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Abstract
The availability of reliable, high-resolution climate and weather data is important to inform
long-term decisions on climate adaptation and mitigation and to guide rapid responses to
extreme events. Forecasting models are limited by computational costs and, therefore,
often generate coarse-resolution predictions. Statistical downscaling, including super-
resolution methods from deep learning, can provide an efficient method of upsampling
low-resolution data. However, despite achieving visually compelling results in some cases,
such models frequently violate conservation laws when predicting physical variables. In
order to conserve physical quantities, here we introduce methods that guarantee statistical
constraints are satisfied by a deep learning downscaling model, while also improving their
performance according to traditional metrics. We compare different constraining approaches
and demonstrate their applicability across different neural architectures as well as a variety
of climate and weather data sets. Besides enabling faster and more accurate climate
predictions through downscaling, we also show that our novel methodologies can improve
super-resolution for satellite data and natural images data sets.
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1. Introduction

Accurate modeling of weather and climate is critical for taking effective action to combat
climate change. In addition to shaping global understanding of climate change, local and
regional predictions guide adaptation decisions and provide the impetus for action to reduce
greenhouse gas emissions (Gutowski et al., 2020). Predicted and observed quantities such as
precipitation, wind speed, and temperature impact decisions in sectors such as agriculture,
energy, and transportation. While these quantities are often required at a fine geographical
and temporal scale to ensure informed decision-making, most climate and weather models
are extremely computationally expensive to run (sometimes taking months even on super-
computers), resulting in coarse-resolution predictions. Thus, there is a need for fast methods
that can generate high-resolution data based on the low-resolution models that are commonly
available.

The terms downscaling in climate science and super-resolution (SR) in machine learning
(ML) refer to a map from low-resolution (LR) input data to high-resolution (HR) versions of
that same data; the high-resolution output is referred to as the super-resolved (SR) data.
Downscaling via established statistical methods—statistical downscaling—has been long used
by the climate science community to increase the resolution of climate data (Maraun and
Widmann, 2018). In statistical downscaling, there are two subfields, perfect prognosis and
model output statistics (Maraun and Widmann, 2018). Whereas perfect prognosis learns the
relationship between LR and HR observations, model output statistics learns directly the
function from model output to observations, including a form of bias correction.

In perfect prognosis, predictands and predictors usually include different variables. If
both inputs and outputs consist of the same variables, this is referred to as super-resolution,
even in a climate context. In parallel, computer vision SR has evolved rapidly using various
deep learning architectures, with such methods now including super-resolution convolutional
neural networks (CNNs) (Dong et al., 2016), generative adversarial models (GANs) (Wang
et al., 2018a), vision transformers (Yang et al., 2020), and normalizing flows (Lugmayr et al.,
2020). Increasing the temporal resolution via frame interpolation is also an active area of
research for video enhancement (Liu et al., 2017) that can be transferred to spatiotemporal
climate data. Recently, deep learning approaches have been applied to a variety of climate
and weather data sets, covering both model output data and observations. In addition to
using neural networks to learn parametrization, replace model parts in a hybrid setup, or run
full forecasts, downscaling is a field for deep learning to improve and accelerate Earth system
simulations (Reichstein et al., 2019). Climate super-resolution has mostly focused on CNNs
(Vandal et al., 2017), recently shifting toward GANs (Stengel et al., 2020; Wang et al., 2021).

Most statistical downscaling tools are applied offline as a tool for post-processing. In that
case, machine learning methods can be directly employed on the output data, following data
reformatting. However, downscaling tools could be applied online within a global climate
model too (e.g. Quiquet et al. (2018)), where a lower resolution output of a climate model
part is downscaled, and its high-resolution version is fed back into the climate model.

There are certain tasks that are more suited for hard-constraining than others. One
important point is that there exists a relationship between low-resolution and high-resolution
samples for downscaling or between input and output for other tasks, given by an equation.
This can be the case when modeling physical quantities, with, for example, mass or energy
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conservation that exists between LR and HR pairs. On the one hand, if we consider compressed
or blurry images and the task is to remove the effects of compression or blur, there may be
no known constraint between low and high resolution, so constraining methodologies would
not be applicable. On the other hand, for some data from e.g. satellites or telescopes, images
are created by summing photons across a given field of view, so the value at a given pixel can
be interpreted as the sum of values at unobserved subpixels; in such cases, hard constraints
could potentially be useful.

In this work, we introduce novel methods to strictly enforce physics-inspired consistency
constraints between low-resolution (input) and high-resolution (output) images. We do
this via a constraint layer at the end of a neural architecture, which renormalizes the
prediction either additively, multiplicatively, or with an adaptation of the softmax layer. We
use climate and weather data sets based on European Center for Medium-Range Weather
Forecasts (ECMWF) reanalysis data version 5 (ERA5) (Hersbach et al., 2020), Weather
Research and Forecast Model (WRF) data (Auger et al., 2021), and the Norwegian Earth
System Model (NorESM) (Seland et al., 2020) data, spanning different quantities such as
water content, temperature, water vapor, and liquid water content. For the ERA5 data,
we increase the resolution by different factors, we create data sets with an enhancement
of factors ranging from 2 over 4 and 8 to 16. We show the utility of our methods across
architectures including CNNs, GANs, CNN-RNNs, and a novel architecture that we introduce
to apply super-resolution in both spatial and temporal dimensions. Besides climate data
sets, we show that our methods are able to improve predictive accuracies for lunar satellite
imagery super-resolution as well as on standard image super-resolution benchmark data
sets, like Set5, Set14, Urban100 and BSD100. Our code is available at https://github.
com/RolnickLab/constrained-downscaling and our main data set can be found at https:
//drive.google.com/file/d/1IENhP1-aTYyqOkRcnmCIvxXkvUW2Qbdx/view.

Contributions Our main contributions can be summarized as follows:

• We introduce a novel constraining methodology for deep learning-based downscaling
methods, which guarantees that physical consistency constraints such as mass and
energy conservation between low-resolution and high-resolution are satisfied.

• We show that our method improves predictive performance across different deep learning
architectures on a variety of climate data sets.

• Additionally, we show that our method increases the accuracy of super-resolution in
other domains, such as natural images and satellite imagery.

• Finally, we introduce a new deep learning architecture for downscaling along both
spatial and temporal dimensions.

2. Related work

Deep Learning for Climate Downscaling There exists extensive work on ML methods
for climate and weather observation and prediction downscaling, from CNN architectures
(Vandal et al., 2017) to GANs (Stengel et al., 2020) and normalizing flows (Groenke et al.,
2020). Recently, GANs have become a very popular architecture choice, including many
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works on precipitation model downscaling (Wang et al., 2021; Watson et al., 2020; Chaudhuri
and Robertson, 2020) as well as other quantities such as wind and solar data (Stengel et al.,
2020). Unified frameworks comparing methods and benchmarks were introduced by Baño
Medina et al. (2020) to assess different SR-CNN setups and by Kurinchi-Vendhan et al. (2021)
with the introduction of a new data set for wind and solar SR. To date, there has been limited
work on spatiotemporal SR with climate data. Some authors have looked at super-resolving
multiple time steps at once without increasing the temporal resolution (Harilal et al., 2021;
Leinonen et al., 2021). Serifi et al. (2021) did increase the temporal resolution by simply
treating the time steps as different channels and using a standard SR-CNN.

Constrained Learning for Climate Various works on ML for climate science have
attempted to enforce certain physical constraints via soft penalties in the loss (Beucler et al.,
2019), linearly constrained neural networks for convection (Beucler et al., 2021), or aerosol
microphysics emulation (Harder et al., 2022) using completion or correction methods. Zanna
and Bolton (2020) and Zanna and Bolton (2021) use a final fixed convolutional layer to
achieve momentum and vorticity conservation in an ML ocean model. A different line of work
incorporates constraints into machine learning based on flux balances (Sturm and Wexler,
2020, 2022; Yuval et al., 2021). These strategies use domain knowledge of how properties
flow to ensure conservation of different quantities. Instead of predicting tendencies directly,
fluxes are predicted. Hess et al. (2022) introduces one global constraint to be applied to
bias-correct the precipitation prediction generated by a GAN. Outside of climate science,
recent work has emerged on enforcing hard constraints on the output of neural networks
(e.g. Donti et al. (2021)).

Constrained Learning for Downscaling In super-resolution for turbulent flows, Mesh-
freeFlowNet (Jiang et al., 2020) employs a physics-informed model which adds PDEs as
regularization terms to the loss function. In parallel to our work, the first approaches employ-
ing hard constraints for climate-related downscaling were introduced: Geiss and Hardin (2023)
introduced an enforcement operator applied to multiple CNN architectures for scientific data
sets. A CNN with a multiplicative renormalization layer is used for atmospheric chemistry
model downscaling in Geiss et al. (2022). We are the first to compare a variety of different
hard-constraining approaches and also apply them to multiple deep learning architectures.

3. Enforcing constraints

When modeling physical quantities such as precipitation or water mass, principled relation-
ships such as mass conservation can naturally be established between low-resolution and
high-resolution samples. Here, we introduce a new methodology to incorporate these con-
straints within a neural network architecture. We choose hard constraints enforced through
the architecture over soft constraints that use an additional loss term. Hard constraints
guarantee certain constraints even at inference time, whereas soft constraining encourages
the network to output values that are close to satisfying constraints, by minimizing a penalty
during training, but do not provide any guarantees. Additionally, for our case hard constrain-
ing increases the predictive ability, and soft constraining can lead to unstable training and
an accuracy-constraints trade-off (Harder et al., 2022). Adding hard constraints restricts
the hypothesis space to a smaller subspace that satisfies the constraints. With that, we
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reformulate the learning problem to an easier problem and achieve better results including
prior knowledge.

3.1 Setup

Consider the case of downscaling low-resolution pixels x by a factor of N in each linear
dimension, and let n := N2. Let yi, i = 1, . . . , n be the values in the predicted high-resolution
patch that correspond to x. The set {yi} for i = 1, . . . , n is also referred to as a super-pixel.
Then, a conservation law takes the form of the following constraint:

1

n

n∑
i=1

yi = x. (1)

Depending on the predicted quantity, there may additionally be an inequality constraint
associated with the data. In our work, there was only one example, concerning the positivity
of several physical quantities (e.g. water mass). The inequality for this case would be:

∀i ∈ [[1, n]], yi ≥ 0. (2)

We note that the methodologies we suggest in this work only deal with this special case.

3.2 Constraint layer

We introduce three different alternatives as constraint layers: additive constraining, multi-
plicative constraining, and softmax-based constraining. These are all added at the end of
any neural architecture, as shown in Figure 2, and all satisfy Eq. 1 by construction. The
constraints are applied for each pair of input pixel x and the corresponding SR N ×N patch.
An illustration is shown in Figure 1. We will use ỹi, i = 1, . . . , n to denote the intermediate
outputs of the neural network before the constraint layer and yi, i = 1, . . . , n to be the final
outputs after applying the constraints.

Additive constraining For our Additive Constraint Layer (AddCL), we take the inter-
mediate outputs and reset them using the following operation:

yj = ỹj + x− 1

n

n∑
i=1

ỹi. (3)

We also consider a more complex additive approach, the Scaled Additive Constraint Layer
(ScAddCL), which was introduced in parallel work to ours by Geiss and Hardin (2023):

yj = ỹj + (x− 1

n

n∑
i=1

ỹi) ·
σ + ỹi

σ + 1
n

∑n
i=1 ỹi

, (4)

with σ := sign( 1n
∑n

i=1 ỹi − x), so σ ∈ {−1, 1} The pixel values are assumed to in [−1, 1].
For more details see Geiss and Hardin (2023).
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Multiplicative constraining For the Multiplicative Constraint Layer (MultCL) approach,
we rescale the intermediate output using the corresponding input value x:

yj = ỹj ·
x

1
n

∑n
i=1 ỹi

. (5)

A similar approach is used in Geiss et al. (2022). Note that this approach can violate
non-negativity constraints (e.g. 18 pixels per 128x128 patch for 8× upsampling, see Table 5),
so it is sometimes detrimental. Multiplicative constraining can however be generalized by
introducing any function g:

yj = g(ỹj) ·
x

1
n

∑n
i=1 g(ỹi)

. (6)

If g is positive, the output is guaranteed to be positive too.

Figure 1: Our Softmax Constraining Layer (SmCL) is shown for one input pixel x and the
corresponding predicted 2 × 2 super-pixel for the case of 2× upsampling. This
layer is added at the end of a NN and enforces given constraints guaranteed by
construction. Besides equality constraints, it enforces positivity of the outputs.

Softmax constraining For predicting quantities like atmospheric water content, we want
to enforce the output to be non-negative for it to be physically valid. Here, we use a softmax
multiplied by the corresponding input pixel value x:

yj = exp (ỹj) ·
x

1
n

∑n
i=1 exp (ỹi)

. (7)

This Softmax Constraint Layer (SmCL) is a special case of Eq. (6) with g ≡ exp and
enforces yi ≥ 0, i = 1, . . . , n.

6



Hard-Constrained Climate Downscaling

Figure 2: The CNN architecture used here for 2× upsampling including the constraint layer
(in red). The LR input is passed to the last layer, the constraint layer, to enforce
the constraint and produce a consistent HR output.

Differences of Constraint Layers The four different constraint layers have in common
that they all enforce Eq. (1) by construction and we will see in Section 6 that the differences
in performance are rather small. To point out and summarize the differences: Whereas
ScAddCl ([−1, 1]) and MultCL (non-zero) are restricted in the range of input values they can
handle, AddCL and SmCL work with any inputs. SmCL gives only positive outputs, which
can be either beneficial by serving as an additional physical constraint or too restrictive if
the output domain includes negative values. MultCL might get unstable for values close to
zero. Additionally, the choice of constraint layer influences the variance among super-pixels,
with SmCL having the highest variance (see Table 13):

3.3 Generalization of our constraining methodologies

The focus of this work is on a consistency constraint for downscaling, but the methodology
is not limited to this and can be applied to different setups. It can be slightly adapted to e.g.
enforce a weighted formulation of Eq. (1), global constraint, or mass conservation constraints
for emulation. Here we show how our constraint layers can be employed for different cases,
starting with a more general setup and then formulating special relevant cases.

3.3.1 Generalization setup

We consider the learning task (supervised or unsupervised), where X ∈ Rnin is our input and
y ∈ Rnout the final output. Let (Ij)j=1,...,np be a partition of {1, . . . , nout} into np subsets (np
determines how many different constraints are imposed, e.g. nin for our downscaling setup),
gij : D ⊂ R → R, i ∈ Ij an invertible function and hj : Rnout → R an arbitrary function.
The set of constraints is given by

∑
i∈Ij

gij(yi) = hj(X), (8)

for each j = 1, . . . , np.
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These constraints can then be enforced with the above-introduced layers restated as
follows

yAddCL
i = g−1ij (ỹi +

1

n
hj(X)− 1

n

∑
k∈Ij

ỹk),

yMultCL
i = g−1ij (ỹi ·

hj(X)∑
k∈Ij ỹk

),

ySmCL
i = g−1ij (exp (ỹi) ·

hj(X)∑
k∈Ij exp (ỹk)

),

for i ∈ Ij and j = 1, . . . , np.
The main case considered in this work (Eq. (1) is a special case with hj(X) = nXj for j

indexing all super-pixels and g being the identity function. Note that MultCl and SmCL
cannot be directly applied if hj ≡ 0 for any j, leading to a constant prediction.

3.3.2 Weighted formulation

In an Earth system modeling context data often originates from a latitude-longitude grid.
This implies that the areas in each field are not exactly the same. The downscaling consistency
constraint (Eq. (1)) is then changed to a weighted formulation:

1

n

n∑
i=1

αiyi = x. (9)

Analogously, the AddCL, MultCl, and SmCL are reformulated as

yAddCL
i =

1

αi
(ỹi + x− 1

n

n∑
i=k

ỹk).

yMultCL
i = ỹi ·

x

αi
1
n

∑n
k=1 ỹk

ySmCL
i = exp (ỹi) ·

x

αi
1
n

∑n
k=1 exp (ỹk)

We note that in our case we do not use a weighted formulation, since the ERA5 LR data
is created by average pooling without weighting and the WRF data covers a small area, so
there the lat-lon cells have about the same area.

3.3.3 Relaxing constraints and global constraining

The constraint layers can be relaxed by increasing the constraint window size; this can then
impose soft constraints. In the extreme case, this would reduce the number of constraints to
one and gives the possibility of adding global constraint. The constraints would be the same
as in Eq. (1), but with n being the number of total pixels.

3.3.4 Application in emulation

Our constraining methodology is not limited to downscaling and can enforce mass conservation
e.g. in emulation tasks. An example could be aerosol microphysics emulation (Harder et al.,
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2022), where different aerosol masses need to be conserved within each time step. The
predicted aerosol masses among different size bins yi, i ∈ Idust for a specific aerosol type, eg.
dust, have to add up to the sum of the input aerosol masses Xi, i ∈ Idust of the same species:∑

i∈Idust

yi =
∑

i∈Idust

Xi

This conservation of mass can be enforced with the AddCL, MultCl, or SmCl:

yAddCL
i = ỹi +

∑
k∈Idust

Xk −
∑

k∈Idust

ỹk

yMultCL
i = ỹi ·

∑
k∈Idust

Xk∑
k∈Idust

ỹk

ySmCL
i = exp (ỹi) ·

∑
k∈Idust

Xk∑
k∈Idust

exp (ỹk)

Here, SmCL again would additionally guarantee positive masses.

4. Data

To test and evaluate our proposed method, we create a variety of data sets as well as use
existing and established ones. We generate multiple data sets based on the ERA5 data using
average pooling to create the LR inputs, which has been the standard methodology in climate
downscaling studies (see e.g. Serifi et al. (2021); Leinonen et al. (2021)). We also use data
sets based on the outputs of models such as the Weather and Research Forecasting (WRF)
Model and the Norwegian Earth System Model (NorESM) that contain real low-resolution
simulation data matched to high-resolution data. Finally, we test our methods on non-climate
data sets: lunar satellite imagery and natural images. An overview of all the different data
sets used can be found in Table 1.

4.1 ERA5 data set

The ERA5 data set (Hersbach et al., 2020) is a so-called reanalysis product from the ECMWF
that combines model data with worldwide observations. The optimal physical model state
that best fits the observations is found through the process of data assimilation. ERA5 is
available as global, hourly data with a 0.25◦ × 0.25◦ resolution, which is roughly 25 km per
pixel in the mid-latitudes. It covers all years starting from 1950.

Total water content data set For this work, the quantity we focus on is the total column
water (tcw) that is given in kg/m2 and describes the vertical integral of the total amount
of atmospheric water content, including water vapour, cloud water, and cloud ice but not
precipitation.

Spatial SR data To obtain our high-resolution data points we extract a random 128×128
pixel image from each available time step (each time step is 721× 1440 and there are roughly
60,000 time steps available). We randomly sample 40,000 data points for training and 10,000
for each validation and testing. The low-resolution counterparts are created by taking the
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Table 1: The different data sets we use to test our constraint layers. The names are given to
identify the data sets throughout the paper. Most data sets are based on ERA5
atmospheric water content data and LR is generated synthetically, we include
different upsampling factors, an ood case, and temporal data sets. Additional data
sets include the moist static energy (MEn) data set as well as WRF and NorESM
model data. Lunar and natural images give non-climate application data sets. The
results for data sets in bold can be found in the main paper the rest is given in the
appendix for improved focus and clarity.

Name Source Type Dim. Size
LR/HR train/val/test

TCW2 ERA5 water cont. (1,64,64)/(1,128,128) 40k/10k/10k
TCW4 ERA5 water cont. (1,32,32)/(1,128,128) 40k/10k/10k
TCW8 ERA5 water cont. (1,16,16)/(1,128,128) 40k/10k/10k
TCW16 ERA5 water cont. (1,8,8)/(1,128,128) 40k/10k/10k
TCW OOD ERA5 water cont. (1,32,32)/(1,128,128) 40k/10k/10k
TCW T1 ERA5 water cont. (3,32,32)/(3,128,128) 40k/10k/10k
TCW T2 ERA5 water cont. (2,32,32)/(3,128,128) 40k/10k/10k
MEn ERA5 water vapor (3,32,32)/(3,128,128) 40k/10k/10k

liq. water
temp.

WRF WRF temp. (1,45,45)/(1,135,135) 20k/4k/4k
NorESM NorESM temp. (1,32,32)/(1,64,64) 24k/12k/12k
Lunar satell. photons (1,32,32)/(1,128,128) 132k/16k/16k
Nat Nat. images RGB (3,128,128)/(3,512,512) var.

mean over N ×N patches, where N is our upsampling factor. A sample pair is shown in
Figure 3 a). This operation is physically sound, considering that conservation of water content
means that the water content (density per squared meter) described in an LR pixel should
be equal to the average of the corresponding HR pixels. We can also observe in LR-modeled
data such as WRF data (see below) that the modeled quantities in a low-resolution run
are approximately the mean of a high-resolution run, which further justifies our coarsening
strategy.

Spatio-Temporal data sets Including the temporal evolution of our data, we create two
additional data sets. For the first data set, one sample consists of 3 successive time steps,
the same time steps for both input and target, but at different resolutions. This is done to
perform spatial SR for multiple time steps simultaneously, see Figure 3 b). We select three
random 128× 128 pixel areas per global image, resulting in the same number of examples as
the procedure described above. We split the data randomly as before, and each time step is
downsampled by taking the spatial mean. We then create a second data set, that is built for
the learning task of increasing both spatial and temporal dimensions. We again crop three
images out of a series of three successive time steps to obtain our high-resolution target.
To create the low-resolution input, we decrease both temporal and spatial dimensions. To
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Figure 3: Samples of the three different data set types used in this work. a) A data pair
we use for our standard spatial super-resolution task. The input is an LR image
and the target is the HR version of that. b) A data pair for performing SR for
multiple time steps simultaneously. The input is a time series of LR images and
the output is the same time series in HR. c) A data pair where SR is performed
both temporally and spatially, with two LR time steps as input and 3 HR time
steps as a target.

decrease the temporal resolution, we remove the intermediate (the second) time step in each
sample, i.e. perform sub-sampling. To decrease the spatial resolution we apply the same
operation as before, i.e. compute the mean spatially. These results result in two LR inputs,
see Figure 3 c). Temporally coarse-graining by subsampling not by averaging is done to
avoid leakage of future information into previous time steps

OOD data set For the data sets described above, the train-val-test split is done randomly.
To understand how our constraining influences out-of-distribution generalization, we create a
data set with a split in time. Here, we expect patterns to appear in the later time steps that
are out-of-distribution of what was previously observed. We train on older data and then
test on more recent years: for training, we use the years 1950-2000, for validation 2001-2010,
and for final testing 2011-2020.

Energy data set Also originating from the ERA5 data, we create a second data set
including different physical variables coming with different constraints as well. This data
set is constructed to preserve moist static energy and water masses while predicting water
vapor, liquid water content, and air temperature. The variables are taken from the pressure
level at 850hPa.

4.2 WRF data

In Watson et al. (2020), a data set using the Advanced Research version of the WRF Model
is introduced. It comprises hourly operational weather forecast data for Lake George in
New York, USA from 2017-01-01 to 2020-03-20. More details about the model and its
configuration can be found in Watson et al. (2020). The variable we consider for this work is
the temperature at 2m above the ground. Unlike the previous data sets, this one does not
involve synthetic downsampling but includes two forecasts run at different resolutions with

11



Harder et al.

different physics-based parameterizations: one at 9 km horizontal resolution and one at 3
km. Our goal is to predict the 3 km resolution temperature field given the 9 km one and
builds on work by Auger et al. (2021), which used the same data set.

4.3 Constraints in our data sets

In predicting distinct physical quantities, there are different constraints we need to consider.
Most of our data sets include the downscaling constraints given by (1), which are satisfied
by the LR-HR pairs either approximately (for simulations that are run at LR and HR with
quantities respecting physical conservation laws) or exactly (in the case of average pooling
for creating the LR version). We detail the constraints in the following subsections.

Water content conservation For predicting the total column-integrated water content,
we are given the low-resolution water content Q(LR) and must obtain the super-resolved
version Q(SR). The downscaling constraint or mass conservation constraint (1) for each LR
pixel q(LR) and the corresponding super-pixel (q(SR)

i )i=1,...,n is then given by

1

n

n∑
i=1

q
(SR)
i = q(LR). (10)

Moist static energy conservation One of our tasks includes predicting column-integrated
water vapor, liquid water, and temperature while conserving both water mass and moist static
energy. As described above, water mass conservation is straightforward, directly applying our
constraining methodology. On the other hand, the (column-integrated) moist static energy
S is approximated by:

S ≈ ((1−Qv) · cpd +QL · cl) · T + Lv ·Qv, (11)

where
Lv ≈ 2.5008 · 106 + (cpw − cL) · (T − 273.16)

is the latent heat of vaporization in (Jkg−1). The water vapor Qv[kg · kg−1], the liquid
water QL[kg · kg−1], and the temperature T [K] are being predicted, whereas cpd, cpv and
cL[J ·K−1 · kg−1] are heat capacity constants.

We use the following procedure to predict these quantities while conserving moist static
energy:

1. Given LR TLR, QLR
V , QLR

L

2. Calculate LR SLR with (11)

3. Predict SR SSR, QSR
v , QSR

L while enforcing (1) using one of our constraint layers

4. Calculate SR TSR using (11) and SR SSR, QSR
v , QSR

L .

This means we predict TSR not directly, but by predicting SSR. We are then able to
predict the temperature T while ensuring (approximate) energy conservation by applying
our constraint layer to the prediction of SSR.

12



Hard-Constrained Climate Downscaling

Different simulations If the LR-HR pairs are not created by taking the local mean of
the HR but by using two simulations run at different resolutions, the downscaling constraint
is not automatically satisfied in the data. This is the case for our WRF and NorESM data
sets (NorESM data is discussed in the appendix; here, we focus on WRF). Even though the
downscaling constraint is not exactly obeyed (see Figure 4), it is approximately, and we can
still apply our constraining in the same way as before. If the real low-resolution data and
the downsampled high-resolution data are not significantly dissimilar, constraining can still
benefit the predictive ability.

Figure 4: A LR-HR pair from the WRF temperature data. HR and LR come from different
runs using the same model at different resolutions. Here we compare the real LR
with the low-resolution data created by average pooling of the HR, written as
DS(HR). It shows that there is not an exact match between LR and downsampled
HR, which makes the success of a constraint layer more difficult. The violation of
the downscaling constraint in the WRF data set is 0.684 on average.

5. Experimental setup

We conduct two sets of experiments:

1. Show the applicability of our constraining method to different neural network architec-
tures.

2. Show the applicability of our constraining method to different data sets and different
constraint types.

In most of our experiments, we use synthetic low-resolution data created by applying
average pooling to the original high-res samples, as is usually done to test perfect prognosis
downscaling setups. Additionally, we consider cases with pairs of real low-res and high-res
simulations to show that our methods work in the intended final application.

5.1 Architectures

We test our constraint methods throughout a variety of standard deep learning SR archi-
tectures including an SR CNN, conditional GAN, a combination of an RNN and CNN for
spatio-temporal SR, and a new architecture combining optical flow with CNNs/RNNs to
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increase the resolution of the temporal dimension. The original, unconstrained versions of
these architectures then also serves as a comparison for our constraining methodologies.

SR-CNNs Our SR CNN network, similar to Lim et al. (2017), consists of convolutional
layers using 3× 3 kernels and ReLU activations. The upsampling is performed by a transpose
convolution followed by residual blocks (convolution, ReLU, convolution, adding the input,
ReLU). The architecture for 2× downscaling is shown in Figure 2.

SR-GAN A conditional GAN architecture (Mirza and Osindero, 2014) is a common
choice for super-resolution (Ledig et al., 2016). Our version uses the above-introduced CNN
architecture as the generator network. The discriminator is used from (Ledig et al., 2016), it
consists of convolutional layers with a stride of 2 to decrease the dimensionality in each step,
with ReLU activation. It is trained as a classifier to distinguish SR images from real HR
images using a binary cross-entropy loss. The generator takes as input both Gaussian noise
as well as the LR data and then generates an SR output. It is trained with a combination of
an MSE loss, helping reconstruction, and the adversarial loss given by the discriminator, like
a standard SR GAN, e.g. Ledig et al. (2017).

SR-ConvGRU We apply an SR architecture based on the GAN presented by Leinonen
et al. (2021), which uses ConvGRU layers to address the spatio-temporal nature of super-
resolving a time series of climate data. Here, we use the generator on its own, both during
inference and training time without the discriminator, providing a deterministic approach.

Figure 5: Our novel spatio-temporal architecture, combining Deep Voxel Flow and a Con-
vGRU. The inputs are two LR images at two times, the first part predicts the
in-between time step using the Deep Voxel Flow model, the second part increases
the spatial resolution of the three time steps using a Convolutional GRU net.

SR-FlowConvGRU To increase the temporal resolution of our data we employ the Deep
Flow method (Liu et al., 2017), a deep learning architecture for video frame interpolation
combining optical flow methods with neural networks. We introduce a new architecture
combining the Deep Flow model and the ConvGRU network (FlowConvGRU): First, we
increase the temporal resolution resulting in a higher-frequency time-series of LR images
on which we then apply the ConvGRU architecture to increase the spatial resolution. The
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combined neural networks are then trained end-to-end. The architecture is shown in Figure
5.

5.2 Training

Our models were trained with the Adam optimizer, a learning rate of 0.001, and a batch
size of 256. We trained for 200 epochs, which took about 3—6 hours on a single NVIDIA
A100 Tensor Core GPU, depending on the architecture. All models use the MSE as their
criterion, the GAN additionally uses its discriminator loss term. All the data are normalized
between 0 and 1 for training, except for the cases where the ScAddCL is applied. In the
case of this constraint layer we scale the data between -1 and 1 as proposed in Geiss and
Hardin (2023). For our time-dependent models though, ConvGRU and FlowConvGRU, we
are scaling between 0 and 1, because the original scaling led to NaN-values during training.

5.3 Baselines

Pixel enlargement This baseline consists of scaling the LR input to the same size as the
HR by duplicating the pixels. We include this to have reference metrics that reflect how
close the LR is to the HR data. This baseline conserves mass by construction.

Bicubic upsampling As a simple non-ML baseline, we use bicubic interpolation for spatial
SR and take the mean of two frames for temporal SR.

Soft constraining Soft-constraining has been successfully applied before to a variety
of physics-informed deep-learning tasks. Here we use it to see how it compares to hard
constraints. Soft-constraining is done by adding a regularization term to the loss function.
Our MSE loss is then changed to the following:

Loss = (1− α) ·MSE+ α · Constraint violation, (12)

where the constraint violation is the mean overall constraint violations between an input
pixel x and the corresponding super-pixel yi, i = 1, . . . , n:

Constraint violation = MSE

(
1

n

n∑
i=1

yi, x

)
. (13)

We conducted an experiment to investigate the impact of α values on final model performance;
the results are reported in the appendix. For our main paper we choose α = 0.99.

Unconstrained counterparts Furthermore, we always compare against an unconstrained
version of the above-introduced standard SR NN architectures (SR-CNN, SR-GAN, SR-
ConvGRU, SR-FlowConvGRU).

Clipping We also run the standard CNN, but with clipping applied at inference. This
is a common practice to remove negative values. Results can be found in the appendix,
see Table 4. This method does not guarantee mass conservation nor significantly improves
performance.
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6. Results and discussion

For evaluating our results, we use typical metrics for weather and climate super-resolution:
root-mean-square error (RMSE), mean absolute error (MAE) and mean bias as well as
typical metrics for super-resolution: peak signal-to-noise ratio (PSNR), structural similarity
index measure (SSIM), multi-scale SSIM (MS-SSIM), Pearson correlation and Fractional
Skill Score (FSS). We show RMSE and MS-SSIM in the main paper, while the others can be
found in the appendix. Most metrics are highly correlated in our case. For the GAN giving
a probabilistic prediction, we also use continuous ranked probability score (CRPS). Because
we are interested in the violation of conservation laws and predicting non-physical values, we
also look at the average constraint violation, the number of (unwanted) negative pixels, and
the average magnitude of negative values. We additionally look at the variance among the
pixels within a predicted super-pixel and investigate the difference for constraining methods.
The key results are aggregated in Figure 6.

1.0x 1.2x 1.5x 1.8x 2.0x 2.2x 2.5x
RMSE improvement with respect to Enlarge

Enlarge

Bicubic

Unconstr.

Soft Constr.

ScAddCL

AddCL

MultCL

SmCL
0.0 % 0.5 % 1.0 % 1.5 % 2.0 %

MS SSIM improvement with respect to Enlarge

0.0 1.0 10.0 100.0
# neg. per million

Enlarge

Bicubic

Unconstr.

Soft Constr.

ScAddCL

AddCL

MultCL

SmCL
0.0 0.1 0.1 0.2 0.2

Mass violation

CNN GAN ConvGRU FlowConvGRUCNN GAN ConvGRU FlowConvGRU
Baselines Unconstrained Soft-Constrained Hard-Constrained (GH2020) Hard-Constrained (Ours)

Figure 6: Metrics for different constraining methods and architectures applied to the water
content data sets (TCW4, TCW T1 and TCW T2), calculated over 10,000 test
samples. The mean and confidence interval from 3 runs are shown, for RMSE and
MS-SSIM relative to the Enlarge baseline for number of negative pixels (per mil.)
and mass conservation violation the absolute values are shown. The framed box
indicates that the method achieves zero violation of the physics, no negative pixels
or mass conservation up to numerical precision. Tables with more metrics can be
found in the appendix
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6.1 Different constraining methods

Whereas hard-constraining shows exact conservation and appears to enhance performance,
the application of soft-constraining on the other hand does decrease constraint violation, but
still maintains a significant magnitude of it, which can be seen in Figure 6 for example. Also,
soft-constraining seems to suffer from an accuracy-constraints trade-off, where depending
on the regularization factor α, either the constraint violation is reduced, or the accuracy
increases, but it struggles to do both simultaneously. A table for different α is shown in the
appendix. Among the hard-constraining methodologies, the multiplicative renormalization
layer, MultCL, performs the weakest in terms of predictive skills (see Figure 6), which could
be due to instability when inputs get close to zero. The three other methods, ScAddCL,
AddCL, and SmCL, often have very similar measurements. SmCL shows the advantage of
also enforcing positivity when necessary (see Figure 6). ScAddCL divides the number of
violation by more than 2 compare to the AddCL and MulCL gets close to zero violation in
many cases.

6.2 Different architectures

As shown in Figure 6 for all architectures (CNN, GAN, ConvGRU, FlowConvGRU), adding
the constraint layers enforces the constraint and improves the evaluation metrics compared
to the CNN case. Constraining the GAN leads to less of a performance boost, but AddCL
and SmCL still enhance the predictions compared to the unconstrained GAN. Including the
temporal dimensions, the constraining improves the prediction quality much more significantly
than in the case with just a single time step (see Figure 6).

6.3 Different data sets and constraints

The success of our constraining methodology does not depend on the upsampling factor: in
Table 5, we can see that the constraining methods work well and improve all metrics for
upsampling factors of 2, 4, 8, and 16. When applied to our out-of-distribution data set, the
improvement achieved by adding constraints is even more pronounced than for the randomly
split data (see results in the appendix). The constraints can help architectures with their
generalization ability.

Not only mass can be conserved, but other quantities such as moist static energy. We show
that moving on to different quantities of the ERA5 data set, temperature, water vapor, and
liquid water. Looking at Table 10 (see appendix), one can observe similar results for liquid
water QL and water vapor Qv as for the total water content: ScAddCL, AddCL, and SmCL
significantly improve results in all measures over the unconstrained CNN, while enforcing
energy and mass conservation. For temperature, on the other hand, MultCL performs the
strongest, followed by SmCL, whereas AddCL and ScAddCL achieve smaller improvements
in the scores.

Our WRF temperature data set includes low-resolution data points drawn from a separate
simulation, rather than downsampling, and therefore it results in much harder tasks. Table
2 shows that the scores are improved slightly with our constraint layer, this might be
counterintuitive given there is a violation in the training data, but this violation is relatively
small, it appears like random noise, so no bias is introduced. This way the constraints again
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lead to a simpler learning problem and are able to improve performance. The fact, that the
constraints are slightly violated in the original data set could motivate soft-constraining, but
nevertheless, we can observe that soft-constraining harms the predictive performance, while
hard-constraining is surprisingly beneficial. The constraint violation in the original data has
an RMSE of 0.6838 on average.

Table 2: We show four metrics for different constraining methods applied to the SR CNN
applied on the WRF temperature data, calculated over 10,000 test samples. We
choose the most common (RMSE, MAE, SSIM) and relevant (constr. viol) for our
cases. The mean is taken over 3 runs. The best scores are highlighted in bold blue.

Data Model Constraint RMSE MAE MS-SSIM Constr. viol.

WRF Enlarge none 1.015 0.648 94.51 0.000
WRF CNN none 0.952 0.618 94.92 0.181
WRF CNN soft 1.020 0.660 94.57 0.032
WRF CNN SmCL 0.950 0.592 95.25 0.000

Figure 7: A random prediction for the WRF temperature test data set. We compare
unconstrained and softmax-constrained predictions. It can be seen that in this
case, the constraining improves the visual quality significantly including more
fine-grain details.

Finally, we also show that applying our constraint methodology can improve results in
other domains, even in cases where there is no physics involved. We see that both for the
lunar satellite imagery and the natural images benchmark data sets, the application of our
SmCL improves the traditional metrics, as shown in Tables 15 and 16.

6.4 Perceptual quality of predictions

Additionally to an enhancement quantitatively, we can see an improved visual quality for
some examples, as shown in Figure 8 and 9 for the water content data. For the WRF
temperature forecast data, we see a very significant improvement in the perceptual quality of
the prediction. Looking at an example, such as shown in Figure 7, we can see how much
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Figure 8: One example image from the test set. Shown here are the LR input, different
constrained and unconstrained predictions, and the HR image as a reference. This
example is from the TCW4 test data set. For the unconstrained CNN prediction,
we can observe some artifacts in the lower left part, which get amplified by applying
soft-constraining but decreased using hard-constraining like AddCL, ScAddCL, or
SmCl.

more detail is added to the prediction when adding our constraining. For the lunar satellite
imagery, Figure 19 shows that applying constraints can make the image slightly less blurry.

6.5 Development of error during training

Observing how the MSE develops during training (see Figure 10), we can see that the curve
of the constrained network is generally lower than the unconstrained one. Additionally, it
can be seen that constraining helps smooth both the training and validation curves.

6.6 Spatial distribution of errors

A known issue in downscaling methods is the so-called coastal effect, where errors of
predictions tend to be more pronounced in coastal regions. Besides coastal region areas,
mountain ridges can also be critical. In Figure 11, we show the error of the unconstrained
prediction for water content and the softmax-constrained prediction. We can see that both
predictions show more errors in coastal and mountainous regions. However, if we analyze the
difference in errors between the unconstrained and constrained versions, we can see in Figure
12 that constraining leads to lower errors in those areas.
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Figure 9: One example image is chosen randomly from the test set. Each model was trained
for the same target resolution but with a different upsampling factor. The first row
shows the LR inputs for each resolution and the last row the corresponding HR
ground truth. The second and third rows show the prediction of an unconstrained
CNN and with the SmCL, respectively.

6.7 Limitations

In the case of our WRF data set, we have seen that the constraining methodology can improve
predictive performance even if the underlying constraints are slightly violated by the original
data. In cases where low-resolution and its high-resolution counterpart are too far apart,
our model is not always able to increase the predictive skill. We built a data set from two
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Figure 10: The development of training and validation errors with increasing iterations
during training. Shown for an unconstrained CNN and CNN+SmCL applied
to the water content data. We can observe how hard constraining accelerates
convergence and smooths the learning curve, both measured in training and
validation error.

Figure 11: The errors of the global predictions for unconstrained and constrained (SmCL)
CNNs, when compared to the ground truth. The CNN is applied per 32 × 32
patch and then put together for a global predictions at a random time step. Used
here is the TCW4 data set. We can observe how the stronger errors in coastal and
mountainous regions for the unconstrained predictions are dampened by soft-max
constraining.

different resolutions of the Norwegian Earth System Model (NorESM) (Seland et al., 2020),
and applying our constraining methods improved the visual similarity of the predictions, but
decreased the predictive ability. We provide scores and plots in the appendix. In the case of
other sampling strategies such as subsampling spatially, our methods are not applicable in
their current form and they depend on having constraints that can be formulated with Eq.
(8).
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7. Conclusion and future work

This work presents a novel methodology to incorporate physics-inspired downscaling hard
constraints into neural network architectures for climate super-resolution. We show that
this method performs well across different deep learning architectures, upsampling factors,
predicted quantities, and data sets. We demonstrate its effectiveness both on standard
downscaling data sets and on data created by independent simulations. Our constrained
models are not only guaranteed to satisfy consistency such as mass conservation between LR
and HR, but also increase predictive performance across metrics and use cases. Compared
to soft-constraining through the loss function, our methodology does not suffer from the
common accuracy-constraints enforcement trade-off. Our hard-constraining performance
enhancement is not only limited to climate super-resolution but also noticeable in satellite
imagery of the lunar surface as well as standard benchmark data sets of natural images.
Within the climate context, our constraint layer can help with common issues connected
to deep learning applied to downscaling: it dampens the coastal effect, errors get lower
in critical regions, out-of-distribution generalization is improved and training can be more
stable. Hard-constraining can weaken performance if the enforced relationships are strongly
violated in the true data (see NorESM data). If a bias exists in the LR (or other input) it
can be propagated to the HR prediction by constraining on the LR.

Future work could extend the application of our constraint layer to other climate-related
tasks beyond downscaling. Climate model emulation (e.g. Beucler et al. (2021) and Harder
et al. (2021)) for example could strongly benefit from a reliable and performance-enhancing
method to enforce physical laws. For post-processing purposes, the offline application of our
method, our code is readily available. To deploy these constrained super-resolution methods
online, the next step is to use Fortran-Python bridges (e.g. (Ott et al., 2020)) to include
them in global climate model runs.
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Appendix A: Tuning soft-constraining

Here we investigate the influence of the factor α on the soft-constraining method in more
detail. Table 3 shows how the increase of α improves the mass conservation but only up to a
value between 0.014 and 0.017. At the same time, it shows that the predictive skill decreases
with the increase of α significantly.

Table 3: Metrics calculated over 10,000 validation samples. The best scores are highlighted
in bold blue, second best in bold black.

Data Alpha RMSE MAE MS-SSIM Mass viol. #Neg
per mil.

TCW4 0.0001 0.241 0.102 99.95 0.021 1.21
TCW4 0.001 0.237 0.100 99.96 0.022 0.12
TCW4 0.01 0.247 0.103 99.96 0.022 1.39
TCW4 0.1 0.252 0.104 99.95 0.023 0.41
TCW4 0.9 0.268 0.110 99.95 0.020 16.83
TCW4 0.99 0.297 0.133 99.94 0.014 31.01
TCW4 0.999 0.477 0.261 99.84 0.016 600.96
TCW4 0.9999 0.706 0.433 99.71 0.017 3867.90
TCW4 1 2.618 1.814 94.22 0.017 960.42

Appendix B: Clipping for nonnegativity

As natural RGB images have a well-defined range, it is common in CNN and GAN implemen-
tations to clip the pixels at inference time to the desired range, removing negative values, for
example. Here, in Table 4 we show that doing that gives a very small increase in performance,
but still performs significantly worse than SmCL, which achieves also zero negative values.
We want to point out that a combination of a constraint layer such as MultCL and clipping
would lead to the clipping layer to destroy the enforced consistency given by the contraint
layer if applied afterwards.

Table 4: Metrics for different constraining methods applied to the SR CNN + clipping
applied on the water content data set, calculated over 10,000 test samples. The
mean is taken over 3 runs. The best scores are highlighted in bold blue.

Data Model Constraint RMSE MAE MS-SSIM Mass viol. #Neg
per mil.

TCW4 CNN none 0.661 0.327 99.39 0.059 2.41
TCW4 CNN clip 0.657 0.326 99.440 0.058 0
TCW4 CNN SmCL 0.582 0.291 99.49 0.000 0
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Figure 12: The difference in the errors of constrained and unconstrained predictions from
Figure 11. Positive values (red) mean a higher error in the unconstrained version.
We trim values at 3, so everything that has a difference greater than 3 is shown
as full red for better visibility.

Appendix C: Score tables

We show the tables with the mean scores that are displayed as Figures in the main paper
and additionally include the MAE.

One observation from TFigure 13 is that the RMSE improvement is better for lower
upsampling factors but the other way around for MS SSIM. A potential explanation: For
higher upsampling factors it gets increasingly difficult to achieve good visual (read high
SSIM) quality, whereas the RMSE is still relatively easy to minimize. Here, adding the
constraint layers have more leverage to improve.

Appendix D: Additional scores

We look at additional scores for our water content data set. We investigate the mean bias
(mean over the difference for each pixel value of prediction and truth), the peak signal-to-
noise ratio (PSNR), the structural similarity index measure, the Pearson correlation (Corr),
and the negative mean (the average magnitude of predicted negative values, the average
is calculated over all predicted values, including positive, that are set to zero to calculate
the negative mean). These metrics show a similar trend then the metrics shown in the
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Table 5: Metrics for different constraining methods applied to an SR CNN, calculated over
10,000 test samples of the water content data. The mean is taken over 3 runs. The
best scores are highlighted in bold blue, second best in bold.

Data Fact. Model Constraint RMSE MAE MS-SSIM Mass viol. #Neg
per mil.

TCW2 2x Enlarge none 0.422 0.361 99.61 0.000 0
TCW2 2x Bicubic none 0.322 0.137 99.90 0.066 0.25
TCW2 2x CNN none 0.251 0.105 99.95 0.026 1.40
TCW2 2x CNN soft 0.301 0.137 99.23 0.016 104.65
TCW2 2x CNN AddCL 0.216 0.092 99.96 0.000 1.31
TCW2 2x CNN ScAddCL 0.199 0.0876 99.96 0.000 0.02
TCW2 2x CNN MultCL 0.223 0.094 99.96 0.000 0
TCW2 2x CNN SmCL 0.215 0.094 99.96 0.000 0

TCW4 4x Enlarge none 1.286 0.717 97.60 0.000 0
TCW4 4x Bicubic none 0.800 0.401 99.12 0.169 0.53
TCW4 4x CNN none 0.657 0.326 99.40 0.058 2.41
TCW4 4x CNN soft 0.801 0.410 99.15 0.023 581.54
TCW4 4x CNN AddCL 0.580 0.290 99.50 0.000 1.42
TCW4 4x CNN ScAddCL 0.575 0.289 99.50 0.000 0.07
TCW4 4x CNN MultCL 0.606 0.300 99.47 0.000 0
TCW4 4x CNN SmCL 0.582 0.291 99.49 0.000 0

TCW8 8x Enlarge none 2.181 1.294 92.39 0.000 0
TCW8 8x Bicubic none 1.557 0.900 96.49 0.318 6.56
TCW8 8x CNN none 1.358 0.782 97.15 0.109 15.48
TCW8 8x CNN soft 1.640 0.965 96.06 0.029 103,702
TCW8 8x CNN AddCL 1.267 0.733 97.41 0.000 632.32
TCW8 8x CNN ScAddCL 1.264 0.734 97.41 0.000 0.15
TCW8 8x CNN MultCL 1.331 0.733 97.22 0.000 0.10
TCW8 8x CNN SmCL 1.268 0.734 97.40 0.000 0

TCW16 16x Enlarge none 3.425 2.159 85.55 0.000 0
TCW16 16x Bicubic none 2.723 1.730 91.72 0.510 53.67
TCW16 16x CNN none 2.450 1.545 92.68 0.203 4.15
TCW16 16x CNN soft 2.794 1.776 90.74 0.036 2250.77
TCW16 16x CNN AddCL 2.364 1.491 92.96 0.000 457.34
TCW16 16x CNN ScAddCL 2.368 1.495 92.94 0.000 2.12
TCW16 16x CNN MultCL 2.409 1.518 92.77 0.000 0.17
TCW16 16x CNN SmCL 2.368 1.492 92.95 0.000 0

main paper: all of them are improved by adding constraints in our architecture. Without
or with soft constraining there are small biases appearing in the predictions, but hard
constraining removes those biases. PSNR is a function of the MSE and therefore shows the
same trend as it. SSIM and correlation give very similar results, with ScAddCL, AddCL,
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Table 6: Metrics for different constraining methods applied to an SR GAN, calculated over
10,000 test samples of the 4x upsampling water content data. The mean is taken
over 3 runs. The best scores are highlighted in bold blue, and the second best in
bold.

Data Model Constraint RMSE MAE CRPS MS-SSIM Mass viol. #Neg
per mil.

TCW4 GAN none 0.628 0.313 0.1522 99.44 0.0453 3.46
TCW4 GAN AddCL 0.602 0.306 0.1519 99.46 0.000 7.38
TCW4 GAN ScAddCL 0.604 0.305 0.1508 99.46 0.000 0.05
TCW4 GAN MultCL 0.732 0.406 0.1978 99.13 0.000 0
TCW4 GAN SmCL 0.603 0.310 0.1520 99.46 0.000 0

Table 7: Metrics for different constraining methods applied to an SR ConvGRU, calculated
over 10,000 test samples of the water content data. The best scores are highlighted
in bold blue, second best in bold.

Data Model Constraint RMSE MAE MS-SSIM Mass viol. #Neg
per mil.

TCW T1 Enlarge none 1.292 0.718 97.72 0.000 0
TCW T1 Bicubic none 0.807 0.402 99.16 0.169 2.16
TCW T1 ConvGRU none 0.672 0.340 99.42 0.102 55.45
TCW T1 ConvGRU AddCL 0.499 0.260 99.64 0.000 1358.49
TCW T1 ConvGRU ScAddCL 0.499 0.260 99.64 0.000 10.58
TCW T1 ConvGRU MultCL 0.903 0.472 98.98 0.000 0.25
TCW T1 ConvGRU SmCL 0.500 0.260 99.64 0.000 0

and SmCL showing the best scores. Overall we can see that soft-constraining leads to the
most significantly negative predictions, which would cause issues in the context of climate
models and predictions.

Appendix E: Additional Visualizations

Here we present some visualizations, a prediction by the GAN (Figure 14), the FlowConvGRU
(Figure 15), unconstrained and constrained example prediction from BSD100 and Urban100
(Figure 20), and a global prediction for water content (Figure 16).
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Table 8: Metrics for different constraining methods applied to our FlowConvGRU, calculated
over 10,000 test samples of the water content data set. The best scores are
highlighted in bold blue, second best in bold.

Data Model Constraint RMSE MAE MS-SSIM Mass viol. #Neg
per mil.

TCW T2 Interpolation none 0.834 0.428 99.10 0.169 2.14
TCW T2 FlowConvGRU none 0.673 0.352 99.40 0.072 18.27
TCW T2 FlowConvGRU AddCL 0.509 0.275 99.63 0.000 37.10
TCW T2 FlowConvGRU ScAddCL 0.509 0.274 99.63 0.000 13.40
TCW T2 FlowConvGRU MultCL 0.719 0.383 99.27 0.000 0
TCW T2 FlowConvGRU SmCL 0.514 0.276 99.62 0.000 0

Table 9: Metrics for different constraining methods applied to the SR CNN applied on the
OOD water content data set, calculated over 10,000 test samples. The mean is
taken over 3 runs. The best scores are highlighted in bold blue.

Data Model Constraint RMSE MAE MS-SSIM Mass viol. # Neg
per mil.

TCW OOD Enlarge none 1.274 0.711 97.60 0.000 0
TCW OOD Bicubic none 0.792 0.397 98.63 0.167 0.55
TCW OOD CNN none 0.661 0.327 99.39 0.059 4.93
TCW OOD CNN AddCL 0.575 0.287 99.50 0.000 1.65
TCW OOD CNN ScAddCL 0.573 0.288 99.50 0.000 0.21
TCW OOD CNN MultCL 0.591 0.294 99.47 0.000 0
TCW OOD CNN SmCL 0.579 0.289 99.49 0.000 0

Appendix F: NorESM data

Our NorESM data set is based on the second version of the Norwegian Earth System Model
(NorESM2), which is a coupled Earth System Model developed by the NorESM Climate
modeling Consortium (NCC), based on the Community Earth System Model, CESM2. We
build our data set on two different runs: NorESM-MM which has a 1-degree resolution for
model components and NorESM2-LM which has a 2-degree resolution for atmosphere and
land components. We use the temperature at the surface (tas) and a time period from 2015
to 2100. The scenarios ssp126 and ssp585 are used for training ssp370 for validation and
ssp245 for testing. By cropping into 64× 64 and 32× 32 pixels, each scenario contains 12k
data points. The results for the NorESM data are shown in Table 14: the best scores are in
all cases achieved by the unconstrained CNN. This is probably due to the stronger violation
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Table 10: Metrics for different constraining methods applied to the SR CNN, calculated over
the test set for water vapor, liquid water, and temperature. The mean is taken
over 3 runs. For QL, RMSE, MAE, and Constr. violation are scaled by a factor of
103 for readability. The best scores are highlighted in bold blue, second best in
bold.

Data Var. Model Constraint RMSE MAE MS-SSIM Constr. viol.

MEn Qv Enlarge none 0.474 0.262 94.74 0.000
MEn Qv Bicubic none 0.326 0.182 97.12 0.07
MEn Qv CNN none 0.260 0.141 98.14 0.02
MEn Qv CNN AddCL 0.250 0.133 98.28 0.00
MEn Qv CNN ScAddCL 0.250 0.133 98.28 0.00
MEn Qv CNN MultCL 0.250 0.133 98.28 0.00
MEn Qv CNN SmCL 0.248 0.132 98.30 0.00

MEn QL Enlarge none 0.0217 0.00862 98.34 0.00000
MEn QL Bicubic none 0.0186 0.00765 98.96 0.00236
MEn QL CNN none 0.0157 0.00617 99.15 0.00067
MEn QL CNN AddCL 0.0155 0.00588 99.18 0.00000
MEn QL CNN ScAddCL 0.0155 0.00588 99.17 0.00000
MEn QL CNN MultCL 0.0166 0.00647 99.06 0.00000
MEn QL CNN SmCL 0.0155 0.00585 99.17 0.00000

MEn T Enlarge none 0.470 0.288 99.03 0.0
MEn T Bicubic none 0.281 0.156 99.67 159.1
MEn T CNN none 0.459 0.287 99.03 139.7
MEn T CNN AddCL 0.276 0.160 99.67 0.0
MEn T CNN ScAddCL 0.280 0.163 99.67 0.0
MEn T CNN MultCL 0.270 0.155 99.69 0.0
MEn T CNN SmCL 0.272 0.155 99.68 0.0

of the downscaling constraints between low-resolution and high-resolution samples. We can
see a significant difference between the real LR and the HR downsampled, as shown in Figure
18. The violation of the constraints here is 2.48 (RMSE), which is much higher than for
the WRF case (0.68). The visual quality of the prediction, on the other hand, seems to be
improved by constraining, an example is shown in Figure 17. One potential approach for
improvements here could be lat-lon weighted constraining.

Appendix G: Non-climate data

Lunar data

Recent work (Delgano-Centeno et al., 2021) on super-resolution for lunar satellite imagery has
shown how deep learning can be used to enhance the captured data to help future missions
to the moon. To increase the resolution of images from regions like the south pole, where
there is no high-resolution data available, a machine learning-ready data set has been created.
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Figure 13: Metrics for different constraining methods applied to an SR CNN, calculated over
10,000 test samples of the water content data. The mean and confidence interval
from 3 runs is shown relative to the Enlarge baseline. The framed box indicates
a method that achieves zero violation of the physics, no negative pixels or mass
conservation up to numerical precision. A table with more metrics can be found
in the appendix

It consists of 220,000 images cropped out of the Narrow-Angle Camera (NAC) imagery from
NASA’s Lunar Reconnaissance Orbiter (LRO); for more details see Delgano-Centeno et al.
(2021). Here we use a 4x upsampling version of the data set to verify if our constraining
methodologies can increase the performance of super-resolution outside of climate science.
The average sampling is justified in this case, because the real LR images would be created
with summing photon counts in low-light regions.

Natural images

The standard benchmark data sets for super-resolution deep learning architectures applied
to natural images include the OutdoorScenceTRaining (OST), DIV2K, and Flickr2k data
sets for training and Set5, Set14, Urban100, and BSD100 for testing, as for example in Wang
et al. (2018b). Here, we use a version resized to 512× 512 pixels for HR and apply average
pooling to downsample them. Our constraints depend on the downsample technique used
and can not directly be applied to other downsample techniques such as sub-sampling or
bicubic interpolation.
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Table 11: More metrics for different constraining methods applied to an SR CNN, calculated
over 10,000 test samples. The best scores are highlighted in bold blue, second best
in bold.

Data Fact. Model Constraint Mean bias PSNR SSIM Corr Neg mean

TCW2 2x Enlarge none 0.000 45.36 98.65 99.75 0.000
TCW2 2x Bicubic none 0.000 51.46 99.71 99.95 0.000
TCW2 2x CNN none −0.003 53.62 99.82 99.97 0.002
TCW2 2x CNN soft −0.002 52.07 99.74 99.94 0.192
TCW2 2x CNN AddCL 0.000 54.91 99.85 99.98 0.002
TCW2 2x CNN ScAddCL 0.000 55.66 99.87 99.98 0.000
TCW2 2x CNN MultCL 0.000 54.65 99.84 99.97 0.000
TCW2 2x CNN SmCL 0.000 54.95 99.85 99.98 0.000

TCW4 4x Enlarge none 0.000 39.43 94.91 98.98 0.000
TCW4 4x Bicubic none 0.000 43.55 98.29 99.63 0.000
TCW4 4x CNN none −0.015 45.26 98.70 99.74 0.001
TCW4 4x CNN soft −0.001 43.55 98.15 99.59 0.546
TCW4 4x CNN AddCL 0.000 46.35 98.89 99.80 0.001
TCW4 4x CNN ScAddCL 0.000 46.42 98.90 99.79 0.000
TCW4 4x CNN MultCL 0.000 45.98 98.83 99.78 0.000
TCW4 4x CNN SmCL 0.000 46.31 98.88 99.79 0.000

TCW8 8x Enlarge none 0.000 34.84 89.08 96.95 0.000
TCW8 8x Bicubic none +0.0001 37.77 95.40 98.50 0.006
TCW8 8x CNN none −0.0148 38.96 95.93 98.82 0.012
TCW8 8x CNN soft −0.0071 37.32 94.37 98.22 0.656
TCW8 8x CNN AddCL 0.000 39.56 96.23 98.96 0.011
TCW8 8x CNN ScAddCL 0.000 39.58 96.24 98.97 0.000
TCW8 8x CNN MultCL 0.000 39.13 95.99 98.87 0.000
TCW8 8x CNN SmCL 0.000 39.55 96.21 98.96 0.000

TCW16 16x Enlarge none 0.000 30.92 85.20 92.19 0.000
TCW16 16x Bicubic none +0.0090 32.91 91.99 95.15 0.063
TCW16 16x CNN none −0.0091 33.83 92.48 95.94 0.006
TCW16 16x CNN soft +0.0115 32.70 90.45 94.63 4.233
TCW16 16x CNN AddCL 0.000 34.14 92.67 96.20 0.581
TCW16 16x CNN ScAddCL 0.000 34.13 92.67 96.18 0.007
TCW16 16x CNN MultCL 0.000 33.98 92.54 96.07 0.000
TCW16 16x CNN SmCL 0.000 34.13 92.68 96.19 0.000
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Table 12: Fractional Skill Score (FSS) for different constraining methods and SR CNN
applied on the ERA4 water content data, calculated over 10,000 test samples. We
look at window sizes 2,4 and 8 and the 95th and 99th percentiles. The best scores
are highlighted in bold blue.

Data Model Constraint 95perc. 99perc.

2 4 8 2 4 8

TCW4 Enlarge none 0.970 0.989 0.997 0.935 0.974 0.991
TCW4 Bicubic none 0.971 0.987 0.994 0.935 0.969 0.986
TCW4 CNN none 0.978 0.992 0.997 0.950 0.979 0.993
TCW4 CNN soft 0.971 0.989 0.997 0.935 0.974 0.991
TCW4 CNN ScAddCL 0.981 0.993 0.998 0.956 0.983 0.994
TCW4 CNN AddCL 0.981 0.993 0.998 0.956 0.983 0.994
TCW4 CNN MultCL 0.979 0.992 0.998 0.951 0.980 0.993
TCW4 CNN SmCL 0.981 0.993 0.998 0.955 0.983 0.994

Table 13: The variance among super-pixels for different constraining methods and SR CNN
applied on the ERA4 water content data, calculated over 10,000 test samples.

Data Model Constraint Variance

TCW4 Enlarge none 0.00
TCW4 Bicubic none 0.85
TCW4 CNN none 1.22
TCW4 CNN soft 0.96
TCW4 CNN ScAddCL 1.33
TCW4 CNN AddCL 1.32
TCW4 CNN MultCL 1.24
TCW4 CNN SmCL 1.34
TCW4 HR none 1.65
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Figure 14: A random sample for the GAN predictions, showing 3 different outputs from the
ensemble, constrained and unconstrained.

Table 14: Metrics for different constraining methods applied to the SR CNN, calculated over
the test samples of the NorESM data set. The mean is taken over 3 runs. Best
scores are highlighted in bold.

Data Model Constraint RMSE MAE MS-SSIM Constr. viol.

Tas NorESM Enlarge none 2.987 1.915 95.96 0.000
Tas NorESM Bicubic none 2.910 1.864 96.36 0.073
Tas NorESM CNN none 2.348 1.559 96.93 1.034
Tas NorESM CNN soft 2.928 1.874 96.28 0.041
Tas NorESM CNN AddCL 2.885 1.847 96.45 0.000
Tas NorESM CNN ScAddCL 2.884 1.846 96.46 0.000
Tas NorESM CNN MultCL 2.888 1.859 96.43 0.000
Tas NorESM CNN SmCL 2.885 1.847 96.45 0.000
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Figure 15: One random test sample and its prediction. Shown here are the two LR input
time steps, predictions by both a constrained and unconstrained version of the
FlowConvGRU, and the HR sequence as a reference.

Table 15: Metrics for different constraining methods applied to the SR-CNN, calculated over
the test samples of the lunar data set. The mean is taken over 3 runs. The best
scores are highlighted in bold blue.

Data Model Constraint RMSE MAE SSIM PSNR

Lunar CNN none 0.00217 0.00146 90.08 37.57
Lunar CNN SmCL 0.00213 0.00144 90.40 37.74
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Figure 16: Global water content data (from data set TCW4): We show LR, unconstrained
prediction, softmax-constrained prediction, and HR. The models are applied to
one random time step of the test data set, seperately to each 32x32 patch and
than combined together to create a global visualization.

Figure 17: A random sample prediction for the NorESM temperature test data set, we
compare an unconstrained CNN and a softmax-constrained CNN here. The
constrained prediction looks more similar to the HR ground truth, including more
high-frequency features.
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Figure 18: A sample from the NorESM temperature training data set. We compare the
low-resolution simulation to the downsampled high-resolution counterpart. It can
be observed that the LR and the downsampled HR are significantly different.

Figure 19: A random sample prediction from the lunar data set is shown. We compare the
unconstrained with the constrained prediction.

Table 16: Metrics of the SR-GAN with and without SmCL calculated over the test data sets
Set5, Set14, Urban100, BSD100. The better scores are highlighted in bold blue.

Data Model Constraint RMSE MAE SSIM PSNR

Set5 SR-GAN none 8.57 4.80 92.48 29.47
Set5 SR-GAN SmCL 6.61 4.01 93.95 31.73

Set14 SR-GAN none 15.75 8.82 86.06 24.28
Set14 SR-GAN SmCL 14.07 8.12 87.37 25.16

Urban100 SR-GAN none 25.00 14.57 81.40 20.17
Urban100 SR-GAN SmCL 23.25 13.60 83.19 20.80

BSD100 SR-GAN none 14.38 8.28 85.95 24.97
BSD100 SR-GAN SmCL 13.52 7.82 87.09 25.50
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Figure 20: Two random images from both the BSD100 and the Urban100 data sets. The
first row shows the unconstrained prediction, the second row the constrained
prediction using softmax constraining.
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