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Abstract

In nonparametric independence testing, we observe i.i.d. data {(Xi, Yi)}ni=1, where X ∈
X , Y ∈ Y lie in any general spaces, and we wish to test the null that X is independent
of Y . Modern test statistics such as the kernel Hilbert–Schmidt Independence Criterion
(HSIC) and Distance Covariance (dCov) have intractable null distributions due to the
degeneracy of the underlying U-statistics. Hence, in practice, one often resorts to using
permutation testing, which provides a nonasymptotic guarantee at the expense of recalcu-
lating the quadratic-time statistics (say) a few hundred times. In this paper, we provide
a simple but nontrivial modification of HSIC and dCov (called xHSIC and xdCov, pro-
nounced “cross” HSIC/dCov) so that they have a limiting Gaussian distribution under the
null, and thus do not require permutations. We show that our new tests, like the origi-
nals, are consistent against fixed alternatives, and minimax rate optimal against smooth
local alternatives. Numerical simulations demonstrate that compared to the permutation
tests, our variants have the same power within a constant factor, giving practitioners a new
option for large problems or data-analysis pipelines where computation, not sample size,
could be the bottleneck.

Keywords: independence testing, kernel-methods, permutation-free tests, Hilbert-Schmidt
Independence Critrion (HSIC), Distance Covariance.

1. Introduction

We consider the following problem: given observations D2n
1 = {(Xi, Yi) : 1 ≤ i ≤ 2n} drawn

i.i.d. from a distribution PXY on the observation space X × Y, we wish to test whether X
and Y are independent or not. Formally, this is stated as the following hypothesis testing
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problem:

H0 : PXY = PX × PY , versus H1 : PXY 6= PX × PY ,

where PX and PY denote the marginals of the joint distribution PXY . For general observa-
tion spaces, a popular approach for independence testing is based on the Hilbert–Schmidt
Independence Criterion (HSIC), first introduced by Gretton et al. (2005). As we describe
formally in Theorem 1 in Section 2, the (population) HSIC of a joint distribution PXY on
X × Y is the sum of squared singular values (i.e., the Hilbert–Schmidt norm) of a cross-
covariance operator defined using PXY and positive definite kernels k : X × X → R and
` : Y × Y → R. Given the data D2n

1 , an unbiased empirical estimate of the population
HSIC can be computed in quadratic time. Introducing the notation kij ≡ k(Xi, Xj) and

`lm ≡ `(Yl, Ym) for 1 ≤ i, j, l,m ≤ 2n, and (2n)i := (2n)!
(2n−i)! , the empirical estimator of HSIC

can be defined as:

HSICn =
1

(2n)2

∑
1≤i 6=j≤2n

kij`ij +
1

(2n)4

∑
1≤i,j,l,m≤2n
i, j, l,m distinct

kij`lm −
2

(2n)3

∑
1≤i,j,l≤2n
i, j, l distinct

kij`il, (1)

For characteristic kernels, Gretton et al. (2005) showed that the (population) HSIC is equal
to zero if and only if PXY = PX × PY , and thus it can serve as a measure of independence
between PX and PY . This can be then used to define an independence test that rejects
the null when the statistic HSICn is larger than an appropriately chosen threshold. The
choice of the threshold is crucial in ensuring that the test achieves large power under the
alternative, while controlling the type-I error (at least asymptotically) at a specified level
α ∈ (0, 1).

The empirical HSIC criterion introduced above is an instance of a degenerate U-
statistic (Lee, 2019), and thus it has a complicated limiting null distribution — it is an
infinite weighted linear combination of independent chi-squared random variables, the ex-
act expression of which was derived by Gretton et al. (2007, Theorem 2). Due to the
intractable nature of this null distribution, we cannot directly use this to calibrate the in-
dependence test based on the empirical HSIC statistic. Instead, in practice, the rejection
threshold is often selected as the (1− α)-quantile after recomputing the statistic HSICn B
times after permuting the indices of (Xi)

2n
i=1. Hence, this approach requires us to compute

the quadratic time statistic HSICn a total of B + 1 times, which might make this method
infeasible for larger n and B values.

To address the high computational cost of the permutation test, several alternatives
such as tests based on deviation bounds between empirical and population HSIC, or using
parametric approximations of the null distribution have been proposed. We discuss them
in detail in Section 1.2. However, these existing approaches are either too conservative in
practice or do not have theoretical guarantees on their performance.

In this paper, we propose a new and simple test that addresses the issues with existing
kernel-based independence tests. In particular, we define a new unbiased empirical esti-
mate of HSIC that has a tractable, standard normal, limiting null distribution under mild
assumptions. We then use this statistic to define an independence test, that we call the
cross-HSIC test, and show that it is consistent against arbitrary fixed alternatives and also
achieves minimax rate-optimal power against smooth local alternatives.
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1.1 Overview of Results

We propose a new statistic, based on the ideas of sample splitting and studentization, and
use it to define a new test of independence. Given the observations D2n

1 = {(Xi, Yi) : 1 ≤
i ≤ 2n}, drawn i.i.d. from a joint distribution PXY on X × Y, we first split it into two
equal parts, Dn1 = {(Xi, Yi) : 1 ≤ i ≤ n} and D2n

n+1 = {(Xi, Yi) : n + 1 ≤ i ≤ 2n}. Using
these two splits, we construct two independent empirical estimates of the cross-covariance
operator (denoted by f1 and f2), and define the statistic xHSICn as their Hilbert–Schmidt
norm:

xHSICn = 〈f1, f2〉HS =
1

n(n− 1)

∑
i 6=j
〈hij , f2〉HS ,

f1 =
1

n(n− 1)

∑
1≤i 6=j≤n

hij , and f2 =
1

n(n− 1)

∑
n+1≤i 6=j≤2n

hij ,

hij ≡ h(Zi, Zj) =
1

2

{
k(Xi, ·)− k(Xj , ·)

}
⊗
{
`(Yi, ·)− `(Yj , ·)

}
. (2)

The final statistic, denoted by xHSICn, is obtained by normalizing xHSICn with an empirical
standard deviation term, stated in (6). Using this statistic, we define the cross-HSIC test,
Ψ = 1xHSICn>z1−α , which rejects the null when xHSICn exceeds the (1− α)-quantile of the
standard normal distribution.

Our first set of results characterize the limiting null distribution of the xHSICn statis-
tic, and justify the rejection threshold used in defining the cross-HSIC test. To motivate
the more general results, we first consider the simple, but instructive, case of univariate
observations (that is, X = Y = R) and linear kernels k(x, x′) = xx′ and `(y, y′) = yy′ in
Section 4. In this setting, we first show that for a fixed null distribution PXY = PX × PY ,
the existence of finite second moment is sufficient for xHSICn to converge in distribution
to N(0, 1). Then we show that under stronger moment assumptions, the xHSICn statistic
converges to N(0, 1) uniformly over a composite class of null distributions. We then move to
the case of general kernels and observation spaces, and derive analogous, but slightly more
abstract, requirements for the asymptotic normality of the xHSICn statistic in Section 5.
In particular, we identify sufficient conditions for the asymptotic normality of xHSICn for
the case of fixed k, ` and PXY in Theorem 6, and for the more general case where kn, `n and
PXY,n are all allowed to change with the sample-size n in Theorem 7. Overall, our results
imply that our xHSICn statistic converges in distribution to a standard normal distribution,
in most practically relevant scenarios, and thus the cross-HSIC test controls the type-I error
asymptotically at the desired level α.

Having established the type-I error control achieved by our cross-HSIC test, we next
analyze its power. Again, we first consider the case of univariate observations with linear
kernels to gain some intuition in Section 4 where we show that the cross-HSIC test is
consistent against any fixed alternative when PX and PY are (linearly) correlated. We also
consider the case of local alternatives and show that the cross-HSIC test can consistently
detect alternatives separated by a Ω(1/

√
n) boundary. Similar results also hold for the

case of more general kernels. In particular, we first show in Theorem 9, that the cross-
HSIC test with characteristic kernels k and ` is consistent against any fixed alternative.
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Then in Theorem 10, we show that the cross-HSIC test instantiated with Gaussian kernels
achieves minimax rate-optimal power against smooth local alternatives.

Finally, in Section 7, we consider a related class of statistics, called the distance-
covariance (dCov). Using the equivalence between distance-based and kernel-based statis-
tics (Sejdinovic et al., 2013), we introduce a new distance-based statistic, called the cross-
dCov statistic. We then identify sufficient conditions for this statistic to have a standard
normal limiting null distribution, and for it to be consistent against fixed alternatives.

1.2 Related Work

Nonparametric independence testing is a classical topic in statistics that still remains a
subject of significant contemporary interest. A huge variety of methods have been developed
recently for this problem, such as those based on ranks (Heller et al., 2013; Weihs et al.,
2018; Deb and Sen, 2021; Shi et al., 2022), projections (Zhu et al., 2017), copula (Dette
et al., 2013) and mutual information (Berrett and Samworth, 2019). This paper focuses on
a particular class of kernel (and distance) based nonparametric tests, which are popular in
machine learning and statistics. In the rest of this section, we present the details of the
most closely related works to ours.

Nonasymptotic tail inequalities for HSIC. Gretton et al. (2005) introduced HSIC
as a measure of dependence between two random variables, and obtained a high probability
(nonasymptotic) deviation inequality between the empirical and population HSIC terms.
The resulting test has finite sample validity, and is uniformly consistent against alternatives
separated by a Ω(1/

√
n) boundary (in terms of HSIC). However, this test is overly conserva-

tive in practice. To address this, Gretton et al. (2007) suggested to calibrate the test based
on the null distribution of HSIC, and due to the intractability of the null distribution, they
used parametric approximations of the null distribution to select the rejection threshold.
This method, however, is a heuristic and does not have validity guarantees.

Modifications of the HSIC test statistic. Another class of permutation-free ker-
nel independence tests take an approach similar to our paper, and modify the empirical
HSIC statistic to make its null distribution tractable. Zhang et al. (2018) developed three
such tests, using block-averaged HSIC, random Fourier features (RFFs) and the Nystrom
approximation. The block-averaged HSIC statistic is obtained by partitioning the data
D2n

1 into blocks of size b, and then computing the HSIC on these small blocks of data and
taking their average; this takes O(bn) time in total. The computational cost, then, varies
from linear in n for constant block sizes, to quadratic when b = Ω(n). Furthermore, when
b = o(n), the block-averaged HSIC statistic has a limiting Gaussian distribution under the
null, which can be used for calibrating the test. The other two methods (RFF and Nystrom)
have a computational complexity of O(nb2), where b denotes the number of features used.
For the RFF method, the null distribution is a finite linear combination of chi-squared ran-
dom variables, while in the Nystrom method, the null distribution is based on a low-rank
approximation of the kernel matrices.

Jitkrittum et al. (2017) proposed a new measure of independence, called the finite set
independence criterion (FSIC), that is computed as the average of the squared differences
between the mean-embedding values of the joint distribution PXY , and the product of
marginals PX × PY , at J different locations in X × Y. For the J locations drawn ran-
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domly from a continuous distribution, they showed that FSIC is equal to 0 if and only if
X and Y are independent. Based on this, they constructed a Hotelling-type normalized

FSIC statistic (denoted by N̂FSIC
2

n) using J locations selected to optimize a lower bound
on the power of the test. While the resulting linear-time test performed comparably to
the quadratic-time permutation test in practice, there are several important factors that
distinguish our work from theirs. Jitkrittum et al. (2017) analyze their test in the regime
where the kernels (k and `), and the number of features J are fixed; while the sample size n

goes to infinity, and in particular, show that N̂FSIC
2

n has a limiting chi-squared distribution
under the null. However, if these parameters (k, `, and J) are also allowed to change with
n, the null distribution of their statistic may change. Furthermore, the consistency of their
test relies on an accurate estimation of the J × J covariance matrix, which is not possible
when J also increases with n, and limn→∞ J/n ≈ 1. Our test does not suffer from these
issues, and we prove its consistency and type-I error control in more general settings.

For the specific case of Gaussian kernels, Li and Yuan (2019) analyzed an indepen-
dence test based on a studentized version of the empirical HSIC statistic. In particular,
for Gaussian kernels with scale parameter increasing at an appropriate rate with n, they
showed that the studentized empirical HSIC statistic has a standard normal limiting null
distribution, and the resulting independence test has minimax rate-optimal power against
smooth local alternatives. In contrast, our studentized cross-HSIC statistic has a limiting
null distribution for a much larger class of kernels, including unbounded kernels as well
as kernels induced by semi-metrics (Sejdinovic et al., 2013). Furthermore, when special-
ized to Gaussian kernels, our test also achieves minimax rate-optimal power, matching the
performance of the test studied by Li and Yuan (2019).

Other kernel-based independence tests. Deb et al. (2020) proposed a class of
kernel-based nonparametric measures of association (called KMAc) between two random
variables X and Y that satisfy the three desired criteria listed by Chatterjee (2021): they
are equal to 0 for independent X and Y , and are equal to 1 when Y is a measurable func-
tion of X; they admit simple empirical estimates, and finally, they have simple asymptotic
theory when X and Y are independent. These measures significantly generalize the uni-
variate measure of association introduced by Chatterjee (2021). However, Deb et al. (2020)
study the asymptotics of the empirical KMAc statistics only for the case of fixed kernels,
and furthermore, they do not analyze the power of their independence tests against local
alternatives.

Distance-Covariance tests. Székely et al. (2007) proposed a measure of dependence
between two random variables, called the distance-Covariance (dCov) that is defined as
the weighted L2 norm between the characteristic function of the joint distribution, and the
product of the marginal characteristic functions. For the case of Euclidean spaces, Székely
et al. (2007) showed that the (1−α)-quantile of a normalized version of the empirical dCov
statistic can be upper bounded by that of a quadratic form of a Gaussian; thus providing a
permutation-free test of independence. In practice, however, this test is quite conservative
as the upper bound on the (1−α)-quantile is tight only in the case of Bernoulli distributions.
Lyons (2013) extended the definition and analysis of the dCov measure beyond Euclidean
spaces, to arbitrary metric spaces. This was further generalized to the case of semi-metric
spaces by Sejdinovic et al. (2013), who also derived a precise equivalence between dCov
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and kernel-based HSIC measures (we recall this in Theorem 11). In this paper, we use this
equivalence to obtain new dCov based statistics, that also have a standard normal limiting
distribution under the null.

High-dimensional asymptotics. A recent line of work has focused on exploring the
limiting distribution of kernel and distance-based statistics in high dimensional regimes. For
instance, Zhu et al. (2020) proved the asymptotic under the null for studentized versions of
HSIC and unbiased dCov statistics in the regime where dimension and sample-size (n) both
grow to infinity, but the growth of n is slower. Following them, Gao et al. (2021) derived
a central limit theorem and also established explicit convergence rates for a rescaled dCov
statistic under more general conditions (in particular, relaxing the growth requirement on
n). Han and Shen (2021) obtained non-null central limit theorems for both kernel and
distance-based statistics for the specific case of multivariate Gaussian observations. How-
ever, the asymptotic normality derivations in these papers rely critically on the eigenvalues
of certain integral operators being bounded by positive constants both from above and be-
low. These conditions cannot be verified in practice without additional prior information,
thus reducing their practical applicability. Further, it is well known that such results can-
not be true in low/moderate dimensional settings, where the limiting distribution is most
certainly not Gaussian; it is a Gaussian chaos. In contrast, the asymptotic normality of
our proposed cross-HSIC and cross-dCov statistics do not require these eigenvalue condi-
tions, and are valid in all dimension regimes, with no restriction on the relationship between
dimension and sample size.

Cross U-statistics. We note that the general design strategy used in this paper, based
on sample-splitting and studentization, was first introduced by Kim and Ramdas (2023) for
the case of one-sample U-statistics. The primary motivation of their work was to develop
inference techniques that are dimension-agnostic — i.e., methods based on statistics whose
asymptotic distribution remains the same, irrespective of the dimension regime. A key idea
involved in their construction is to view sample-splitting as a tool for dimension reduction.
That is, after splitting the dataset into two parts, they used the first split to learn a “witness
function” ĝ from some function class G, and then obtained the cross-U statistic by taking
the empirical mean of ĝ over elements of the second split. This averaging can be viewed
as projecting the points in the second split along the direction of ĝ. Shekhar et al. (2022)
applied the ideas of Kim and Ramdas (2023) to the case of two-sample testing, to develop a
permutation-free two-sample test based on kernel-MMD metric. In a similar vein, Kübler
et al. (2022) proposed a two-sample test based on witness functions represented by machine
learning (ML) models trained to optimize a weighted mean-squared loss. However, unlike
Shekhar et al. (2022), the asymptotic validity of Kübler et al. (2022) assumes that the
estimated witness function remains fixed as the sample size grows; thus the latter results
do not apply if half (or a constant fraction of) the data is used to estimate the witness
function, as would be necessary for minimax optimal power in theory and good performance
in practice (comparable to the MMD and HSIC U-statistics). In this paper, we adapt and
generalize the ideas from these papers, to develop a permutation-free kernel independence
test. As we describe in Section 3.2, the analysis techniques developed by Shekhar et al.
(2022) for their cross-MMD test cannot be directly applied to our setting, and hence we
develop new methods for establishing the properties of our cross-HSIC test.

6



A Permutation-Free Kernel Independence Test

2. Hilbert–Schmidt Independence Criterion (HSIC)

As mentioned earlier, we assume that the observations (X,Y ) lie in the space X ×Y, where
X may be different from Y. Let K and L denote reproducing kernel Hilbert Spaces (RKHS)
associated with positive-definite kernels k : X × X → R and ` : Y × Y → R, respectively.
With φ(·) and ψ(·) denoting the associated feature maps x 7→ k(x, ·) and y 7→ `(y, ·), we
formally introduce the Hilbert–Schmidt independence criterion (HSIC).

Definition 1 Let PXY denote a probability distribution on X × Y, and H and G denote
RKHS associated with kernels k : X × X → R and ` : Y × Y → R, respectively. Then, the
Hilbert–Schmidt Independence Criterion (HSIC) is defined as the Hilbert–Schmidt norm of
the associated cross-covariance operator:

HSIC(PXY , k, `) := ‖CXY ‖2HS , where CXY := EXY [(φ(X)− µ)⊗ (ψ(Y )− ν)] .

Here ⊗ denotes the tensor product, and the terms µ and ν denote EX [φ(X)] and EY [ψ(Y )]
respectively.

As shown by Gretton et al. (2005, Lemma 1), HSIC(PXY , k, `) can be expressed as
follows, in terms of the kernel functions, with (X,Y ) and (X ′, Y ′) denoting two independent
draws from the distribution PXY :

HSIC(PXY , k, `) = EXX′Y Y ′ [k(X,X ′)`(Y, Y ′)] + EXX′ [k(X,X ′)]EY Y ′ [`(Y, Y ′)]− 2EXY [µ(X)ν(Y )].

Given data D2n
1 = {(Xi, Yi) : 1 ≤ i ≤ 2n} consisting of 2n independent draws from PXY ,

the empirical estimate stated in (1) is constructed using the above expression for HSIC.
Under the null, the statistic HSICn is a degenerate one-sample U-statistic, and thus, for
fixed kernels k and `, its asymptotic null distribution is an infinite weighted combination of
independent χ2 random variables, as shown by Gretton et al. (2007, Theorem 2), where the
weights depend on the distribution PXY . Due to the intractable nature of this distribution,
practical independence tests based on the HSICn statistic are usually calibrated using the
permutation distribution, that leads to a significant increase in computation.

The HSIC metric is also known to be equal to the squared MMD distance between
PXY and the product of marginals, PX × PY , using the product kernel K((x, y), (x′, y′)) =
k(x, x′)`(y, y′). With the notation µ = EPX [k(X, ·)], ν = EPY [`(Y, ·)] and ω = EPXY [k(X, ·)`(Y, ·)],
we can write HSIC(PXY , k, `) as

HSIC(PXY , k, `) = MMD2(PXY , PX × PY ) = 〈ω − µ× ν, ω − µ× ν〉k×`, (3)

where 〈·, ·〉k×` denotes the inner product in the RKHS associated with the product kernel
k × `. It is known that this RKHS is isometrically isomorphic to the tensor product space
Hk⊗H` endowed with the Hilbert–Schmidt norm (Steinwart and Christmann, 2008, Lemma
4.6 and Appendix A.5.2). We will use the above formulation in the next section to propose
a new statistic with a tractable asymptotic null distribution.
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3. The Cross-HSIC Test

We now propose a new statistic, called cross-HSIC, that has a standard Gaussian limiting
null distribution under mild conditions on the kernels and the distribution PXY . The con-
struction of this new statistic relies on two key ideas of sample splitting and studentization.

Given 2n independent draws from the joint distribution PXY , denoted by D2n
1 =

{(X1, X2), . . . , (X2n, Y2n)}, the studentized cross-HSIC statistic, xHSICn, is defined in two
steps:

• First, we split D2n
1 into two equal parts, denoted by Dn1 = {(X1, Y1), . . . , (Xn, Yn)}

andD2n
n+1 = {(Xn+1, Yn+1), . . . , (X2n, Y2n)}. With Zi denoting the paired observations

(Xi, Yi), we introduce the following terms:

f1 =
1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

hij , and f2 =
1

n(n− 1)

2n∑
t=n+1

2n∑
u=n+1
n6=t

htu,

where we now denote hij ≡ h(Zi, Zj) = 1
2{k(Xi, ·) − k(Xj , ·)} × {`(Yi, ·) − `(Yj , ·)},

introduced earlier in (2), as an element of the RKHS Hk×`. Using these terms, we
define the cross-HSIC statistic as

xHSICn := 〈f1, f2〉k×` =
1

n(n− 1)

∑
1≤i 6=j≤n

〈hij , f2〉k×` . (4)

It is easy to check that, for any i 6= j, we have E[hij ] = ω − µ× ν. Hence, f1 and f2
are two independent unbiased estimates of ω−µ×ν, which implies that xHSICn is an
unbiased estimate of the HSIC metric. As the expression in (4) indicates, conditioned
on the second-half of the data (i.e., D2n

n+1), xHSICn is a one-sample U-statistic.

• Our final statistic, denoted by xHSICn, is obtained by normalizing the cross-statistic
xHSICn with the empirical standard deviation as follows:

xHSICn :=

√
n xHSICn

sn
, where (5)

s2n =
4(n− 1)

(n− 2)2

n∑
i=1

(
1

n− 1

∑
1≤j 6=i≤n

〈hij , f2〉k×` − xHSICn

)2

. (6)

We note that n−1s2n is the jackknife estimator of the variance of E[h(Z1, Z2)|Z1] also
considered in Jing et al. (2000).

In Section 5, we show that under certain assumptions on the kernel, the xHSICn statistic
has a standard normal limiting distribution under the null. This suggests the following
natural level-α test of independence:

Ψ ≡ Ψ
(
D2n

1

)
= 1xHSICn>z1−α ,

where z1−α is the (1− α)-quantile of the N(0, 1) distribution.
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3.1 Quadratic-time Computation of xHSICn

A naive computation of the xHSICn statistic has a O(n4) computational complexity, that
is infeasible for all but very small problems. However, a more careful look at the terms
involved in defining xHSICn indicates that it can actually be computed in quadratic time.

Theorem 2 The xHSICn statistic, introduced in (5), can be computed in O(n2) time.

Proof outline of Theorem 2. It suffices to prove that, both, the numerator (xHSICn) and
the denominator (sn) in the statistic xHSICn can be computed in quadratic time. First, we
consider the numerator, and observe that it can be decomposed as follows:

xHSICn = T1 − T2 − T3 + T4, where

T1 =
1

n2

n∑
i=1

2n∑
j=n+1

k(Xi, Xj)`(Yi, Yj),

T2 =
1

n2(n− 1)

n∑
i=1

∑
n+1≤j1 6=j2≤2n

k(Xi, Xj1)`(Yi, Yj2),

T3 =
1

n2(n− 1)

2n∑
i=n+1

∑
1≤j1 6=j2≤n

k(Xi, Xj1)`(Yi, Yj2), and

T4 =
1

n2(n− 1)2

∑
1≤i1 6=i2≤n

∑
n+1≤j1 6=j2≤2n

k(Xi1 , Xj1)`(Yi2 , Yj2).

The above expressions indicate that a direct computation of T1, T2, T3 and T4 incur O(n2),
O(n3), O(n3) and O(n4) cost respectively, making the overall computational cost O(n4).
In Theorem 16, we show how the terms T2 and T3 can be computed in quadratic time, and
in Theorem 17 we show how the term T4 can be computed in quadratic time. These two
results together imply that the numerator of xHSICn has an overall quadratic complexity.
Finally, we consider the denominator sn, and first note that

s2n =
4(n− 1)

(n− 2)2

 1

(n− 1)2

n∑
i=1

n,j 6=i∑
j=1

〈hij , f2〉k×`

2

− nxHSIC2
n

 . (7)

We complete the proof by showing that the first term inside the square brackets above can
also be computed in quadratic time. The details are in Theorem 18.

3.2 Connections to xMMD2
n

The kernel-MMD distance between two probability distributions (on the same observa-
tion space) is a widely used metric in the two-sample testing literature (Gretton et al.,
2012). With X = Y and k = `, the MMD distance between PX and PY is defined as

MMD(PX , PY ) := 〈µ − ν, µ − ν〉1/2k . The usual empirical estimates of MMD2(PX , PY )
based on observations are known to have a complex asymptotic null distribution (similar
to HSIC). To address this, Shekhar et al. (2022) proposed the xMMD2

n statistic, based
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on splitting the observations D2n
1 = {(Xi, Yi) : i ∈ [2n]} into two (usually equal) splits:

Dn1 = {(Xi, Yi) : i ∈ [n]} and D2n
n+1 = {(Xi, Yi) : n+ 1 ≤ i ≤ 2n}. In particular, let (µ̂1, ν̂1)

and (µ̂2, ν̂2) denote the empirical estimates of µ and ν based on Dn1 and D2n
n+1 respectively.

Then, the xMMD2
n is defined as

xMMD2
n ≡ xMMD2

n(D2n
1 ) = 〈µ̂1 − ν̂1, µ̂2 − ν̂2〉k.

Shekhar et al. (2022) showed that the asymptotic distribution of a studentized version of
xMMD2

n under the null, that is with PX = PY , is N(0, 1) under mild conditions.

As we mentioned earlier in Section 3, the HSIC metric can be interpreted as the kernel-
MMD distance, with the product kernel k × `, between the joint distribution PXY and the
product of marginals PX × PY . Hence, similar to the definition of xMMD2

n, the xHSICn

statistic based on D2n
1 , can be rewritten as

xHSICn ≡ xHSICn(D2n
1 ) = 〈µ̂1 × ν̂1 − ω̂1, µ̂2 × ν̂2 − ω̂2〉k×`, (8)

where (ω̂1, µ̂1, ν̂1) and (ω̂2, µ̂2, ν̂2) denote the empirical estimates of (ω, µ, ν) based on Dn1
and D2n

n+1 respectively.

Given the similarity in the definitions of xHSICn and xMMD2
n, it might appear that the

theoretical guarantees of xMMD2
n also carry over directly to the case of xHSICn. However,

there is a subtle issue that prevents this. For analyzing xMMD2
n, Shekhar et al. (2022) rely

strongly on the fact that µ̂1 and ν̂1 are independent, and thus, conditioned on the second
half of data, the terms 〈µ̂1, µ̂2 − ν̂2〉k and 〈ν̂1, µ̂2 − ν̂2〉k can be analyzed separately, and
shown to converge (after appropriate normalization) to conditionally independent Gaussian
distributions. The final distribution of the studentized xMMD2

n statistic is then obtained
by using the fact that the sum of two Gaussian distributions is also Gaussian.

With xHSICn as defined in (8), however, the terms ω̂1 and µ̂1× ν̂1 are not independent.
Hence, the techniques used for analyzing xMMD2

n do not directly apply to our case, and
we develop a different approach for analyzing the studentized version of xHSICn statistic
in the next two sections.

Remark 3 It is well-known that the MMD is an integral probability metric associated with
a unit ball in a RKHS (Gretton et al., 2012, equation (2)). In view of the relationship (3),
the square root of the HSIC is also an integral probability metric between PXY and PX×PY .
Specifically, we have the identity√

HSIC(PXY , k, `) = sup
‖f‖k×`≤1

〈f, ω − µ× ν〉k×` = 〈f?, ω − µ× ν〉k×`,

where f? := (ω − µ × ν)/‖ω − µ × ν‖k×` is a witness function achieving the supremum.
This alternative expression offers a different viewpoint on our approach: we first estimate
the witness function f? that maximizes the problem signal using Dn1 . We then apply this
estimated witness function to project the dataset D2n

n+1 and aggregate the results by averaging
them. This perspective aligns with Kim and Ramdas (2023, Section 1.2) that interprets
sample splitting as a tool for dimensionality reduction.

10
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4. Warmup: Testing Linear Dependence in One Dimension

The theoretical properties of our test, under both null and alternative, are subtle and
nontrivial. Thus, to build intuition gently for later generalizations in the paper, we first
briefly analyze our cross-HSIC test in the simplest testing: testing linear dependence of
real-valued random variables X and Y .

Formally, this section studies the following (much simpler) problem: given D2n
1 drawn

according to a joint distribution PXY over R2, suppose we want to test whether PXY =
PX ×PY or that Cov(X,Y ) is non-zero. Of course, there are many methods for this setting
and we do not recommend using ours in particular; the only reason to focus only on our
statistic is in order to get a handle of the more complex theoretical analysis that follows in
the general case.

To formally describe our results in this setting, we set the observation spaces X and Y
to R, and assume that the kernels k and ` are both linear kernels: i.e., k(x, x′) = xx′ and
`(y, y′) = yy′. In this case, the cross-HSIC statistic can be written as follows:

xHSICn =

(
1

n

n∑
i=1

XiYi −
1

n(n− 1)

∑
1≤i 6=j≤n

XiYj

)
×

(
1

n

2n∑
t=n+1

XtYt −
1

n(n− 1)

∑
n+1≤t6=u≤2n

XtYu

)
︸ ︷︷ ︸

=f2

.

To develop intuition for validity of our procedure, we remark that xHSICn is a non-
degenerate U-statistic conditional on f2. It is well-known that a non-degenerate U-statistic
is asymptotically Gaussian (Lee, 2019) under mild moment conditions, and thus one can
expect that xHSICn is also asymptotically Gaussian conditional on f2. Indeed, after stu-
dentization, we can isolate the randomness from f2 as the sign of f2, and our final statistic
with linear kernels k and ` can be approximated as

xHSICn = sign(f2)×
1√
n

n∑
i=1

(Xi − E[X])(Yi − E[Y ])√
V{(X − E[X])(Y − E[Y ])}

+ oP (1) under the null.

Notably, sign(f2) is independent of the other terms, and converges to the Rademacher
distribution. Using this fact, along with the central limit theorem, we prove that xHSICn

is asymptotically N(0, 1) under the null. Similar statistics have also been analyzed in other
works, such as Kim and Ramdas (2023) and Lundborg et al. (2022). In the next theorem,
we make this heuristic explanation rigorous and investigate the asymptotic behavior of
P(xHSICn > z1−α) under both null and alternative. Below and throughout this section, we
often omit the dependence of X and Y on PXY , and simply write PXY as P .

Theorem 4 Suppose D2n
1 = {(Xi, Yi) ∈ R2 : 1 ≤ i ≤ 2n} is drawn i.i.d. from a distribution

P . Consider xHSICn computed with linear kernels k and ` based on D2n
1 . Introduce the

terms X̃ = X − E[X], Ỹ = Y − E[Y ], and ρ = E[X̃Ỹ ]/V1/2[X̃Ỹ ]. Then, for any fixed
α ∈ (0, 1), we have the following:

(a) (Pointwise asymptotic) Suppose P is fixed, and E[X̃2Ỹ 2], E[X̃2], E[Ỹ 2] ∈ (0,∞).
Then we have

lim
n→∞

∣∣P(xHSICn > z1−α
)
− Φ(−

√
nρ)Φ(zα −

√
nρ)− Φ(

√
nρ)Φ(zα +

√
nρ)
∣∣ = 0.

11
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(b) (Uniform asymptotic) Let Pn be a family of distributions of (X,Y ), potentially chang-
ing with n, such that

lim
n→∞

sup
P∈Pn

max
{
EP [X̃4Ỹ 4], EP [X̃4] · EP [Ỹ 4]

}
nV2

P [X̃Ỹ ]
= 0. (9)

Then we have

lim
n→∞

sup
P∈Pn

∣∣PP (xHSICn > z1−α
)
− Φ(−

√
nρn)Φ(zα −

√
nρn)− Φ(

√
nρn)Φ(zα +

√
nρn)

∣∣ = 0.

As described earlier, the proof of Theorem 4 relies on the special structure of the linear
kernel in the case of real-valued observations. Nevertheless, in Section 5, we will obtain
similar results for general kernels, using significantly different proof techniques.

Part (a) of Theorem 4 implies that the cross-HSIC test is pointwise asymptotically of
level α and it is consistent in power against any fixed alternative under the finite second
moment condition. Part (b) provides a stronger uniform approximation under condition (9),
involving fourth and second moments of X̃ and Ỹ . This uniform result in part (b) directly
allows us to state the uniform type-I error and power guarantees of the cross-HSIC test. We
formally record this result in Theorem 5 below, showing that the cross-HSIC test controls
type-I error at level-α uniformly over a large class of null distributions, and it is also
consistent against local alternatives separated by a Ω(1/

√
n) detection boundary.

Corollary 5 Consider the same settings as in part (b) of Theorem 4, and recall that Pn
is the family of distributions satisfying condition (9). Then we have the following uniform
guarantees:

(a) (Uniform validity) Let P(0)
n = {PXY ∈ Pn : PXY = PX × PY }. The cross-

HSIC test controls the asymptotic type-I error at level α uniformly over P(0)
n , i.e.,

limn→∞ sup
P∈P(0)

n
EP [Ψ(D2n

1 )] = α.

(b) (Uniform consistency) Let P(1)
n be a subset of Pn such that

√
n|ρn| → ∞. The

type-II error of the cross-HSIC test converges to zero uniformly over P(1)
n , i.e.,

limn→∞ sup
P∈P(1)

n
EP [1−Ψ(D2n

1 )] = 0.

We note again that condition (9) for Pn involves the fourth and second moments of
X and Y . These moment condition can be relaxed to the finite 2 + δ moment condition
(see e.g., Appendix B.2), but with a more involved analysis. Nevertheless, we can show that
condition (9) is not too strong, establishing an example where the asymptotic normality of
xHSICn is no longer guaranteed without such conditions.

Example 1 Suppose that X1, . . . , Xn, Y1, . . . , Yn are i.i.d. random variables following a
Bernoulli distribution with parameter pn. Assume that np2n = λ > 0 and λ is not an
integer for all n. In this scenario, the limiting null distribution of xHSICn is not Gaussian
and it instead satisfies

lim
n→∞

P(xHSICn ≤ 0) = P
(
sign(V ′)× V ≤ 0

)
,

where V, V ′ are i.i.d. centered Poisson random variables with parameter λ.

12



A Permutation-Free Kernel Independence Test

We first remark that depending on the value of λ, the limiting probability in Example 1
is far from 1/2, which should be the case if xHSICn is asymptotically Gaussian. It is also
worth mentioning that n−1EP [X̃4Ỹ 4]V−2P (X̃Ỹ ) & λ−1 under the conditions of Example 1.
Thus the condition for Pn is violated. Lastly, we note that λ is assumed to be a non-integer
for technical reasons and it may be removed with more effort. The detailed derivation of
Example 1 can be found in Appendix B.3.

In the next section, we will see that we can obtain similar results with general observation
spaces, controlling the type-I error of cross-HSIC test uniformly over composite null classes
and establishing its consistency against local alternatives.

5. Asymptotic Gaussian Distribution under Null

We now generalize the results from previous section, derived for linear kernels and real-
valued observations, to hold for general kernels and observation spaces. In particular, we
first consider the case where the kernels k and `, as well as the distribution PXY , are fixed
with n in Theorem 6, and then consider the most general setting with n-varying kernels
and distributions in Theorem 7.

First, we introduce the “centered” kernels k̃ and ˜̀, defined as

k̃(x, ·) = k(x, ·)− µ, and ˜̀(y, ·) := `(y, ·)− ν.

Let Z = X × Y, and introduce the kernel g̃ : Z × Z → R, defined as

g̃(z, z′) = g̃
(
(x, y), (x′, y′)

)
= 〈k̃(x, ·), k̃(x′, ·)〉k〈˜̀(y, ·), ˜̀(y′, ·)〉` (10)

Note that g̃ is a symmetric function that is also square integrable if the kernel k×` is square
integrable, when (X,Y ) ∼ PXY,n for some n ≥ 1. Under this assumption, it admits the
following orthonormal expansion:

g̃(z, z′) =
∞∑
i=1

λi,nei,n(z)ei,n(z′), (11)

where {(λi,n, ei,n) : i ≥ 1} form the orthonormal sequences of eigenvalue-eigenfunction pairs
of the Hilbert–Schmidt operator associated with the product kernel K = k × `; that is,
e 7→

∫
Z e(z)K(z, ·)dPXY,n(z), for any e ∈ L2(PXY,n).

Our first main result of this section shows that if g̃(Z1, Z2) has a finite second moment
under the null, then xHSICn converges in distribution to N(0, 1).

Theorem 6 Suppose xHSICn is computed with fixed kernels k and `, with observations
D2n

1 drawn i.i.d. from a fixed distribution PXY . If k, ` and PXY satisfy the condition

E[g̃(Z1, Z2)
2] ∈ (0,∞) with Z1, Z2 ∼ PXY = PX × PY , then we have xHSICn

d−→ N(0, 1).

The finite second moment assumption on g̃ is commonly used in the literature for studying
the limiting distribution of HSIC statistic (e.g., Gretton et al., 2007) using the asymptotic
theory of degenerate U- or V-statistics (e.g., Serfling, 2009). In Theorem 6, we show that
under the same condition, our xHSICn attains an asymptotic normal limiting distribution.
However, this type of fixed-asymptotic analysis excludes more dynamic and arguably more
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interesting settings where k, `, PXY may change with the sample size. Therefore we now
present a more general condition in Assumption 1, which requires higher moment conditions
than the finite-second moment of g̃.

Assumption 1 Let {PXY,n : n ≥ 1} denote a sequence of probability distributions on
Z = X ×Y, with PXY,n = PX,n×PY,n, and let {Kn = kn× `n : n ≥ 1} denote a sequence of
positive definite kernels on Z. With Z1,n, Z2,n, Z3,n denoting three independent draws from
PXY,n, we assume that

lim
n→∞

E[g̃(Z1,n, Z2,n)4]n−1 + E[g̃(Z1,n, Z2,n)2g̃(Z1,n, Z3,n)2]

nE[g̃(Z1,n, Z2,n)2]2
= 0.

where we recall that g̃ was introduced in (10).

Our next result which establishes the asymptotic normality of the xHSICn statistic for
n-varying kernels and distributions.

Theorem 7 Suppose the xHSICn is computed with kernels {kn, `n : n ≥ 1}, and let P(0)
n

denote the set of distributions PXY,n = PX,n×PY,n satisfying Assumption 1, for each n ≥ 1.
Then, the xHSICn statistic computed with kernels kn and `n converges in distribution to

N(0, 1) uniformly over P(0)
n .

The proof of this statement is given in Appendix D, and it proceeds by verifying that
under Assumption 1, the conditions required for the Berry–Esseen theorem for studentized
U-statistics derived by Jing et al. (2000) are satisfied.

Remark 8 While we have presented all the results of this section under the assumption
that the two splits, Dn1 and D2n

n+1, are drawn i.i.d. from the same distribution PXY , a closer
inspection of the proof of these results indicates that the asymptotic normality of the xHSICn

statistic (and the V2n statistic, introduced later in Section 7) holds even when the two splits
are only independent, and not identically distributed. Thus, the techniques developed in this
paper are also applicable in more general scenarios; such as when Dn1 and D2n

n+1 are obtained
by separately processing independent outputs of some common source.

6. Power of the cross-HSIC Test

The results of the previous section establish the limiting standard normal distribution of
the xHSICn statistic under general conditions, which in turn, implies that the cross-HSIC
test controls type-I error at the desired level α asymptotically. In this section, we analyze
the power of our test under the alternative. In particular, we first consider the case of an
arbitrary fixed alternative, and prove the consistency of the cross-HSIC test with charac-
teristic kernels in this case. Then, we consider the case of smooth local alternatives, and
show that the cross-HSIC test with Gaussian kernels has minimax rate-optimal power. The
proof of both these results can be inferred from a more general result (Theorem 29) that
establishes sufficient conditions for the consistency of our cross-HSIC test, which we state
and prove in Appendix E.1.
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Consistency against fixed alternatives. First, we show that under some mild moment
assumptions on the kernels, our cross-HSIC test is consistent against an arbitrary fixed
alternative distribution PXY 6= PX × PY .

Theorem 9 Let PXY be a distribution such that HSIC(PXY ,K,L) > 0, where K and L de-
note the RKHS associated with characteristic kernels k and `. Then, if E[k(X,X)`(Y, Y )]+
E[k(X,X)]E[`(Y, Y )] < ∞, the cross-HSIC test is consistent; that is, limn→∞ PPXY (Ψ =
1) = 1.

The details of obtaining this result from the more general result of Theorem 29 mentioned
above are given in Appendix E.2. We now study the case of local alternatives, where the
alternative distributions are allowed to change with n.

Consistency against smooth local alternatives. In our next result, we show that
when constructed using Gaussian kernels, the cross-HSIC test is also minimax rate optimal
against local alternatives with smooth density functions that are separated in L2 sense. In
particular, we set X = Rd1 and Y = Rd2 , with d := d1+d2, and assume that the distributions
PXY , PX and PY have smooth marginals pXY , pX and pY respectively. Furthermore,
we assume that there exist constants M,MX and MY such that pX ∈ Wβ,2(MX), pY ∈
Wβ,2(MY ) and M = MX ×MY . Here, Wβ,2(M) denotes the ball with radius M in the
fractional Sobolev space of order β > 0 (e.g., Li and Yuan, 2019). We can then define

the null class of distributions, P(0)
n , and the ∆n-separated alternative class of distributions,

P(1)
n , as follows for all n ≥ 1

P(0)
n = {pXY = pX × pY : pX ∈ Wβ,2(MX), pY ∈ Wβ,2(MY )}, and

P(1)
n = {pXY : pX ∈ Wβ,2(MX), pY ∈ Wβ,2(MY ), and ‖p− pX × pY ‖L2 ≥ ∆n}.

For the independence testing problem described above, we will show that the cross-HSIC
test, when instantiated using Gaussian kernels with appropriate scale factors, is minimax
near-optimal. In particular, we define kn(x, x′) = exp

(
−cn‖x− x′‖2

)
and `n(y, y′) =

exp
(
−cn‖y − y′‖2

)
, where we have overloaded the term ‖ · ‖ to represent the Euclidean

norm on both X and Y.

Theorem 10 Suppose X = Rd1 and Y = Rd2 with d = d1 + d2, and let {∆n : n ≥
1} is a non-negative sequence with limn→∞∆nn

2β/(d+4β) = ∞. Suppose the cross-HSIC
test is instantiated with Gaussian kernels, kn(x, x′) = exp

(
−cn‖x− x′‖2

)
and `n(y, y′) =

exp
(
−cn‖y − y′‖2

)
, with cn � n4/(d+4β). Then, we have the following:

lim
n→∞

sup
PXY,n∈P

(0)
n

E[Ψ] = α, and lim
n→∞

inf
PXY,n∈P

(1)
n

E[Ψ] = 1.

The proof of this statement is given in Appendix E.3. The first part of this result im-
plies that the cross-HSIC test controls the type-I error at the specified level α ∈ (0, 1)

uniformly over the entire class of null distributions with smooth densities, P(0)
n . The second

part of the result implies that our cross-HSIC test has a detection boundary of the order
O
(
n−2β/(d+4β)

)
in terms of the L2-distance. As shown by Li and Yuan (2019), this rate

cannot be improved in the worst case, thus establishing the minimax rate-optimality of our
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test. More formally, Li and Yuan (2019) showed that if limn→∞∆nn
2β/(d+4β) < ∞, then

there exists an α ∈ (0, 1) for which there exists no independence test that is consistent
against such local alternatives (separated by ∆n).

7. The Cross Distance Covariance Test (xdCov)

A popular alternative to kernel based method for measuring the dependence between two
distributions is the distance-covariance metric introduced by Székely et al. (2007). When,
X = Rd1 and Y = Rd2 for d1, d2 ≥ 1, the distance-covariance associated with the joint
distribution PXY is

V2(PXY ) = EX,X′,Y,Y ′ [‖X −X ′‖‖Y − Y ′‖] + EX,X′ [‖X −X ′‖]EY,Y ′‖Y − Y ′‖]
− 2EX,Y [EX′ [‖X −X ′‖]EY ′ [‖Y − Y ′‖]]. (12)

In the above display, we overload the notation ‖ · ‖ to represent the Euclidean norm on
both X and Y. The distance-covariance metric has the property that it is equal to 0 if and
only if X and Y are independent; that is, PXY = PX × PY . This measure was extended
beyond Euclidean spaces to general metric spaces by Lyons (2013), and further generalized
to semi-metric spaces (i.e., distance-measures that do not satisfy the triangle inequality)
by Sejdinovic et al. (2013). In particular, if (X , ρX ) and (Y, ρY) are semi-metric spaces, we
can define the corresponding distance-covariance in a manner analogous to (12), as

V2(PXY , ρX , ρY) = EX,X′,Y,Y ′ [ρX (X,X ′)ρY(Y, Y ′)] + EX,X′ [ρX (X,X ′)]EY,Y ′ [ρY(Y, Y ′)]

− 2EX,Y [EX′ [ρX (X,X ′)]EY ′ [ρY(Y, Y ′)]].

Sejdinovic et al. (2013) showed an equivalence between the above distance-covariance metric
and the HSIC computed with with the so-called distance kernels that we recall next.

Fact 11 Define the distance kernels kX and `Y as

kX (x, x′) :=
1

2

(
ρX (x, x0) + ρX (x′, x0)− 2ρX (x, x′)

)
,

and `Y(y, y′) :=
1

2

(
ρY(y, y0) + ρY(y′, y0)− 2ρY(y, y′)

)
,

where x0 and y0 are arbitrary elements of X and Y respectively. Then, we have
V2(PXY , ρX , ρY) = HSIC(PXY , kX , `Y).

Using this equivalence, we can define a cross-distance-covariance statistic similar to the
cross-HSIC statistic of Section 3 by using sample-splitting and studentization.

Definition 12 Given observations D2n
1 drawn from a distribution PXY , we can define the

cross-distance-covariance statistic, denoted by V2n, as follows:

V2n =

〈
1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

hij ,
1

n(n− 1)

2n∑
t=n+1

2n∑
u=n+1
u6=t

htu

〉
where

2hij = aii + ajj − aij − aji, and aij = kX (Xi, ·)`Y(Yj , ·).

We can then define a studentized version of cross-distance-covariance statistic, denoted by

V2n, by normalizing V2n with sn/
√
n, with sn defined similar to (6).
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Having defined the studentized cross-dCov statistic (V2n), we can now characterize its lim-
iting null distribution by exploiting its equivalence to the studentized cross-HSIC statistic,
and using the results derived in Section 5.

Corollary 13 For a fixed distribution PXY = PX × PY , if there exist a pair of points

(x0, y0) ∈ X × Y such that E[ρX (X,x0)
2]E[ρY(Y, y0)

2] <∞, then V2n
d−→ N(0, 1).

More generally, suppose the sequence of distributions {PXY,n : n ≥ 1} and the distance

kernels {(kX ,n, `Y,n) : n ≥ 1} and satisfy Assumption 1. Then, the statistic V2n converges
in distribution to N(0, 1) uniformly over the composite class of null distributions satisfy-
ing Assumption 1.

The above asymptotic normality of the V2n statistic under the null suggests the definition of
an independence test (Ψρ), based on the cross-distance-covariance statistic that rejects the

null when V2n exceeds z1−α, the 1 − α quantile of the standard normal distribution. That
is, Ψρ = 1V2

n>z1−α
. Using the analogous results for the xHSICn statistic, we can obtain

sufficient conditions for Ψρ to be consistent.

Corollary 14 For a fixed alternative distribution, PXY 6= PX ×PY , if there exist a pair of
points (x0, y0) ∈ X × Y, such that E[ρX (X,x0)

2ρY(Y, y0)
2] + E[ρX (X,x0)

2]E[ρY(Y, y0)
2] <

∞, then the test Ψρ is consistent.

More generally, for a sequence of local alternatives {PXY,n : n ≥ 1}, if the distance
kernels kX and `Y satisfy the conditions in Theorem 29 in Appendix E.1, the test Ψρ is
consistent.

Remark 15 Székely et al. (2007) proposed a permutation-free independence test based on
the dCov statistic, which relied on the fact that asymptotically, a suitably normalized variant
of dCov is stochastically dominated by a quadratic form of a centered standard normal ran-
dom variable (Székely et al., 2007, Theorem 6). However, as noted by Székely et al. (2007),
and empirically verified by Sejdinovic et al. (2013), the resulting independence test can be
extremely conservative in practice. We also illustrate this through an example in Figure 1.
Furthermore, the validity of this approach when the distributions and distance-measures
can change with the sample-size has not been established. Our proposed cross-dCov test
addresses both these issues.

8. Experiments

In this section, we experimentally validate the theoretical results presented in the previous
sections. The code for reproducing these results is available in the repository: https:

//github.com/sshekhar17/PermFreeHSIC.

8.1 Null Distribution

Sufficiency of finite second moment. In the first experiment, we verify the claim
of Theorem 6 that states that finite second moment of the kernel is sufficient for the asymp-
totic normality of the xHSICn statistic under the null. In particular, we use linear kernels

17

https://github.com/sshekhar17/PermFreeHSIC
https://github.com/sshekhar17/PermFreeHSIC


Shekhar, Kim, and Ramdas

0.8 0.9 1 1.1 1.2
0

5

10

d/n = 1/50

0.98 0.99 1 1.01 1.02
0

100

200

d/n = 1

Figure 1: Plot of the empirical null distribution (over 5000 trials) of the normalized dcov
statistic from Székely et al. (2007, Theorem 6) in the low (d/n = 1/50) and
high (d/n = 1) dimensional settings. The red vertical line shows the true (empir-
ical) (1−α)-quantile of the null distribution for α = 0.05. In both instances, this

value is significantly smaller than
(
Φ−1(1− α/2)

)2 ≈ 3.84 — the value suggested
by Székely et al. (2007), illustrating the highly conservative nature of their test.

k and `, and consider the case where PX and PY are distribution in Rd; with each compo-
nent drawn independently from a t-distribution with dof degrees of freedom. Recall that
such distributions have finite moments of order up to dof − 1. The null distribution of
the xHSICn statistic on such distributions with dof ∈ {1, 2, 3} are shown in Figure 2. For
dof = 1 and dof = 3, the null distribution appears to be clearly non-Gaussian and Gaussian
respectively; with dof = 2 representing an intermediate state.

Effect of kernels and dimension regimes. In the next experiment, we verify that the
xHSICn statistic has a limiting null distribution for different choices of kernels (Gaussian
vs Rational Quadratic) and in different dimension regimes (d/n = 3/4 vs d/n = 1/20).
The observations are drawn from independent multivariate Gaussian distributions with
unit covariance matrix. The results, plotted in Figure 3, show that as expected, the null
distribution of xHSICn approaches the standard normal distribution, even for relatively
small sample sizes (all the plots have n = 200).

Control of type-I error. The previous experiment shows that visually, the null distri-
bution of xHSICn statistic approaches the standard normal distribution even at relatively
small n values. We now show in Figure 4 that this also translates into tight control over
the type-I error at the desired level α (= 0.05 in the plots) of the resulting cross-HSIC test
based on the xHSICn statistic.

8.2 Power

We now empirically compare the power of our cross-HSIC test with the original HSIC permu-
tation test for various kernels and different dimension regimes. We limit our baselines to the
HSIC permutation test, since it matches our stated objective of developing a kernel-based in-
dependence test that achieves a more favorable computational-vs-statistical efficiency trade-
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Figure 2: The figures show the null distribution of xHSICn with n = 500, d ∈ {10, 150}
using 500 trials. Both PX and PY consist of d independent components drawn
from t-distributions with degrees of freedom dof ∈ {1, 2, 3}; the data has finite
variance only in the third plot. Thus, the plots above indicate that the existence
of finite second moment is sufficient for the asymptotic normality of the xHSICn

statistic, and appear somewhat necessary as well (the second plot may be close
to Gaussian, but the first plot is far from it).
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Figure 3: Plots of the null distribution of the xHSICn statistic for two commonly used
kernels, Gaussian and Rational-Quadratic (RQ), under two dimension regimes
each, with d/n ∈ {3/4, 1/20}, with n = 200.

off than the HSIC permutation test. In previous sections, we proved that our cross-HSIC is
the first test that is permutation-free (hence computationally efficient), equally valid in dif-
ferent dimension regimes, while also retaining the minimax rate-optimality against smooth
alternatives. We now benchmark the empirical performance of our test against the HSIC
permutation test, while omitting comparisons to other methods. This is because, the power
achieved by our test in all experiments is within a constant factor of that of the HSIC per-
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Figure 4: The figures show the variation of the type-I error of the cross-HSIC test under
two different dimension regimes: d/n ∈ {1/2, 1/20}, and for two commonly used
kernels: Gaussian (the first two plots) and Rational Quadratic (RQ). In all cases,
we see that the type-I error is controlled at level α = 0.05 for n ≥ 100.

mutation test. Hence, all the power comparisons of existing tests with HSIC permutation
tests are immediately also applicable to our test, with this correction.

In Figure 5, we plot the power curves of our cross-HSIC test and the HSIC permutation
test for two kernels (Gaussian and Rational-Quadratic), for different levels of dependence
(measured by ε). For this experiment, we set PX to a multivariate Gaussian distribution in
d dimensions with identity covariance matrix; and then generated Y as

Y = ε×Xb + (1− ε)× (X ′)b, for b > 0. (13)

In the above display, the exponentiation is done component-wise and X ′ is an independent
copy of X. As shown in Figure 5, our cross-HSIC test is slightly less powerful than the
HSIC permutation test across different scenarios. This power loss can be attributed to a less
efficient use of the data due to sample splitting. Nevertheless, we believe that this marginal
decrease in power is a reasonable trade-off for the computational advantages gained by
avoiding the permutation procedure.

Finally, in Figure 6, we show the improved power-vs-computation trade-off achieved by
our cross-HSIC test, in comparison to the HSIC permutation test. In particular, note that
to reach the same power, the running time required by our cross-HSIC test is approximately
two orders of magnitude lower than the permutation test.

9. Conclusion and Future Work

In this paper, we proposed a variant of the HSIC statistic, called the cross-HSIC statistic,
that is constructed using the ideas of sample-splitting and studentization. Under very mild
conditions, we showed that this statistic has a standard normal limiting null distribution.
Based on this result, we proposed a simple permutation-free independence test, that rejects
the null when the studentized cross-HSIC statistic exceeds z1−α, the (1−α)-quantile of the
standard normal distribution. We present a thorough theoretical analysis of the performance
of this test, and empirically validate the theoretical predictions on some experiments with
synthetic data.
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Figure 5: The figures in the top row show the power curves for HSIC permutation test, and
cross-HSIC test with Gaussian kernels, while the bottom row corresponds to the
same tests with Rational-Quadratic (RQ) kernel. In all figures, we have d = 10
and b = 2, while ε is set to 0.3, 0.4, and 0.5 in the three columns. Recall that ε
and b correspond to the expression in (13).

Our work opens up several interesting directions for future work, as we discuss below:

• Robust cross-HSIC test. The cross-HSIC statistic that we proposed can be
thought of as the studentized sample covariance of projected feature maps onto one-
dimensional spaces. The association between these projected feature maps can be
measured through other methods as well such as Kendall’s rank coefficient and Spear-
man’s rank coefficient. Given that these rank-based approaches are more robust to
outliers than the sample covariance, it would be interesting to develop robust cross-
HSIC and investigate its theoretical guarantees and empirical performance.

• Minimaxity beyond Gaussian kernels. Another interesting future direction
would involve extending the minimax result in Theorem 10 to non-Gaussian kernels,
particularly the characteristic translation invariant kernels discussed in Schrab et al.
(2023). We believe such a result is true, but would require significantly more technical
effort to prove using rather recently developed tools, so we reserve it for future work.
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Figure 6: The figure shows the power versus running time curves for our cross-HSIC statistic
and the HSIC permutation-test (with 150 permutations) on two different prob-
lems (with b = 2 and ε ∈ {0.30, 0.35}. The size of the marker in the figures is
proportional to the sample-size used for estimating the power. As indicated by
the figures, if sample-size is not an issue, the cross-HSIC test can achieve the same
power at a significantly lower running time (or computational cost) as compared
to the permutation-test.

• Alternatives to HSIC. While our focus in this paper was on designing kernel-
and distance-based dimension-agnostic independence tests, the same design princi-
ples (with appropriate modifications) might also be useful in other scenarios. For
example, when dealing with complex data-types such as images or text, it would be
interesting to explore designing independence tests based on features learned via ML
models, following Kübler et al. (2022). Another interesting direction is to construct
a linear-time dimension-agnostic independence test using a “cross-FSIC” statistic, by
combining our ideas with those of Jitkrittum et al. (2017). Such a test would be
particularly useful when working with large datasets or with limited computational
resources. Although both these extensions are certainly feasible, they lie outside the
scope of this work, and we leave them as interesting questions for future work.

• Conditional independence testing. Zhang et al. (2011) propose a kernel-based
test for conditional independence (CI) building on a plug-in HSIC estimator. This
method is typically calibrated by a Monte Carlo approach as their limiting distribution
is intractable under the null. We believe that the use of the cross HSIC can alleviate
their calibration issue, yielding a more reliable and computationally efficient CI test.
Extending our framework to CI testing, and providing a rigorous justification would
be an interesting direction for future work.

• Testing independence of random processes. In many practical applications, the
observations are drawn from some time series or stochastic process; thus violating
the i.i.d. assumption required in our analysis. To enable to applicability of our ideas
in such applications, we need to establish the limiting distribution of cross-HSIC in
an appropriate non-i.i.d. setting, such as under mixing conditions, as considered by
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Chwialkowski and Gretton (2014). Some of the techniques discussed by Peña et al.
(2009, Chapter 8 and 15) might be a good starting point for deriving such a result.
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Appendix A. Quadratic Computational Complexity of
xHSICn (Theorem 2)

We begin by introducing the necessary notation for proving this result. First let K and L
denote 2n× 2n matrices, defined as

[K]ij =

{
0 if 1 ≤ i, j ≤ n, or n+ 1 ≤ i, j ≤ 2n

k(Xi, Xj) otherwise.

and

[L]ij =

{
0 if 1 ≤ i, j ≤ n, or n+ 1 ≤ i, j ≤ 2n

`(Xi, Xj) otherwise.

Also introduce the following two vectors in R2n.

1u = (1, . . . , 1︸ ︷︷ ︸
n terms

, 0, . . . , 0) and 1l = (0, . . . , 0︸ ︷︷ ︸
n terms

, 1, . . . , 1).

Finally, note that we will use ◦ to denote the elementwise product of two matrices.

Proof of Theorem 2. To show the quadratic complexity of the cross-HSIC statistic, we
it suffices to show that T2, T3, and T4 can each be computed in quadratic time.

Lemma 16 T2 and T3 satisfy the following:

T2 =
1

n2(n− 1)

(
1lKL1l −

1

2
tr (KL)

)
, and T3 =

1

n2(n− 1)

(
1uKL1u −

1

2
tr (KL)

)
,

where tr(·) denote the trace of a matrix.

Proof We show the details of the calculation for the term T2 (the result for T3 follows the
exact same steps). In particular, we have the following:

n2(n− 1)T2 =
n∑
i=1

∑
n+1≤j1 6=j2≤2n

k(Xi, Xj1)`(Yi, Yj2)

=

n∑
i=1

2n∑
j1=n+1

2n∑
j2=n+1

k(Xi, Xj1)`(Yi, Yj2)−
n∑
i=1

2n∑
j=n+1

k(Xi, Xj)`(Yi, Yj)

= 1Tl KL1l −
1

2
tr(KL).

Both the matrix multiplications involved in the last expression can be done in O(n2) time,
implying the quadratic complexity of T2.

Lemma 17 The term T4 satisfies

T4 =
1

n2(n− 1)2

[
(1Tl K1u)(1Tl L1u)− 1Tl KL1l − 1TuKL1u +

1

2
tr(KL)

]
.
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Proof We again proceed by expanding the summation defining T4.

n2(n− 1)2T4 =
∑

1≤i1 6=i2≤n

∑
n+1≤j1 6=j2≤2n

k(Xi1 , Xj1)`(Yi2 , Yj2)

=
n∑

i1=1

n∑
i2=1

2n∑
j1=n+1

2n∑
j2=n+1

k(Xi1 , Xj1)`(Yi2 , Yj2)−
n∑
i=1

2n∑
j1=n+1

2n∑
j2=n+1

k(Xi, Xj1)`(Yi, Yj2)

−
n∑

i1=1

n∑
i2=1

2n∑
j=n+1

k(Xi1 , Xj)`(Yi2 , Yj) +
n∑
i=1

2n∑
j=n+1

k(Xi, Xj)`(Yi, Yj).

:= T4,1 − T4,2 − T4,3 + T4,4.

The first term, T4,1, can be factored into a product of two terms, each of which can be
computed in quadratic time, as follows:

T4,1 =
∑
i1,j1

k(Xi1 , Xj1)
∑
i2,j2

`(Yi2 , Yj2) =
(
1Tl K1u

) (
1Tl L1u

)
.

The next three terms were evaluated in Theorem 16, as

T4,2 = 1Tl KL1l, T4,3 = 1TuKL1u, and T4,4 =
1

2
tr (KL) .

Together, the above expressions imply the required result.

Thus the previous two lemmas imply that the statistic xHSICn can be computed in quadratic
time. To establish the quadratic computational complexity of xHSICn, it remains to show
that s2n can also be computed in quadratic time. We now give an outline of this result,
omitting some long but standard calculations.

Lemma 18 The variance term s2n can be computed in quadratic time.

Proof outline of Theorem 18. In the first step, we expand the expression of s2n to get the
following:

s2n =
4(n− 1)

(n− 2)2

n∑
i=1

 1

n− 1

j 6=i,n∑
j=1

〈hij , f2〉k×` − xHSICn

2

=
4(n− 1)

(n− 2)2

n∑
i=1

 1

n− 1

j 6=i,n∑
j=1

〈hij , f2〉k×`

2

+ xHSIC2
n − 2xHSICn

 1

n− 1

j 6=i,n∑
j=1

〈hij , f2〉k×`


=

4(n− 1)

(n− 2)2(n− 1)2

n∑
i=1

 1

n− 1

j 6=i,n∑
j=1

〈hij , f2〉k×`

2

− 4n(n− 1)

(n− 2)2
xHSIC2

n.

We have already proved that xHSICn can be computed with quadratic cost. Excluding the
leading factors, the first term can written as

n∑
i=1

 1

n− 1

j 6=i,n∑
j=1

〈hij , f2〉k×`

2

=

n∑
i=1

w2
i , where wi =

1

n− 1

j 6=i,n∑
j=1

〈hij , f2〉k×` .

27



Shekhar, Kim, and Ramdas

Thus to complete the proof, it suffices to show that each w = (w1, . . . , wn)> can be com-
puted in quadratic time. By expanding the terms involved in the definition of w, it can be
verified that (with In denoting the n×n identity matrix, and 1 denoting the all ones vector
of appropriate dimension):

w = Inw̃, where

2(n− 1)w̃ = n(K ◦ L)1 +
1

2
tr(KL)1− (KL+ LK)1− (K1l) ◦ (L1l)−

1

2n
1Tl KL1l1

+
1

2n

(
(1TL1)K1l + (1TK1)L1l

)
.

Note that every term involved in the definition of w̃, and hence in the definition of w, can
be computed in quadratic time. This in turn, implies that the variance term s2n can also be
computed in quadratic time as required.

Appendix B. Testing Linear Dependence (Section 4)

In this appendix, we collect proofs of the results on linear kernels.

B.1 Proof of Theorem 4

Both results in Theorem 4 rely on some simplified representation of the xHSICn statistic
for linear kernels in one dimension. We present the details of the common steps here,
before moving on to the specifics of the proof of part (a) in Appendix B.1.1 and of part (b)
in Appendix B.1.2.

Since xHSICn is location-invariant, we may assume E[X] = E[Y ] = 0 without loss of
generality, and we assume this throughout the proof. We first note that xHSICn can be
written as:

xHSICn = f2 ·
(

1

n

n∑
i=1

XiYi −
1

n(n− 1)

∑
1≤i 6=j≤n

XiYj

)

= f2 ·
(

1

n

n∑
i=1

XiYi −
1

n(n− 1)

{( n∑
i=1

XiYi

)2

−
n∑
i=1

X2
i Y

2
i

})
. (14)

On the other hand, the squared denominator of the studentized statistic is

s2n = f22 · (In − IIn),

where

In =
1

(n− 1)(n− 2)2

n∑
i=1

n,j 6=i∑
j=1

(Xi −Xj)(Yi − Yj)

2

and (15)

IIn =
4n(n− 1)

(n− 2)2

(
1

n

n∑
i=1

XiYi −
1

n(n− 1)

∑
1≤i 6=j≤n

XiYj

)2

. (16)
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More specifically, recall from (7) that s2n can be expressed as

s2n =
4

(n− 1)(n− 2)2

n∑
i=1

n,j 6=i∑
j=1

〈h(Zi, Zj), f2〉

2

− 4n(n− 1)

(n− 2)2
xHSIC2

n.

Since 〈h(Zi, Zj), f2〉 = 1
2(Xi −Xj)(Yi − Yj) · f2 for the linear kernel, we see that

4

(n− 1)(n− 2)2

n∑
i=1

n,j 6=i∑
j=1

〈h(Zi, Zj), f2〉

2

= f22 · In.

Similarly, using expression (14), we see that

4n(n− 1)

(n− 2)2
xHSIC2

n = f22 · IIn.

Combining the above two expressions yields s2n = f22 · (In − IIn), and consequently we have

xHSICn =

√
nxHSICn

sn
= sign(f2)×

√
n

(
1
n

∑n
i=1XiYi − 1

n(n−1)
∑

1≤i 6=j≤nXiYj

)
√

In − IIn
. (17)

B.1.1 Proof of part (a)

Having presented a simplified representation of the xHSICn with linear kernels, let us begin
proving the pointwise asymptotic result in part (a) of Theorem 4. Under the finite second
moment condition in the theorem statement, notice that

E
[(

1

n(n− 1)

∑
1≤i 6=j≤n

XiYj

)2]
.

1

n2(n− 1)2

∑
1≤i 6=j≤n

{
E[X2

i Y
2
i ] + E[XiYi]E[XjYj ]

}
.

E[X2Y 2]

n2
→ 0,

where the last inequality uses Jensen’s inequality. Thus an application of Markov’s inequal-
ity verifies that 1

n(n−1)
∑

1≤i 6=j≤nXiYj = OP (n−1) = oP (1). We also know by the weak law

of large numbers that 1
n

∑n
i=1XiYi − E[XY ] = oP (1) and as a result, we have

IIn =
4n(n− 1)

(n− 2)2

(
E[XY ] + oP (1)

)2
= 4{E[XY ]}2 + oP (1).

To control In, note that

(n− 1)(n− 2)2In

=
n∑
i=1

n,j 6=i∑
j=1

(Xi −Xj)(Yi − Yj)

2

=
∑

1≤i 6=j≤n
(Xi −Xj)

2(Yi − Yj)2 +
∑

1≤i,j,q≤n
i, j, q distinct

(Xi −Xj)(Yi − Yj)(Xi −Xq)(Yi − Yq).
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We then apply the law of large numbers for U-statistics (Hoeffding, 1961) for each term
above, and observe

An :=
1

(n− 1)(n− 2)2

∑
1≤i 6=j≤n

(Xi −Xj)
2(Yi − Yj)2

p−→ 0 and (18)

Bn :=
1

(n− 1)(n− 2)2

∑
1≤i,j,q≤n
i, j, q distinct

(Xi −Xj)(Yi − Yj)(Xi −Xq)(Yi − Yq)
p−→ V[XY ] + 4{E[XY ]}2,

(19)

which hold under the finite second moment assumption. This further implies that In−IIn =
V[XY ] + oP (1).

As verified before, it holds that 1
n(n−1)

∑
1≤i 6=j≤nXiYj = OP (n−1) and thus Slutsky’s

theorem together with the central limit theorem gives

√
n
(
1
n

∑n
i=1{XiYi − E[XY ]} − 1

n(n−1)
∑

1≤i 6=j≤nXiYj
)√

V[XY ]

d−→ N(0, 1).

Moreover since In − IIn = V[XY ] + oP (1), the continuous mapping theorem along with
Slutsky’s theorem establishes

√
n
(
1
n

∑n
i=1{XiYi − E[XY ]} − 1

n(n−1)
∑

1≤i 6=j≤nXiYj
)

√
In − IIn

d−→ N(0, 1).

By symmetry with f1 and recalling ρ = E[XY ]/V1/2[XY ], it can be seen that f2 satisfies

P
(
sign(f2) > 0

)
= P

( 1√
n

∑2n
i=n+1{XiYi − E[XY ]} − 1√

n(n−1)
∑

n+1≤i 6=j≤2nXiYj√
V[XY ]

> −
√
nρ

)

= Φ
(√
nρ
)

+ o(1).

Similarly, observe that

P
(
sign(f2) < 0

)
= Φ

(
−
√
nρ
)

+ o(1) and P
(
sign(f2) = 0

)
= o(1).

Combining all the pieces together,

P(xHSICn > z1−α) = P
(
sign(f2) > 0

)
P

( 1√
n

∑n
i=1{XiYi − E[XY ]}√

V[XY ]
> z1−α −

√
nρ

)

+ P
(
sign(f2) ≤ 0

)
P

(
−

1√
n

∑n
i=1{XiYi − E[XY ]}√

V[XY ]
> z1−α +

√
nρ

)
+ o(1)

= Φ(−
√
nρ)Φ(zα −

√
nρ) + Φ(

√
nρ)Φ(zα +

√
nρ) + o(1).

This proves the first part of Theorem 4.
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B.1.2 Proof of part (b)

In this subsection, we make the asymptotic guarantee hold uniformly over the family of
distributions satisfying condition (9). Let rn be a sequence of positive numbers. Throughout
this subsection, we say that a random sequence Xn = oP(rn) for a family of distributions
P if limn→∞ supP∈P PP (r−1n |Xn| > ε) = 0 for all ε > 0.

We first collect several lemmas that will be used in the main body of the proof. The
proofs of these results can be found in Appendix B.4.

Lemma 19 For Pn satisfying condition (9), we have

1

n(n− 1)

∑
1≤i 6=j≤n

XiYj√
VP [XY ]

= oPn(n−3/2).

Lemma 20 For Pn satisfying condition (9) and any fixed ε ∈ (0, 1/2], we have

1

n

n∑
i=1

XiYi − EP [XY ]√
VP [XY ]

= oPn(n−1/2+ε).

Lemma 21 For Pn satisfying condition (9), we have

1

(n− 1)(n− 2)2

∑
1≤i 6=j≤n

(Xi −Xj)
2(Yi − Yj)2

VP [XY ]
= oPn(1).

Lemma 22 For Pn satisfying condition (9), we have

1

(n− 1)(n− 2)2

∑
1≤i,j,q≤n

i, j, q distinct

(Xi −Xj)(Yi − Yj)(Xi −Xq)(Yi − Yq)
VP [XY ]

=1 + 4

{
EP [XY ]√
VP [XY ]

}2

+ oPn(1).

Lemma 23 Let Vn be a random sequence defined as

Vn =
1√
n

n∑
i=1

{
XiYi − EP [XY ]√

VP [XY ]

}
.

For Pn satisfying condition (9), we have the uniform central limit theorem as

lim
n→∞

sup
P∈Pn

sup
t∈R
|PP (Vn ≤ t)− Φ(t)| = 0.

The following lemma corresponds to Lemma 20 of Shah and Peters (2020) with a slight
modification for our purpose.

31



Shekhar, Kim, and Ramdas

Lemma 24 Let P be a family of distributions determining the laws of random sequences
Vn, Wn and Rn. Suppose that

lim
n→∞

sup
P∈P

sup
t∈R
|PP (Vn ≤ t)− Φ(t)| = 0.

Then we have the following.

(a) If Rn = oP(1), we have

lim
n→∞

sup
P∈P

sup
t∈R
|PP (Vn +Rn ≤ t)− Φ(t)| = 0.

(b) If Wn = 1 + oP(1), we have

lim
n→∞

sup
P∈P

sup
t∈R
|PP (Vn/Wn ≤ t)− Φ(t)| = 0.

(c) Fix t ∈ R. If Wn = 1 + oP(1), we have

lim
n→∞

sup
P∈P

sup
a∈R
|PP
(
(Vn − a)/Wn ≤ t

)
− Φ(t+ a)| = 0.

Main body of the proof of part (b). Moving to the main proof of part (b), Theorem 19
and Theorem 20 imply that by letting ε = 1/8 ∈ (0, 1/2),

IIn√
VP [XY ]

= 4{1 + o(1)} ·
{

EP [XY ]√
VP [XY ]

+ oPn(n−1/2+ε)

}2

= 4

{
EP [XY ]√
VP [XY ]

}2

+ oPn(1).

This follows since

sup
P∈Pn

n−3/8
∣∣∣∣ EP [XY ]√

VP [XY ]

∣∣∣∣ ≤ sup
P∈Pn

n1/4

n3/8

{
EP [X4Y 4]

nV2
P [XY ]

}1/4

= o(1),

under condition (9), and consequently

EP [XY ]√
VP [XY ]

· oPn(n−1/2+1/8) = oPn(1).

In addition, by Theorem 21 and Theorem 22,

In√
VP [XY ]

= 1 + 4

{
EP [XY ]√
VP [XY ]

}2

+ oPn(1),

and combining the pieces yields

In − IIn
VP [XY ]

= 1 + oPn(1).
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Moreover the uniform continuous mapping theorem (Lundborg et al., 2022, Lemma 15)
shows that √

In − IIn
VP [XY ]

= 1 + oPn(1). (20)

Now let us write

Vn :=
1√
n

n∑
i=1

{
XiYi − EP [XY ]√

VP [XY ]

}
, Rn := − 1√

n(n− 1)

∑
1≤i 6=j≤n

XiYj√
VP [XY ]

,

an :=
√
nρn =

√
nEP [XY ]√
VP [XY ]

and Wn :=

√
In − IIn
VP [XY ]

,

and recall that Wn = 1 + oPn(1) as in (20) and Rn = oPn(1) by Theorem 19. Then
Theorem 24 combined with Theorem 23 and Theorem 24 proves that

lim
n→∞

sup
P∈Pn

∣∣PP ((Vn +Rn + an)/Wn > z1−α
)
− Φ(zα + an)

∣∣ = 0 and (21)

lim
n→∞

sup
P∈Pn

∣∣PP ((Vn +Rn + an)/Wn < −z1−α
)
− Φ(zα − an)

∣∣ = 0.

We also note by Theorem 23 that

lim
n→∞

sup
P∈Pn

∣∣PP (f2 > 0
)
− Φ(an)

∣∣ = 0, lim
n→∞

sup
P∈Pn

∣∣PP (f2 < 0
)
− Φ(−an)

∣∣ = 0 (22)

and lim
n→∞

sup
P∈Pn

PP
(
f2 = 0

)
= 0.

Finally, by an alternative expression of xHSICn given in (17), that is

xHSICn = sign(f2)×
Vn +Rn +

√
nρn

Wn
,

and by using the triangle inequality, we have

lim
n→∞

sup
P∈Pn

∣∣PP (xHSICn > z1−α
)
− Φ(−

√
nρn)Φ(zα −

√
nρn)− Φ(

√
nρn)Φ(zα +

√
nρn)

∣∣
≤ lim

n→∞
sup
P∈Pn

∣∣PP (f2 > 0)PP
(
(Vn +Rn +

√
nρn)/Wn > z1−α

)
− Φ(

√
nρn)Φ(zα +

√
nρn)

∣∣
+ lim
n→∞

sup
P∈Pn

∣∣PP (f2 < 0)PP
(
(Vn +Rn +

√
nρn)/Wn < −z1−α

)
− Φ(−

√
nρn)Φ(zα −

√
nρn)

∣∣
+ lim
n→∞

sup
P∈Pn

PP
(
f2 = 0

)
.

The upper bound can be shown to be zero by the preliminary approximations (21) and (22).
Therefore the desired result follows and we complete the proof of Theorem 4.
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B.2 Uniform asymptotic normality with finite 2 + δ moments

For a fixed δ ∈ (0, 2], consider a family of distributions Pn,δ such that

lim
n→∞

sup
P∈Pn,δ

EP
[
|X − EP [X]|2+δ

]
nδ/4VP [X]1+δ/2

= 0 and lim
n→∞

sup
P∈Pn,δ

EP
[
|Y − EP [Y ]|2+δ

]
nδ/4VP [Y ]1+δ/2

= 0.

In this subsection, we show that xHSICn is asymptotically N(0, 1) uniformly over the class

P(0)
n,δ given as

P(0)
n,δ =

{
PXY ∈ Pn,δ : PXY = PX × PY

}
.

In particular, we will show that

lim
n→∞

sup
P∈P(0)

n,δ

sup
t∈R

∣∣PP (xHSICn ≤ t)− Φ(t)
∣∣ = 0. (23)

Notice that any P ∈ P(0)
n,δ satisfies

lim
n→∞

sup
P∈P(0)

n,δ

EP
[
|X − EP (X)|2+δ · |Y − EP (Y )|2+δ

]
n
δ
2

{
VP
[(
X − EP (X)

)(
Y − EP (Y )

)]}2+δ = 0. (24)

Since xHSICn is both location-invariant and scale-invariant, we may assume that EP [X] =
EP [Y ] = 0 and VP [X] = VP [Y ] = 1 without loss generality (note that we have VP [XY ] =
VP [X]VP [Y ] = 1 under the null when X and Y are centered). We therefore assume that
X and Y are standardized throughout this proof.

For a triangular array of random variables with a distribution P ∈ P(0)
n,δ , the uniform

Lyapunov central limit theorem verifies that

lim
n→∞

sup
P∈P(0)

n,δ

sup
t∈R

∣∣∣∣PP( 1√
n

n∑
i=1

XiYi ≤ t
)
− Φ(t)

∣∣∣∣ = 0,

which can be shown similarly as Theorem 23. We also note that
limn→∞ sup

P∈P(0)
n,δ

EP [|X2Y 2|1+δ/2]n−δ/2 = 0 by condition (24). Thus Lemma 17 of

Lundborg et al. (2022) yields

1

n

n∑
i=1

X2
i Y

2
i − 1 = oP(0)

n,δ

(1),

which implies that 1
n3/2

∑n
i=1X

2
i Y

2
i = oP(0)

n,δ

(1). Therefore an application of Theorem 24

yields that

√
n

(
1

n

n∑
i=1

XiYi −
1

n(n− 1)

∑
1≤i 6=j≤n

XiYj

)
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is asymptotically N(0, 1) uniformly over P(0)
n,δ . Following the same logic, we also have

√
nf2

is asymptotically N(0, 1) uniformly over P(0)
n,δ .

Now let us turn to the terms In and IIn where In and IIn are recalled in (15) and (16),
respectively. Note that the second term satisfies

IIn = O(1) · f21 .

We already showed that
√
nf1 is asymptotically N(0, 1) over P(0)

n,δ and thus IIn = oP(0)
n,δ

(1).

For the first term, note that

In = {1 + o(1)} · 1

n3

n∑
i=1

n∑
j=1

n∑
k=1

(Xi −Xj)(Yi − Yj)(Xi −Xk)(Yi − Yk)

= {1 + o(1)} ·

{
1

n

n∑
i=1

X2
i Y

2
i +O(1)

(
1

n

n∑
i=1

X2
i Yi

)(
1

n

n∑
j=1

Yj

)

+O(1)

(
1

n

n∑
i=1

XiY
2
i

)(
1

n

n∑
j=1

Xj

)
+O(1)

(
1

n

n∑
i=1

X2
i

)(
1

n

n∑
j=1

Yj

)2

+O(1)

(
1

n

n∑
i=1

Y 2
i

)(
1

n

n∑
j=1

Xj

)2
}
.

Under the condition on P(0)
n,δ , it can be checked that

sup
P∈P(0)

n,δ

EP [|X|1+δ/2]n−δ/2 = o(1), sup
P∈P(0)

n,δ

EP [|Y |1+δ/2]n−δ/2 = o(1), (25)

sup
P∈P(0)

n,δ

EP [|X2Y |1+δ/2]n−δ/2 = o(1) and sup
P∈P(0)

n,δ

EP [|XY 2|1+δ/2]n−δ/2 = o(1). (26)

For instance, by Cauchy–Schwarz inequality, we see that

sup
P∈P(0)

n,δ

EP [|X2Y |1+δ/2]n−δ/2 ≤ sup
P∈P(0)

n,δ

√
EP [|X2Y 2|1+δ/2]n−δ/2

√
EP [|X2|1+δ/2]n−δ/2 → 0.

(27)

Thus Lemma 17 of Lundborg et al. (2022) yields

1

n

n∑
i=1

X2
i Yi = oP(0)

n,δ

(1),
1

n

n∑
i=1

XiY
2
i = oP(0)

n,δ

(1), (28)

1

n

n∑
i=1

Xi = oP(0)
n,δ

(1) and
1

n

n∑
i=1

Yi = oP(0)
n,δ

(1). (29)

These approximations verify that In = 1 + oP(0)
n,δ

(1), and thus In − IIn = 1 + oP(0)
n,δ

(1).

Having all the ingredients, we may follow the proof of part (b) of Theorem 4 and show
the uniform normality result (23) as desired.
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B.3 Details of Example 1

Based on our previous discussion in (17), xHSICn with linear kernels can be expressed as

xHSICn = sign(f2)

√
nf1√

In − IIn
,

where In and IIn can be found in (15) and (16), respectively. Moreover, since In − IIn ≥ 0,
we have

P(xHSICn ≤ 0) = P
(
sign(f2) · nf1 ≤ 0

)
.

To approximate this probability to the target probability in Example 1, note that

nf1 =

n∑
i=1

(Xi − pn)(Yi − pn)− 1

n− 1

∑
1≤i 6=j≤n

(Xi − pn)(Yj − pn)

by the location-invariance property. We also note that since

V
(

1

n− 1

∑
1≤i 6=j≤n

(Xi − pn)(Yj − pn)

)
=

n

n− 1
p2n(1− pn)2 → 0,

an application of Chebyshev’s inequality ensures that

nf1 =

n∑
i=1

(Xi − pn)(Yi − pn) + oP (1).

A similar argument shows that pn
∑n

i=1(Xi − pn) = oP (1) and pn
∑n

i=1(Yi − pn) = oP (1).
Therefore

nf1 =

n∑
i=1

XiYi − np2n + oP (1).

Since XiYis are i.i.d. Bernoulli random variables with parameter p2n satisfying np2n = λ > 0,
Poisson limit theorem (Theorem 3.6.1 of Durrett, 2019) together with Slutsky’s theorem
yields

nf1
d−→ Poisson(λ)− λ.

Similarly it also follows that sign(f2) = sign(nf2)
d−→ sign(Poisson(λ)−λ) by the continuous

mapping theorem. Strictly speaking, the sign function is discontinuous at x = 0, and thus
the continuous mapping theorem does not directly apply. However the same conclusion
follows since P(Poisson(λ) − λ = 0) = 0, i.e., the set of discontinuity points has zero
probability, as λ is a non-integer by our assumption. Combining the pieces and observing

that f1 and f2 are independent, we therefore conclude that sign(f2) · nf1
d−→ sign(V ′) ×

V where V, V ′ are i.i.d. centered Poisson random variables. Lastly, the distribution of
sign(V ′)×V is continuous at 0 since λ is not an integer. Hence the definition of convergence
in distribution implies the desired result.
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B.4 Proof of Auxiliary Lemmas

This subsection collects the proofs of lemmas used for part (b) of Theorem 4.

B.4.1 Proof of Theorem 19

Similarly as before in Appendix B.1.1, it can be shown that

EP
[(

1

n(n− 1)

∑
1≤i 6=j≤n

XiYj√
VP [XY ]

)2]
.

1

n2(n− 1)2

∑
1≤i 6=j≤n

{
EP [X2

i Y
2
i ]

VP [XY ]
+

EP [XiYi]EP [XjYj ]

VP [XY ]

}

.
EP [X2Y 2]

n2VP [XY ]
.

1

n3/2

√
EP [X4Y 4]

nV2
P [XY ]

.

Thus Markov’s inequality yields

sup
P∈Pn

Pn
(
n3/4

∣∣∣∣ 1

n(n− 1)

∑
1≤i 6=j≤n

XiYj√
VP [XY ]

∣∣∣∣ ≥ t) .
1

t2

√
sup
P∈Pn

EP [X4Y 4]

nV2
P [XY ]

→ 0,

where the last convergence result holds under condition (9). Hence the result follows.

B.4.2 Proof of Theorem 20

The result follows by Chebyshev’s inequality using

sup
P∈Pn

EP
[(

1

n

n∑
i=1

XiYi − EP [XY ]√
VP [XY ]

)2]
=

1

n
.

B.4.3 Proof of Theorem 21

Note that condition (9) guarantees that

sup
P∈Pn

EP

[
1

(n− 1)(n− 2)2

∑
1≤i 6=j≤n

(Xi −Xj)
2(Yi − Yj)2

VP [XY ]

]

. sup
P∈Pn

1√
n

√
max

{
EP [X4Y 4], EP [X4]EP [Y 4]

}
nV2

P [XY ]
= o(1),

where the last convergence result holds under condition (9). Hence the result follows by
Markov’s inequality.

B.4.4 Proof of Theorem 22

We first note by the law of total expectation that

EP [(Xi −Xj)(Yi − Yj)(Xi −Xq)(Yi − Yq)] = VP [XY ] + 4{EP [XY ]}2.

Let

Un =
1

n(n− 1)(n− 2)

∑
1≤i,j,q≤n
i, j, q distinct

(Xi −Xj)(Yi − Yj)(Xi −Xq)(Yi − Yq)
VP [XY ]

,
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and notice that Un is a U-statistic. Then using an upper bound for the variance of U-
statistics (Lee, 2019, Chapter 1.3),

VP [Un] .
1

n
VP
[

(X1 −X2)(Y1 − Y2)(X1 −X3)(Y1 − Y3)
VP [XY ]

]

.
1

n
EP
[

(X1 −X2)
2(Y1 − Y2)2(X1 −X3)

2(Y1 − Y3)2

V2
P [XY ]

]

.
max

{
EP [X4Y 4], EP [X4]EP [Y 4]

}
nV2

P [XY ]
.

Therefore Chebyshev’s inequality yields Un = 1+4{EP [XY ]/
√
VP [XY ]}2+oPn(1). Finally,

since n
n−2 = 1 +O(n−1),

1

(n− 1)(n− 2)2

∑
1≤i,j,q≤n
i, j, q distinct

(Xi −Xj)(Yi − Yj)(Xi −Xq)(Yi − Yq)
VP [XY ]

=
n

n− 2

[
1 + 4

{
EP [XY ]√
VP [XY ]

}2]
+ oPn(1) = 1 + 4

{
EP [XY ]√
VP [XY ]

}2

+ oPn(1).

B.4.5 Proof of Theorem 23

This proof follows the exact same lines of the proof of Shah and Peters (2020, Lemma 18)
combined with the Lyapunov central limit theorem for triangular arrays. Hence we omit
the details.

B.4.6 Proof of Theorem 24

We only need to prove part (c) as the proofs of part (a) and part (b) are given in Lemma 20 of

Shah and Peters (2020). For a given ε > 0 and a fixed t ∈ R, choose 0 < δ ≤ min
{
1
2 ,
√
2π

3|t| ε
}

and N such that for all n ≥ N ,

sup
P∈P

sup
t∈R
|PP (Vn ≤ t)− Φ(t)| < ε/3 and sup

P∈P
PP (|Wn − 1| > δ) < ε/3. (30)

Then for all n ≥ N , for all P ∈ P and for all a ∈ R,

PP
(
(Vn − a)/Wn ≤ t

)
− Φ(t+ a)

≤ PP
(
Vn ≤ t(1 + δ) + a

)
− Φ(t+ a) + PP (|Wn − 1| > δ)

≤ PP
(
Vn ≤ t(1 + δ) + a

)
− Φ

(
t(1 + δ) + a

)
+ Φ

(
t(1 + δ) + a

)
− Φ(t+ a) + ε/3

(i)

≤ 2ε

3
+
∣∣Φ(t(1 + δ) + a

)
− Φ(t+ a)

∣∣
(ii)

≤ ε,
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where step (i) uses condition (30), and step (ii) uses the fact that Φ is 1/
√

2π-Lipschitz and
our condition on δ. An analogous argument may show that

PP
(
(Vn − a)/Wn ≤ t

)
− Φ(t+ a) ≥ −ε,

for all n ≥ N , for all P ∈ P and for all a ∈ R. Therefore the desired statement holds.

Appendix C. Pointwise Asymptotic Null Distribution (Theorem 6)

In this section, we prove that xHSICn is asymptotically N(0, 1) under the null, provided
that (i) the kernels k and ` are fixed in n, (ii) the data generating distribution PXY is fixed
in n, and (iii) 0 < E[g̃2(Z1, Z2)] < ∞ for Z1, Z2 independent draws from PXY . We first
present an outline of the proof in Appendix C.1, breaking the overall argument into three
steps, and then present the details of these steps in the next three subsections.

Remark 25 (moment condition for x̄dCov) Suppose that we use the Euclidean dis-
tance kernel in Fact 11 with x0 = x′ and y0 = y′. Then the kernels become k(x, x′) =
−1

2‖x − x
′‖ and `(y, y′) = −1

2‖y − y
′‖. Due to the non-linearity of the Euclidean norm, it

is difficult to obtain an explicit form of E[g̃2(Z1, Z2)] associated with the Euclidean distance
kernel. Nevertheless, Jensen’s inequality gives a sufficient condition for E[g̃2(Z1, Z2)] <∞.
First note that

g̃
(
(x, x′), (y, y′)

)
=

1

4

{
‖x− x′‖ − E[‖X − x′‖]− E[‖x−X ′‖] + E[‖X −X ′‖]

}
×
{
‖y − y′‖ − E[‖Y − y′‖]− E[‖y − Y ′‖] + E[‖Y − Y ′‖]

}
.

Then Jensen’s inequality (more specifically, {E[‖X − X ′‖]}2 ≤ E[‖X − X ′‖2]) along with
independence of X and Y yields

E[g̃2(Z1, Z2)] . E[‖X −X ′‖2]E[‖Y − Y ′‖2].

Therefore, x̄dCov is asymptotically N(0, 1) given that E[‖X−X ′‖2] <∞ and E[‖Y −Y ′‖2] <
∞.

C.1 Outline of the proof

Throughout the proof, we work with the centered features φ̃(·) := φ(·) − µ and ψ̃(·) :=
ψ(·) − ν, and use 〈·, ·〉 without the subscript to denote the RKHS inner product 〈·, ·〉k×`.
This can be done without loss of generality due to the following simple observation:

h(Zi, Zj) = hij =
1

2

{
φ(Xi)− φ(Xj)

}{
ψ(Yi)− ψ(Yj)

}
=

1

2

{
φ(Xi)− µ+ µ− φ(Xj)

}{
ψ(Yi)− ν + ν − ψ(Yj)

}
=

1

2

{
φ̃(Xi)− φ̃(Xj)

}{
ψ̃(Yi)− ψ̃(Yj)

}
.

Having this observation in mind, the main technical ingredient of the proof is the orthonor-
mal expansion of g̃ in equation (11). In fact, we can express this orthonormal expansion as
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the product of the orthonormal expansions of k̃ and ˜̀, respectively. This leads to

g̃(z, z′) = g̃((x, y), (x′, y′)) = k̃(x, x′)˜̀(y, y′)
=

{ ∞∑
k=1

λX,keX,k(x)eX,k(x
′)

}{ ∞∑
k′=1

λY,k′eY,k′(y)eY,k′(y
′)

}

=
∞∑
k=1

∞∑
k′=1

λX,kλY,k′eX,k(x)eX,k(x
′)eY,k′(y)eY,k′(y

′)

=
∞∑
k=1

λkek(z)ek(z
′).

In the proof, one of the main challenges is to handle the infinite sum associated with
eigenvalues and eigenfunctions. When the sum is finite, then the usual fixed-dimensional
law of large numbers and multivariate central limit theorem establish the desired result in
a straightforward manner. However, when dealing with an infinite sum, we need extra care,
and we bypass this technical difficulty by leveraging the truncation argument used in the
asymptotic analysis of degenerate U-statistics (e.g. Serfling, 2009).

We break the proof into several pieces for readability.

• Step 1: In the first step, we prove

nxHSICn =
∞∑
k=1

λk

(
1√
n

n∑
i=1

ek(Zi)

)(
1√
n

2n∑
t=n+1

ek(Zt)

)
+ oP (1).

• Step 2: In the second step, we prove

(n− 1)s2n =
1

n

n∑
i=1

{ ∞∑
k=1

λkek(Zi)

(
1√
n

2n∑
t=n+1

ek(Zt)

)}2

+ oP (1).

• Step 3: In the final step, we prove the bivariate central limit theorem


∑∞

k=1 λk

(
1√
n

∑n
i=1 ek(Zi)

)(
1√
n

∑2n
t=n+1 ek(Zt)

)
1
n

∑n
i=1

{∑∞
k=1 λkek(Zi)

(
1√
n

∑2n
t=n+1 ek(Zt)

)}2

 d−→

(∑∞
k=1 λkWkW̃k∑∞
k=1 λ

2
kW̃

2
k

)
,
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where W1, W̃1,W2, W̃2, . . . are i.i.d. N(0, 1). Then Slutsky’s theorem along with the
continuous mapping theorem proves that

xHSICn =
nxHSICn√
(n− 1)s2n

√
n− 1√
n

=

∑∞
k=1 λk

(
1√
n

∑n
i=1 ek(Zi)

)(
1√
n

∑2n
t=n+1 ek(Zt)

)
+ oP (1)√

1
n

∑n
i=1

{∑∞
k=1 λkek(Zi)

(
1√
n

∑2n
t=n+1 ek(Zt)

)}2

+ oP (1)

{1 + oP (1)}

d−→
∑∞

k=1 λkWkW̃k√∑∞
k=1 λ

2
kW̃

2
k

d
= N(0, 1).

In the subsequent subsections, we present detailed proofs of the above results in each step.

C.2 Proof of Step 1 (Numerator)

We start by decomposing xHSICn as

xHSICn =
1

n(n− 1)

∑
1≤i 6=j≤n

〈hij , f2〉

=
1

n

n∑
i=1

〈φ̃(Xi)ψ̃(Yi), f2〉︸ ︷︷ ︸
xHSIC

(1)
n

− 1

n(n− 1)

∑
1≤i 6=j≤n

〈φ̃(Xi)ψ̃(Yj), f2〉︸ ︷︷ ︸
xHSIC

(2)
n

.

Notice that xHSIC
(2)
n is a degenerate U-statistic of order 2 whose kernel satisfies

E
[
〈φ̃(Xi)ψ̃(Yj), f2〉|f2, Zi

]
= E

[
〈φ̃(Xi)ψ̃(Yj), f2〉|f2, Zj

]
= 0.

Under the null, E[xHSIC
(2)
n |f2] = 0 and

E
[{

xHSIC(2)
n

}2∣∣f2] = O

(
1

n2

)
E
[
〈φ̃(X1)ψ̃(Y1), f2〉2|f2

]
.

Moreover,

〈φ̃(X1)ψ̃(Y1), f2〉2 =

(
1

n(n− 1)

∑
n+1≤t6=u≤2n

〈φ̃(X1)ψ̃(Y1), h(Zt, Zu)〉
)2

.

(
1

n

2n∑
t=n+1

〈φ̃(X1)ψ̃(Y1), φ̃(Xt)ψ̃(Yt)〉
)2

+

(
1

n(n− 1)

∑
n+1≤t6=u≤2n

〈φ̃(Xt)ψ̃(Yu), φ̃(X1)ψ̃(Y1)〉
)2

,
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and therefore its expectation is bounded by

E
[
〈φ̃(X1)ψ̃(Y1), f2〉2

]
.

1

n
E
[
〈φ̃(X1)ψ̃(Y1), φ̃(X2)ψ̃(Y2)〉2

]
=

1

n
E
[
g̃(Z1, Z2)

2
]
. (31)

Hence, for t ≥ 0, Chebyshev’s inequality yields

E
[
P
(
|xHSIC(2)

n | ≥ t|f2
)]

.
1

t2n2
E
[
E
[
〈φ̃(X1)ψ̃(Y1), f2〉2|f2

]]
.

1

t2n3
E
[
g̃(Z1, Z2)

2
]
,

which concludes that xHSIC
(2)
n = OP (n−3/2) = oP (n−1).

Next we study xHSIC
(1)
n , which equals

xHSIC(1)
n =

1

n

n∑
i=1

〈φ̃(Xi)ψ̃(Yi), f2〉

=
1

n2

n∑
i=1

2n∑
t=n+1

〈φ̃(Xi)ψ̃(Yi), φ̃(Xt)ψ̃(Yt)〉 −
1

n2(n− 1)

n∑
i=1

∑
n+1≤t6=u≤2n

〈φ̃(Xi)ψ̃(Yi), φ̃(Xt)ψ̃(Yu)〉.

The second term above has zero expectation and its variance is bounded above by

O

(
1

n3
E
[
g̃(Z1, Z2)

2
])
.

As a result, we have

xHSIC(1)
n =

1

n2

n∑
i=1

2n∑
t=n+1

〈φ̃(Xi)ψ̃(Yi), φ̃(Xt)ψ̃(Yt)〉+OP (n−3/2)

=
∞∑
k=1

λk

(
1

n

n∑
i=1

ek(Zi)

)(
1

n

2n∑
t=n+1

ek(Zt)

)
+OP (n−3/2).

Putting all together, we see

nxHSICn =

∞∑
k=1

λk

(
1√
n

n∑
i=1

ek(Zi)

)(
1√
n

2n∑
t=n+1

ek(Zt)

)
+ oP (1),

as claimed in Step 1.

C.3 Proof of Step 2 (Denominator)

In this step, we would like to show (n− 1)s2n approximates

(n− 1)s2n =
1

n

n∑
i=1

{ ∞∑
k=1

λkek(Zi)

(
1√
n

2n∑
t=n+1

ek(Zt)

)}2

+ oP (1).
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This part is much more challenging to prove than Step 1 partly due to the complexity of
s2n. To simplify the problem a bit, we first prove that xHSIC2

n = OP (n−2). Indeed, from
the previous results in Step 1, for this claim to hold, it suffices to prove

1

n2

n∑
i=1

2n∑
t=n+1

〈φ̃(Xi)ψ̃(Yi), φ̃(Xt)ψ̃(Yt)〉 = OP (n−1).

This follows by the Chebyshev’s argument as before given that it has the expectation zero
and the variance bounded by O(n−2E

[
g̃(Z1, Z2)

2
]
). Consequently, we have xHSIC2

n =
OP (n−2), and thus

s2n =
4(n− 1)

(n− 2)2

 1

(n− 1)2

n∑
i=1

n,j 6=i∑
j=1

〈h(Zi, Zj), f2〉

2

− nxHSIC2
n


=

4(n− 1)

(n− 1)2(n− 2)2

n∑
i=1

n,j 6=i∑
j=1

〈h(Zi, Zj), f2〉

2

+OP (n−2).

The first term above further approximates

4(n− 1)

(n− 1)2(n− 2)2

n∑
i=1

n,j 6=i∑
j=1

〈h(Zi, Zj), f2〉

2

=
4(n− 1)

(n− 1)2(n− 2)2

∑
1≤i 6=j≤n

〈h(Zi, Zj), f2〉2 +
4(n− 1)

(n− 1)2(n− 2)2

∑
1≤i,j,q≤n
i, j, q distinct

〈h(Zi, Zj), f2〉 〈h(Zi, Zq), f2〉

=
4

(n− 1)(n− 2)2

∑
1≤i,j,q≤n
i, j, q distinct

〈h(Zi, Zj), f2〉 〈h(Zi, Zq), f2〉+OP (n−2),

where the last step uses Markov’s inequality together with

E
[
〈h(Zi, Zj), f2〉2

]
. E

[〈
φ̃(Xi)ψ̃(Yi), f2

〉2]
+ E

[〈
φ̃(Xi)ψ̃(Yj), f2

〉2]
+E
[〈
φ̃(Xj)ψ̃(Yj), f2

〉2]
+ E

[〈
φ̃(Xj)ψ̃(Yi), f2

〉2]
.

1

n
E
[
g̃(Z1, Z2)

2
]
,

due to the upper bound in (31). Thus the main term to investigate is

s2main,n :=
4

n(n− 1)(n− 2)

∑
1≤i,j,q≤n
i, j, q distinct

〈h(Zi, Zj), f2〉 〈h(Zi, Zq), f2〉

=
1

n(n− 1)(n− 2)

∑
1≤i,j,q≤n
i, j, q distinct

〈{
φ̃(Xi)− φ̃(Xj)

}{
ψ̃(Yi)− ψ̃(Yj)

}
, f2

〉

×
〈{
φ̃(Xi)− φ̃(Xq)

}{
ψ̃(Yi)− ψ̃(Yq)

}
, f2

〉
.
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We also claim that

s2main,n =
1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi),

1

n

2n∑
t=n+1

φ̃(Xt)ψ̃(Yt)

〉2

+ oP (n−1), (32)

which yields the desired result in Step 2. Note that s2main,n is a U-statistic of order 3 with
a varying kernel in n conditional on f2. Therefore we are not able to directly apply the
usual approximation theory of U-statistics, which focuses on a fixed kernel, in the process
of obtaining approximation (32). It turns out that the analysis is non-trivial especially
only with the finite second moment of g̃. We postpone the detailed (long) analysis to
Appendix C.5.

C.4 Proof of Step 3

By the Cramér–Wold device, the bivariate central limit theorem holds if for each t1, t2 ∈ R,

t1

∞∑
k=1

λk

(
1√
n

n∑
i=1

ek(Zi)

)(
1√
n

2n∑
t=n+1

ek(Zt)

)
+ t2

1

n

n∑
i=1

{ ∞∑
k=1

λkek(Zi)

(
1√
n

2n∑
t=n+1

ek(Zt)

)}2

︸ ︷︷ ︸
Tn

d−→ t1

∞∑
k=1

λkWkW̃k + t2

∞∑
k=1

λ2kW̃
2
k︸ ︷︷ ︸

T

.

In order to establish this, we make use of the truncation argument as in Chapter 5 of Serfling
(2009). First of all, for some fixed K, define

Tn,K := t1

K∑
k=1

λk

(
1√
n

n∑
i=1

ek(Zi)

)(
1√
n

2n∑
t=n+1

ek(Zt)

)

+ t2
1

n

n∑
i=1

{ K∑
k=1

λkek(Zi)

(
1√
n

2n∑
t=n+1

ek(Zt)

)}2

,

TK := t1

K∑
k=1

λkWkW̃k + t2

K∑
k=1

λ2kW̃
2
k .

Then by the triangle inequality

E[|Tn − Tn,K |] ≤ |t1|E
[∣∣∣∣ ∞∑

k=K+1

λk

(
1√
n

n∑
i=1

ek(Zi)

)(
1√
n

2n∑
t=n+1

ek(Zt)

)∣∣∣∣]

|t2|E
[∣∣∣∣ 1n

n∑
i=1

{ ∞∑
k=1

λkek(Zi)

(
1√
n

2n∑
t=n+1

ek(Zt)

)}2

− 1

n

n∑
i=1

{ K∑
k=1

λkek(Zi)

(
1√
n

2n∑
t=n+1

ek(Zt)

)}2∣∣∣∣]
= |t1|(I) + |t2|(II).
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By the Cauchy–Schwarz inequality and using that {ek}∞k=1 are orthonormal and E[ek(Z)] =
0,

(I) ≤

√√√√ ∞∑
k=K+1

λ2k.

On the other hand, letting

∞∑
k=1

λkek(Zi)

(
1√
n

2n∑
t=n+1

ek(Zt)

)
=

K∑
k=1

λkek(Zi)

(
1√
n

2n∑
t=n+1

ek(Zt)

)

+

∞∑
k=K+1

λkek(Zi)

(
1√
n

2n∑
t=n+1

ek(Zt)

)
= Ai +Bi

and using |(Ai +Bi)
2 −A2

i | ≤ B2
i + 2|AiBi|, we have

(II) ≤ 1

n

n∑
i=1

E
[
B2
i + 2|AiBi|

]
≤ 1

n

n∑
i=1

E
[
B2
i

]
+ 2

1

n

n∑
i=1

√
E
[
A2
i

]√
E
[
B2
i

]
,

where the last inequality uses the Cauchy–Schwarz inequality. Again by using the orthonor-
mal property of {ek}∞k=1 and E[ek(Z)] = 0,

E
[
A2
i

]
=

K∑
k=1

λ2k and E
[
B2
i

]
=

∞∑
k=K+1

λ2k.

Therefore, noting that E[g̃2(Z1, Z2)] =
∑K

k=1 λ
2
k <∞,

E[|Tn − Tn,K |] ≤ |t1|

√√√√ ∞∑
k=K+1

λ2k + |t2|
∞∑

k=K+1

λ2k + 2|t2|

√√√√ K∑
k=1

λ2k

√√√√ ∞∑
k=K+1

λ2k,

which goes to zero as K →∞ uniformly over n. Hence Tn,K converges to Tn in distribution
as K →∞ uniformly over n. Similarly, we obtain

E[|T − TK |] ≤ |t1|E
[∣∣∣∣ ∞∑

k=K+1

λkWkW̃k

∣∣∣∣]+ |t2|E
[ ∞∑
k=K+1

λ2kW̃
2
k

]

≤ |t1|

√√√√ ∞∑
k=K+1

λ2k + |t2|
∞∑

k=K+1

λ2k,
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which goes to zero as K →∞. In addition, for each fixed K, the multivariate central limit
theorem yields 

1√
n

∑n
i=1 e1(Zi)

...

1√
n

∑n
i=1 eK(Zi)

1√
n

∑2n
t=n+1 e1(Zt)

...

1√
n

∑2n
t=n+1 eK(Zt)


d−→ N2K(0, I),

and the law of large numbers shows

1

n

n∑
i=1

ek(Zi)ek′(Zi)
p−→

{
1 k = k′,

0 otherwise.

Using these results, Slutsky’s theorem together with the continuous mapping theorem proves

that Tn,K
d−→ TK for each fixed K.

Having these preliminary results in place, we finish the proof of Step 3 using the argu-
ment in Serfling (2009) as follows. Let ϕn, ϕn,K , ϕ and ϕK be the characteristic functions
of Tn, Tn,K , T and TK , respectively. Let ε > 0 be some fixed number. Then we can choose
K1 > 0 such that for all K ≥ K1 and for all n,

|ϕn(s)− ϕn,K(s)| = |E[eisTn − eisTn,K |
≤ E|eis(Tn−Tn,K) − 1|

≤ |s|E[|Tn − Tn,K |] <
ε

3
.

We can also choose K2 > 0 such that for all K ≥ K2,

|ϕ(s)− ϕK(s)| < ε

3
.

Since Tn,K
d−→ TK for each K, we can choose N such that for all n ≥ N and K0 =

max{K1,K2},

|ϕn,K(s)− ϕK | ≤
ε

n
.

Therefore, by the triangle inequality,

|ϕn(s)− ϕ(s)| ≤ |ϕn(s)− ϕn,K0(s)|+ |ϕn,K0(s)− ϕK0 |+ |ϕ(s)− ϕK0(s)| ≤ ε.

Since ε was arbitrary, we conclude that limn→∞ ϕn(s) = ϕ(s) as desired.
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C.5 Details of approximation (32)

The aim of this section is to establish approximation (32). First note that s2main,n has the
following decomposition:

s2main,n =
1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2

〉2
− 2

n(n− 1)

∑
1≤i 6=j≤n

〈
φ̃(Xi)ψ̃(Yi), f2

〉〈
φ̃(Xi)ψ̃(Yj), f2

〉
− 2

n(n− 1)

∑
1≤i 6=j≤n

〈
φ̃(Xi)ψ̃(Yi), f2

〉〈
φ̃(Xj)ψ̃(Yi), f2

〉
+

3

n(n− 1)

∑
1≤i 6=j≤n

〈
φ̃(Xi)ψ̃(Yi), f2

〉〈
φ̃(Xj)ψ̃(Yj), f2

〉
− 4

n(n− 1)(n− 2)

∑
1≤i,j,q≤n
i, j, q distinct

〈
φ̃(Xi)ψ̃(Yi), f2

〉〈
φ̃(Xj)ψ̃(Yq), f2

〉

+
1

n(n− 1)(n− 2)

∑
1≤i,j,q≤n
i, j, q distinct

〈
φ̃(Xi)ψ̃(Yj), f2

〉〈
φ̃(Xi)ψ̃(Yq), f2

〉

+
1

n(n− 1)(n− 2)

∑
1≤i,j,q≤n
i, j, q distinct

〈
φ̃(Xi)ψ̃(Yj), f2

〉〈
φ̃(Xq)ψ̃(Yi), f2

〉

+
1

n(n− 1)(n− 2)

∑
1≤i,j,q≤n
i, j, q distinct

〈
φ̃(Xj)ψ̃(Yi), f2

〉〈
φ̃(Xi)ψ̃(Yq), f2

〉

+
1

n(n− 1)(n− 2)

∑
1≤i,j,q≤n
i, j, q distinct

〈
φ̃(Xj)ψ̃(Yi), f2

〉〈
φ̃(Xq)ψ̃(Yi), f2

〉

:=

9∑
i=1

J(i).

By defining f2,A, f2,B and f2,C as

f2 =
1

n

2n∑
t=n+1

φ̃(Xt)ψ̃(Yt)−
1

n(n− 1)

∑
n+1≤t6=u≤2n

φ̃(Xt)ψ̃(Yu)

=
1

n

2n∑
t=n+1

φ̃(Xt)ψ̃(Yt)−
n

n− 1

{
1

n

∑
n+1≤t≤2n

φ̃(Xt)

}{
1

n

∑
n+1≤u≤2n

ψ̃(Yu)

}

+
1

n(n− 1)

2n∑
t=n+1

φ̃(Xt)ψ̃(Yt)

:= f2,A + f2,B + f2,C .

we analyze each J(i) term, separately.
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1. Analyzing J(1). Starting with J(1), we will show that

J(1) =
1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi),

1

n

2n∑
t=n+1

φ̃(Xt)ψ̃(Yt)

〉2

+ oP (n−1). (33)

First note that

J(1) =
1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉2
+

2

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xi)ψ̃(Yi), f2,B

〉
+

1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉2
+

2

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉〈
φ̃(Xi)ψ̃(Yi), f2,C

〉
+

1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,C

〉2
+

2

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xi)ψ̃(Yi), f2,C

〉
.

We can ignore the terms involving f2,C since they have a faster convergence rate than the
same terms replacing f2,C with f2,A. By noting that

1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉2
=

1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi),

1

n

2n∑
t=n+1

φ̃(Xt)ψ̃(Yt)

〉2

,

we shall prove

2

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xi)ψ̃(Yi), f2,B

〉
︸ ︷︷ ︸

:=J(1),a

+
1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉2
︸ ︷︷ ︸

:=J(1),b

= oP (n−1),

and thus establish approximation (33).
Focusing on J(1),b, notice that

nJ(1),b = n× 1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉2
=

n2

(n− 1)2
1

n2

n∑
i=1

{ ∞∑
k=1

λX,keX,k(Xi)

(
1√
n

∑
n+1≤t≤2n

eX,k(Xt)

)}2

{ ∞∑
k′=1

λY,k′eY,k′(Yi)

(
1√
n

∑
n+1≤t≤2n

eY,k′(Yt)

)}2

:=
n2

(n− 1)2
1

n
G(1).

In addition, the orthonormal property of eigenfunctions yields

E
[{ ∞∑

k=1

λX,keX,k(Xi)

(
1√
n

∑
n+1≤t≤2n

eX,k(Xt)

)}2]
=

∞∑
k=1

λ2X,k and

E
[{ ∞∑

k′=1

λY,k′eY,k′(Yi)

(
1√
n

∑
n+1≤t≤2n

eY,k′(Yt)

)}2]
=

∞∑
k′=1

λ2Y,k′ .
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This implies that E[G(1)] =
∑∞

k=1 λ
2
k <∞ since X and Y are independent. Therefore using

Markov’s inequality,

1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉2
= OP (n−2) = oP (n−1). (34)

Next, we turn to J(1),a. As shown before in Appendix C.4,

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉2 d−→
∞∑
k=1

λ2k, W̃
2
k

which implies

1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉2
= OP (n−1). (35)

Hence, by the Cauchy–Schwarz inequality,

|J(1),a| =

∣∣∣∣ 2n
n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xi)ψ̃(Yi), f2,B

〉 ∣∣∣∣
≤ 2

√√√√ 1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉2√√√√ 1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉2
= 2

√
OP (n−1)

√
OP (n−2) = oP (n−1),

where we use the approximation result (34) for the second term in the upper bound. Com-
bining results establishes the approximation (33).

2. Analyzing J(2). By the same logic as in the analysis of J(1), we can ignore the terms
involving f2,C throughout the proof, and we only need to handle three terms

J(2),a :=
2

n(n− 1)

∑
1≤i 6=j≤n

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xi)ψ̃(Yj), f2,A

〉
,

J(2),b :=
2

n(n− 1)

∑
1≤i 6=j≤n

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉〈
φ̃(Xi)ψ̃(Yj), f2,B

〉
, and

J(2),c :=
2

n(n− 1)

∑
1≤i 6=j≤n

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xi)ψ̃(Yj), f2,B

〉
.
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For the first term J(2),a,

J(2),a =
2

n(n− 1)

∑
1≤i 6=j≤n

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xi)ψ̃(Yj), f2,A

〉
=

2

n(n− 1)

n∑
i=1

n∑
j=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xi)ψ̃(Yj), f2,A

〉
− 2

n(n− 1)

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xi)ψ̃(Yi), f2,A

〉
=

2n

n− 1
× 1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xi)

(
1

n

n∑
j=1

ψ̃(Yj)

)
, f2,A

〉
︸ ︷︷ ︸

OP (n−3/2)

− 2

n(n− 1)

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉2
︸ ︷︷ ︸

OP (n−2)

,

where the second approximation result OP (n−2) holds by (35). On the other hand, the first
approximation OP (n−3/2) holds since

∣∣∣∣ 1n
n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xi)

(
1

n

n∑
j=1

ψ̃(Yj)

)
, f2,A

〉∣∣∣∣
≤

√√√√ 1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉2√√√√ 1

n

n∑
i=1

〈
φ̃(Xi)

(
1

n

n∑
j=1

ψ̃(Yj)

)
, f2,A

〉2

= OP (n−1/2)OP (n−1) = OP (n−3/2),

by the Cauchy–Schwarz inequality and Markov’s inequality. In particular, it can be seen
that

E

[
1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yj), f2,A

〉2]
=

1

n3

n∑
i=1

n∑
j=1

E
[〈
φ̃(Xi)ψ̃(Yj), f2,A

〉2]
.

1

n2
E[g̃2(Z1, Z2)].

Therefore J(2),a = oP (n−1).
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For the second term J(2),b,

J(2),b =
2

n(n− 1)

∑
1≤i 6=j≤n

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉〈
φ̃(Xi)ψ̃(Yj), f2,B

〉

=
2n

n− 1
× 1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉〈
φ̃(Xi)

(
1

n

n∑
j=1

ψ̃(Yj)

)
, f2,B

〉
︸ ︷︷ ︸

OP (n−3/2)

− 2

n(n− 1)

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉2
︸ ︷︷ ︸

OP (n−2)

,

where the second approximation OP (n−2) uses (34). The first approximation follows by the
Cauchy–Schwarz inequality and Markov’s inequality as

∣∣∣∣ 1n
n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉〈
φ̃(Xi)

(
1

n

n∑
j=1

ψ̃(Yj)

)
, f2,B

〉∣∣∣∣
≤

√√√√ 1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉2√√√√ 1

n

n∑
i=1

〈
φ̃(Xi)

(
1

n

n∑
j=1

ψ̃(Yj)

)
, f2,B

〉2

= OP (n−1)OP (n−1) = OP (n−2).

Therefore J(2),b = oP (n−1). For the last term J(2),c,

J(2),c =
2

n(n− 1)

∑
1≤i 6=j≤n

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xi)ψ̃(Yj), f2,B

〉

=
2n

n− 1
× 1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xi)

(
1

n

n∑
j=1

ψ̃(Yj)

)
, f2,B

〉
︸ ︷︷ ︸

OP (n−3/2)

− 2

n(n− 1)

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xi)ψ̃(Yi), f2,B

〉
︸ ︷︷ ︸

OP (n−2)

,

which can be established by the Cauchy–Schwarz inequality and the previous results, and
thus J(2),c = oP (n−1). In summary, it holds that J(2) = oP (n−1).

3. Analyzing J(3). By symmetry, J(3) has the same convergence rate as J(2) and thus
J(3) = oP (n−1).
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4. Analyzing J(4). For the fourth term J(4), we will show that J(4) = oP (n−1). To this
end, we only need to handle three terms

J(4),a :=
3

n(n− 1)

∑
1≤i 6=j≤n

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xj)ψ̃(Yj), f2,A

〉
,

J(4),b :=
3

n(n− 1)

∑
1≤i 6=j≤n

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉〈
φ̃(Xj)ψ̃(Yj), f2,B

〉
and

J(4),c :=
3

n(n− 1)

∑
1≤i 6=j≤n

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xj)ψ̃(Yj), f2,B

〉
.

Starting with J(4),a,

J(4),a =
3n2

n(n− 1)

〈
1

n

n∑
i=1

φ̃(Xi)ψ̃(Yi), f2,A

〉2

︸ ︷︷ ︸
OP (n−2)

− 3

n(n− 1)

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉2
︸ ︷︷ ︸

OP (n−2)

,

where the second approximation is due to (35) and the first approximation is by Markov’s
inequality. Indeed, we have shown in Appendix C.2 and C.4 that

n

〈
1

n

n∑
i=1

φ̃(Xi)ψ̃(Yi), f2,A

〉
d−→

∞∑
k=1

λkWkW̃k.

This establishes J(4),a = oP (n−1).
Next, for the second term J(4),b,

J(4),b =
3n2

n(n− 1)

〈
1

n

n∑
i=1

φ̃(Xi)ψ̃(Yi), f2,B

〉2

︸ ︷︷ ︸
OP (n−2)

− 3

n(n− 1)

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉2
︸ ︷︷ ︸

OP (n−3)

,

where the second approximation uses (34). For the first approximation, we simply use
Jensen’s inequality along with (34):〈

1

n

n∑
i=1

φ̃(Xi)ψ̃(Yi), f2,B

〉2

≤ 1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉2
= OP (n−2).

Thus we have J(4),b = oP (n−1).
For the last term J(4),c,

J(4),c =
3n2

n(n− 1)

〈
1

n

n∑
i=1

φ̃(Xi)ψ̃(Yi), f2,A

〉〈
1

n

n∑
i=1

φ̃(Xi)ψ̃(Yi), f2,B

〉
︸ ︷︷ ︸

OP (n−2)

− 3

n(n− 1)

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xi)ψ̃(Yi), f2,B

〉
︸ ︷︷ ︸

OP (n−2)

,
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which can be seen using the Cauchy–Schwarz inequality. Therefore it holds that J(4) =
oP (n−1).

5. Analyzing J(5). For the fifth term J(5), similarly as before, we need to study

J(5),a :=
1

n(n− 1)(n− 2)

∑
1≤i,j,q≤n
i, j, q distinct

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xj)ψ̃(Yq), f2,A

〉
,

J(5),b :=
1

n(n− 1)(n− 2)

∑
1≤i,j,q≤n
i, j, q distinct

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉〈
φ̃(Xj)ψ̃(Yq), f2,B

〉
and

J(5),c :=
1

n(n− 1)(n− 2)

∑
1≤i,j,q≤n
i, j, q distinct

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xj)ψ̃(Yq), f2,B

〉
.

Starting with J(5),a, note that

∑
1≤i,j,q≤n
i, j, q distinct

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xj)ψ̃(Yq), f2,A

〉
=

〈
n∑
i=1

φ̃(Xi)ψ̃(Yi), f2,A

〉〈 ∑
1≤j 6=q≤n

φ̃(Xj)ψ̃(Yq), f2,A

〉

−2
∑

1≤j 6=q≤n

〈
φ̃(Xj)ψ̃(Yj), f2,A

〉〈
φ̃(Xj)ψ̃(Yq), f2,A

〉
.

Thus

J(5),a = O(1)×

〈
1

n

n∑
i=1

φ̃(Xi)ψ̃(Yi), f2,A

〉
︸ ︷︷ ︸

OP (n−1)

〈
1

n(n− 1)

∑
1≤j 6=q≤n

φ̃(Xj)ψ̃(Yq), f2,A

〉
︸ ︷︷ ︸

OP (n−1)

+ O(n−1)× 1

n(n− 1)

∑
1≤j 6=q≤n

〈
φ̃(Xj)ψ̃(Yj), f2,A

〉〈
φ̃(Xj)ψ̃(Yq), f2,A

〉
︸ ︷︷ ︸

oP (n−1)

,

where the first approximation holds since

n×

〈
1

n

n∑
i=1

φ̃(Xi)ψ̃(Yi), f2,A

〉
d−→

K∑
k=1

λkWkW̃k,

as established in Appendix C.4. For the second approximation, we have〈
1

n(n− 1)

∑
1≤j 6=q≤n

φ̃(Xj)ψ̃(Yq), f2,A

〉
= O(1)×

〈(
1

n

n∑
i=1

φ̃(Xi)

)(
1

n

n∑
i=1

ψ̃(Yi)

)
, f2,A

〉

−O(n−1)×

〈
1

n

n∑
i=1

φ̃(Xi)ψ̃(Yi), f2,A

〉
︸ ︷︷ ︸

OP (n−1)

.
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Moreover the following term

〈(
1

n

n∑
i=1

φ̃(Xi)

)(
1

n

n∑
i=1

ψ̃(Yi)

)
, f2,A

〉

has the same convergence rate as

∣∣∣∣∣ 1n
n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉 ∣∣∣∣∣ ≤
√√√√ 1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉2
= OP (n−1).

Thereby, the second approximation holds. The last approximation was established in the
analysis of J(2),a, and thus J(5),a = oP (n−1).

For the second term J(5),b, we simply use the Cauchy–Schwarz inequality and Markov’s
inequality, and see

|J(5),b| ≤ O(1)

√√√√ 1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,B

〉2
︸ ︷︷ ︸

OP (n−1)

√√√√ 1

n2

n∑
i=1

n∑
j=1

〈
φ̃(Xi)ψ̃(Yj), f2,B

〉2
︸ ︷︷ ︸

OP (n−1)

= oP (n−1).

Similarly, for the third term J(5),c, we apply the Cauchy–Schwarz inequality and see

|J(5),c| ≤ O(1)

√√√√ 1

n

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉2
︸ ︷︷ ︸

OP (n−1/2)

√√√√ 1

n2

n∑
i=1

n∑
j=1

〈
φ̃(Xi)ψ̃(Yj), f2,B

〉2
︸ ︷︷ ︸

OP (n−1)

= oP (n−1).

Therefore we conclude J(5) = oP (n−1).

6. Analyzing J(6). For the sixth term J(6), similarly as before, we need to study

J(6),a :=
1

n(n− 1)(n− 2)

∑
1≤i,j,q≤n
i, j, q distinct

〈
φ̃(Xi)ψ̃(Yj), f2,A

〉〈
φ̃(Xi)ψ̃(Yq), f2,A

〉
,

J(6),b :=
1

n(n− 1)(n− 2)

∑
1≤i,j,q≤n
i, j, q distinct

〈
φ̃(Xi)ψ̃(Yj), f2,B

〉〈
φ̃(Xi)ψ̃(Yq), f2,B

〉
and

J(6),c :=
1

n(n− 1)(n− 2)

∑
1≤i,j,q≤n
i, j, q distinct

〈
φ̃(Xi)ψ̃(Yj), f2,A

〉〈
φ̃(Xi)ψ̃(Yq), f2,B

〉
.
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Starting with J(6),a, there exist some constants C1, . . . , C4 such that∑
1≤i,j,q≤n
i, j, q distinct

〈
φ̃(Xi)ψ̃(Yj), f2,A

〉〈
φ̃(Xi)ψ̃(Yq), f2,A

〉

=

n∑
i=1

〈
φ̃(Xi)

n∑
j=1

ψ̃(Yj), f2,A

〉〈
φ̃(Xi)

n∑
q=1

ψ̃(Yq), f2,A

〉

−C1

∑
1≤i 6=j≤n

〈
φ̃(Xi)ψ̃(Yj), f2,A

〉〈
φ̃(Xi)ψ̃(Yi), f2,A

〉
− C2

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉2
−C3

∑
1≤i 6=q≤n

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xi)ψ̃(Yq), f2,A

〉
− C4

∑
1≤i 6=q≤n

〈
φ̃(Xi)ψ̃(Yq), f2,A

〉2
.

By the Cauchy–Schwarz inequality and Markov’s inequality,∣∣∣∣∣ 1n
n∑
i=1

〈
φ̃(Xi)

1

n

n∑
j=1

ψ̃(Yj), f2,A

〉〈
φ̃(Xi)

(
1

n

n∑
q=1

ψ̃(Yq)

)
, f2,A

〉∣∣∣∣∣
2

≤ 1

n

n∑
i=1

〈
φ̃(Xi)

1

n

n∑
j=1

ψ̃(Yj), f2,A

〉2

︸ ︷︷ ︸
OP (n−2)

1

n

n∑
i=1

〈
φ̃(Xi)

(
1

n

n∑
q=1

ψ̃(Yq)

)
, f2,A

〉2

︸ ︷︷ ︸
OP (n−2)

.

Thus

1

n3

n∑
i=1

〈
φ̃(Xi)

n∑
j=1

ψ̃(Yj), f2,A

〉〈
φ̃(Xi)

n∑
q=1

ψ̃(Yq), f2,A

〉
= OP (n−2).

Based on the previous results, we also have

1

n3

∑
1≤i 6=j≤n

〈
φ̃(Xi)ψ̃(Yj), f2,A

〉〈
φ̃(Xi)ψ̃(Yi), f2,A

〉
= oP (n−2),

1

n3

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉2
= oP (n−2),

1

n3

∑
1≤i 6=q≤n

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xi)ψ̃(Yq), f2,A

〉
= oP (n−2),

1

n3

∑
1≤i 6=q≤n

〈
φ̃(Xi)ψ̃(Yq), f2,A

〉2
= oP (n−2),

which concludes J(6),a = oP (n−1). In addition J(6),b and J(6),c are shown to be oP (n−1)
by the Cauchy–Schwarz inequality as in the analysis of J(5),b and J(5),c. This proves that
J(6) = oP (n−1).
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7. Analyzing J(7). For the sixth term J(7), similarly as before, we need to study

J(7),a :=
1

n(n− 1)(n− 2)

∑
1≤i,j,q≤n
i, j, q distinct

〈
φ̃(Xi)ψ̃(Yj), f2,A

〉〈
φ̃(Xq)ψ̃(Yi), f2,A

〉
,

J(7),b :=
1

n(n− 1)(n− 2)

∑
1≤i,j,q≤n
i, j, q distinct

〈
φ̃(Xi)ψ̃(Yj), f2,B

〉〈
φ̃(Xq)ψ̃(Yi), f2,B

〉
and

J(7),c :=
1

n(n− 1)(n− 2)

∑
1≤i,j,q≤n
i, j, q distinct

〈
φ̃(Xi)ψ̃(Yj), f2,A

〉〈
φ̃(Xq)ψ̃(Yi), f2,B

〉
.

Starting with J(7),a, there exist some constants C ′1, . . . , C
′
4 such that∑

1≤i,j,q≤n
i, j, q distinct

〈
φ̃(Xi)ψ̃(Yj), f2,A

〉〈
φ̃(Xq)ψ̃(Yi), f2,A

〉

=
n∑
i=1

〈
φ̃(Xi)

n∑
j=1

ψ̃(Yj), f2,A

〉〈
n∑
q=1

φ̃(Xq)ψ̃(Yi), f2,A

〉

−C ′1
∑

1≤i 6=j≤n

〈
φ̃(Xi)ψ̃(Yj), f2,A

〉〈
φ̃(Xi)ψ̃(Yi), f2,A

〉
− C ′2

n∑
i=1

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉2

−C ′3
∑

1≤i 6=q≤n

〈
φ̃(Xi)ψ̃(Yi), f2,A

〉〈
φ̃(Xq)ψ̃(Yi), f2,A

〉
− C ′4

∑
1≤i 6=q≤n

〈
φ̃(Xi)ψ̃(Yq), f2,A

〉2]
.

From here, we can follow the same steps as in the analysis for J(6) and conclude that
J(7) = oP (n−1).

8. Analyzing J(8). By switching the role between X and Y , J(8) can be analyzed similarly
as J(7) and it can be shown that J(8) = oP (n−1).

9. Analyzing J(9). By switching the role between X and Y , J(9) can be analyzed similarly
as J(6) and it can be shown that J(9) = oP (n−1).

Throughout, we have shown that
∑9

i=2 J(i) = oP (n−1) and J(1) satisfies (33), which
concludes approximation (32).

Appendix D. Uniform Asymptotic Null Distribution (Theorem 7)

We first describe an outline of the general steps of the proof in Appendix D.1, breaking down
the argument into three parts. Then, we present the details of the steps in the subsequent
subsections.

Before proceeding, we recall some notation. We use ãij = k̃(Xi, ·)˜̀(Yj , ·), b̃tu = ãn+t,n+u
for 1 ≤ i, j, t, u ≤ n, and g̃12 to denote g̃(Z1, Z2) = 〈ã11, ã22〉. As before, 〈·, ·〉 refers to the
RKHS inner-product 〈·, ·〉k×` throughout this section.
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D.1 Outline of the proof

To show the asymptotic normality of xHSICn, we verify that the sufficient conditions for
the Berry–Esseen theorem for studentized U-statistics are satisfied. In particular, by Jing
et al. (2000, Theorem 3.1), it suffices to show that

Cn :=
E[| 〈h(Z1, Z2), f2〉 |3|D2n

n+1]√
nσ3g

p−→ 0, (36)

where we have used the notation σ2g := E[{E[〈h(Z1, Z2), f2〉 |Z2,D2n
n+1]}2|D2n

n+1] follow-
ing Jing et al. (2000).

To establish this result, we proceed in the following steps:

• Step 1: First, we observe in Theorem 26, that a sufficient condition for (36) to hold
is if the following holds:

Bn :=
E[〈f2, k̃(X1,n, ·)˜̀(Y1,n, ·)〉4|D2n

n+1]

n
{
E[〈f2, k̃(X1,n, ·)˜̀(Y1,n, ·)〉2|D2n

n+1]
}2 p−→ 0, (37)

• Step 2: In the next step, we introduce the term B1,n defined as

B1,n :=
nE[〈f2, k̃(X1,n, ·)˜̀(Y1,n, ·)〉4|D2n

n+1]

E[g̃(Z1,n, Z2,n)2]2
, (38)

and show that B1,n
p−→ 0 in Theorem 27.

• Step 3: Finally, in we introduce the term B2,n defined as

B2,n :=
E[g̃(Z1,n, Z2,n)2]2

n2
{
E[〈f2, k̃(X1,n, ·)˜̀(Y1,n, ·)〉2|D2n

n+1]
}2 , (39)

and show that B2,n = OP (1) in Theorem 28

Since Bn = B1,n × B2,n, together (38) and (39) imply (37), to complete the proof. The
details are in Appendix D.

D.2 Proof of Step 1

Lemma 26 Introduce the term Bn :=
E[〈f2,k̃(X1,n,·)˜̀(Y1,n,·)〉4|D2n

n+1]

n
{
E[〈f2,k̃(X1,n,·)˜̀(Y1,n,·)〉2|D2n

n+1]
}2 . Then, we have the

following:

Bn
p−→ 0 implies Cn

p−→ 0.

Proof We begin by noting that due to Cauchy–Schwarz inequality, we have

E[| 〈h(Z1, Z2), f2〉 |3|D2n
n+1] = E[| 〈h(Z1, Z2), f2〉 | × | 〈h(Z1, Z2), f2〉 |2|D2n

n+1]

≤
{
E[〈h(Z1, Z2), f2〉2 |D2n

n+1]
}1/2{E[〈h(Z1, Z2), f2〉4|D2n

n+1]
}1/2

.
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Further note

E[〈h(Z1, Z2), f2〉2 |D2n
n+1] =

1

4
E[〈f̃2, ã11 + ã22 − ã12 − ã21〉2|D2n

n+1]

. E[〈f̃2, ã11〉2 + 〈f̃2, ã22〉2 + 〈f̃2, ã12〉2 + 〈f̃2, ã21〉2|D2n
n+1]

. E[〈f̃2, ã11〉2|D2n
n+1], (40)

where the first inequality uses Jensen’s inequality, while the second inequality relies on the
observation under the null:

E[〈f̃2, ã11〉2|D2n
n+1] = E[〈f̃2, ãij〉2|D2n

n+1] for any i, j ∈ {1, 2}.

By the same logic along with Jensen’s inequality,

E[〈h(Z1, Z2), f2〉4 |D2n
n+1] . E[〈f2, ã11〉4 + 〈f2, ã22〉4 + 〈f2, ã12〉4 + 〈f2, ã21〉4 |D2n

n+1]

. E[〈f̃2, ã11〉4|D2n
n+1]. (41)

Thus, combining (40) and (41), we get the following bound on the numerator of the term
Cn: (

E[| 〈h(Z1, Z2), f2〉 |3|D2n
n+1]

)2 ≤ E[〈f̃2, ã11〉2|D2n
n+1]× E[〈f̃2, ã11〉4|D2n

n+1] (42)

We now evaluate σ2g from the denominator of Cn.

σ2g =
1

4
E[〈f̃2, ã11〉2|D2n

n+1]. (43)

Combining the pieces, we obtain the following:

Cn =
E[| 〈h(Z1, Z2), f2〉 |3|D2n

n+1]√
nσ3g

≤

(
E[〈f̃2, ã11〉2|D2n

n+1]
)1/2

×
(
E[〈f̃2, ã11〉4|D2n

n+1]
)1/2

√
nσ3g

=

(
E[〈f̃2, ã11〉4|D2n

n+1]

n
{
E[〈f̃2, ã11〉2|D2n

n+1]
}2
)1/2

=
√
Bn.

In the first inequality above, we used (42), while the second equality uses (43). This
completes the proof.

D.3 Proof of Step 2

Lemma 27 Under Assumption 1, we have B1,n
p−→ 0.

Proof
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It suffices to show that E[B1,n]→ 0, which in turn will imply the convergence in prob-
ability by an application of Markov’s inequality. To verify this, we observe the following:

E[B1,n] =
n

E[g̃212]
2
O

E

〈ãii, 1

n

n∑
t=1

b̃tt −
1

n(n− 1)

∑
t6=u

b̃tu

〉4


≤ 16n

E[g̃212]
2

E

〈ãii, 1

n

n∑
t=1

b̃tt

〉4
+ E

〈ãii, 1

n(n− 1)

∑
t6=u

b̃tu

〉4
 (44)

=
16n

E[g̃212]
2
O

 1

n4
E

( n∑
t=1

〈ãii, b̃tt〉

)4
+

1

n8
E

∑
u6=t
〈ãii, b̃tu〉

4 (45)

=
16n

E[g̃212]
2
O
(
E[g̃412]

(
1

n3
+

1

n6

)
+ E[g̃212g̃

2
13]

(
1

n2
+

1

n4

))
(46)

= O
(
E[g̃412]n

−1 + E[g̃212g̃
2
13]

nE[g̃212]
2

)
→ 0. (47)

In the above display, (44) uses the fact that (x− y)4 ≤ 16(x4 + y4). To obtain (46), we note
that E[(

∑n
t=1〈ãii, b̃tt〉4] can be expanded into n4 terms, each of the form E[g̃it1 g̃it2 g̃it3 g̃it4 ],

for 1 ≤ t1, t2, t3, t4 ≤ n. Of these n4 terms, only the terms with two or four common t′s have
non-zero expectation under the null. There are a total of n terms of the form E[g̃4it] and
O(n2) terms of the form E[g̃2itg̃

2
iu] for t 6= u. Such terms appear as E[g̃4it]/n

3 and E[g̃2itg̃
2
iu]/n2

respectively in (46). Repeating the same argument for E[
∑

t6=u〈ãii, b̃tu〉4] gives us the other
two terms in (46).

D.4 Proof of Step 3

Lemma 28 Under Assumption 1, we have B2,n = OP (1).

Proof Introduce the notation f21 = 1
n

∑n
t=1 b̃tt and f22 = 1

n(n−1)
∑n

t=1

∑
u6=t b̃tu, and

observe that f2 = f21 − f22. Next, we define the following terms:

B3,n =
1√
B2,n

=
nE[〈ãii, f2〉2|D2n

n+1]

E[h̃2it]
, and B4,n =

nE[〈ãii, f21〉2|D2n
n+1]

E[h̃2it]

Next, we observe that the random variable B3,n − B4,n converges in probability to 0. We
do this by proving that the second moment of B3,n −B4,n converges to 0 with n under As-

59



Shekhar, Kim, and Ramdas

sumption 1.

E[(B3,n −B4,n)2] =
n2

E[h̃2tt]
E
[(
E[〈ãii, f22〉2|D2n

n+1]− 2E[〈ãii, f21〉〈ãii, f22〉|D2n
n+1]

)2]
(48)

≤ n2

E[h̃2tt]
E
[(
〈ãii, f22〉2 − 2〈ãii, f21〉〈ãii, f22〉

)2]
(49)

≤ 2n2

E[h̃2tt]
E
[
〈ãii, f22〉4 + 4〈ãii, f21〉2〈ãii, f22〉2

]
(50)

≤ 2n2

E[h̃2tt]

(
E
[
〈ãii, f22〉4

]
+ 4E

[
〈ãii, f21〉4

]1/2 E [〈ãii, f22〉4]1/2) . (51)

= O

(
E[n−1h̃4it + h̃2it + h̃2iu]

nE[h̃2tt]

)
→ 0. (52)

In the above display,
(49) uses the (conditional) version of Jensen’s inequality along with the convexity of x 7→ x2,
(50) uses the fact that (x+ y)2 ≤ 2(x2 + y2),
(51) uses the Cauchy-Schwarz inequality, and
(52) follows by expanding the terms f21 and f22 in terms of b̃tu, and simplifying the ex-
pressions exploiting the fact that the terms containing odd powers of 〈ãii, b̃tu〉 are zero in
expectation. The final terms in (52) is exactly the condition in Assumption 1.

Note that 1/B4,n can be written as follows:

1

B4,n
=

E[h̃2it]

nE
[
〈ãii, 1

n

∑n
t=1 b̃tt〉2

] ,
which can be shown to be stochastically bounded under the conditions of Assumption 1,
by following the exact same argument used by Kim and Ramdas (2023) in proving that the
term (II) in their Eq.(53) is stochastically boundeded.

To complete the proof, we will show that the combination of the two facts proved
above; that is, (i) B3,n − B4,n

p−→ 0 and (ii) 1/B4,n = OP (1), are sufficient to conclude
that 1/B3,n =

√
B2,n is also stochastically bounded. In particular, these two results imply

that for any ε > 0, we can find a real number 1 ≤ m < ∞, and two integers n1, n2 < ∞,
such that the following statements hold:

P(1/B4,n > 2m) ≤ ε/2, and P(|B3,n −B4,n| > m) ≤ ε/2.

Hence, we have the following for any n ≥ nε := max{n1, n2}:

P
(

1

B3,n
> m

)
≤ P

(
1

B4,n − |B4,n −B3,n|
> m

)
≤ P

(
1

B4,n
> 2m

)
+ P (|B3,n −B4,n| > m) ≤ ε.

Thus, we have shown that 1/B3,n is stochastically bounded; that is, for every ε > 0, there
exists an m <∞, such that for all n ≥ nε, we have P (1/B3,n > m) ≤ ε.
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Appendix E. Power of the cross-HSIC Test

In this section, we prove the results on consistency against fixed and local alternatives (The-
orem 9 and Theorem 10) of our cross-HSIC test, stated in Section 6. The proofs of both of
these results can be obtained from a more abstract result, identifying sufficient condtions
for the cross-HSIC test to be consistent, which we state and prove in Appendix E.1. Then,
in the next two subsections, we use this general result to prove Theorem 9 and Theorem 10.

Additional Notation. Throughout this section, we will use shorthand notation for some
commonly used terms. For any 1 ≤ i, j,≤ n, we use hij to represent h(Zi, Zj) = 1

2aii +

ajj − aij − aij , use h̃ij for denoting the centered version of hij , i.e., h̃ij = hij − (ω − µν).
Recall that ω, µ and ν denote the kernel mean embeddings of PXY , PX and PY , and
aij = k(Xi, ·)`(Yj , ·). Furthermore, recall the definition of the cross-HSIC statistic,

xHSICn = 〈f1, f2〉, where f1 =
1

n(n− 1)

∑
i 6=j

hij , and f2 =
1

n(n− 1)

∑
t6=u

htu.

We will use f̃1 and f̃2 to denote the centered versions of f1 and f2 respectively; that is,
f̃1 = f1 − (ω − µν) and f̃2 = f2 − (ω − µν). Finally, introduce the following term, for any
1 ≤ i ≤ n,

Ai =
1

n− 1

n∑
j=1

hij =
1

n− 1

n∑
j=1,j 6=i

hij .

As before, we use Ãi to denote the centered version of Ai, and use Ān to denote the average
of the A1, . . . , An.

E.1 General Conditions for Consistency

To identify sufficient conditions for the consistency of the cross-HSIC test, Ψ =
1xHSICn>z1−α , we first study this problem in a general scenario, in which, the distribu-
tion as well as the kernels can change with n. In particular, we consider a sequence of
distributions {PXY,n : n ≥ 1} and kernels {(kn, `n) : n ≥ 1}, and let D2n

1 denote 2n i.i.d.
draws from PXY,n, for n ≥ 1. As in our previous proofs, we drop the k×` from the subscript
of the inner products, while referring to 〈·, ·〉k×`.

Theorem 29 (General conditions for consistency) Consider the independence test-
ing problem with observations D2n

1 = {(Xi, Yi) : 1 ≤ i ≤ 2n} drawn i.i.d. from the distribu-
tion PXY,n, with marginals PX,n and PY,n. Let γ2n denote HSIC(PXY,n,K,L), and suppose
there exists a non-negative sequence {δn : n ≥ 1}, such that limn→∞ δn = 0, satisfying:

lim
n→∞

1

n2δnγ4n

(
E
[〈
h̃12, h̃34

〉2
+ γ2n

(〈
h̃12, h̃12

〉
+ n

〈
h̃12, h̃13

〉)])
= 0. (53)

Then, the test Ψ = 1xHSICn>z1−α is consistent against the sequence of alternatives {PXY,n :
n ≥ 1}.
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Proof Recall that the test Ψ = 1xHSICn>z1−α rejects the null if the statistic xHSICn exceeds
the (1 − α)-quantile of the standard normal distribution. Hence, its type-II error can be
bounded above, as follows:

P (Ψ = 0) = P
(

xHSICn <
z1−αsn√

n

)
≤ P

(
xHSICn < z1−α

√
E[s2n]/nδn

)
+ δn. (54)

For the inequality in the above display, we introduce the event En = {s2n < E[s2n]/δn}, and
note that, by Markov’s inequality, we have P(Ecn) ≤ δn. Recall that xHSICn and sn were
defined in (4) and (6) respectively.

We first note that under the conditions of Theorem 29, the expectation of s2n grows at
a rate smaller than nδnγ

4
n.

Lemma 30 Under the conditions of Theorem 29, we have limn→∞ E[s2n]/(nδnγ
4
n) = 0.

As a consequence of this result, proved in Appendix E.1.1, we note that
limn→∞ z1−α

√
E[s2n]/nδnγ4n → 0, which implies that for some finite n0, we have

z1−α
√

E[s2n]/nδn ≤ γ2n/2, for all n ≥ n0. Hence, for all n ≥ n0, we have the following,

P (Ψ = 0) ≤ P
(
xHSICn < γ2n/2

)
+ δn = P

(
xHSICn − γ2n < −γ2n/2

)
+ δn.

Since E[xHSICn] = γ2n, we have the following, by Chebyshev’s inequality,

P (Ψ = 0) ≤ 4V(xHSICn)

γ4n
+ δn.

By assumption, limn→∞ δn = 0, and we complete the proof by showing that the first term
in the right-hand-side of the above display also goes to zero.

Lemma 31 Under the conditions of Theorem 29, we have limn→∞
V(xHSICn)

γ4n
= 0.

The proof of this lemma is in Appendix E.1.2.

E.1.1 Proof of Theorem 30

Proof With the notation introduced at the beginning of this section, we have the following:

E[s2n] . E

[
1

n

n∑
i=1

〈
Ai − Ān, f2

〉2]
(55)

= E
[
〈Ai − Ān, f2〉2

]
= E

 1

n2

〈
n∑
j=1

Ai −Aj , f2

〉2
 (56)

. E
[
〈A1 −A2, f2〉2

]
= E

[
〈Ã1 − Ã2, f2〉2

]
(57)

. E
[
〈Ã1, f2〉2

]
= E

[〈
Ã1, f̃2 + (ω − µν)

〉2]
. (58)
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In the above display, the first equality in (56) uses the fact that (Ai − Ān) and (Aj − Ān)
are equal in distribution. (57) uses Cauchy-Schwarz inequality on the ‘cross-terms’ in the
expansion of 〈

∑n
j=1Ai−Aj , f2〉2. The first term in (58) follows by using (x+y)2 . x2 +y2,

and the fact that Ã1 and Ã2 are equal in distribution.

Upper bounding the last term in (58), we obtain

E[s2n] . E
[〈
Ã1, f̃2

〉2
+
〈
Ã1, ω − µν

〉2]
. E

[〈
h̃12, f̃2

〉2
+
〈
Ã1, ω − µν

〉2]
(59)

= term1 + term2. (60)

First, we upper bound term1 as follows:

term1 =
1

n2(n− 1)2
E

〈h̃12,∑
t6=u

h̃tu

〉2


.
1

n4

(
n2E

[〈
h̃12, h̃34

〉2]
+ n3E

[〈
h̃12, h̃34

〉〈
h̃12, h̃35

〉])
.

1

n
E
[〈
h̃12, h̃34

〉2]
. (61)

Next, we can get an upper bound on term2 as follows:

term2 =
〈
Ã1, ω − µν

〉2 (a)

≤ ‖Ã1‖2‖ω − µν‖2 = ‖Ã1‖2γ2n

.
γ2n
n2

(
n
〈
h̃12, h̃12

〉
+ n2

〈
h̃12, h̃13

〉)
. γ2n


〈
h̃12, h̃12

〉
n

+
〈
h̃12, h̃13

〉 . (62)

Combining (61) and (62), we get

E[s2n] .
1

n

(
E
[〈
h̃12, h̃34

〉2]
+ γ2n

(〈
h̃12, h̃12

〉
+ n

〈
h̃12, h̃13

〉))
,

which implies that

E[s2n]

nδnγ4n
.

1

n2δnγ4n

(
E
[〈
h̃12, h̃34

〉2]
+ γ2n

(〈
h̃12, h̃12

〉
+ n

〈
h̃12, h̃13

〉))
. (63)

By the assumptions of Theorem 29, the right-hand-side of (63) converges to 0.
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E.1.2 Proof of Theorem 31

Recall that xHSICn can be rewritten as

xHSICn = 〈f̃1 + (ω − µν), f̃2 + (ω − µν)〉

=
〈
f̃1, f̃2

〉
+
〈
f̃1, ω − µν

〉
+
〈
f̃2, ω − µν

〉
+ γ2n. (64)

Using this, we can write the variance of the xHSICn statistic as

V(xHSICn) = E[(xHSICn − γ2n)2]

= E[〈f̃1, f̃2〉2] + E[〈f̃1, ω − µν〉2] + E[〈f̃2, ω − µν〉2] (65)

. E[‖f̃1‖2]E[‖f̃2‖2] + γ2n

(
E[‖f̃1‖2] + E[‖f̃2‖2]

)
(66)

. E[‖f̃1‖2]
(
E[‖f̃1‖2] + γ2n

)
. (67)

For the equality in (65), we used (64), along with the fact that all the ‘cross-terms’ in
expansion of E[(xHSICn − γ2n)2] have zero expectation. (66) follows by applying Cauchy-
Schwarz inequality to all terms of (65), while (67) uses the fact that f̃1 and f̃2 are equal in
distribution.

Since f̃1 = 1
n(n−1)

∑
i 6=j h̃ij , we can upper bound its norm as follows:

E[‖f̃1‖2] .
1

n4

∑
i 6=j

∑
r 6=s

E[〈h̃ij , h̃rs〉] .
1

n4

(
n2E[〈h̃12, h̃12〉] + n3E[〈h̃12, h̃13〉]

)
.

1

n2

(
E[〈h̃12, h̃12〉] + nE[〈h̃12, h̃13〉]

)
. (68)

Combining (68) with (67), we get

V(xHSICn)

γ4n
.

(
E[〈h̃12, h̃12〉+ n〈h̃12, h̃13〉]

n2γ2n

)
,

which converges to 0 under the conditions of Theorem 29.

E.2 Consistency against fixed alternatives (Theorem 9)

In the case of fixed alternatives, the term γ2n = HSIC(PXY , k, `) does not change with n.
Hence, to prove Theorem 9, it suffices to verify (53) with γn set to some fixed γ > 0. We
proceed in the following steps.

Verifying E[〈h̃12, h̃34〉2] < ∞. Using the fact that h̃12 = h12 − (ω − µν), we have the
following:

E
[
〈h̃12, h̃34〉2

]
≤ E

[
‖h̃12‖2‖h̃34‖2

]
= E

[
‖h̃12‖2

]2
. E

[(
‖h12‖2 + γ2

)]2
. E

[
‖h12‖2

]2
+ γ4. (69)

Hence it suffices to show that under the conditions of Theorem 9, E[‖h12‖2] <∞, which we
do in Theorem 32 below.
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Verifying E[〈h̃12, h̃12〉] <∞. Expanding this term, we have

E[〈h̃12, h̃12〉] = E
[
‖h12 − (ω − µν)‖2

]
. E[‖h12‖2] + γ2. (70)

Again, this reduces to showing that E[‖h12‖2] <∞, which we do in Theorem 32.
Verifying E[〈h̃12, h̃13〉] <∞. We again reduce this condition to Theorem 32 as follows:

E
[
〈h̃12, h̃13〉

]
≤ E

[
‖h̃12‖‖h̃13‖

]
= E

[√
‖h̃12‖2‖h̃13‖2

]
(i)

. E
[
‖h̃12‖2 + ‖h̃13‖2

]
. γ2 + E

[
‖h12‖2

]
. (71)

In the above display, (i) follows from an application of the AM-GM inequality;
√
x2y2 ≤

(x2 + y2)/2.

Lemma 32 For (X,Y ) drawn according to PXY , if E[k(X,X)`(Y, Y )] +
E[k(X,X)]E[`(Y, Y )] <∞, then we have E[‖h12‖2] <∞.

Proof Recall that we have 2h12 = a11 + a22− a12− a21, where aij = k(Xi, ·)`(Yj , ·). Thus,
on expanding ‖h12‖2, we have

‖h12‖2 ' ‖a11 + a22 − a12 − a21‖2 ≤ ‖a11 − a12‖2 + ‖a22 − a21‖2

' ‖a11 − a12‖2 ≤ ‖a11‖2 + ‖a12‖2 = k(X1, X1)`(Y1, Y1) + k(X1, X1)`(Y2, Y2).

This implies that

E[‖h12‖2] ≤ E[k(X1, X1)`(Y1, Y1) + k(X1, X1)`(Y2, Y2)]

= E[k(X,X)`(Y, Y )] + E[k(X,X)]E[`(Y, Y )],

where (X,Y ) are drawn according to PXY . This completes the proof.

E.3 Type-I error and consistency against local alternatives (Theorem 10)

To prove this result, we will verify the conditions required by Theorem 7 and Theorem 29 to
prove the type-I error control and consistency respectively. For verifying these conditions,
we will need to use some facts about the Gaussian kernel that were derived by Li and Yuan
(2019). We collect the required properties below.

Fact 33 Suppose Zi = (Xi, Yi) ∼ PX×PY for i = 1, 2, 3, 4 be independent random variables,
with Xi and Yi taking values in Rd1 and Rd2 respectively. Assume that PX and PY admit
densities pX and pY respectively, with pX ∈ Wβ,2(M1) and PY ∈ Wβ,2(M2) with M1×M2 =
M . Let kn(x, x′) = exp

(
−cn‖x− x′‖22

)
and `n(y, y′) = exp(−cn‖y − y′‖22) denote Gaussian

kernels on Rd1 and Rd1 respectively, with cn = o(n4/d). Then, we have the following:

EPX
[
k̃2n(X1, X2)

]
� c−d1/2n , and EPY

[˜̀2
n(Y1, Y2)

]
� c−d2/2n , (72)

EPX
[
k̃4n(X1, X2)

]
� c−d1/2n , and EPY

[˜̀4
n(Y1, Y2)

]
� c−d2/2n , (73)

EPX
[
k̃2n(X1, X2)k̃

2
n(X1, X3)

]
. c−3d1/4n , and EPY

[˜̀2
n(Y1, Y2)˜̀2n(Y1, Y3)

]
. c−3d2/4n .

(74)
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In the expressions above, � and . hide multiplicative factors depending on d1, d2, d and M .

The above stated conditions will be used to show the type-I error control by the cross-
HSIC test in Appendix E.3.1. We now state the properties required for the proof of consis-
tency.

Fact 34 Suppose Zi = (Xi, Yi) ∼ PXY , for i = 1, 2, 3, and assume that PXY , PX and PY
have smooth densities pXY , pX and pY respectively. Then, we have the following:

max
(
EPXY [kn(X,X)`n(Y, Y )], EPXY [kn(X,X)]EPXY [`n(Y, Y )]

)
.M2c−d/2n , (75)

and γ2n = HSIC(PXY , kn, `n) & c−d/2n ‖pXY − pX × pY ‖2L2 . (76)

E.3.1 Type-I error bound

To show that the cross-HSIC test controls the type-I error at level α asymptotically, we
verify that the two conditions of Assumption 1 are satisfied for the kernels considered
in Theorem 10. In particular, using the fact that g̃(z1, z2) = k̃(x1, x2) × ˜̀(y1, y2) for zi =
(xi, yi) and i = 1, 2; we note that it suffices to verify the following conditions under the null:

lim
n→∞

1

n2
E[k̃(X1, X2)

4]

E[k̃(X1, X2)2]2

E[˜̀(Y1, Y2)4]
E[˜̀(Y1, Y2)2]2 = 0, (77)

lim
n→∞

1

n

E[k̃(X1, X2)
2k̃(X1, X3)

2]

E[k̃(X1, X2)2]2

E[˜̀(Y1, Y2)2 ˜̀(Y1, Y3)2]
E[˜̀(Y1, Y2)2]2 = 0, (78)

lim
n→∞

λ21,n∑∞
i=1 λ

2
i,n

= 0. (79)

We proceed in the following steps:
Step 1: verification of (77). Using the bounds stated in (72) and (73), we obtain

E[k̃(X1, X2)
4]

E[k̃(X1, X2)2]2
.

c
−d1/2
n

(c
−d1/2
n )2

, and
E[˜̀(Y1, Y2)4]
E[˜̀(Y1, Y2)2]2 .

c
−d2/2
n

(c
−d2/2
n )2

,

which implies that

1

n2
E[k̃(X1, X2)

4]

E[k̃(X1, X2)2]2

E[˜̀(Y1, Y2)4]
E[˜̀(Y1, Y2)2]2 .

1

n2
c
−d/2
n

(c
−d/2
n )2

=
c
d/2
n

n2
→ 0,

as required in (77).
Step 2: verification of (78). Considering the k̃ dependent term of (78), we note

that (73) and (74) together imply the following bound:

E[k̃(X1, X2)
2k̃(X1, X3)

2]

E[k̃(X1, X2)2]2
.

c
−3d1/4
n

(c
−d1/2
n )2

= cd1/4n .

Similarly, the ˜̀dependent term is upper bounded by c
d2/4
n , reducing the condition to

1

n

E[k̃(X1, X2)
2k̃(X1, X3)

2]

E[k̃(X1, X2)2]2

E[˜̀(Y1, Y2)2 ˜̀(Y1, Y3)2]
E[˜̀(Y1, Y2)2]2 .

c
d/4
n

n
=
( cn

n4/d

)d/4
.
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Since cn = o(n4/d), the result follows.
Step 3: verification of (79). We first note that the condition in (79) is equivalent to

lim
n→∞

E [E[g̃(Z1, Z2)g̃(Z1, Z3)|Z2, Z3]]

E[g̃(Z1, Z2)2]2
→ 0.

Now, the denominator term satisfies:

E[k̃(X1, X2)
2]× E[˜̀(X1, Y2)

2] � c−d1/2n × c−d2/2n = c−d/2n ,

which implies that it suffices to show

cdn E [E[g̃(Z1, Z2)g̃(Z1, Z3)|Z2, Z3]]→ 0.

For Gaussian kernels with cn = o(n4/d), Li and Yuan (2019) showed that the above condition
is true, in the course of proving their Theorem 1.

Hence, we have verified all the requirements for the limiting null distribution of xHSICn

to be N(0, 1), which in turn, implies that the cross-HSIC test controls the type-I error at
level-α asymptotically.

E.3.2 Consistency

To show the consistency of the cross-HSIC test against local alternatives, we need to show
that

lim
n→∞

Dn ≡ Dn(PXY , k, `) = 0,

where Dn(PXY , k, `) :=
1

n2δnγ4n

(
E
[〈
h̃12, h̃34

〉2
+ γ2n

(〈
h̃12, h̃12

〉
+ n

〈
h̃12, h̃13

〉]))
.

Following the bounds derived in the proof of Theorem 9 in Appendix E.2, we have

δnDn .
1

n2γ4n

(
E[‖h12‖2]2 + γ4n + γ2n(1 + n)(E[‖h12‖2] + γ2n)

)
. (80)

In the above display, we used (69), (70) and (71) to upper bound the three terms involved in
the definition of Dn. Now, from Theorem 32, we know that E[‖h12‖2] ≤ E[k(X,X)`(Y, Y )]+
E[k(X,X)]E[`(Y, Y )]. Now, for the case of Gaussian kernels, this term is further upper
bounded as follows, using (75):

max
(
E[k(X,X)`(Y, Y )], E[k(X,X)]E[`(Y, Y )]

)
.M2c−d/2n . (81)

The final component of the proof is the fact that under the conditions of Theorem 10, we
also have the following bound on the true HSIC value using (76):

γ2n & c−d/2n ‖pXY − pX × pY ‖2L2 > c−d/2n ∆2
n. (82)

Plugging (81) and (82) into (80), we get

Dnδn .
E[‖h12‖2]2

n2γ4n
+

E[‖h12‖2]
nγ2n

+
1

n2
+

1

n
.

M4ν−dn
n2c−dn ∆4

n

+
M2c

−d/2
n

nc
−d/2
n ∆2

n

+
1

n

.
1(

n1/2∆n

)4 +
1(

n1/2∆n

)2 .
1(

n1/2∆n

)2 . (83)
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Introduce the term β′ = 1
2 −

2β
d+4β = d

2(d+4β) > 0, and note that (83) implies

Dn .
1

δnn2β
′ (∆nn2β/(d+4β)

)2 .
By selecting δn = n−2β

′′
for any 0 < β′′ < β′, and using the assumptions that (i)

limn→∞∆nn
2β/(d+4β) = ∞, and (ii) ‖pXY − pX × pY ‖L2 > ∆n for all PXY ∈ P(1)

n with
density pXY ; we have

lim
n→∞

sup
PXY ∈P

(1)
n

Dn = 0.

By Theorem 29, the above condition implies the required consistency against smooth local
alternatives of our cross-HSIC test.
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