. A vector w ∈ Rm is a permutation of v ∈ Rm (i.e., w is obtained by permuting the
entries of v) precisely if v[ ] = w[ ]. For vectors v, w ∈ Rm with equal sum of components,∑

i vi =
∑

iwi, the vector v is said to majorize w, or v � w for short, if the inequality

k∑
i=1

v[i] ≥
k∑
i=1

w[i]

10
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holds for all k = 1, . . . ,m− 1.

Let D ⊆ Rm. A function f : D → R is Schur-concave on D if v � w implies f(v) ≤ f(w)
for all v, w ∈ D. A Schur-concave function f is strictly Schur-concave if f(v) < f(w) holds
whenever v � w and v[ ] 6= w[ ]. In particular, any symmetric concave function is Schur-
concave and strictly Schur-concave if it is strictly concave (Marshall et al., 2011, Chapter
3, Proposition C.2 and C.2.c). Hence, the following lemma holds.

Lemma 4 The entropy function of any symmetric proper scoring rule is Schur-concave. It
is strictly Schur-concave if the scoring rule is strictly proper.

A set D ⊂ Rm is called symmetric if v ∈ D implies w ∈ D for all vectors w ∈ Rm
such that v[ ] = w[ ]. By the Schur-Ostrowski criterion (Marshall et al., 2011, Chapter 3,
Theorem A.4 and A.4.a) a continuously differentiable function f : D → R on a symmetric
convex set D with non-empty interior is Schur-concave if, and only if, f is symmetric and
the partial derivatives f(i)(v) = ∂

∂vi
f(v) increase as the components vi of v decrease, i.e.,

f(i)(v) ≤ f(j)(v) if (and only if) vi ≥ vj . Unfortunately, supergradients of concave functions
do not share this property. The following is a slightly weaker condition, which applies to
supergradients of symmetric concave functions.

Lemma 5 (Schur-Ostrowski condition for concave functions) Let f : D → R be a
symmetric concave function on a symmetric convex set D, v ∈ D and f ′(v) = (f ′1(v), . . . ,
f ′m(v)) be a supergradient of f at v, i.e., a vector satisfying the supergradient inequality

f(w) ≤ f(v) + 〈f ′(v), w − v〉 (10)

for all w ∈ D. Then vi > vj implies f ′i(v) ≤ f ′j(v).

Proof For i = 1, . . . ,m, let ei = (1{i = j})mj=1 denote the i-th vector of the standard
basis of Rm. Let v ∈ D be such that vi > vj for some indices i, j and let 0 < ε ≤ vi − vj .
Define w = v − εei + εej . Then v � w (by Marshall et al., 2011, Chapter 2, Theorem B.6)
because w is obtained from v through a so-called ‘T -transformation’ (see Marshall et al.,
2011, p. 32), i.e., wi = λvi+(1−λ)vj and wj = λvj +(1−λ)vi with λ =

vi−vj−ε
vi−vj . Therefore,

Schur-concavity of f implies f(v) ≤ f(w), and the supergradient inequality (10) yields

ε(f ′j(v)− f ′i(v)) = 〈f ′(v), w − v〉 ≥ f(w)− f(v) ≥ 0.

Hence, the inequality f ′j(v) ≥ f ′i(v) holds.

With this result, there is no need to restrict attention to differentiable entropy functions
when applying the Schur-Ostrowski condition in what follows. Furthermore, true top-k lists
can be characterized using majorization.

Lemma 6 Let Y ∼ p be distributed according to p ∈ P(Y). The padded distribution t̃
associated with a true top-k list t ∈ Tk(p) majorizes the padded distribution s̃ associated
with any calibrated top-k list s ∈ Tk.

11



Resin

Proof The sum of confidence scores
∑k

i=1 t̃[i] =
∑k

i=1 p[i] ≥
∑k

i=1 s̃[i] of a true top-k
list is maximal among calibrated top-k lists by definition. Hence, the confidence score
t̂[i] = t̃[i] of the true top-k list t = (Ŷ , t̂ ) matches the i-th largest class probability p[i] for

i = 1, . . . , k. Therefore, the partial sums
∑`

i=1 t̃[i] =
∑`

i=1 p[i] ≥
∑`

i=1 s̃[i] across the largest
confidence scores are also maximal for ` = 1, . . . , k− 1. Furthermore, the proxy probability

π(t) =
1−

∑k
i=1 t̃[i]

m−k associated with a true top-k list is minimal among calibrated top-k lists.
Hence, the partial sums

∑̀
i=1

t̃[i] = 1− (m− `)π(t) ≥ 1− (m− `)π(s) =
∑̀
i=1

s̃[i]

are maximal for ` > k .

5. Consistent Top List Scores

Having reviewed the necessary preliminaries, this section shows that the proposed padded
symmetric scores constitute a family of consistent scoring functions for the probabilistic top
list functionals. The padded symmetric scores are defined for valid top lists and can be
extended to invalid top lists by scoring the largest valid sublist, which yields a consistent
scoring function. Strict consistency is preserved by adding an additional penalty term to
the score of an invalid prediction.

5.1 Padded Symmetric Scores

From now on, let S: P(Y) → R be a proper symmetric scoring rule with entropy function
G. The scoring rule S is extended to valid top-k lists for k = 0, 1, . . . ,m− 1 by setting

S(t, y) := S( t̃, y)

for y ∈ Y, t ∈ T̃k, where t̃ ∈ ∆m−1 is the padded distribution (6) associated with the top-k
list t. I call the resulting score S:

⋃m
k=0 T̃k×Y → R a padded symmetric score. For example,

the logarithmic score (2) yields the padded logarithmic score

Slog((Ŷ , t̂ ), y) =

{
− log( t̂y), if y ∈ Ŷ ,
log(m− k)− log(1−

∑
z∈Ŷ t̂z), otherwise,

whereas the Brier score (3) yields the padded Brier score

SB((Ŷ , t̂ ), y) = 1 +
∑
z∈Ŷ

t̂ 2z +
(1−

∑
z∈Ŷ t̂z)

2

m− k
− 2 ·

{
t̂y, if y ∈ Ŷ ,
1−

∑
z∈Ŷ t̂z

m−k , otherwise.
(11)

The following example shows that padded symmetric scores should not be applied to invalid
top lists without further considerations.

Example 3 If a padded symmetric score based on a strictly proper scoring rule is used to
evaluate the invalid top-2 list s in Example 2, it attains a lower expected score than a true
top list t ∈ T2(p) because s̃ = p, whereas t̃ 6= p. Hence, the score would fail to be consistent.
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The following lemma shows that the expected score of a calibrated top list is fully
determined by the top list itself and does not depend on (further aspects of) the underlying
distribution.

Lemma 7 Let S be a padded symmetric score. If p ∈ P(Y) is the true distribution of
Y ∼ p and t is a calibrated valid top list, then the expected score of the top list t matches
the entropy of the padded distribution t̃,

E[S(t, Y )] = G( t̃ ).

Proof Let t = (Ŷ , t̂ ) ∈ T̃k(p). Assume w.l.o.g. k < m (the claim is trivial if k = m), and
let z ∈ Y \ Ŷ . By Lemma 3 the supergradient at t̃ satisfies G′y( t̃ ) = G′z( t̃ ) for all y /∈ Ŷ .
Hence, the Savage representation (7) of the underlying scoring rule yields

E[S(t, Y )] = G( t̃ )− 〈G′( t̃ ), t̃ 〉+
∑
y∈Y

pyG
′
y( t̃ )

= G( t̃ )−
∑
y∈Ŷ

(py − t̂y)G′y( t̃ )−

∑
y/∈Ŷ

py − (m− k)π(t)

G′z( t̃ ) = G( t̃ )

because t is calibrated.

Padded symmetric scores exhibit an interesting property that admits balanced compar-
ison of top list predictions of varying length. A top list score S:

⋃m
k=0 T̃k ×Y → R exhibits

the comparability property if the expected score does not deteriorate upon extending a true
top list, i.e., for k = 0, 1, . . . ,m− 1 and any distribution p ∈ P(Y) of Y ∼ p,

E[S(tk+1, Y )] ≤ E[S(tk, Y )] (12)

holds for tk ∈ Tk(p) and tk+1 ∈ Tk+1(p). The following theorem shows that padded sym-
metric scores in fact exhibit the comparability property. I use the comparability property to
show consistency of the individual padded symmetric top-k list scores S |T̃k×Y and to extend
these scores to invalid top lists. Section 6 provides further discussion and some numerical
insights.

Theorem 8 Padded symmetric scores exhibit the comparability property.

Proof Let S be a padded symmetric score and G be the concave entropy function of the
underlying proper scoring rule. Let Y ∼ p be distributed according to some distribution p ∈
P(Y), and let tk = (Ŷk, (py)y∈Ŷk) be a calibrated valid top-k list for some k = 0, 1, . . . ,m−1,

which is extended to a calibrated valid top-(k + 1) list tk+1 = (Ŷk+1, (py)y∈Ŷk+1
) in the

sense that Ŷk+1 = Ŷk ∪ {z} for some z ∈ Y. It is easy to verify that t̃k+1 � t̃k since
pz ≥ π(tk) ≥ π(tk+1). Hence, the inequality G( t̃k+1) ≤ G( t̃k) holds by Schur-concavity of
G (Lemma 4), which yields the desired inequality of expected scores by Lemma 7.

Clearly, there exists a true top-(k + 1) list tk+1 ∈ Tk+1(p) extending a true top-k list
tk ∈ Tk(p) in the above sense. By a symmetry argument, all true top lists of a given length
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have the same expected score, and hence S exhibits the comparability property.

Note that the proof of Theorem 8 shows that (12) holds for any calibrated valid extension
tk+1 of a calibrated valid top list tk and not only for true top lists. I proceed to show that
padded symmetric scores restricted to valid top-k lists are consistent for the top-k list
functional.

Theorem 9 Let k ∈ {0, 1, . . . ,m} be fixed and S:
⋃m
`=0 T̃`×Y → R be a padded symmetric

score. Then the restriction S |T̃k×Y of the score S to the set of valid top-k lists T̃k is
consistent for the top-k list functional Tk. It is strictly consistent if the underlying scoring
rule S |P(Y)×Y is strictly proper.

Proof Let p = (py)y∈Y ∈ P(Y) be the true probability distribution of Y ∼ p. Clearly,
all true top-k lists in Tk(p) attain the same expected score by symmetry of the underlying
scoring rule. Let t = (Ŷ , (py)y∈Ŷ ) ∈ Tk(p) be a true top-k list and s = (Ẑ, ( ŝy)y∈Ẑ) ∈ T̃k
be an arbitrary valid top-k list. To show consistency of S |T̃k×Y , it suffices to show that the

valid top-k list s does not attain a lower (i.e., better) expected score than the true top-k
list t. Strict consistency follows if the expected score of any s /∈ Tk(p) is higher than that
of the true top-k list t.

First, consider s /∈ Tk(p) to be a calibrated top-k list, i.e., ŝy = py for all y ∈ Ẑ. Since
t̃ majorizes s̃ by Lemma 6, the inequality

E[S(t, Y )] = G( t̃ ) ≤ G( s̃ ) = E[S(s, Y )]

holds by Schur-concavity of the entropy function G (Lemma 4) and Lemma 7. If the
underlying scoring rule is strictly proper, the entropy function is strictly (Schur-)concave,
and hence the inequality is strict.

Now, consider s to be an uncalibrated top-k list, and let r = (Ẑ, (py)y∈Ẑ) be the respec-
tive calibrated top-k list on the same classes. The calibrated top-k list r may not be valid
and cannot be scored if it is invalid. However, its largest valid sublist r′ = (Ẑ ′, (py)y∈Ẑ′)

with Ẑ ′ ⊆ Ẑ can be scored. Let z ∈ Y \ Ẑ. The difference in expected scores

E[S(s, Y )]− E[S(r′, Y )]

= G( s̃ )−G( r̃ ′)− 〈G′( s̃ ), s̃ 〉+ 〈G′( r̃ ′), r̃ ′〉+
∑
y∈Y

py(G
′
y( s̃ )−G′y( r̃ ′))

(by the Savage representation (7))

≥ 〈G′( r̃ ′)−G′( s̃ ), r̃ ′〉+
∑
y∈Y

py(G
′
y( s̃ )−G′y( r̃ ′)) (by the supergradient inequality (8))

=
∑

y∈Ẑ\Ẑ′
(py − π(r′))(G′y( s̃ )−G′z( r̃ ′)) +

∑
y∈Y\Ẑ

(py − π(r′))(G′z( s̃ )−G′z( r̃ ′))

(by Lemma 3)

=
∑

y∈Ẑ\Ẑ′
(py − π(r′))(G′y( s̃ )−G′z( s̃ )) (as

∑
y∈Y\Ẑ(py − π(r′)) = −

∑
y∈Ẑ\Ẑ′(py − π(r′)))
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is nonnegative by the fact that (py − π(r′)) ≤ 0 for y ∈ Ẑ \ Ẑ ′ (since r′ is the largest valid

sublist) and Lemma 5 (and Lemma 3 if ŝy = π(s) for some y ∈ Ẑ \ Ẑ ′).
Let k′ = |Ẑ ′|. Then, r′ scores no better than a true top-k′ list tk′ ∈ Tk′(p), which in

turn scores no better than t by the comparability property. Therefore,

E[S(s, Y )] ≥ E[S(r′, Y )] ≥ E[S(tk′ , Y )] ≥ E[S(t, Y )]

holds. If the underlying scoring function is strictly proper, the difference in expected scores
E[S(s, Y )]−E[S(r′, Y )] above is strictly positive by strictness of the supergradient inequality
(Jungnickel, 2015, Satz 5.1.12), and hence E[S(t, Y )] < E[S(s, Y )] holds in this case, which
concludes the proof.

5.2 Penalized Extensions of Padded Symmetric Scores

The comparability property can be used to extend a padded symmetric score S to invalid
top lists in a consistent manner. To this end, recall that t′ denotes the largest valid sublist
of a top list t = (Ŷ , t̂ ) ∈ Tk. Assigning the score of the largest valid sublist to an invalid
top-k list yields a consistent score by the comparability property. Strict consistency of the
padded symmetric score S is preserved by adding a positive penalty term cinvalid > 0 to
the score of the largest valid sublist in the case of an invalid top list prediction. I call the
resulting score extension S:

⋃m
k=0 Tk × Y → R, which assigns the score

S(t, y) = S(t′, y) + cinvalid (13)

to an invalid top list t ∈ Tk \ T̃k for k = 1, 2, . . . ,m − 1, a penalized extension of a padded
symmetric score. The following example illustrates that the positive penalty is necessary
to obtain a strictly consistent scoring function.

Example 4 Consider a setting similar to that of Example 2 with Y ∼ p = (0.4, 0.2, 0.2, 0.2).
The padded distribution associated with the largest valid sublist t′ = ({1}, (0.4)) of the in-
valid list t = ({1, 2}, (0.4, 0.1)) matches the true distribution, t̃′ = p, and hence the expected
score of t in (13) exceeds the expected score of any true top-2 list in T(p) only if cinvalid > 0.

The following theorem summarizes the properties of the proposed score extension.

Theorem 10 Let k ∈ {0, 1, . . . ,m} be fixed and S:
⋃m
`=0 T`×Y → R be a penalized exten-

sion (13) of a padded symmetric score with penalty term cinvalid ≥ 0. Then the restriction
S |Tk×Y of the score S to the set of top-k lists Tk is consistent for the top-k list functional
Tk. It is strictly consistent if the underlying scoring rule S |P(Y)×Y is strictly proper and
the penalty term cinvalid is nonzero.

Proof In light of Theorem 9, it remains to show that an invalid top-k list attains a worse
expected score than a true top-k list t ∈ Tk(p) under the true distribution p ∈ P(Y) of
Y ∼ p. To this end, let s ∈ Tk be invalid. By construction of the penalized extension,
the top list s is assigned the score of its largest valid sublist s′ plus the additional penalty
cinvalid. By consistency of the padded symmetric score and the comparability property, the
expected score of s′ cannot fall short of the expected score of t. Hence, S |Tk×Y is consistent
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for the top-k list functional. If a positive penalty cinvalid > 0 is added, the score extension
is strictly consistent given a strictly consistent padded symmetric score.

6. Comparability

The comparability property (12) ensures that additional information provided by an ex-
tended true top list does not adversely influence the expected score. The information gain
is quantified by a reduction in entropy, which depends on the underlying scoring rule. Ide-
ally, a top list score encourages the prediction of classes that account for a substantial
portion of probability mass, while offering little incentive to provide unreasonably large top
lists. In what follows, I argue that the padded Brier score satisfies this requirement.

Let S be a padded symmetric score with entropy function G (of the underlying proper
scoring rule). Furthermore, let 1 ≤ k < m and t = (Ŷ , ( t̂y)y∈Ŷ ) be a top-k list that accounts
for most of the probability mass. In particular, assume that the unaccounted probability
α = α(t) = 1−

∑
y∈Ŷ t̂y is less than the least confidence score but nonzero, i.e.,

0 < α < min
y∈Ŷ

t̂y. (14)

Let Q = Q(t) = {p ∈ P(Y) | t ∈ Tk(p)} be the set of all probability measures relative
to which t is a true top-k list. Let p ∈ Q assign the remaining probability mass α to a
single class. Then p majorizes any q ∈ Q, and the distribution p has the lowest entropy,
i.e., G(p) = minq∈QG(q), by Schur-concavity of the entropy function (Lemma 4). As the
expected score of the top list t is invariant under distributions in Q by Lemma 7, the relative
difference in expected scores between the true top list t and the true distribution q ∈ Q is
bounded by the relative difference in expected scores between t and p,

G( t̃ )−G(q)

G(q)
≤ G( t̃ )−G(p)

G(p)
.

The upper bound can be simplified by bounding the entropy of p from below as G(p) ≥
G((1− α, α, 0, . . . , 0)) by Schur-concavity of G.

If S = SB is the padded Brier score (11) with entropy (9), the lower bound reduces to
G(p) ≥ G((1−α, α, 0, . . . , 0)) = 2(α−α2) > α since α < 0.5 by assumption (14) and hence
2α2 < α. Therefore, the relative difference in expected scores has a simple upper bound,

G( t̃ )−G(p)

G(p)
≤ α2 − απ(t)

2(α− α2)
<
α2

α
= α.

For the padded logarithmic score, no such bound exists, and the deviation of the expected
top list score from the optimal score can be severe, as illustrated in the following numerical
example. The example sheds some light on the behavior of the (expected) padded symmetric
scores and demonstrates that top lists of length k > 1 may provide valuable additional
information over a simple mode prediction.

Example 5 Suppose there are m = 5 classes labeled 1, 2, . . . , 5 and the true (conditional)
distribution p = p(x) = L(Y | X = x) of Y (given a feature vector x ∈ X ) is known.
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Table 1: Expected padded Brier scores and expected padded logarithmic scores of vari-
ous types of true predictions and multiple distributions discussed in Example 5.
Relative score differences (in percent) with respect to the optimal scores are in
brackets.

E[S(·, Y )]
p S Mode(p) T1(p) T2(p) p

p(h) SB 0.02 (1.01%) 0.0199 (0.38%) 0.0198 (0%) 0.0198

p(m) SB 1 (80.18%) 0.6875 (23.87%) 0.5552 (0.04%) 0.5550

p(l) SB 1.5 (88.87%) 0.7969 (0.34%) 0.7955 (0.16%) 0.7942

p(h) Slog ∞ 0.0699 (24.75%) 0.0560 (0%) 0.0560

p(m) Slog ∞ 1.3863 (47.9%) 0.9425 (0.56%) 0.9373

p(l) Slog ∞ 1.6021 (0.45%) 1.5984 (0.23%) 1.5948

Table 1 features expected padded Brier and logarithmic scores of various types of truthful
predictions under several distributions, as well as relative differences with respect to the
optimal score. The considered distributions

p(h) = (0.99, 0.01, 0, 0, 0), p(m) = (0.5, 0.44, 0.03, 0.02, 0.01),

p(l) = (0.25, 0.22, 0.2, 0.18, 0.15).

exhibit varying degrees of predictability. Distribution p(h) exhibits high predictability in the
sense that a single class can be predicted with high confidence. Distribution p(m) exhibits
moderate predictability in that it is possible to narrow predictions down to a small subset of
classes with high confidence, but getting the class exactly right is a matter of luck. Distribu-
tion p(l) exhibits low predictability in the sense that all classes may well realize. Predictions
are of increasing information content. The first prediction is the true mode, i.e., a hard
classifier without uncertainty quantification that predicts class 1 under all considered dis-
tributions. The hard mode is interpreted as assigning all probability mass to the predicted
class. Scores are obtained by embedding the predicted class in the probability simplex or,
equivalent, by scoring the top-1 list ({1}, 1). The second prediction is the true top-1 list
({1}, p1), i.e., the mode with uncertainty quantification. The third prediction is the true
top-2 list ({1, 2}, (p1, p2)), and the final prediction is the true distribution p itself.

By consistency of the padded symmetric scores, the true top-1 lists score better in ex-
pectation than the mode predictions, and, by the comparability property, the true top-2 lists
score better than the top-1 lists, while the true distributions attain the optimal scores. The
mode predictions perform significantly worse than the probabilistic predictions, which high-
lights the importance of truthful uncertainty quantification. Note that the log score assigns
an infinite score in cases where the true outcome is predicted as having zero probability, and
hence the mode prediction is assigned an infinite score with positive probability.

The expected padded Brier score of the probabilistic top-1 list under the highly predictable
distribution p(h) is not far from optimal, whereas the respective logarithmic score is inflated
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by the discrepancies between the padded and true distributions, even though the top list
accounts for most of the probability mass (α = 0.01). Deviations from the optimal scores
are more pronounced under the logarithmic score in all considered cases.

Under the distribution exhibiting moderate predictability, the top-2 list prediction is much
more informative than the top-1 list prediction, which results in a significantly improved
score that is not far from optimal. Under the distribution exhibiting low predictability, all
probabilistic predictions perform well as there is little information to be gained.

Estimation of small probabilities is frequently hindered by finite sample size. The spec-
ification of top list predictions in conjunction with the padded Brier score circumvents this
issue as the Brier score is driven by absolute differences in probabilities, whereas the log-
arithmic score emphasizes relative differences in probabilities. In other words, the padded
distribution is deemed a good approximation of the true distribution if the true top list
accounts for most of the probability mass by the Brier score.

In light of these considerations, I conclude that the padded Brier score is suitable for
the comparison of top list predictions of varying length.

7. Concluding Remarks

In this paper, I argued for the use of evaluation metrics rewarding truthful probabilistic
assessments in classification. To this end, I introduced the probabilistic top list functionals,
which offer a flexible probabilistic framework for the general classification problem. Padded
symmetric scores yield consistent scoring functions, which admit comparison of various types
of predictions. The padded Brier score appears particularly suitable as top lists accounting
for most of the probability mass obtain an expected padded Brier score that is close to
optimal.

The entropy of a distribution is a measure of uncertainty or information content. Ma-
jorization provides a relation characterizing common decreases in entropy shared by all sym-
metric proper scoring rules. In particular, for two distributions p ∈ P(Y) and q ∈ P(Y),
the entropy of the distribution p does not exceed the entropy of q, i.e., G(p) ≤ G(q), if
p majorizes q. The inequality is strict if the scoring rule is strictly proper and q is not a
permutation of p.

Similar to probabilistic top-k lists, a probabilistic top-β list with β ∈ (0, 1) may be
defined as a minimal top list accounting for a probability mass of at least β. However,
the padded symmetric scores proposed in this paper are not consistent for the top-β list
functional, and the question whether this functional is elicitable constitutes an open problem
for future research.

As a simple alternative to the symmetric padded scores proposed in this paper, top-
k error (Yang and Koyejo, 2020) is also a consistent scoring function for the top-k list
functional, however, it is not strictly consistent, as it does not evaluate the confidence
scores. On a related note, strictly proper scoring rules are essentially top-k consistent
surrogate losses in the sense of Yang and Koyejo (2020). The idea of a consistent surrogate
loss is to find a loss function that is easier to optimize than the target accuracy measure such
that the optimal confidence scores also optimize accuracy. However, confidence scores need
not represent probabilities. In contrast, strictly proper scoring rules elicit probabilities.
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Essentially, strictly proper scoring rules are consistent surrogates for any loss or scoring
function that is consistent for a statistical functional.

Typically, classes cannot simply be averaged. Therefore, combining multiple class pre-
dictions may be difficult as majority voting may result in a tie, while learning individual
voting weights or a meta-learner requires training data (see Kotsiantis et al., 2006, Section
8.3 for a review of classifier combination techniques). Probabilistic top lists facilitate the
combination of multiple predictions as confidence scores can simply be averaged, which may
be an easy way to improve the prediction.

The prediction of probabilistic top lists appears particularly useful in problems, where
classification accuracy is not particularly high, as is frequently the case in multi-label classi-
fication. Probabilistic predictions are an informative alternative to classification with reject
option. Furthermore, if it is possible to predict top lists of arbitrary length, the empty
top-0 list may be seen as a reject option. Shifting focus towards probabilistic predictions
may well increase prediction quality and usefulness in various decision problems, where
misclassification losses are not uniform. The padded symmetric scores serve as general
purpose evaluation metrics that account for the additional value provided by probabilistic
assessments. Applying the proposed scores in a study with real predictions (e.g., the study
conducted by Li et al. (2020)) is left as a topic for future work.
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