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Abstract

Reinforcement learning algorithms are known to exhibit a variety of convergence rates
depending on the problem structure. Recent years have witnessed considerable progress
in developing theory that is instance-dependent, along with algorithms that achieve such
instance-optimal guarantees. However, important questions remain in how to utilize such
notions for inferential purposes, or for early stopping, so that data and computational
resources can be saved for “easy” problems. This paper develops data-dependent procedures
that output instance-dependent confidence regions for evaluating and optimizing policies
in a Markov decision process. Notably, our procedures require only black-box access to
an instance-optimal algorithm, and re-use the samples used in the estimation algorithm
itself. The resulting data-dependent stopping rule adapts instance-specific difficulty of
the problem and allows for early termination for problems with favorable structure. We
highlight benefit of such early stopping rules via some numerical studies.

Keywords: Reinforcement learning, policy evaluation, confidence intervals, instance
dependence, instance optimality

1. Introduction

Reinforcement learning (RL) refers to a broad class of methods that are focused on learning
how to make (near)-optimal decisions in dynamic environments. Although RL-based meth-
ods are now being deployed in various application domains (e.g., Tobin et al. (2017); Levine
et al. (2016); Silver et al. (2016);  Lukasz Kaiser et al. (2020); Schrittwieser et al. (2020)),
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such deployments often lack a secure theoretical foundation. Given that RL involves mak-
ing real-world decisions, often autonomously, the impact on humans can be significant, and
there is an urgent need to shore up the foundations, providing practical and actionable
guidelines for RL. A major part of the challenge is that popular RL algorithms exhibit a
variety of behavior across domains and problem instances and existing methods and asso-
ciated guarantees, generally tailored to the worst-case setting, fail to capture this variety.
One way to move beyond worst-case bounds is to develop guarantees that adapt to the
problem difficulty, helping to reveal what aspects of an RL problem make it an “easy”
or “hard” problem. Indeed, in recent years, such a research agenda has begun to emerge
and we have gained a refined understanding of the instance-dependent nature of various
reinforcement learning problems (e.g., Simchowitz and Jamieson, 2019; Zanette and Brun-
skill, 2019; Zanette et al., 2019; Maillard et al., 2014; Khamaru et al., 2021; Pananjady and
Wainwright, 2021).

The broader challenge—and the focus of this paper—is to recognize that RL involves
decision-making under uncertainty, and to develop an inferential theory for RL problems.
Such theory must not only be instance-dependent, but also data-dependent, meaning that
quantities such as confidence intervals should be computable using available data. The latter
property is not shared by most past instance-dependent guarantees in RL; with limited
exceptions—e.g., Theorem 1(a) in Pananjady and Wainwright (2021) or the results on
adaptive sampling leveraging instance-dependent structure in Zanette et al. (2019)—most
results from past work depend on population-level objects—such as probability transition
matrices, Bellman variances, or reward function bounds—that are not known to the user.
Thus instance-dependent guarantees remain a post hoc justification of why certain problem
are “easier” to solve than others, and somewhat inconsequential until after training.

Our work aims to close this gap between theory and practice by providing theoretical
guarantees that are both instance-dependent and data-dependent. The resulting bounds
are both sharp up to logarithmic factors and computable based on data. To illustrate
the significance of our confidence intervals, we design an early-stopping procedure based
on these intervals which lead to substantial reductions in the amount of data required for
a target accuracy, in an effort to demonstrate how notions of instance-dependence can
be used to aid the training process. In more detail, we make these contributions in the
context of Markov decision processes (MDPs) with a finite number of states and actions,
and problem-dependent confidence regions both for policy evaluation and optimal value
function estimation. Contrary to prior work on instance-dependent analysis, our work
allows a user to adapt their data requirements for the specific MDP at hand by exploiting
the local difficulty of the MDP. As we show, doing so can lead to significant reductions in
the sample sizes required for effective learning.

1.1 Related work

The problem of estimating the value function for a given policy in a Markov decision process
(MDP) is a key subroutine in many modern-day RL algorithms. Examples include policy
iteration (Howard, 1960), policy gradient, and actor-critic methods (Williams, 1992; Konda
and Tsitsiklis, 2001; Silver et al., 2014; Mnih et al., 2016). Such use cases have provided the
impetus for the recent interest in analyzing policy evaluation. Much of the focus in the past
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has been on understanding TD-type algorithms with instance-dependent analyses: function
approximation in the `2-norm (Bhandari et al., 2018; Dalal et al., 2018; Xu et al., 2020),
tabular setting in the `8-norm (Xia et al., 2021; Pananjady and Wainwright, 2021), or
under kernel function approximation (Duan et al., 2021). Many of these results established
instance-specific guarantees that improve upon global worst-case bounds (Azar et al., 2013).
In particular, Khamaru et al. (2021) establish a local minimax lower-bound in the tabular
setting, and develop a form of variance-reduced stochastic approximation that achieves it.

Policy optimization involves solving for an optimal policy within a given MDP. There
exists a variety of different techniques for solving policy optimization; the one of interest
here is Q-learning, introduced in Watkins and Dayan (1992). There has been much prior
work on the theory of Q-learning, such as convergence of the standard updates (Tsitsiklis,
1994; Jaakkola et al., 1994; Even-Dar and Mansour, 2003; Wainwright, 2019a; Li et al.,
2021), global minimax lower bounds for estimation of optimal Q-functions (Azar et al.,
2013), variance-reduced versions of Q-learning and their worst-case optimality (Sidford
et al., 2018b,a; Wainwright, 2019b), along with extensions to the asynchronous setting (Li
et al., 2020b). Xia et al. (2021) establish a local non-asymptotic minimax lower bound for
estimating the Q-function, and prove that it can be achieved by a variance-reduced form of
Q-learning.

1.2 Contributions

The main contributions of this paper are to provide guarantees for policy evaluation and
optimization that are both instance-optimal and data-dependent. Our first main result,
stated as Theorem 1, applies to a meta-procedure that we propose. This meta-procedure
takes as input any base procedure for policy evaluation that is instance-optimal up to con-
stant factors; invokes this base procedure using the bulk of the dataset, and then uses the
resulting output along with the full dataset to compute bounds on the estimated value
function. We prove that these bounds—which are data-dependent by construction—are
also instance-optimal up to constant factors. Thus, they can be inverted so as to produce
a confidence region for the value function, and up to constant factors, the width of this
confidence region is as small as possible for a pre-specified coverage. Next, based on the
guarantees from Theorem 1, we introduce an early stopping protocol for policy evaluation,
known as the EmpIRE procedure, that is guaranteed to output instance-optimal confidence
regions up to constant factors upon stopping. As we show both theoretically and in simula-
tion, use of this early stopping procedure can lead to significant reductions in sample sizes
compared to the traditional worst-case criteria.

Figure 1 gives a preview of the results to come, including the behavior of this early
stopping procedure (panel (a)), along with the attendant benefits of substantially reduced
sample sizes (panel (b)). The EmpIRE method is an epoch-based protocol: within each
epoch, it uses all currently available samples to estimate the value function along with its
associated `8-error, and it terminates when the error estimate drops below a pre-specified
target. Our guarantees ensure that with high probability over all epochs, the error estimate
is an upper bound on the true error, so that the final output of the procedure has guaranteed
accuracy with the same probability. Figure 1(a) illustrates the behavior of the EmpIRE
procedure over a simulated run. The predicted error incorporates the instance-dependent
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Figure 1. (a) Illustration of the behavior of the EmpIRE early stopping protocol when
combined with an instance-optimal procedure for estimating value functions. The true error
(blue line) of the value function estimate is plotted as a function of the number of samples
used (or equivalently, iterations of the algorithm). The EmpIRE protocol checks the error
at the end of a dyadically increasing sequence of epochs, as marked with vertical green lines;
the associated error estimates are marked with red X’s. For this particular run, the EmpIRE
protocol terminates at the end of the 4th epoch when the predicted error is smaller than
the target error (orange line). (b) Illustration of the savings in sample size afforded by
the EmpIRE protocol for different choices of γ and λ. Plots show the ratio of worst-case
sample size over the actual sample size (vertical axis) versus the log discount complexity
(horizontal axis).

structure of the MDP at hand and allows us to terminate the procedure earlier for “easy”
problems. Figure 1(b) highlights how difficulty can vary dramatically across different in-
stances. We do so by constructing a class of MDPs for which the difficulty can be controlled
by a parameter λ, with larger λ indicating an easier problem. For a given accuracy ε, let
npεq be the number of samples required to achieve an estimate with this accuracy. We
can bound this sample complexity using either global minimax theory (based on worst-case
assumptions), and compare it to the instance-dependent results of the EmpIRE procedure.
Figure 1(b) plots the ratio of the worst-case prediction (from global minimax) to the num-
ber of samples used by EmpIRE as a function of the discount parameter γ, for two different
choices of the hardness parameter λ. We see that EmpIRE can yield dramatic reductions
in sample complexity compared to a worst-case guarantee—on the order of 103 for larger
discounts.

We also derive similar guarantees in the more challenging setting of policy optimization,
where we again analyze a meta-procedure that takes as input any algorithm that returns an
instance-optimal estimate of the optimal Q-value function. Theorem 3 gives the resulting
data-dependent and instance-dependent guarantees enjoyed by this procedure, and inverting
these bounds again leads confidence regions for the optimal value function. As before, these
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guarantees can be combined with the EmpIRE protocol so as to perform early stopping
while still retaining theoretical guarantees for policy optimization.

The remainder of this paper is organized as follows. Section 3 is devoted to results on the
policy evaluation problem, and Section 4 discusses results related to policy optimization via
optimal value function estimation. In Section 5, we provide the proofs of our main results,
with some more technical results deferred to the appendices. We conclude with a discussion
in Section 6.

1.3 Notation

For a positive integer n, let rns – t1, 2, . . . , nu. For a finite set S, we use |S| to denote its
cardinality. We let 1 denote the all-ones vector in Rd. Let ej denote the jth standard basis
vector in Rd. For a vector u P Rd, we use |u| to denote the entry-wise absolute value of a
vector u P Rd; square-roots of vectors are, analogously, taken entry-wise. Given two vectors
u, v of matching dimensions, we use u ľ v to indicate that the difference vector u ´ v is
entry-wise non-negative; we define u ĺ v analogously. For a given matrix A P Rdˆd we
define the diagonal “norm” }A}diag “ maxi“1,...,d

ˇ

ˇeTi Aei
ˇ

ˇ, i.e., the maximum diagonal entry
in absolute terms. We use À and Op¨q to denote relations that hold up to constant and
logarithmic factors.

2. Background

In this section, we provide some background on tabular Markov decision processes (MDPs),
policy evaluation, and optimal value estimation problems.

2.1 Markov decision processes

We start with a brief introduction to Markov decision processes (MDPs) with finite state
X and action U spaces; see Puterman (2014); Bertsekas (2009); Sutton and Barto (2018)
for an in-depth discussion. In a Markov decision process, the state x evolves dynamically
in time under the influence of the actions. Concretely, there is a collection of probability
transition kernels, tPPPup¨ | xq | px, uq P X ˆ Uu, where PPPupx

1 | xq denotes the probability of
a transition to the state x1 when the action u is taken at the current state x. In addition,
an MDP is equipped with a reward function r that maps every state-action pair px, uq to a
real number rpx, uq. The reward rpx, uq is the reward received upon performing the action
u in the state x. Overall, a given MDP is characterized by the pair pPPP, rq, along with a
discount factor γ P p0, 1q.

A deterministic policy π is a mapping X Ñ U : the quantity πpxq P U indicates the
action to be taken in the state x. The value of a policy is defined by the expected sum
of discounted rewards in an infinite sample path. More precisely, for a given policy π and
discount factor γ P p0, 1q, the value function for policy π is given by

V πpxq– E
”

8
ÿ

k“0

γk ¨ rpxk, ukq | x0 “ x
ı

, where uk “ πpxkq for all k ě 0. (1)
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A closely related object is the action-value or Q-function associated with the policy, which
is given by

Qπpx, uq– E
”

8
ÿ

k“0

γk ¨ rpxk, ukq | px0, u0q “ px, uq
ı

, where uk “ πpxkq for all k ě 1.

(2)

Two core problems in reinforcement learning—and those that we analyze in this paper—
are policy evaluation and policy optimization. In the problem of policy evaluation, we
are given a fixed policy π, and our goal is to estimate its value function on the basis of
samples. In the policy optimization, our goal is to estimate the optimal policy, along with
the associated optimal Q-value function

Q‹px, uq– max
πPΠ

Qπpx, uq for all px, uq P X ˆ U , (3)

again on the basis of samples. As we now describe, both of these problems have equivalent
formulations as computing the fixed points of certain types of Bellman operators.

We conclude with some high-level remarks about our setting. The generative tabular
MRP model is perhaps the most restrictive, and the “easiest” RL setting to study; however
it is also one of the settings in which we have the most refined understanding of instance-
dependence, with respect to sharp upper and lower bounds (Khamaru et al., 2021; Xia
et al., 2021). It would be of considerable interest to study how one can utilize instance-
dependence in other, more complicated, settings such as with function approximation or
different sampling schemes.

2.2 Policy evaluation and Markov reward processes

We begin by formalizing the problem of policy evaluation. For a given MDP, if we fix some
deterministic policy π, then the MDP reduces to a Markov reward process (MRP) over the
state space X . More precisely, the state evolution over time is determined by the set of
transition functions tPPPπpxqp¨ | xq, x P X u, whereas the reward received when at state x is
given by rpx, πpxqq.

When the number of states is finite with |X |, the transition functions tPPPπpxqp¨ | xq, x P X u
and the rewards trpx, πpxqq | x P X u can be conveniently represented as a |X | ˆ |X | matrix
and a |X | dimensional vector, respectively. For ease of notation, we use P to denote this
|X | ˆ |X | matrix, and r to denote this |X | dimensional vector. Concretely, for any state
x P X , we define

rpxq– rpx, πpxqq and Ppx1, xq– PPPπpxqpx
1 | xq, (4)

where Ppx1, xq denotes the row corresponding to x and the column corresponding to x1. We
will often use Ppx1 | xq to denote Ppx1, xq. With this formulation at hand, it is clear that
evaluating the value of the policy π for the MDP P is the same as finding the value of the
MRP M “ pr,P, γq with reward r and transition P defined in equation (4).
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Bellman evaluation operator: Given an MRP M “ pr,P, γq, its value V ‹ can be
obtained as the unique fixed-point of the Bellman evaluation operator TTT. It acts on the set
of value functions in the following way:

TTTpV qpxq “ rpxq ` γ
ÿ

x1PX
Ppx1 | xqV px1q for all x P X .

For finite-dimensional MDPs, the value and reward functions can be viewed as |X |-dimensional
vectors, and the transition function as a |X |ˆ|X | dimensional matrix. As a result, the action
of the Bellman operator TTT can be written in the following compact form

TTTpV q “ r ` γPV, (5)

and the associated fixed point relation is given by V ‹ “ TTTpV ‹q. See Puterman (2014);
Sutton and Barto (2018); Bertsekas (2009) for more details.

Generative observation model for MRPs: In the learning setting, the pair pP, rq is
unknown and we assume that we have access to i.i.d. samples tpRk,Zkqu

n
k“1 from the reward

vector r and from the transition matrix P. Concretely, given a sample index k P t1, 2, . . . , nu,
we have for all state x P X

Zkp¨, xq „ Pp¨ | xq and ErRkpxqs “ rpxq. (6)

We also assume that the deviation of the reward sample Rkpxq from the true reward rpxq
is bounded:

|Rpxq ´ rpxq| ď Rmax for all x P X . (7)

In other words, for every sample k, we observe for every state x a reward Rkpxq and the
next state x1 „ Pp¨ | xq. Then we have Zkpx

1, xq “ 1, and the remaining entries in the row
corresponding to x are 0. Sometimes we will denote Zkpx

1, xq as Zkpx
1 | xq.

2.3 Policy optimization via optimal Q-function estimation

Recall that the goal of policy optimization is to find an optimal policy along with the
optimal Q-value function (cf. equation (3)). For MDPs with finite state space X and action
space U , any Q-value function can be represented as an element of R|X |ˆ|U |.

Moreover, the optimal Q-function Q‹ is the unique fixed point of the Bellman (optimal-
ity) operator JJJ, an operator on R|X |ˆ|U | given via

JJJpQqpx, uq– rpx, uq ` γ
ÿ

x1Px

Pupx
1 | uqmax

u1PU
Qpx1, u1q. (8)

Given Q‹, an optimal policy π‹ is given by π‹pxq P arg maxuPU Q
‹px, uq.

Generative observation model for MRPs: We operate in the generative observation
model: we are given n i.i.d. samples of the form tpZk,Rkqunk“1, where Rk is a matrix in
R|X |ˆ|U | and Zk is a collection of |U | matrices in R|X |ˆ|X | indexed by U . We denote by
Zkpx, uq the row-vector corresponding to state x and action u. The row-vector is computed
via sampling from the transition kernel PPPup¨ | xq, independently of all other px, uq, and
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making the entry corresponding to the next state equal to one, and the remaining entries
equal to zero. Concretely, for every state action pair px, uq P X ˆ U , we write

x1 „ PPPup¨ | xq and Zup¨ | xq “ 1x“x1 . (9)

We write Z1 `Z2 to indicate the collection of |U | matrices that are the sum of the ma-
trices from Z1 and Z2 that match in the action. We also assume that Rkpx, uq is a bounded
random variable with mean rpx, uq and that |Rkpx, uq ´ rpx, uq| ď Rmax. Additionally,
Rkpx, uq is taken to be independent of all other state-action pairs and of the observations
Zk.

3. Confidence Intervals for Policy Evaluation

In this section, we propose instance-dependent confidence regions for the policy evaluation
problem. We start with a discussion of the problem-dependent functional that determines
the fundamental difficulty of policy evaluation. As already detailed in Section 2.2, any
MDP policy pair pP, πq naturally gives rise to an MRP, and the policy evaluation problem
is equivalent to finding the value of that MRP. Accordingly, in the rest of the section, we
discuss the problem of finding the value of a general MRP M.

3.1 Optimal instance dependence for policy evaluation

Given access to a generative sample pR,Zq from an MRP M “ pr,P, γq, define the single-
sample empirical Bellman operator as

pTTTpV qpxq– Rpxq ` γ
ÿ

x1PX
Zpx1 | xqV px1q for all x P X . (10)

By construction, for any fixed value function V , the quantity pTTTpV q is an unbiased estimate of

TTTpV q. In the finite-dimensional setting, pTTTpV q can be considered a random vector with entries

given by pTTTpV qpxq, and we can talk about its covariance matrix. In a recent paper (Khamaru
et al., 2021), the authors show that the quantity that determines the difficulty of estimating
the value V ‹, given access to i.i.d. generative samples following the sampling mechanism (6),
is the following |X | ˆ |X | covariance matrix

Σ‹pr,P, V ‹q– pI´ γPq´1ΣvalpM, V ‹qpI´ γPq´J. (11)

Intuitively, the covariance matrix ΣvalpM, V ‹q “ CovppTTTpV ‹qq captures the noise of the
empirical Bellman operator, evaluated at the true value V ‹. This term is then compounded
by powers of the discounted transition matrix γP, which captures how the perturbation in
the Bellman operator propagates over time, and thus gives rise to the matrix pI ´ γPq´1

via the Neumann series.

Xia et al. (2021), show that the functional }Σ‹pr,P, V ‹q}
1
2
diag arises in lower bounds—in

both asymptotic and non-asymptotic settings—on the error of any procedure for estimating
the value function. In particular, any estimate Ṽn of the value function must necessarily

satisfy a lower bound of the form }Ṽn ´ V
‹}8 Á 1?

n
}Σ‹pr,P, V ‹q}

1
2
diag. Moreover Khamaru

et al. (2021) provide a practical scheme that achieves this lower bound, modulo logarithmic
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factors. In particular, in Theorem 1 and Proposition 1 of Khamaru et al. (2021) show
that a variance-reduced version of policy evaluation, using a total of n samples, returns an
estimate pVn such that

}pVn ´ V
‹}8 À

a

logp|X |{δq
?
n

}Σ‹pr,P, V ‹q}
1{2
diag `Op

1

n
q (12)

Notably, this upper bound can be much smaller than a worst case upper bound (see Section
3.2 in Khamaru et al. (2021)). In particular, the variance-reduced PE scheme provides
far more accurate estimates for problems that are “easier,” as measured by the size of the

functional }Σ‹pr,P, V ‹q}
1{2
diag.

3.2 A procedure for computing data-dependent bounds

Guarantees of the type (12)—showing that a certain procedure for policy evaluation is
instance-optimal—are theoretically interesting, but are not practically useful. In particular,

the bound (12) depends on the unknown population-level quantity }Σ‹pr,P, V ‹q}
1{2
diag, so

that for any given instance, we cannot actually evaluate the error bound achieved for a
given sample size. Conversely, when data is being collected in a sequential fashion, as is
often the case in practice, we cannot use this theory to decide when to stop.

The main result of this section rectifies this gap between theory and practice. We
introduce a data-dependent upper bound on the error in policy evaluation (PE). In addition
to the variance-reduced PE scheme described in Xia et al. (2021), there are other procedures
that could also be used to achieve an instance-optimal bound, such as the ROOT-OP
procedure applied to the Bellman operator (Li et al., 2020a; Mou et al., 2022). Rather than
focus on the details of a specific PE method, our theory applies to a generic class of PE
procedures, as we now define.

3.2.1 pϕf , ϕsq-instance-optimal algorithms

Suppose we have access to some procedure AEval that estimates the value function V ‹ of an
MRPM . More precisely, let pVn denote the estimate obtained from the algorithm AEval us-
ing n generative samples tRk,Zku

n
k“1. Our analysis applies to procedures that are instance-

optimal in the following sense.

Given a failure probability δ P p0, 1q, let ϕf and ϕs be non-negative functions of δ;
depending on the procedure under consideration, these functions may also involve other
known parameters (e.g. number of states, the discount factor γ, initialization of the algo-
rithm AEval etc.), but we omit such dependence so as to keep our notation streamlined. For
any such pair, we say that the procedure AEval is pϕf , ϕsq-instance optimal if the estimate
pVn satisfies the `8-bound

}pVn ´ V
‹}8 ď

ϕf pδq
?
n
¨ }Σ‹pr,P, V ‹q}

1{2
diag `

ϕspδq

n
. (13)

with probability at least 1 ´ δ. Thus, an pϕf , ϕsq-instance-optimal procedure returns an
estimate that, modulo any inflation of the error due to ϕf pδq being larger than one, achieves
the optimal instance-dependent bound. Note that the function ϕs is associated with the
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higher order term (decaying as n´1), so becomes negligible for larger sample sizes. As a
concrete example, as shown by the bound (12), there is a variance-reduced version of policy
evaluation that is instance-optimal in this sense with ϕf pδq —

a

logp|X |{δq. Our results
are based on the natural assumption that the functions ϕf p¨q and ϕsp¨q are non-negative,
non-decreasing in δ, and ϕf p¨q is uniformly lower bounded by 1.

In practice, even if an estimator enjoys the attractive guarantee (13), it cannot be
exploited in practice since the right-hand side depends on the unknown problem parameters
pr,P, V ‹q. The main result of the following section is to introduce a data-dependent quantity
that (a) also provides a high probability upper bound on }pVn ´ V

‹}8; and (b) matches the
guarantee (13) apart from changes to the leading pre-factor and the higher-order terms.

3.2.2 Constructing a data-dependent bound

In order to obtain a data-dependent bound on }pVn ´ V ‹}8, it suffices to estimate the

quantity }Σ‹pr,P, V ‹q}
1{2
diag. Our main result guarantees that there is a data-dependent

estimate pΣppVn,Dq that leads to an upper bound that holds with high probability, and is
within constant factors of the best possible bound. In terms of the shorthand bpV q –

Rmax ` γ}V }8, our empirical error estimate takes the form

EnppVn,D, δq–
2
?

6 ¨ ϕf pδq
?
n

¨ }pΣppVn,Dq}1{2diag `
2ϕspδq

n
`

6bppVnq

1´ γ
¨

a

logp8|X |{δq
n´ 1

. (14)

This error estimate is a function of a dataset D “ pDn,Dnhq where:

‚ The base estimator acts on Dn with cardinality n to compute the value function estimate
pVn – AEvalpDnq.

‚ We then re-use the larger data set Dn to compute a portion of the covariance estimate
pΣppVn,Dq.

‚ In addition, we make use of a smaller set D2nh corresponding to samples that are held-out,

and also enter the covariance estimate pΣppVn,Dq as detailed in Section 3.2.3 following our

theorem statement. This data set consists of 2nh samples with nh – r
24¨logp16|X |2{δq

p1´γq2
s.

With this set-up, we have the following guarantee:

Theorem 1 Given any pϕf , ϕs)-instance-optimal algorithm AEval as in (13), a tolerance

probability δ P p0, 1q and a dataset D “ pDn,D2nhq, where n ě ϕ2
f pδq

24¨8¨logp8|X |2{δq
p1´γq2

, the

empirical error estimate En from equation (14) has guarantees with probability at least 1´3δ:

(a) The `8-error is upper bounded by the empirical error estimate:

}pVn ´ V
‹}8 ď EnppVn,D, δq. (15a)

(b) Moreover, this guarantee is order-optimal in the sense that

EnppVn,D, δq ď
14 ¨ ϕf pδq
?
n

¨ }Σ‹pr,P, V ‹q}
1{2
diag `

4ϕspδq

n
`

40bpV ‹qϕf pδq

1´ γ
¨

b

logp8|X |
δ q

n´ 1
.

(15b)

10



EmpIRE: An Instance-Dependent Protocol

We prove this theorem in Section 5.1.

A few comments regarding Theorem 1 are in order. Since the empirical error estimate
En can be computed based on the data, we obtain a data-dependent confidence interval on
}pVn ´ V

‹}8. More precisely, we are guaranteed the inclusion

”

pVnpxq ´ En, pVnpxq ` En

ı

Q V ‹pxq uniformly for all x P X (16)

with probability at least 1´ 3δ.

Note that the dominant term in the error estimate En is proportional to n´1{2}pΣppVn,Dn,nhq}
1{2
diag,

and it corresponds to an estimate of the dominant term n´1{2}Σ‹pr,P, V ‹q}
1{2
diag from the

bound (13). The second bound (15b) in Theorem 1 ensures that En provides an optimal
approximation, up to constant pre-factors, of the leading order term on the right-hand side
of the bound (13).

3.2.3 Constructing the empirical covariance estimate

We now provide details on the construction of the empirical covariance estimate pΣvalppVn;Dq.
Recalling the definition (11), our procedure is guided by the decomposition

Σ‹pr,P, V ‹q “ pI´ γPq´1
looooomooooon

estimated using first
small holdout dataset

ΣvalpM, V ‹q
looooooomooooooon

estimated by re-using
the base procedure’s dataset

pI´ γPq´J
looooomooooon

estimated using second
small holdout dataset

.

Recall that we are given data of the form D “ pDn,D2nhq, where the dataset Dn was used

by the base procedure AEval to compute the value function estimate pVn. Our first step is
to re-use the samples Dn “ tpRj ,ZjqujPF to compute the V -statistic

pΣvalppVn;Dnq–
1

npn´ 1q

ÿ

j,kPF
jăk

pRj ´Rk ` γpZj ´ ZkqpVnqpRj ´Rk ` γpZj ´ ZkqpVnq
J.

(17)

Due to our re-use of the samples, the estimate pVn is dependent on the samples pRj ,Zjq that
define this V -statistic. Consequently, there are some technical innovations required in order
to relate this term to ΣvalpM, V ‹q. Notably, we do not make use of uniform convergence
results (which would lead to overly conservative requirements).

As for the remainder of our instance-dependent risk estimate, we partition the hold-out
set D2nh into two subsets pD1

nh
,D2

nh
q, as indexed by H1 and H2 respectively. We use this

data to compute the empirical averages

pZH1 “
1

nh

ÿ

iPH1

Zi and pZH2 “
1

nh

ÿ

iPH2

Zi. (18)

A standard approach would be to use the data to compute pVn to estimate P and plug
it in; while this approach would be asymptotically valid in the fixed dimension regime, it

11
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introduces higher order error terms that would depend on the dimension |X |. We utilize
these holdout sets to provide non-asymptotic confidence guarantees that are dimension-free.

With these three ingredients, our empirical covariance estimate is given by

pΣppVn,Dq “ pI´ γpZH1q
´1

pΣvalppVn,Dnq pI´ γpZH2q
´J. (19)

Recalling that nh – 2r192¨logp8|X |2{δq
p1´γq2

s, we note that the hold-out sets will typically be very

small relative to the sample size n used to compute the estimate pVn itself.

3.3 Early stopping with optimality: EmpIRE procedure

In practice, it is often the case that policy evaluation is carried out repeatedly, as an inner
loop within some broader algorithm (e.g., policy iteration schemes or actor-critic methods).
Due to repeated calls to a policy evaluation routine, it is especially desirable in these settings
to minimize the amount of data used. In practice, it is adequate to terminate a policy
evaluation routine once some target accuracy ε is achieved; guarantees in the `8-norm,
such as those analyzed here, are particularly attractive in this context.

In this section, we leverage the data-dependent bound from Theorem 1 so as to propose
early stopping procedure for policy evaluation, applicable for any pϕf , ϕsq-procedure for pol-
icy evaluation. We refer to it as the EmpIRE procedure, as a shorthand for Empirical
Instance-optimal Markov Reward Evaluation. Taking as input a desired error level ε and
a tolerance probability δ0, it is a sequential procedure that operates over a sequence of
epochs, where the amount of data available increases dyadically as the epochs increase.
Upon termination, it returns an estimate pV such that }pV ´ V ‹}8 ď ε with probability at
least 1´ δ0. Moreover, our theory guarantees that for any particular instance, the number
of samples used to do so is within a constant factor of the minimum number of samples
required for that particular instance. In this sense, the procedure is adaptive to the relative
difficulty of the instance at hand.

The following corollary, which is a simplified version of Corollary 11 presented in Ap-
pendix B, guarantees that the EmpIRE procedure terminates with high probability, and
returns an ε-accurate estimate of the value function while using a total sample size that is
well-controlled. For ease of presentation, in Corollary 2 we assume that

ϕspδq
ϕ2
f pδq

ď c0 for all δ ą 0. (21)

where, c0 is a universal constant. This assumption, although satisfied by both the instance-
optimal algorithms (Khamaru et al., 2021; Mou et al., 2022) discussed in the paper, is not
necessary; we impose this condition only to provide a simpler upper bound on the number
of epochs and number of samples used by the protocol EmpIRE. A version of Corollary 2
without the assumption (21) can be be found in Corollary 11.

Given a tolerance probability δ0 P p0, 1q we define

Mmax – log2 max

"

p1´γq2 }Σ‹pr,P,V ‹q}diag

ε2
, c0p1´γq2

4ε `
p1´γqbpV ‹q

ε ¨

b

logp8|X |
δ0
q

*

. (22)

In the following statement, we use pc1, c2q to denote universal positive constants.

12



EmpIRE: An Instance-Dependent Protocol

Algorithm EmpIRE Empirical Instance-optimal Markov Reward Evaluation

1: Inputs: (i) instance-optimal procedure AEval; (ii) target accuracy ε and (iii) tolerance
probability δ0

2: Initialize N0 “
32

p1´γq2
, δ0 “

δtarget

3 , and DH1 ,DF , and DH2 as empty sets.

3: for m “ 1, . . . do
4: Set tolerance parameter δm “

δ0
2m , along with

Holdout size hm – N0 ¨ logp4|X |2{δmq, and batch size Nm “ 2mN0 ¨ ϕ
2
f pδmq ¨ logp4|X |{δmq.

5: Augment data sets DH1 ,DF , and DH2 with additional i.i.d. samples such that
|H1| “ |H2| “ hm, and |F | “ Nm. Set D “ DH1 YDF YDH2 .

6: Compute estimate
pV Ð AEval

`

DF
˘

.

7: Evaluate empirical error estimates

ε̂f –
2
?

6 ¨ ϕf pδmq
?
Nm

¨ pΣppV ,Dq, and ε̂s –
2ϕspδmq

Nm
`

6bppV q

1´ γ
¨

a

logp8|X |{δmq
Nm ´ 1

.

(20)

8: if ε̂f ` ε̂s ă ε then
9: Terminate

10: end if
11: end for

13
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Corollary 2 Given any algorithm AEval satisfying condition (13), suppose that we run
the EmpIRE protocol with target accuracy ε and tolerance probability δ0, and assume that
condition (21) is in force. Then with probability 1´ δ0:

(a) It terminates after a number of epochs M bounded as M ď c1 `Mmax.

(b) Upon termination, it returns an estimate pV such }pV ´ V ‹}8 ď ε.

(c) The total number of samples used satisfies the bound

n ď c2 max

#

ϕ2
f pδM q

ε2
¨ }Σ‹pr,P, V ‹q}diag,

1

ε

„

ϕsp2δM q `
bpV ‹q

1´ γ

a

logp4|X |{δM q


+

(23)

where δM “ δ0
2M

.

See Appendix B for the the proof.

Let us make a few comments about this claim; in this informal discussion, we omit
constants and terms that are logarithmic in the pair p|X |, 1{δq. Corollary 2 guarantees
that, with a controlled probability, the algorithm terminates and returns an accurate an-

swer. Moreover, over all epochs, it uses of the order O
´

}Σ‹pr,P,V ‹q}diag

ε2

¯

samples to achieve

ε-accuracy in the `8-norm. This guarantee should be compared to local minimax lower
bounds from our past work (Khamaru et al., 2021): any procedure with an oracle that

has access to the true error }pV ´ V ‹}8 requires at least
}Σ‹pr,P,V ‹q}diag

ε2
samples. Thus, our

procedure utilizes the same number of samples as any instance-optimal procedure equipped
with such an oracle, up to constant and logarithmic factors.

Next, observe that the bound in the right hand side of the expression (22) depends on
logp1{εq, and is of higher order. Ignoring it for the moment, the number of epochs required

to achieve a given target accuracy ε ą 0 is of the order log2

´

p1´γq2

ε2
¨ }Σ‹pr,P, V ‹q}diag

¯

epochs, to an additive constant. Finally, we refer the reader to Corollary 11 in Appendix B
for an analogue of Corollary 2 without assumption (21).

3.4 Numerical simulations

In this section, we use a simple two-state Markov reward process (MRP) M “ pP, rq to
illustrate the behavior of our methods; this family of instances was introduced in past work
by a subset of the current authors (Pananjady and Wainwright, 2021; Khamaru et al., 2021).
For a parameter p P r0, 1s, consider a transition matrix P P R2ˆ2 and reward vector r P R2

given by

P “

„

p 1´ p
0 1



, and r “

„

1
τ



.

where τ P R along with the discount γ P r0, 1q are additional parameters of the construction.
Fix a scalar λ ě 0, and then set

p “
4γ ´ 1

3γ
, and τ “ 1´ p1´ γqλ.

14
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The probability p belongs to r0, 1s as long as γ P r14 , 1s, so that we restrict our attention to
this range. This is a Markov reward process induced via the more general construction of
a Markov decision process given in Example 1 to follow in the sequel.

By calculations similar to those in Appendix A.2, we have

}Σ‹pr,P, V ‹q}
1{2
diag ď c ¨

ˆ

1

1´ γ

˙1.5´λ

.

Thus for larger choices of γ we see a “harder” problem, and for larger λ we see an “easier”
problem, indicated by the complexity functional. If we knew that

}Σ‹pr,P, V ‹q}
1{2
diag “ c ¨

ˆ

1

1´ γ

˙1.5´λ

,

then we could easily see that an instance-optimal algorithm requires n Á 1
ε2

´

1
1´γ

¯3´2λ

samples to achieve ε accuracy in the `8-norm. Typically we do not have knowledge

of }Σ‹pr,P, V ‹q}
1{2
diag prior to running the algorithm so we would need to use at least

n Á 1
ε2p1´γq3

samples to guarantee ε-accuracy. For λ ě 0.5, it becomes apparent that an

instance-optimal algorithm requires fewer samples than the worst-case guarantees indicate,
and the differences become drastic for larger λ and γ. The EmpIRE algorithm allows the
user to exploit the instance-specific difficulty of the problem at hand and avoid the worst-
case scenario of requiring n Á 1

ε2p1´γq3
samples.

We describe the details of the numerical simulations ran for the policy evaluation setting
here. For every valid combination of pγ, λq, we ran Algorithm EmpIRE with the ROOT-SA
algorithm (Mou et al., 2022) as our instance-optimal sub-procedure on the MRP. In each
case, we performed T “ 1000 trials, measuring the factor savings, i.e. the ratio of the
number of samples required in the worst case to the number of samples actually used, as
well as for our estimate pV the final predicted error for our estimated and the true error.
The γ’s were chosen to be uniformly spaced between 0.9 and 0.99 in the log-scale, and λ
was chosen to be in the set t1.0, 1.5u. The desired tolerance was chosen to be ε “ 0.1. Our
results are presented in Figure 1, as previously described. The initial point V0 was chosen by
setting aside 2

p1´γq2
samples to construct a plug-in estimate of V ‹. As expected, increasing

both γ and λ increases the savings in the number of samples used, as compared to the
worst-case guarantees. Figure 1 highlights the improvement in sample size requirements of
Algorithm EmpIRE, as compared to the using the worst-case guarantees and illustrates the
benefits of exploiting the local structure of the problem at hand.

Figure 2 serves to verify that our theoretical guarantees describe the behavior observed
in practice. For every combination of pγ, λq we run 1000 trials of Algorithm EmpIRE
and keeping track of the predicted error given by equation (15a) as well as the true error
}pV ´V ‹}8. Algorithm EmpIRE was run with chosen tolerance ε “ 0.1. Our theory ensures
that the true error should be consistently below the predicted error for all combinations of
γ and λ, which is the behavior illustrated in Figure 2. The plots also illustrate that the
true error is consistently far below the predicted error (which itself is consistently below the
specified tolerance ε), demonstrating that our predictions are relatively conservative, and
that higher-order terms can potentially be dropped in error estimates while still remaining
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a viable algorithm. Overall, Figure 2 illustrates that the bounds on Algorithm EmpIRE are
correct and highlights its practical utility in an idealized setting.
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Figure 2. Illustration of the termination behavior of Algorithm EmpIRE applied on the
MRP. Plots the average of the true error (blue) and predicted error (orange) along with error
bars denoting the standard deviation for different choices of γ and for (a) λ “ 1.0 and (b)
λ “ 1.5.

4. Confidence Regions for Optimal Q-function Estimation

In this section, we derive confidence regions for optimal Q-function estimation problem. Let
us first describe the functional that characterizes the difficulty of the optimal Q-function
estimation problem.

4.1 Instance-dependence for optimal Q-functions

Given a sample pZ,Rq from our observation model (see equation (9)), we can define the
single-sample empirical Bellman operator as

pJJJpQq– Rpx, uq ` γ
ÿ

x1PX
Zupx1 | xqmax

u1PU
Qpx1, u1q, (24)

where we have introduced Zupx1 | xq – 1Zpx,uq“x1 . Throughout this section, we use the
shorthand D “ |X ˆ U |.

In a recent paper (Xia et al., 2021), the authors show the quantity that determines the
difficulty of estimating the optimal value function Q‹ is1

ΣPolOptpr,PPP, γq– max
πPΠ‹

}pI´ γPPPπq´1Σ‹optpQ
‹qpI´ γPPPπq´J}

1
2
diag, (25)

1. The quantity ΣPolOptpr,PPP, γq is a the same of the term maxπ‹PΠ‹ }νpπ‹;PPP, r, γq}8 from Theorem 1 in Xia
et al. (2021).
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where the quality of an estimate is being measured by its `8-distance from Q‹. Here the
set Π‹ denotes the set of all optimal policies, the matrix Σ‹optpQ

‹q – CovppJJJpQ‹qq, and PPPπ

is a right-linear mapping of RD to itself, whose action on a Q-function is given by

PPPπpQqpx, uq “
ÿ

x1PX
PPPupx

1 | xq ¨Qpx1, πpx1qq for all px, uq P X ˆ U .

Note that by construction, the quantity pJJJpQ‹q is an unbiased estimate of JJJpQ‹q, and the

covariance matrix CovppJJJpQ‹qq in equation (25) captures the noise present in the empirical
Bellman operator (24) as an estimate of the population Bellman operator (8), when eval-
uated at the optimal value function Q‹. As for the pre-factor pI´ γPPPπq´1, by a Neumann
series expansion, we can write

pI´ γPPPπq´1 “

8
ÿ

k“0

pγPPPπqk.

The sum of the powers of γPPPπ accounts for the compounded effect of an initial perturba-
tion when following the Markov chain specified by an optimal policy π. Put simply, the
quantity (25) captures the noise accumulated when an optimal policy π is followed.

Xia et al. (2021) also show that under appropriate assumptions, the estimate pQn, ob-
tained from a variance reduced Q-learning algorithm using n i.i.d. samples, satisfies the
bound

} pQn ´Q
‹}8 ď ϕf pδq ¨

ΣPolOptpr,PPP, γq
?
n

`
c2

n
(26)

with probability at least 1 ´ δ. Here the functions ϕf and ϕs depend on the tolerance
parameter δ P p0, 1q, along with logarithmic factors in the dimension. Furthermore, this al-
gorithm achieves the non-asymptotic local minimax lower bound for the optimal Q-function
estimation problem (see Theorem 1 in Xia et al. (2021)).

4.2 A conservative yet useful upper bound

Motivated by the success in Section 3, it is interesting to ask if we can prove a data-
dependent estimate for the term ΣPolOptpr,PPP, γq. Observe that the term ΣPolOptpr,PPP, γq
from equation (25) depends on the set of all optimal policies Π‹, and the authors are
not aware of a data-dependent efficient estimate that is valid without imposing restrictive
assumptions on the MDP P “ pr,PPP, γq.

Instead, we study the following upper bound

ΣPolOptpr,PPP, γq ď
}Σ‹optpQ

‹q}
1
2
diag

1´ γ
. (27)

Observe that all entries of the PSD matrix Σ‹optpQ
‹q are upper bounded by the scalar

}Σ‹optpQ
‹q}diag, the entries of pI ´ γPPPπq´1 are non-negative, and }pI´ γPPPπq´1}1,8 ď

1
1´γ .

Combining these three observations yield the claim (27).
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It is interesting to compare the upper bound (27) with a worst case upper bound on
ΣPolOptpr,PPP, γq. In light of Lemma 7 from Azar et al. (2013), assuming Rmax ď 1, and
}r}8 ď 1 for simplicity, we have

ΣPolOptpr,PPP, γq ď
1

p1´ γq1.5
. (28)

By comparing the bounds (27) and (28), we see that the upper bound (27) is particularly
useful when

}Σ‹optpQ
‹q}

1
2
diag !

1
?

1´ γ
.

As an illustration, we now describe an interesting sequence of MDPs for which the last
condition is satisfied.

Example 1 (A continuum of illustrative examples) Consider an MDP with two states
tx1, x2u, two actions tu1, u2u, and with transition functions and reward functions given by

PPPu1 “

„

p 1´ p
0 1



PPPu2 “

„

1 0
0 1



, and r “

„

1 0
τ 0



. (29)

We assume that there is no randomness in the reward samples. Here the pair pp, τq along
with the discount factor γ are parameters of the construction, and we consider a sub-family
of these parameters indexed by a scalar λ ě 0. For any such λ and discount factor γ P p1

4 , 1q,
consider the setting

p “
4γ ´ 1

3γ
, and τ “ 1´ p1´ γqλ.

With these choices of parameters, the optimal Q-function Q‹ takes the form

Q‹ “

«

p1´γq`γτp1´pq
p1´γqp1´γpq γ ¨ p1´γq`γτp1´pq

p1´γqp1´γpq
τ

1´γ
γτ

1´γ

ff

,

with an unique optimal policy π‹px1q “ π‹px2q “ u1. We can then compute that

}Σ‹optpQ
‹q}

1
2
diag “

1´ τ

1´ γp
¨
a

pp1´ pq “ c ¨

ˆ

1

1´ γ

˙
1
2
´λ

ă
1

?
1´ γ

. (30)

See Appendix A.2 for the details of this calculation.

Example 1 shows that for any λ ą 0, the bound
}Σ‹optpQ

‹q}
1
2
diag

1´γ is smaller than the worst

case bound of 1
p1´γq1.5

by a factor of 1
p1´γqλ

. We point out that this gap is significant when

the discount factor γ is close to 1. For instance, for γ “ 0.99 and λ “ 1, the upper
bound (27) is 102 times better than the worst case bound. Alternatively, the bound (26)
yields an improvement of a factor of 104, when compared to a worst case value.
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4.3 Data-dependent bounds for optimal Q-functions

In this section, we provide a data-dependent upper bound on } pQ´Q‹}8, where the estimate
pQ is obtained from any algorithm APolOpt satisfying certain convergence criterion.

4.3.1 Instance-valid algorithms

We assume that given access to n generative samples Dn – tRi,Ziuni“1 from an MDP P “
pr,PPP, γq, the output pQn – APolOptpDnq, obtained using the data set Dn, satisfies

APolOpt condition: } pQn ´Q
‹}8 ď

ϕf pδq
?
n
¨
}Σ‹optpQ

‹q}
1
2
diag

p1´ γq
`
ϕspδq

n
. (31)

with probability 1 ´ δ. Here ϕf and ϕs are functions of the tolerance level δ; in practical
settings, they may in addition depend on the problem dimension in some cases, but we
suppress this dependence for simplicity.

We point out that any instance-optimal algorithm, i.e. algorithms satisfying the condi-
tion (26), automatically satisfies the condition (31). One added benefit of the condition (31)
is that this condition is much easier to verify. To illustrate this point, in Proposition 12 in
Appendix C, we show that the variance-reduced Q-learning algorithm from Xia et al. (2021)
satisfies the condition (31) under a milder assumption (cf. Proposition 12 in Appendix C
and Theorem 2 from Xia et al. (2021) ). In the rest of the section, we focus on providing a

data-dependent estimate for }Σ‹optpQ
‹q}

1
2
diag.

4.3.2 Constructing a data-dependent bound

In order to obtain a data-dependent bound on } pQn ´ Q‹}8, it suffices to estimate the

complexity term }Σ‹optpQ
‹q}

1{2
diag. Our next result guarantees that there is a data-dependent

estimate pΣoptp pQn,Dq which provides an upper bound that holds with high probability,

and is within constant factors of }Σ‹optpQ
‹q}

1{2
diag. With a recycling of notation, we define

bpQq– Rmax ` γ}Q}8, and construct the empirical error estimate

Enp pQn,Dn, δq–
2
?

2 ¨ ϕf pδq
?
n

¨
}pΣoptp pQn,Dnq}1{2diag

p1´ γq
`

2ϕspδq

n
`

8bp pQnq

1´ γ
¨
ϕf pδq

a

2 logpD{δq

n´ 1
.

(32)

In this error estimate, the base estimator uses the n-sample dataset Dn to compute the
Q-value function estimate pQn – APolOptpDnq. It also uses the same data to estimate the

covariance pΣoptp pQn,Dnq, according to the procedure given in Section 4.3.3.

The following result summarizes the guarantees associated with the empirical error esti-
mate (32):

Theorem 3 For any pϕf , ϕsq instance-dependent algorithm APolOpt as in (31), a tolerance

δ P p0, 1q and a dataset Dn with n ě ϕ2
f pδq ¨

32¨logp4D{δq
p1´γq2

, the following guarantees hold with

probability at least 1´ 2δ:

19



Xia et. al.

(a) The `8-error is upper bounded as

} pQn ´Q
‹}8 ď Enp pQn,Dn, δq. (33a)

(b) Moreover, this guarantee is order-optimal in the sense that

Enp pQn,Dn, δq ď
7 ¨ ϕf pδq
?
n

¨
}Σ‹optpQ

‹q}
1{2
diag

1´ γ
`

6ϕspδq

n
`

5bpQ‹q

1´ γ
¨

a

logpD{δq

n´ 1
. (33b)

See Section 5.2 for the proof.

A few comments regarding Theorem 3 are in order. Like in policy evaluation, the
empirical error estimate En can be computed based on the data and we obtain a data-
dependent confidence interval for Q‹. In particular, equation (33a) guarantees that

”

pQnpx, uq ´ En, pQnpx, uq ` En

ı

Q Q‹px, uq uniformly for all x P X , u P U

with probability at least 1´ 2δ.

We point out that the dominating term in the error estimate En is proportional to

n´1{2}pΣoptp pQn,Dnq}1{2diag, and this is an estimate of the dominating term n´1{2}Σ‹optpQ
‹q}

1{2
diag

from the bound (31). Additionally, the bound (33b) ensures that the proposed data-

dependent bound in equation (33a) is a sharp approximation of n´1{2}Σ‹optpQ
‹q}

1{2
diag from

the bound (31).

4.3.3 Estimation of }Σ‹optpQ
‹q}

1
2
diag

In this section, we provide details on the construction of the estimator }pΣoptp pQn,Dnq}1{2diag of

}Σ‹optpQ
‹q}

1
2
diag. Given a generative data setDn – tRi,Ziuni“1, we first use pQn “ APolOptpDnq

to estimate Q‹, and use the same data set Dn to provide an empirical estimate of the quan-

tity }Σ‹optpQ
‹q}

1
2
diag. Observe that it suffices to estimate the diagonal entries of the matrix

Σ‹optpQ
‹q. Accordingly, our empirical covariance matrix pΣoptp pQn,Dnq, based on a data set

Dn, is a D ˆ D diagonal matrix. Concretely, let pJJJi denote the empirical estimate of the
Bellman optimality operator based on the ith generative sample, i.e.,

pJJJipQqpx, uq “ Ripx, uq ` γ
ÿ

x1PX
Zui px1 | xq ¨max

uPU
Qpx1, uq, for all px, uq P X ˆ U .

Recall that Zui px1 | xq is 1 if and only if the sample in Zi from px, uq gives x1 as the next
state, and zero otherwise. We define the px, uqth diagonal entry of the diagonal matrix
pΣoptp pQn,Dnq as

pΣoptp pQn,Dnqppx, uq, px, uqq “
1

npn´ 1q

ÿ

1ďiăjďk

!

pJJJip pQnqpx, uq ´ pJJJjpQqpx, uq
)2
. (34)
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4.3.4 Early stopping for optimal Q-functions

Inspired by Algorithm EmpIRE, we can take an instance-dependent procedure APolOpt

satisfying the condition (31) and construct a similar stopping procedure that terminates
when the data-dependent upper bound of } pQ´Q‹}8 estimate is below some user-specified
threshold ε. Following Algorithm EmpIRE, one would iteratively recompute the estimate
pQ using the algorithm APolOpt, and check the condition

2
?

2ϕf pδnq
?
n

¨
}pΣoptp pQn,Dnq}1{2diag

p1´ γq
`

2
?

2ϕf pδnq ¨
a

16 logpD{δq

p1´ γq
¨
bp pQnq

n´ 1
`

2ϕsδn
n

ď ε.

We terminate the algorithm APolOpt when this criterion is satisfied. Again, the correctness
of such stopping procedure follows from Theorem 3 and a union bound.

4.4 Some numerical simulations

In the setting of Q-learning, the worst-case sample complexity for any MDP to achieve
ε-accuracy is 1

ε2p1´γq3
. However Example 1 illustrates that even under our looser instance-

dependent guarantee from equation (27), we only require 1
ε2p1´γq3´2λ samples. Like the

example in policy evaluation, there can still be a substantial difference between the number
of samples required for the worst-case versus the instance-dependent case. We illustrate the
gains provided by Algorithm EmpIRE in the following numerical simulations.

For every combination of pγ, λq, we ran Algorithm EmpIRE with the ROOT-SA algo-
rithm (Mou et al., 2022) as our base procedure on the MDP described in Example 1 for
1000 trials. We used values of γ that were uniformly spaced between 0.9 and 0.99 on the
log-scale, and the two choices λ P t1.0, 1.5u. The desired tolerance was set at ε “ 0.05. The
initialization point Q0 was chosen via setting aside 2

p1´γq2
samples and estimating r and

PPP via averaging, and then solving for the optimal Q-function for this MDP. We measured
the factor savings by computing the ratio of the worst-case sample complexity 1

ε2p1´γq3
with

the number of samples used by Algorithm EmpIRE. The results are presented in Figure 3.
In order to verify the correctness of our guarantee, for each trial we also keep track of the
predicted error given by equation (33a) and the true error } pQ ´ Q‹}8. We see in Fig-
ure 4 that the true error is consistently below the predicted error and also consistently
below the specified error threshold of 0.5. These plots illustrate the practical benefits that
Algorithm EmpIRE brings when taking advantage of instance-dependent theory.

5. Proofs

In this section, we provide proofs of our main results, with Sections 5.1 and 5.2 devoted the
proofs of Theorems 1 and 3, respectively.

5.1 Proof of Theorem 1

Throughout the proof, we suppress the dependence of pVn on the sample size n. Additionally,
we adopt the shorthand notations

Σ‹valpV
‹q “ ΣvalpM, V ‹q, pΣvalpV

‹q “ pΣvalpV
‹;DF q, and pΣppV q “ pΣppV ,Dn,nhq.
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Figure 3. Illustration of the savings in sample size requirements of Algorithm EmpIRE on
the MDP in Example 1 for different choices of γ and λ. The figure plots the factor of savings,
i.e. the ratio of the number of samples required in the worst case to the number of samples
actually used against the log discount complexity factor for both λ “ 1.0 (blue) and λ “ 1.5
(orange).

The proof involves three auxiliary results that play key roles, which we state here. Our
first result allows us to relate an idealized covariance estimate that involves the optimal
value function V ‹ to one involving our estimate pV .

Lemma 4 We have

}pI´ γPq´1
pΣvalpV

‹qpI´ γPq´1}
1
2
diag ď

?
2}pI´ γPq´1

pΣvalppV qpI´ γPq´1}
1
2
diag

`
?

8
1´γ }

pV ´ V ‹}8 (35)

It is worthwhile making some comments on this result. Recall that the estimate pV and
the statistic defining the covariance pΣval both depend on the same data. These kinds of
dependencies—between data and estimators—arise when analyzing empirical risk minimiza-
tion, in which context it is standard to make use of uniform laws of large numbers. In the
current setting, however, we need only show that the two quantities are close when pV is
close to V ‹. For this reason, it turns out that a relatively simple deterministic argument
can be used to establish the claim (35). See Section 5.1.3 for the proof.

Our second auxiliary result controls the effect of using the hold-out sets as plug-in
estimates of the probability transition matrix:
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Figure 4. Illustration of the termination behavior of Algorithm EmpIRE applied on the
MDP in Example 1. Plots the average of the true error (blue) and predicted error (orange)
along with error bars denoting the standard deviation for different choices of γ and for (a)
λ “ 1.0 and (b) λ “ 1.5.

Lemma 5 For a given tolerance δ P p0, 1q, consider a pair of hold-out estimates pZH1 and
pZH2, each based on hold-out size nh ě 24 ¨ logp8|X |2{δq

p1´γq2
. For any positive semi-definite matrix

M, we have

}pI´ γPq´1MpI´ γPq´J}diag ď 3}pI´ γpZH1q
´1MpI´ γpZH2q

´J}diag (36)

with probability at least 1´ δ.

See Section 5.1.4 for a proof of this lemma.

Our third auxiliary lemma controls the error between the empirical covariance estimate
and the true covariance.

Lemma 6 For a given tolerance δ P p0, 1q, we have

}pI´ γPq´1Σ‹valpV
‹qpI´ γPq´J}

1
2
diag ď }pI´ γPq´1

pΣvalpV
‹qpI´ γPq´J}

1
2
diag

`
bpV ‹q

1´ γ
¨

c

8 logp|X |{δq
n´ 1

and

}pI´ γPq´1
pΣvalpV

‹qpI´ γPq´J}
1
2
diag ď }pI´ γPq´1Σ‹valpV

‹qpI´ γPq´J}
1
2
diag

`
bpV ‹q

1´ γ
¨

c

8 logp|X |{δq
n´ 1

,

with probability exceeding 1´ δ.
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See Section 5.1.5 for a proof of this lemma.

Equipped with these auxiliary results, we now proceed with the proof of the theorem
itself.

5.1.1 Proof of Theorem 1 part (a)

We begin by proving the bound (15a). Using Lemma 6, we have

}Σ‹pr,P, V ‹q}
1
2
diag “ }pI´ γPq´1Σ‹valpV

‹qpI´ γPq´J}
1
2
diag

ď }pI´ γPq´1
pΣvalpV

‹qpI´ γPq´J}
1
2
diag `

bpV ‹q

1´ γ
¨

c

8 logp|X |{δq
n´ 1

(37)

with probability at at least 1´ δ. We use the shorthand

Γ – pI´ γPq´1
pΣvalpV

‹qpI´ γPq´J

to simplify notation. First, by applying Lemma 4, we have

}Γ}
1
2
diag ď

?
2}pI´ γPq´1

pΣvalppV qpI´ γPq´1}
1
2
diag `

?
8

1´γ }
pV ´ V ‹}8 (38a)

Second, applying Lemma 5 with the choice M “ pΣvalppV q, we have

}pI´ γPq´1
pΣvalppV qpI´ γPq´J}diag ď 3}pI´ γpZH1q

´1
pΣvalppV qpI´ γpZH2q

´J}diag (38b)

with probability at least 1´ δ.
Combining the preceding bounds yields

}Σ‹pr,P, V ‹q}
1
2
diag ď

?
6 ¨ }pI´γpZH1q

´1
pΣvalppV qpI´γpZH2q

´J}
1
2
diag`

bpV ‹q

1´ γ
¨

c

8 logp|X |{δq
n´ 1

`

?
8

1´ γ
}pV ´ V ‹}8

with probability at least 1´ 2δ.
The function V ÞÑ bpV q is 1-Lipschitz in the `8-norm, so that we can write

bpV ‹q

1´ γ
¨

c

8 logp|X |{δq
n´ 1

ď
1

1´ γ
¨

c

8 logp|X |{δq
n´ 1

!

bppV q ` }pV ´ V ‹}8

)

.

Combining the pieces yields

}Σ‹pr,P, V ‹q}
1
2
diag ď

?
6 ¨ }pI´γpZH1q

´1
pΣvalppV qpI´γpZH2q

´J}
1
2
diag`

bppV q

1´ γ
¨

c

8 logp|X |{δq
n´ 1

` }pV ´ V ‹}8 ¨

˜ ?
8

1´ γ
`

1

1´ γ
¨

c

8 logp|X |{δq
n´ 1

¸

. (39)
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We now recall the assumed bound (13) on the accuracy of pV—viz.

}pV ´ V ‹}8 ď
ϕf pδq
?
n
¨ }Σ‹pr,P, V ‹q}

1{2
diag `

ϕspδq

n
.

Substituting the bound (39) into the above, we have

}pV ´ V ‹}8 ď
ϕf pδq
?
n

˜

?
6 ¨ }pΣppV q}

1
2
diag `

bppV q

1´ γ
¨

c

8 logp|X |{δq
n´ 1

¸

`
ϕspδq

n

`
ϕf pδq
?
n
¨

˜ ?
8

1´ γ
`

1

1´ γ
¨

c

8 logp|X |{δq
n´ 1

¸

}pV ´ V ‹}8 (40)

Our choice of n ě ϕ2
f pδq ¨

24¨8¨logp|X |{δq
p1´γq2

ensures that

ϕf pδq
?
n

˜ ?
8

1´ γ
`

1

1´ γ
¨

c

8 logp|X |{δq
n´ 1

¸

ď
1

2
,

and rearranging yields the claim (15a).

5.1.2 Proof of Theorem 1 part (b)

Here we prove the bound (15b). Like previously, we require the following lemma:

Lemma 7 For a given tolerance δ P p0, 1q, consider a pair of hold-out estimates pZH1 and
pZH2, each based on hold-out size nh ě 4 ¨ logp8|X |2{δq

p1´γq2
. For any positive semi-definite matrix

M, we have

}pI´ γpZH1q
´1MpI´ γpZH2q

´J}diag ď 3}pI´ γPq´1MpI´ γPq´J}diag, (41)

with probability at least 1´ δ.

This lemma is a “reversed” version of Lemma 5 needed for this proof; see Section 5.1.4 for
its proof.

Overall, the argument is similar to that of bound (15a). We have

}pΣppV q}
1
2
diag “ }pI´ γ

pZH1q
´1

pΣvalppV qpI´ γpZH2q
´J}

1
2
diag

piq
ď
?

3 ¨ }pI´ γPq´1
pΣvalppV qpI´ γPq´J}

1
2
diag

piiq
ď
?

6 ¨ }pI´ γPq´1
pΣvalpV

‹qpI´ γPq´J}
1
2
diag `

?
24

1´ γ
¨ }pV ´ V ‹}8

piiiq
ď
?

6 ¨ }pI´ γPq´1Σ‹valpV
‹qpI´ γPq´J}

1
2
diag

`
bpV ‹q

1´ γ
¨

c

48 logp|X |{δq
n´ 1

`

?
24

1´ γ
¨ }pV ´ V ‹}8

with probability at least 1´ 2δ. Inequality (i) follows from Lemma 5, inequality (ii) follows
from the proof of bound (35), and inequality (iii) follows from Lemma 6.
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Recall the definition

EnppV ,D, δq “
2
?

6 ¨ ϕf pδq
?
n

¨ }pΣppV q}
1{2
diag `

2ϕspδq

n
`

6bppVnq

1´ γ
¨

a

logp8|X |{δq
n´ 1

.

Substituting the above in gives

EnppV ,D, δq ď
12 ¨ ϕf pδq
?
n

¨ }Σ‹pr,P, V ‹q}
1{2
diag `

2
?

6 ¨ ϕf pδq
?
n

¨
bpV ‹q

1´ γ
¨

c

48 logp|X |{δq
n´ 1

`
24 ¨ ϕf pδq
?
np1´ γq

¨ }pV ´ V ‹}8 `
2ϕspδq

n
`

6bppVnq

1´ γ
¨

a

logp8|X |{δq
n´ 1

.

Define the shorthand

Tn –
24 ¨ ϕf pδq
?
np1´ γq

¨ }pV ´ V ‹}8 `
6bppVnq

1´ γ
¨

a

logp8|X |{δq
n´ 1

.

We take as given for now that

Tn ď
2ϕf pδq
?
n

¨ }Σ‹pr,P, V ‹q}
1{2
diag `

2ϕspδq

n
`

6bpV ‹q

1´ γ
¨

a

logp8|X |{δq
n´ 1

. (42)

With this, we conclude

EnppV ,D, δq ď
14 ¨ ϕf pδq
?
n

¨ }Σ‹pr,P, V ‹q}
1{2
diag ` ϕf pδq ¨

40bpV ‹q

1´ γ
¨

a

logp|X |{δq
n´ 1

`
4ϕspδq

n
,

as desired.

Proof of Equation (42): Using the fact that bp¨q is 1-Lipschitz in the `8-norm, we have

6bppVnq

1´ γ
¨

a

logp8|X |{δq
n´ 1

ď
6bpV ‹q

1´ γ
¨

a

logp8|X |{δq
n´ 1

` }pVn ´ V
‹}8

˜

6

1´ γ
¨

a

logp8|X |{δq
n´ 1

¸

.

Since n ě ϕ2
f pδq ¨

24¨8¨logp8|X |{δq
p1´γq2

, we have

24 ¨ ϕf pδq
?
np1´ γq

`

˜

6

1´ γ
¨

a

logp8|X |{δq
n´ 1

¸

ď 2,

which implies

Tn ď 2 ¨ }pV ´ V ‹}8 `
6bpV ‹q

1´ γ
¨

a

logp8|X |{δq
n´ 1

ď
2ϕf pδq
?
n

¨ }Σ‹pr,P, V ‹q}
1{2
diag `

2ϕspδq

n
`

6bpV ‹q

1´ γ
¨

a

logp8|X |{δq
n´ 1

,

using the bound (13).
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5.1.3 Proof of Lemma 4

For any index i P r|X |s, we define the random variable of interest

Ui – eTi pI´ γPq´1
pΣvalpV

‹qpI´ γPq´1ei.

With this definition, substituting the expression for the matrix pΣvalpV
‹q yields

Ui “
1

npn´ 1q

ÿ

1ďjăkďn

`

eTi pI´ γPq´1pRj ´Rk ` γpZj ´ ZkqV
‹q
˘2

piq
ď

2

npn´ 1q

ÿ

1ďjăkďn

´

eTi pI´ γPq´1pRj ´Rk ` γpZj ´ ZkqpV q
¯2

`
2γ2

npn´ 1q

ÿ

1ďjăkďn

´

eTi pI´ γPq´1pZj ´ ZkqpV
‹ ´ pV q

¯2

piiq
ď 2eTi pI´ γPq´1

pΣvalppV qpI´ γPq´1ei `
8

p1´ γq2
¨ }pV ´ V ‹}28.

Here step (i) uses the fact that pa ` bq2 ď 2a2 ` 2b2 for scalars a, b, whereas step (ii)
follows from the operator norm bound }pI´γPq´1}1,8 ď

1
1´γ and Hölder’s inequality. This

completes the proof of the bound (35).

5.1.4 Proof of Lemmas 5 and 7

We begin by observing that the } ¨ }diag operator, despite not being a norm, satisfies the
triangle inequality. Indeed, for square matrices A and B with matching dimensions, we
have

}A`B}diag “ max
i
|eTi pA`Bqei|

ď max
i

`

|eTi Aei| ` |e
T
i Bei|

˘

ď max
i
|eTi Aei| `max

i
|eTi Bei|

“ }A}diag ` }B}diag. (43)

We also require the following simple lemma:

Lemma 8 For holdout sample size satisfying nh ě
C logp8|X |{δq
p1´γq2

and any vector V P R|X |,
we have

}ppZH1 ´PqV }8 ď

?
2p1´ γq
?
C

}V }8,

with probability at least 1´ δ
4 .

Proof From Hoeffding’s inequality, we have

rppZH1 ´Pq ¨ V si “
1

nh

nh
ÿ

j“1

xZjpiq ´ pi, V y ď

d

2 logp8|X |{δq
nh

¨ }V }8, (44)
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with probability at least 1´ δ
4|X | . Here, Zjpiq and pi, respectively denote the ith row vector

of the matrices Zj and P. Now, applying a union bound over |X | coordinates and using
the lower bound on the holdout sample size nh yields the claim of Lemma 8.

We are now ready to prove the two lemmas. For ease of notation, we use the shorthands

A “ I´ γP, rA “ I´ γpZH1 , and pA – I´ γpZH2 .

In light of the triangle inequality (43), for Lemma 5 it suffices to prove that

}A´1ΣA´J ´ rA´1ΣpA´J}diag ď
2

3
}A´1ΣA´J}diag

with probability at least 1´ δ. This would then imply

}A´1ΣA´J}diag ď 3}rA´1ΣpA´J}diag,

as desired. Similarly, for Lemma 7 it suffices to show

}A´1ΣA´J ´ rA´1ΣpA´J}diag ď 2}A´1ΣA´J}diag

with probability exceeding 1´ δ.
Simple algebra and another application of the triangle inequality (43) yields

}A´1ΣA´J ´ rA´1ΣpA´J}diag ď }pA
´1 ´ rA´1qΣA´J}diag ` }

rA´1ΣpA´J ´ pA´Jq}diag

ď }pA´1 ´ rA´1qΣA´J}diag ` }pA
´1 ´ pA´1qΣA´J}diag

` }pA´1 ´ rA´1qΣpA´J ´ pA´Jq}diag

“

3
ÿ

j“1

Tj , (45)

where we define

T1 – }pA´1 ´ rA´1qΣA´J}diag, T2 – }pA´1 ´ pA´1qΣA´J}diag, and

T3 – }pA´1 ´ rA´1qΣpA´J ´ pA´Jq}diag.

We bound these three terms individually.

Bounding T1: We have

T1 “ }pA
´1 ´ rA´1qΣA´J}diag “ max

i
|eTi

rA´1pA´ rAqA´1ΣA´Jei|

ď max
i
}rA´1pA´ rAqA´1ΣA´Jei}8

ď

c

2

C
¨max

i
}A´1ΣA´Jei}8

“
1
?

12
¨max
i,j
|eTj A´1ΣA´Jei|

ď
1
?

12
}A´1ΣA´J}diag,
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with probability at least 1 ´ δ
4 . The third line follows from Lemma 8, a union bound

over D coordinates and the operator norm bound }A´1}1,8 “ }pI ´ γPq´1}1,8 ď 1
1´γ .

The final inequality follows from the fact that A´1ΣA´J is a covariance matrix and the
maximum entry of a covariance matrix is same as the maximum diagonal entry. Indeed, for
a zero-mean random vector X with covariance matrix A´1ΣA´J, we have for all indices
i, j,

|eTj A´1ΣA´Jei| “ |CovpXj , Xiq| ď

b

ErX2
j s ¨ ErX2

i s ď max
k

VarpXkq “ }A
´1ΣA´J}diag,

as claimed.

Bounding T2: An identical calculations for the term T2 in the bound (45) yields

}pA´1 ´ pA´1qΣA´J}diag ď

c

2

C
}A´1ΣA´J}diag

with probability at least 1´ δ
4 .

Bounding T3: We have

}pA´1 ´ rA´1qΣpA´J ´ pA´Jq}diag “ max
i
|eTi pA

´1 ´ rA´1qΣpA´J ´ pA´Jqei|

ď max
i
}pA´1 ´ rA´1qΣpA´J ´ pA´Jqei}8

“ max
i
}rA´1pA´ rAqA´1ΣpA´J ´ pA´Jqei}8

paq
ď

c

2

C
¨max

i
}A´1ΣpA´J ´ rA´Jqei}8

“

c

2

C
¨max
i,j
|eTj A´1ΣpA´J ´ pA´Jqei|

“

c

2

C
¨max

j
}pA´1 ´ pA´JqΣA´Jej}8

pbq
ď

2

C
¨max

j
}A´1ΣA´Jej}8

ď
2

C
}A´1ΣA´J}diag,

Inequality (a) follows from Lemma 8 conditioned on the randomness of the matrix pA; recall
that matrices pA and rA are independent by construction. Inequality (b) follows again by
applying the Lemma 8. Invoking a union bound, we have that the last bound holds with
probability at least 1´ δ

2 . Thus, we conclude with probability exceeding 1´ δ,

}A´1ΣA´J ´ rA´1ΣpA´J}diag ď

˜

2

c

2

C
`

2

C

¸

}A´1ΣA´J}diag,

for nh ě
C logp8|X |{δq
p1´γq2

.
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Putting together the pieces, we have for C “ 24 in Lemma 5

}A´1ΣA´J ´ rA´1ΣpA´J}diag ď

ˆ

2
?

12
`

1

12

˙

}A´1ΣA´J}diag ď
2

3
}A´1ΣA´J}diag,

with probability exceeding 1´ δ. Additionally for C “ 4 in Lemma 7 we have

}A´1ΣA´J ´ rA´1ΣpA´J}diag ď

ˆ

?
2`

1

2

˙

}A´1ΣA´J}diag ď 2}A´1ΣA´J}diag,

with probability exceeding 1´ δ.

5.1.5 Proof of Lemma 6

Like previously, we use the shorthand

Ui – eTi pI´ γPq´1
pΣvalpV

‹qpI´ γPq´T ei

“
1

npn´ 1q

ÿ

1ďjăkďn

`

eTi pI´ γPq´1ppRj ´Rkq ` γpZj ´ ZkqV
‹q
˘2
.

A straightforward calculation yields

ErUis “ eTi pI´ γPq´1Σ‹valpV
‹qpI´ γPq´T ei.

Define the random variable

Vj – eTi pI´ γPq´1pRj ` γZjV
‹q,

we then have Ui “
1

npn´1q

ř

1ďjăkďnpVj ´ Vkq
2. Thus, applying the empirical Bernstein

lemma 10 along with a union bound we get

ˇ

ˇ

ˇ

a

Ui ´
a

ErUis
ˇ

ˇ

ˇ
ď

2bpV ‹q

1´ γ
¨

c

2 logp|X |{δq
n´ 1

with probability exceeding 1´ δ for all i. The claim then follows from the fact that
ˇ

ˇ

ˇ

ˇ

max
i

a

Ui ´max
i

a

ErUis
ˇ

ˇ

ˇ

ˇ

ď max
i

ˇ

ˇ

ˇ

a

Ui ´
a

ErUis
ˇ

ˇ

ˇ
.

5.2 Proof of Theorem 3

The proof of this theorem is similar to the proof of Theorem 1, and it is based on a Lips-

chitz property of the empirical covariance matrix operator }pΣoptp¨q}
1
2
diag (see Lemma 9) and

an empirical Bernstein lemma (see Lemma 10). For notational simplicity, we use pQ as a
shorthand for pQn, and similarly, pΣoptp pQq in place of pΣoptp pQn,Dnq.

It suffices to prove that the following two bounds hold, each with probability at least
1´ δ:

}Σ‹optpQ
‹q}

1
2
diag ď }

pΣoptp pQq}
1
2
8 ` bp pQq ¨

c

8 logpD{δq

n´ 1
` } pQ´Q‹}8 ¨

ˆ

b

8 logpD{δq
n´1 `

?
8

˙

(46a)

}pΣoptp pQq}
1
2
8 ď

?
2 ¨ }Σ‹optpQ

‹q}
1
2
diag ` bpQ

‹q ¨

b

16 logpD{δq
n´1 `

?
8} pQ´Q‹}8, (46b)
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Indeed, combining the bound (46a) with the condition (31) of the algorithm APolOpt and

the sample size lower bound n ě c1pAEval, δq
2 ¨

32¨logpD{δq
p1´γq2

, we have

} pQ´Q‹}8 ď
2
?

2 ¨ ϕf pδq
?
n

¨
}pΣoptp pQq}

1
2
diag

1´ γ
`

2c1pAEvalqbp pQq

1´ γ
¨

a

16 logpD{δq

n´ 1
`

2ϕspδq

n
.

with probability at least 1´2δ. Furthermore, since function b is γ-Lipschitz in the `8-norm,
we have

|bpQq ´ bpQ‹q| ď γ ¨ }Q´Q‹}8.

Combining this inequality with the bound (46b) and the condition (31) yields the claimed
bound (33b).

It remains to prove the bounds (46a) and (46b). In doing so, we make use of the following
auxiliary lemma:

Lemma 9 For any pair Q1, Q2, we have

}pΣoptpQ1q}
1
2
diag ď

?
2}pΣoptpQ2q}

1
2
diag `

?
8}Q1 ´Q2}8.

See Section 5.2.3 for the proof of this claim.

5.2.1 Proof of the bound (46a)

We have

}Σ‹optpQ
‹q}

1
2
diag

piq
ď }pΣoptpQ

‹q}
1
2
8 `

bpQ‹q
1´γ ¨

b

8 logpD{δq
n´1

piiq
ď
?

2}pΣoptp pQq}
1
2
diag `

?
8 ¨ } pQ´Q‹}8 ` bp pQq ¨

b

8 logpD{δq
n´1

` } pQ´Q‹}8 ¨

b

8 logpD{δq
n´1 ,

with probability at least 1 ´ δ. Inequality (i) follows by applying an empirical Bernstein
bound (cf. Lemma 10 in Appendix A.1) to each diagonal entry of the matrix pΣoptpV

‹q,
combined with a union bound on all D diagonal entries. (See the proof of Theorem 1 for
an analogous calculation.) Inequality (ii) follows Lemma 9 on Lipschitz properties of the
empirical variance estimate.

5.2.2 Proof of the bound (46b)

The proof of this claim is similar to that of the bound (46a). We have

}pΣoptp pQq}
1
2
diag

piq
ď
?

2 ¨ }pΣoptpQ
‹q}

1
2
diag `

?
8} pQ´Q‹}8

piiq
ď
?

2 ¨ }Σ‹optpQ
‹q}

1
2
diag ` bpQ

‹q ¨

c

16 logpD{δq

n´ 1
`
?

8 ¨ } pQ´Q‹}8

with probability at least 1 ´ δ. Here the inequality (i) follows from the Lemma 9, and
inequality (ii) follows from an empirical Bernstein bound (see Lemma 10 in Appendix A.1)
combined with the union bound.
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5.2.3 Proof of Lemma 9

Given a square matrix Σ, the quantity }Σ}diag only depends on the diagonal elements of

the matrix Σ. For any state-action pair z “ px, uq, let pΣoptpQqpzq denote the diagonal entry

of the covariance matrix pΣoptpQq associated with the state action pair z. Substituting the

definition of pΣoptpQq from equation (34) yields

pΣoptpQ1qpzq “
1

npn´1q

ÿ

1ďiă`ďn

´

pJJJipQ1qpzq ´ pJJJ`pQ1qpzq
¯2

“ 1
npn´1q

ÿ

1ďiă`ďn

´

pJJJipQ2qpzq ´ pJJJ`pQ2qpzq ` pJJJipQ1qpzq ´ pJJJipQ2qpzq ` pJJJ`pQ2qpzq ´ pJJJ`pQ1qpzq
¯2

piq
ď 2pΣoptpQ2qpzq `

4
npn´1q

ÿ

1ďiă`ďn

!

pppJJJipQ2q ´
pJJJipQ1qqpzqq

2 ` pppJJJ`pQ2q ´
pJJJ`pQ1qpzqq

2
)

piiq
ď 2pΣoptpQ2qpzq ` 8γ2}Q1 ´Q2}

2
8,

where step (i) follows from the elementary inequality pa` bq2 ď 2a2`2b2; and step (ii) uses

the fact that the noisy Bellman operator pJJJ` is γ-Lipschitz in the `8-norm. This completes
the proof.

6. Discussion

Our work addresses the problem of obtaining instance-dependent confidence regions for the
policy evaluation problem and the optimal value estimation problem of an MDP, given access
to an instance optimal algorithm. The confidence regions are constructed by estimating the
instance-dependent functionals that control problem difficulty in a local neighborhood of
the given problem instance. For both problems, the instance-dependent confidence regions
are shown to be significantly shorter for problems with favorable structure.

Our results also leave a few interesting questions. For instance, one could be improving
the bound from Theorem 3 for the optimal value estimation problem. Additionally in the
setting of policy evaluation, we believe that the need for two independent holdout sets is
unnecessary and more likely a proof defect; we conjecture it suffices to use one holdout set
to estimate pI´ γPq´1 on both the left and right side. However what is most interesting is
extending these results to more complicated settings, such as in scenarios involving function
approximation or different sampling schemes such as offline RL.
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Appendix A. Auxiliary Lemmas

In this section, we state the auxiliary lemmas that are used in the main part of the paper.

A.1 Empirical Bernstein

The following empirical Bernstein bound is a re-statement of Theorem 10 from Maurer and
Pontil (2009):

Lemma 10 Let tZiu
n
i“1 be an i.i.d. sequence of real valued random variables taking values in

the unit interval r0, 1s, and define the variance estimate pΣpZq “ 1
npn´1q

ř

1ďiăjďnpZi´Zjq
2.

Then for any δ P p0, 1q, we have

ˇ

ˇ

ˇ

b

ErpΣpZqs ´
b

pΣpZq
ˇ

ˇ

ˇ
ď

c

2 logp1{δq

n´ 1
(47)

with probability at least 1´ 2δ.

A.2 Calculations for Example 1

Here we derive the bound (30). Letting Q‹ denote the value function of the optimal policy
π‹, we have

pZπ‹ ´PPPπ
‹

qQ‹ “

»

–

| |

pZu1 ´PPPu1qV
‹ 0

| |

fi

fl . (48)

Letting W “ pI´ γPPPu1q
´1pZu1 ´PPPu1qQπ‹ and solving for pI´ γPPPπ

‹

qY “ γpZπ‹ ´PPPπ
‹

qQ‹

gives

Y “ γ ¨

»

–

| |

W γW
| |

fi

fl . (49)

Finally, a simple calculation yields

VarppJJJpQ‹qpx1, u1qq “ pp1´ pq ¨
p1´ τq2

p1´ γpq2
, VarppJJJpQ‹qpx2, u1qq “ 0,

VarppJJJpQ‹qpx1, u2qq “ 0, and VarppJJJpQ‹qpx2, u2qq “ 0.

Substituting τ “ 1´ p1´ γqλ yields the claimed bound.

Appendix B. Proof of Corollary 2

The claim of Corollary 2 follows from Corollary 11, the condition (21) and the fact that the
functions ϕf and ϕs are lower bounded by 1.

Corollary 11 Given any algorithm AEval satisfying condition (13), target accuracy ε, and
tolerance probability δ0. Let pV denote the output of algorithm EmpIRE with input pair
pε, δ0q. Then the following statements hold:
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(a) The estimate pV is ε-accurate in the `8-norm:

}pV ´ V ‹}8 ď ε, (50a)

with probability exceeding 1´ δ0.

(b) Define the non-negative integer sets

A “

"

m : m` log2plogp4|X |{δmqq ě log2

ˆ

p1´ γq2

ε2
¨ }Σ‹pr,P, V ‹q}diag

˙

` 4

*

, and

B “ tm : m` log2plogp4|X |{δmqq ě (50b)

log2

˜

p1´ γq2

εϕ2
f pδmq

¨

„

ϕspδmq

4
`

64bpV ‹q

1´ γ
¨
a

logp8|X |{δmq


¸+

. (50c)

The algorithm EmpIRE terminates in at most

M “ inf tAXBu (50d)

epochs with probability exceeding 1´ δ0.

(c) For universal constants pc1, c2, c3q, the algorithm EmpIRE requires at most

n ď max

#

c1ϕ
2
f pδM q

ε2
¨ }Σ‹pr,P, V ‹q}diag,

1

ε

„

c2ϕsp2δM q ` c3
bpV ‹q

1´ γ

a

logp4|X |{δM q


+

(50e)

samples with probability exceeding 1´ δ0.

Remarks: Note that in instance-optimal algorithms ϕf pδq and ϕf pδq are typically loga-
rithmic functions of 1{δ such as variance-reduced policy evaluation (Khamaru et al., 2021)
or ROOT-SA (Mou et al., 2022), ensuring that M exists and our algorithm terminates.

In both equations (50a) and (50b), typically the first term involving
}Σ‹pr,P,V ‹q}diag

ε2
is the

dominant term and establishes a sample complexity of O
´

}Σ‹pr,P,V ‹q}diag

ε2

¯

.

Proof of Corollary 11: Taking for granted now that the algorithm terminates, observe
that equation (50a) follows from algorithm’s termination in M epochs, applying a union
bound over equation (15a) from Theorem 1 for epochs m “ 1, . . . ,M and equation (15b)
for the final epoch M yields the claim with probability exceeding 1´ δ0.

We now turn to the claim (50b). Note that the algorithm terminates at epoch m only if

ε̂f ` ε̂s “
2
?

6 ¨ ϕf pδmq
?
Nm

¨ pΣppV ,Dq ` 2ϕspδmq

Nm
`

6bppV q

1´ γ
¨

a

logp8|X |{δmq
Nm ´ 1

ď ε.

By equation (15b), we have

ε̂f ` ε̂s ď
13ϕf pδmq
?
Nm

¨ }Σ‹pr,P, V ‹q}
1
2
diag `

2ϕspδmq

Nm
`

33bpV ‹q

1´ γ
¨

a

logp8|X |{δmq
Nm

.
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Consequently, the stopping condition ε̂f ` ε̂s ď ε holds as long as

13ϕf pδmq
?
Nm

¨ }Σ‹pr,P, V ‹q}
1
2
diag ď

ε

2
, and (51a)

2ϕspδmq

Nm
`

33bpV ‹q

1´ γ
¨

a

logp8|X |{δmq
Nm

ď
ε

2
. (51b)

Since Nm “ 2mϕ2
f pδmq ¨

32 logp4|X |{δmq
p1´γq2

by definition, equation (50b) follows from plugging in

Nm and solving for when the above expression is less than ε. The termination condition
comes from M being the first m such that both conditions above hold.

When the algorithm terminates in M epochs, then the total number of samples used
can be bounded as

M
ÿ

m“1

pNm ` 2hmq ď c1 ¨
2M

p1´ γq2
¨ ϕ2

f pδM q ¨ logp4|X |{δM q “ c1 ¨
2M`log2plogp4|X |{δM qq

p1´ γq2
¨ ϕ2

f pδM q.

(52)

for some universal constant c1. Here, we have used the assumption that the maps δ ÞÑ ϕf pδq
and δ ÞÑ ϕspδmq are increasing functions of δ; consequently for all m “ 1, 2, . . . ,M ,

ϕf pδmq ď ϕf pδM q and ϕspδmq ď ϕspδM q.

Recall that of M is the infimum of the two sets A and B, defined in (50b), thus any integer
smaller than M , in particular M ´ 1 satisfies the following upper bound

M ´ 1` log2p logp4|X |{δM´1qq

ď c2 `max

"

log2

ˆ

p1´ γq2

ε2
¨ }Σ‹pr,P, V ‹q}diag

˙

,

log2

˜

p1´ γq2

εϕ2
f pδM´1q

¨

„

c3ϕspδM´1q ` c4
bpV ‹q

1´ γ
¨
a

logp8|X |{δM´1q



¸+

for some universal constants pc2, c3, c4q. Rewriting the last bound in terms of M and using
the relation δM´1 “ 2δM we obtain

M ` log2p logp2|X |{δM qq

ď c2 `max

"

log2

ˆ

p1´ γq2

ε2
¨ }Σ‹pr,P, V ‹q}diag

˙

,

log2

˜

p1´ γq2

εϕ2
f p2δM q

¨

„

c3ϕsp2δM q ` c4
bpV ‹q

1´ γ
¨
a

logp4|X |{δM q


¸+

.

Substituting the last bound on M into equation (52) and using the fact that δ ÞÑ ϕf pδq is
a decreasing function of δ yields equation (50e). This completes the proof of Corollary 11.

35



Xia et. al.

Appendix C. Policy Optimization: Further Details

In this section, we state and prove a bound for the variance reduced Q-learning algorithm
studied in papers (Wainwright, 2019b; Xia et al., 2021). The goal is to to show that the
variance reduced Q-learning algorithm satisfies the condition in equation (31). Much of the
content of this section is directly borrowed from the paper (Xia et al., 2021). Throughout
this section, we use the shorthand D – |X | ¨ |U |.

C.1 Variance-reduced Q-learning

We start by restating the variance reduced Q-learning algorithm from Xia et al. (2021).
See Xia et al. (2021); Wainwright (2019b) for a motivation of the algorithm.

A single epoch: The epochs are indexed with integers m “ 1, 2, . . . ,M , where M corre-
sponds to the total number of epochs to be run. Each epoch m requires the following four
inputs:

• an element Q, which is chosen to be the output of the previous epoch m´ 1;

• a positive integer K denoting the number of steps within the given epoch;

• a positive integer Bm denoting the batch size used to calculate the Monte Carlo
update:

JJJnmpQmq–
1

Bm

ÿ

iPDm

pJJJipQmq. (53)

• a set of fresh operators tpJJJiuiPCm , with |Cm| “ Bm `K. The set Cm is partitioned into
two subsets having sizes Bm and K, respectively. The first subset, of size Bm, which
we call Dm, is used to construct the Monte Carlo approximation (53). The second
subset, of size K is used to run the K steps within the epoch.

We summarize a single epoch in pseudo code form in Algorithm SingleEpoch.
Overall algorithm: The overall algorithm, denoted by VR-QL for short, has five inputs:
(a) an initialization Q1, (b) an integer M , denoting the number of epochs to be run, (c)
an integer K, denoting the length of each epoch, (d) a sequence of batch sizes tBmu

K
m“1,

denoting the number of operators used for re-centering in the M epochs, and (e) sample

batches ttpJJJiuiPCmu
M
m“1 to be used in the M epochs. Given these five inputs, the overall

procedure can be summarized as in Algorithm VR-QL.

Input parameters Given a tolerance probability δ P p0, 1q and the number of available

i.i.d. samples n, we run Algorithm VR-QL with a total of M – log
´

np1´γq2

8 logpp16D{δq¨lognq

¯

epochs, along with the following parameter choices:
Re-centering sizes:

nm “ c1
4m

p1´ γq2
¨ log4p16MD{δq (54a)
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Algorithm SingleEpoch RunEpoch pQ;K,Bm, tpJJJiuiPCmq

1: Given (a) Epoch length K, (b) Re-centering vector Q, (c) Re-centering batch size Bm,

(d) Operators tpJJJiuiPCm
2: Compute the re-centering quantity

JJJnmpQq–
1

Bm

ÿ

iPDm

pJJJipQq

3: Initialize Q1 “ Q
4: for k “ 1, 2, . . . ,K do
5: Compute the variance-reduced update:

Qk`1 “ p1´ αkqQk ` αk

!

pJJJkpQkq ´ pJJJkpQmq ` JJJnmpQmq
)

, with stepsize αk “
1

1` p1´ γqk
.

6: end for
7: return θK`1

Algorithm VR-QL

1: Given (a) Initialization Q1, (b) Number of epochs, M , (c) Epoch length K, (d) Re-

centering sample sizes tBmu
M
m“1, (e) Sample batches tpJJJiuiPCm for m “ 1, . . . ,M

2: Initialize at Q1

3: for m “ 1, 2, . . . ,M do
4: Qm`1 “ RunEpochpQm;K,Bm, tpJJJiuiPCmq
5: end for
6: return QM`1 as final estimate
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Sample batches:

Partition the n samples to obtain tpJJJiuiPCm for m “ 1, . . . ,M (54b)

Epoch length:

K “
n

2M
. (54c)

Proposition 12 Suppose the inputs parameters of Algorithm VR-QL are chosen according
to parameter choices (54), and the sample size satisfies the lower bound n

M ě c1
logp8DM{δq
p1´γq3

.

Then, for any initialization Q1, the output pQn ” QM`1 satisfies the

} pQn ´Q
‹}8 ď c1 ¨

}Σ‹optpQ
‹q}

1
2
diag

1´ γ
¨

c

logp8DM{δq

n
` c2 ¨

bpQ‹q

1´ γ
¨

logp8DM{δq

n

` c3 ¨ }Q1 ´Q
‹}8 ¨

log2pp16DM{δq ¨ log nq

n2p1´ γq4
,

with probability at least 1´ δ. Here c1, c2, c3 are universal constants.

C.2 Proof of Proposition 12

The proof is this similar to that of the Theorem 2 in the paper (Xia et al., 2021); in
particular, we use a modified version of Lemma 7 from the paper (Xia et al., 2021).

C.2.1 Proof set-up

We start by introducing some notation used in the paper (Xia et al., 2021). Recall that the
update within an epoch takes the form (cf. SingleEpoch)

Qk`1 “ p1´ αkqQk ` αk

!

pJJJkpθq ´ pJJJkpQmq ` JJJnmpQmq
)

,

where Qm represents the input into epoch m. We define the shifted operators and noisy
shifted operators for epoch m by

JpQq “ JJJpQq ´ JJJpQmq ` JJJnmpQmq and pJkpQq “ pTTTkpQq ´ pJJJkpQmq ` JJJnmpQmq. (55)

Since both of the operators JJJ and pJJJk are γ-contractive in the `8-norm, the operators J and
pJk are also γ-contractive operators in the same norm. Let pQm denote the unique fixed point
of the operator J.

With this set-up, it suffices to prove the following modification of Lemma 7 from Xia
et al. (2021).

Lemma 13 Assume that nm satisfies the bound nm ě
c logp8DM{δq
p1´γq2

. Then we have

} pQm ´Q
‹}8 ď

}Qm ´Q
‹}8

33
` c4

$

&

%

}Σ‹optpQ
‹q}

1
2
diag

1´ γ
¨

d

logp8DM{δq

nm
`
bpQ‹q

1´ γ
¨

logp8DM{δq

nm

,

.

-

,

with probability at least 1´ δ
2M .

Indeed, the proof of Proposition 12 follows directly from the proof of Theorem 2 in Xia
et al. (2021) by replacing Lemma 7 by Lemma 13.
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C.2.2 Proof of Lemma 13

In order to simplify notation, we drop the epoch number m from pQm and Qm throughout
the remainder of the proof. Let pπ and π‹ denote the greedy policies with respect to the Q
functions pQ and Q‹, respectively. Concretely,

π‹pxq “ arg max
uPU

Q‹px, uq pπpxq “ arg max
uPU

pQpx, uq. (56)

Ties in the arg max are broken by choosing the action u with smallest index.

By the optimality of the policies pπ and π‹ for the Q-functions pQ and Q‹, respectively,
we have

Q‹ “ r` γPPPπ
‹

Q‹ and pQ “ rr` γPPPpπ
pQ, where rr – r` JJJnmpQq ´ JJJpQq. (57)

Our proof is based on the following intermediate inequality which we prove at the end of
this section.

} pQ´Q‹}8 ď
1

1´ γ
}rr´ r}8. (58)

With the last inequality at hand it suffices to prove an upper bound on the term }r´ r}8.

Recall the definition rr – pR` γp pZπ ´PPPπqQ, where π a policy greedy with respect to
Q; that is, πpxq “ arg maxuPU Qpx, uq, where we break ties in the arg max by choosing the
action u with smallest index. We have

}rr´ r}8 ď }p pR´ rq ` γp pZπ‹ ´PPPπ
‹

qQ‹}8 ` γ}p pZπQ´ pZπ‹Q‹q ´ pPPPπQ´PPPπ
‹

Q‹q}8.

Observe that the random variable pR and pZ are averages of nm i.i.d. random variables
tRiu and tZiu, respectively. Consequently, applying Bernstein bound along with a union
bound we have the following bound with probability least 1´ δ

4M :

}p pR´ rq ` γppZ
π‹

´PPPπ
‹

qQ‹}8 ď
4

?
nm

¨ }Σ‹optpQ
‹q}

1
2
diag ¨

a

logp8DM{δq

`
4bpQ‹q

p1´ γqnm
¨ logp8DM{δq.

Finally, for each state-action pair px, uq the random variable ppZ
π
Q ´ pZ

π‹

Q‹qpx, uq has
expectation pPPPπQ´PPPπ

‹

qpx, uq with entries uniformly bounded by 2}Q´Q‹}8. Consequently,
by a standard application of Hoeffding’s inequality combined with the lower bound nm ě
c3

4m

p1´γq2
logp8DM{δq, we have

γ

1´ γ
¨ }ppZ

π
Q´ pZ

π‹

Q‹q ´ pPPPπQ´PPPπ
‹

Q‹q}8 ď
}Q´Q‹}8

33
,

with probability at least 1 ´ δ
4M . The statement of Lemma 13 then follows from combin-

ing these two high-probability statements with a union bound. It remains to prove the
claim (58).
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Proof of equation (58): By optimality of the policies pπ and π‹ for the Q-functions pQ
and Q‹, respectively, we have

Q‹ “ r` γPPPπ
‹

Q‹ ľ r` γPPPπ
‹
pQ and pQ “ rr` γPPPpπ

pQ ľ rr` γPPPpπQ‹. (59)

Thus, we have

Q‹ ´ pQ “ r´ rr` γpPPPπ
‹

Q‹ ´PPPpπ
pQq ĺ r´ rr` γPPPπ

‹

pQ‹ ´ pQq. (60)

Rearranging the last inequality, and using the non-negativity of the entries of pI´ γPPPπ
‹

q´1

we conclude

pQ‹ ´ pQq ĺ pI´ γPPPπ
‹

q´1pr´ rrq.

This completes the proof of the bound; a similar argument gives

p pQ´Q‹q ĺ pI´ γPPPpπq´1pr´ rrq.

Collecting the two bounds, we have

| pQ´Q‹| ĺ max
!

pI´ γPPPπ
‹

q´1pr´ rrq, pI´ γPPPpπq´1pr´ rrq
)

,

where max denotes the entry-wise maximum. The desired then follows from the fact the
bound }pI´ γPPPπq´1}1,8 ď

1
1´γ for any policy π. This completes the proof.
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Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine,
Afroz Mohiuddin, Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based
reinforcement learning for Atari. In International Conference on Learning Representa-
tions, 2020. URL https://openreview.net/forum?id=S1xCPJHtDB.

43

https://openreview.net/forum?id=S1xCPJHtDB

	Introduction
	Related work
	Contributions
	Notation

	Background
	Markov decision processes
	Policy evaluation and Markov reward processes
	Policy optimization via optimal Q-function estimation

	Confidence Intervals for Policy Evaluation
	Optimal instance dependence for policy evaluation
	A procedure for computing data-dependent bounds
	(f, s)-instance-optimal algorithms
	Constructing a data-dependent bound
	Constructing the empirical covariance estimate

	Early stopping with optimality:  EmpIRE procedure
	Numerical simulations

	Confidence Regions for Optimal Q-function Estimation
	Instance-dependence for optimal Q-functions
	A conservative yet useful upper bound
	Data-dependent bounds for optimal Q-functions
	Instance-valid algorithms
	Constructing a data-dependent bound
	Estimation of "067D80F  opt(Q) "067D80F diag12
	Early stopping for optimal Q-functions

	Some numerical simulations

	Proofs
	Proof of Theorem 1
	Proof of Theorem 1 part (a)
	Proof of Theorem 1 part (b)
	Proof of Lemma 4
	Proof of Lemmas 5 and 7
	Proof of Lemma 6

	Proof of Theorem 3
	Proof of the bound (46a)
	Proof of the bound (46b)
	Proof of Lemma 9


	Discussion
	Auxiliary Lemmas
	Empirical Bernstein
	Calculations for Example 1

	Proof of Corollary 2
	Policy Optimization: Further Details
	Variance-reduced Q-learning
	Proof of Proposition 12
	Proof set-up
	Proof of Lemma 13



