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Abstract

Inspired by the remarkable success of large neural networks, there has been significant
interest in understanding the generalization performance of over-parameterized models.
Substantial efforts have been invested in characterizing how optimization algorithms impact
generalization through their “preferred” solutions, a phenomenon commonly referred to as
implicit regularization. In particular, it has been argued that gradient descent (GD) induces
an implicit ¢o-norm regularization in regression and classification problems. However, the
implicit regularization of different algorithms are confined to either a specific geometry or a
particular class of learning problems, indicating a gap in a general approach for controlling
the implicit regularization. To address this, we present a unified approach using mirror
descent (MD), a notable generalization of GD, to control implicit regularization in both
regression and classification settings. More specifically, we show that MD with the general
class of homogeneous potential functions converges in direction to a generalized mazimum-
margin solution for linear classification problems, thereby answering a long-standing question
in the classification setting. Further, we show that MD can be implemented efficiently and
enjoys fast convergence under suitable conditions. Through comprehensive experiments,
we demonstrate that MD is a versatile method to produce learned models with different
regularizers, which in turn have different generalization performances.

Keywords: implicit regularization, mirror descent, gradient descent, maximum-margin
classification, over-parameterization

1. Introduction

In recent years, deep neural networks have enjoyed a tremendous amount of success in a
wide range of applications (Schrittwieser et al., 2020; Ramesh et al., 2021; Brown et al.,
2020; Dosovitskiy et al., 2020). Notably, many of these modern machine learning problems
operate in the so-called over-parameterized regime, where the number of model parameters
is sufficiently large to allow for perfectly fitting the training data (Allen-Zhu et al., 2019;
Belkin, 2021). However, such highly expressive models have the capacity to have multiple
solutions that interpolate training data, and these solutions can often perform very differently
on test data. Without knowing which of these interpolating solutions the optimizer finds, it
would be difficult to identify whether the learned model overfits, where it performs well on
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the training data but generalizes poorly on the test data. Therefore, a characterization of
the optimizers’ solutions is essential to the understanding of the generalization performance
of modern over-parameterized models, which is one of the most fundamental questions in
machine learning.

Notably, it has been observed that even in the absence of any explicit regularization,
the interpolating solutions obtained by many gradient-based optimization algorithms, such
as (stochastic) gradient descent, tend to generalize well. Recent research has highlighted
that these algorithms converge to solutions with certain properties, i.e., they implicitly
reqularize the learned models. Importantly, it has been argued that such implicit biases play
a significant role in determining generalization performance (Neyshabur et al., 2014; Zhang
et al., 2021; Wilson et al., 2017; Liang and Rakhlin, 2020; Donhauser et al., 2022).

In the literature, the implicit bias of first-order methods is first studied in linear settings
since the analysis is more tractable. Nevertheless, there is significant theoretical and empirical
evidence suggesting that certain insights from linear models translate to the case of deep
models, e.g., Jacot et al. (2018); Allen-Zhu et al. (2019); Belkin et al. (2019); Bartlett et al.
(2017); Nakkiran et al. (2021); Du et al. (2018). In the linear setting, implicit bias has been
extensively analyzed in the contexts of different learning problems, of which two have received
the most attention. The first case is least-squares regression, where the loss function has a
global minimum attainable at a finite value. And the second case is classification with logistic
or exponential loss, where the loss function does not have an attainable global minimum.
While they are colloquially referred to as regression or classification problems, respectively,
we note that there are other examples of the loss function, such as hinge loss, that do not
fall into these two categories. In Section 2, we will define these notions more formally.

For the analysis of implicit regularization, the most well-studied optimization algorithm
is gradient descent (GD). The implicit bias of gradient descent (GD) for the square loss goes
back to Engl et al. (1996), and possibly earlier, where it was shown that GD converges to the
global minimum that is closest to the initialization in the Euclidean distance. For the logistic
loss, it has been shown that the gradient descent iterates converge to the fo-maximum-margin
SVM solution in direction (Soudry et al., 2018; Ji and Telgarsky, 2019a). Beyond GD, it has
been shown that mirror descent (MD), which is an important generalization of GD, converges
to the interpolating solution that is closest to the initialization in terms of a Bregman
divergence (Gunasekar et al., 2018; Azizan and Hassibi, 2019a). On the classification side, it
has been established that the implicit biases of various algorithms such as AdaBoost (Rosset
et al., 2004; Telgarsky, 2013) and steepest descent (Gunasekar et al., 2018) maximize the
margin with respect to certain norms.

There are also many counter-examples where an optimization algorithm does not exhibit
an implicit bias independent of hyper-parameters such as the step size. For instance, it
has been shown that the AdaGrad algorithm does not have such an implicit bias in the
classification setting (Gunasekar et al., 2018; Wang et al., 2021). Further, it is possible for
optimization algorithms to exhibit step-size-invariant implicit bias in regression but not in
classification and vice versa (e.g., steepest descent). To our best knowledge, gradient descent
is the only first-order algorithm known to induce a step-size-invariant implicit bias in both
settings of regression with square loss and classification with logistic loss. Therefore, there
is still a significant gap in the understanding of implicit regularization for different classes
of losses and some believe that the regression and classification settings are “fundamentally
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Table 1: Conceptual summary of our results. For both well-specified linear regression
and separable linear classification, gradient descent converges to the “smallest” global mini-
mum in fo-norm. In the case of linear regression, it is known that mirror descent generalizes
the implicit bias of gradient descent to any strictly convex potential. However, a similar
characterization is missing for mirror descent under the classification setting. In this paper,
we prove the implicit regularization of mirror descent with the class of homogeneous potentials
and extend the result of gradient descent beyond ¢s-norm. In Appendix A, we present a
more complete summary where we consider the implicit bias in the regression setting with
any initialization.

Regression (e.g. square loss) | Classification (e.g. logistic loss)

with wy = argmin ¢ (w) with any initialization
argminw ||w||2 argminw ||w||2
Gradient Descent s.t. w fits all data s.t. w classifies all data

Soudry et al. (2018)
Ji and Telgarsky (2019a)

(e ¥() = 2 [-2) (Engl et al., 1996, Thm 6.1)

argmin,, 1 (w) argmin,, 1 (w)
s.t. w fits all data s.t. w classifies all data
Gunasekar et al. (2018)
Azizan and Hassibi (2019a)

Mirror Descent

This work

different” (Gunasekar et al., 2018). In this paper, we show that mirror descent can extend the
implicit bias of gradient descent to more general geometries in the classification setting. So,
we conclude that mirror descent is the first known algorithm exhibiting implicit regularization
for both general geometry and different classes of loss functions. Furthermore, we show that
under many circumstances, mirror descent can both be efficiently implemented and quickly
converge to its implicitly regularized solution. Hence, mirror descent is a versatile way of
implicitly enforcing desirable properties on the learned model in a variety of tasks. See
Table 1 for a summary.

1.1 Our contributions
In this paper, our theoretical and empirical contributions are as follows:

m We study mirror descent (MD) with the general class of homogeneous potential functions.
In Section 3.1, we show that for separable linear classification with logistic loss, MD
with homogeneous potential exhibits implicit regularization by converging in direction
to a generalized maximum-margin solution with respect to the potential function. More
generally, we show that, for any strictly decreasing loss function, MD follows the so-called
regularization path. The precise terminologies are defined in Sections 2 and 3.

m We study the rate at which MD with homogeneous potential converges in direction to
the generalized maximum-margin solution. In Section 3.2, we show that with fixed step
sizes, MD converges in direction to the maximum-margin solution at a poly-logarithmic
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rate in the number of iterates 7. And in Section 3.3, with additional assumptions on the
potential function, we prove the convergence of a variant of normalized MD and show the
rate of convergence can be accelerated to be polynomial in the number of iterates 7'

m In Section 4, we investigate the implications of our theoretical findings by applying a
subclass of MD that is both efficient and scalable. Our experiments involving linear
models corroborate our theoretical results in Section 3, and real-world experiments with
deep neural networks and popular datasets suggest that our findings carry over to such
nonlinear settings. Our deep learning experiments further show that mirror descent with
respect to different potential functions can lead to different solutions with significantly
different generalization performance.

1.2 Related work

Implicit regularization in regression. Regression problems are typically concerned
with the case of square loss. For gradient descent (GD) with square loss on a linear model,
it is known that GD converges to the minimizer that is closest to the initialization in the
Euclidean sense (Engl et al., 1996). We can induce implicit bias with respect to other
geometries with a family of algorithms called mirror descent (MD), which is an extension
of GD. In particular, it has been shown that mirror descent converges to the interpolating
solution that is closest to the initialization in terms of a Bregman divergence with respect to
MD’s potential function (Gunasekar et al., 2018; Azizan and Hassibi, 2019a).! Additionally,
Gunasekar et al. (2018) showed that a variant of MD with momentum also converges to the
same implicit bias, and Azizan and Hassibi (2019a) analyzed stochastic MD. So, we consider
the study of implicit bias in linear regression to be relatively well-understood by now.

Implicit regularization in classification. Classification problems are typically con-
cerned with the case of logistic or exponential loss. Another common loss function for
classification problems is the hinge loss, but as we will note in Section 2, this loss is uninter-
esting in terms of analyzing implicit bias. A key differentiating factor in the classification
setting is that the loss function does not attain its minimum at a finite value, and the weights
have to grow to infinity. For the logistic loss and other strictly decreasing losses, it has
been shown that gradient descent iterates converge to the fo-maximum-margin solution in
direction (Soudry et al., 2018; Ji and Telgarsky, 2019a; Ji et al., 2020). Further applying
various schemes of adaptive step size to gradient descent can accelerate its convergence
to the solution induced by its implicit bias (Nacson et al., 2019; Ji and Telgarsky, 2021;
Ji et al., 2021). Beyond implicit bias with respect to the fo-norm, we also know that Ad-
aBoost converges to the ¢;-maximum margin direction (Rosset et al., 2004; Telgarsky, 2013).
Also, Gunasekar et al. (2018) showed that the steepest descent algorithm converges to the
maximum-margin direction with respect to a general norm; however, this algorithm cannot
be implemented efficiently in practice. The analysis of mirror descent for this setting had
been more limited; the only prior work we are aware of showed a special case where mirror
descent’s potential is the Mahalanobis distance? (Li et al., 2021).

1. MD has also been used for explicit regularization, e.g., Azizan et al. (2021a), which is not the focus of
this work.
2. which is equivalent to the Euclidean distance up to a linear transformation in the coordinates.
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Connections between regression and classification. For over-parameterized models,
empirical evidence shows that using either least-square loss or cross-entropy loss can lead to
comparable performance on classification tasks (Hui and Belkin, 2020). This suggests that
the distinction between regression and classification problems is blurred when we enter the
over-parameterized regime. There has been some progress in theoretically explaining this
phenomenon, for example, Muthukumar et al. (2021) showed that for over-parameterized
linear models and when the data are drawn from a Gaussian distribution, the minimum-
fo-norm interpolating solution and the fo-maximum-margin solutions are equivalent with
high probability. However, it is unknown whether such connections exist for more general
geometries extending beyond the fs-norm.

Extension to nonlinear models. In addition to linear models, several works have ana-
lyzed the implicit bias when we optimize over a nonlinear model such as neural networks.
There is now a good understanding of the case of simpler networks such as homogeneous
networks without nonlinearity (Lyu and Li, 2019; Vardi et al., 2022; Wang et al., 2021),
ReLU networks (Ji and Telgarsky, 2019b; Zou et al., 2020), or networks with dropout (Mianjy
et al., 2018; Wei et al., 2020). However, the development of implicit regularization for more
general deep neural networks remains an ongoing research direction.

2. Background
2.1 Problem setting

In this paper, we are interested in the standard empirical risk minimization problem. Consider
a collection of input-output pairs {(z;,%;)}"; C R? x R and a model f,(z) : R? — R with
parameter w € WW. For some convex loss function £ : R x R — R, our goal is to minimize the
empirical loss:

L(w) = %Zﬂ(fw(xi),yi).
=1

We can categorize the loss functions by the properties of their minimizer. For simplicity, we
assume without loss of generality that inf £(-) = 0. The first type is concerned with regression
problems, whereas the next two types of losses are concerned with classification problems,
where the output variable is a binary label y € {£1}.

m Losses with a unique minimizer. In this case, the minima of the loss function is
attained if and only if f,(z) = y. Example: square loss £(f,(7),y) = (fw(z) — y)%.

m Losses with non-unique minimizer. In this case, there are other minimizers in
addition to the ones at f,(r) = y. Example: hinge loss ¢(f,(z),y) = max(0,1 — fu,(x)y).

m Strictly monotone losses. A finite minimizer is not attainable in this case, but for any
fixed value of y, the loss ¢(f,(z),y) strictly decreases with respect to f,(x)y. Example:
exponential loss ¢(fy,(x),y) = exp(— fu()y), or logistics loss.

We note that gradient descent does not exhibit an implicit bias for losses with a non-
unique minimizer because the final solution will depend on the step size (see the example
below). Therefore, we are mainly interested in only the first and third types of loss functions.
For simplicity, unless otherwise stated, we informally refer to regression as problems with
square loss and classification as problems with exponential loss.
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Example 1 We give a simple example where the solution found by gradient descent with the
hinge loss is dependent on the step size. Consider a classification dataset with three points
in R3: ((1,0,0),+1),((0,1,0),+1),((0,0,1),+1), a linear model f,(z) = w'x and initial
weight wy = (—1,—2,—3). When the step size is n = 2, the iterates are wy = (1,0, —1),wqy =
(1,2,1); and when the step size is n = 3, the iterates are wy = (2,1,0),wq = (2,1,3). The
final solutions are dependent on the step size, so gradient descent does not exhibit implicit
reqularization with the hinge loss.

For our theoretical analysis, we focus on a linear model, where the models can be expressed
by fu(z) =w'z and w € RY, in classification problems with strictly monotone losses. We
also make the following assumptions about the data. First, since we are mainly interested in
the over-parameterized setting where d > n, we assume that the data is linearly separable,
i.e., there exists w* € RY s.t. sign({w*, z;)) = y; for all i € [n]. We also assume that the
inputs z;’s are bounded, where max; ||z;|| < C, for some relevant norm ||-|| which we will
specify in Section 3.

2.2 Preliminaries on mirror descent

The key component of mirror descent is a potential function. In this work, we will focus on
differentiable and strictly convex potentials 1) defined on the entire domain R”.? We call V)
the corresponding mirror map. Given a potential, the natural notion of “distance” associated
with the potential 9 is given by the Bregman divergence.

Definition 1 (Bregman divergence (Bregman, 1967)) For a strictly convezx potential
function 1), the Bregman divergence Dy (-,-) associated to v is defined as

Dy (z,y) :==(x) —¢(y) — (VY(y), z—y),  Va,y eR".

m
2
Then, the Bregman divergence becomes Dy (z,y) = % |z — yHg As an example for more
complicated geometry, when the potential is ¢(z) = %xTPaj with positive definite P >~ 0,
then the Bregman divergence becomes the Mahalanobis distance. For more background on
Bregman divergence and its properties, see, e.g., (Bauschke et al., 2017, Section 2.2) and
(Azizan and Hassibi, 2019b, Section II.A).
The mirror descent (MD) algorithm (Nemirovskij and Yudin, 1983) is a generalization
of gradient descent over geometries beyond the Euclidean distance. In mirror descent with

potential 1, we use Bregman divergence as a measure of distance:

An important case is the potential ) = where |||, denotes the Euclidean norm.

Wip1 = argqinin {;Dw(w,wt) + (VL(w), w)} (MD)

Equivalently, MD can be written as Vi(wi1) = Vp(wy) — nVL(w). We refer readers
to (Bubeck, 2015, Figure 4.1) for a nice illustration of mirror descent. Also, see (Juditsky
et al., 2011, Section 5.7) for various examples of potentials depending on applications.

One property we will repeatedly use is the following (Azizan and Hassibi, 2019a):

3. In general, the mirror map is a convex function of Legendre type (see, e.g., (Rockafellar, 1970, Sec. 26)).
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Lemma 2 (MD identity) For any w € R", the following identities hold for (MD)*:

Dy (w,w;) = Dy(w, wig1) + Dy—yr(wegr, we) + nDp(w, we) — nL(w) + nL(wir1),  (la)
= Dy(w,wis1) + Dy—yr(wegr, we) — n(VL(we), w—we) — nL(we) + nL(wir) . (1b)

Using Lemma 2, we make several new observations and prove the following useful
statements.

Lemma 3 For sufficiently small step size n such that ¢ — nL is convex, the loss is mono-
tonically decreasing after each iteration of (MD), i.e., L(wi1) < L(wy).

Lemma 4 In a separable linear classification problem, if n is chosen sufficiently small s.t.
¥ —nL is convex, then we have L(wy) — 0 as t — oo. Hence, limy_, o ||we|| = 0o for any
norm ||-||.

The formal proofs of these lemmas can be found in Appendix B.

Remark 5 One can relax the condition in Lemma 3 and 4 such that for a sufficiently small
step size 1, Y —nL only has to be locally convex at the iterates {w;}72,. The relazed condition
allows us to analyze losses such as the exponential loss (see, e.g. footnote 2 of Soudry
et al. (2018)). This condition can be considered as the mirror descent counterpart to the
standard smoothness assumption in the analysis of gradient descent (see Lu et al. (2018)).
In Appendiz D, we discuss in detail the existence of such a step size for the exponential loss.

2.3 Preliminaries on implicit regularization

As we discussed above, the weights vector w; diverges for mirror descent. Here the main
theoretical question is:

What direction does MD converge to? In other words,
under some norm ||-||, can we characterize wy/ ||w:|| as t — oo?

To define a notion of “norm” respecting the geometry induced by potential ¥, we let ||-|,
be the Minkowski functional of 1’s unit sub-level set:

Jwll, == inf{c > 0: ¢(w/c) <1} (2)

For a wide class of convex 1), this definition indeed gives us a norm. In Section 3, we shall
give a sufficient condition for [|-||,, to be a norm. With the definition of [|-[|,, in mind, we
introduce two special directions whose importance will be illustrated later.

Definition 6 The regularization path with respect to |||, is defined as

Wy (B) = argmin L(w) (3)
||w||¢§B

And if the limit limp_,oo wy(B)/B exists, we call it the generalized regularized direction
and denote it by u:ﬁ

4. For convenience, for a function f, we write D¢(z,y) := f(z) — f(y) — (Vf(y), = —y). Note that when f
is convex, Dy(-,-) > 0, and when f is strictly convex, D¢ (-,-) is the Bregman divergence.
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Definition 7 The margin v of the a linear classifier w is defined as y(w) = min;e |, yi (Ti, w).
The generalized mazx-margin direction with respect to i is defined as:

Uy, 1= argmax { min y; (z;, w)} (4)
Pp(w)<t (=hn

And let 7y be the optimal value to the equation above.’

For simpler case where we have the £,-norm

(one possible corresponding potential is ¢(-) = 2

% [|[I), we overload the notation with uj, and \"-\_\ .

uy'. Note that the superscripts in u:b and u;; 1 . N~ B

are not variables and we only use this notation T :j_-:.\ p=1

to differentiate the two definitions. 0 ) RN Top=2
To illustrate the effect of the potential ¥ on . '\.\ I R p=10

the maximum-margin solution, we consider a S

dataset consisting of a single point ((3,3),+1). —2b ; \2

For uJ', we get the SVM solution whose deci-
sion boundary is orthogonal to the line connect-
ing (%, %) to the origin. And for uf', we get a
“sparse” max-margin solution that is zero in one
coordinate. Lastly, because ||-||;, is very close
to |||, the coordinates in the max-margin
solution ufj, are very close to each other.

Prior results had shown that, in linear classification, gradient descent converges in direction

to uy', which is parallel to the hard-margin SVM solution w.r.t. fo-norm: argmin, {|w||, :
1) > 1.

Theorem 8 (Soudry et al. (2018)) For separable linear classification problems with lo-
gistics/exponential loss, the gradient descent iterates with sufficiently small step size converge
in direction to uy', t.e., limy o ﬁ =uy'.

2

Figure 1: The generalized maximum-margin
solution to a single data point (denoted by e)
with respect to the ¢1, £5, and £1¢ norms. For
each generalized max-margin solution u, we
plot the decision boundary {z | u"2 = 0}.

Theorem 9 (Ji et al. (2020)) If the regularized direction uf, with respect to the la-norm
exists, then the gradient descent iterates with sufficiently small step size converge to the
reqularized direction uj, t.e., limy_,o ”Q}J"—;lb = u.

As for mirror descent, an earlier version of this paper (Sun et al., 2022) studied when the
potential function is ¥ (-) = % |||}, and showed that wy/ [|we||,, converges in direction.
Theorem 10 (Sun et al. (2022)) Given a separable linear classification problem with
strictly monotone loss. If the regularized direction w, with respect to the {y-norm exists, then

the iterates of mirror descent with () = % |-[[5 and sufficiently small step size converge to
the generalized regularized direction u;, .e., limy oo ﬁ = u;,,
p

In Section 3.1, we will generalize Theorems 8-10 to a more general setting of mirror
descent with the class of homogeneous potential function.

5. Note that, when [|-]|, is a norm, the sets {1)(-) < 1} and {||-[|,, < 1} are equal. In this paper, we will use
these two formulations interchangeably.
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3. Mirror Descent with Homogeneous Potential

In this section, we investigate the implicit regularization property of mirror descent for
classification problems with strictly monotone losses. For the notion of “direction” to be
well-defined, we impose the following properties on the potential function.

Assumption 1 We assume that the potential function i has the following properties:

m ¢ is twice differentiable and strictly convez, i.e. V2 > 0.
m ) is positive definite in the sense that (-) > 0 and ¥(x) = 0 if and only if x = 0.

m For some constant 5 > 1, ¥ is B-absolutely homogeneous in the sense that for any scalar
c and vector x € R, we have (cx) = |c|P(x).

Under this assumption, we can verify that [-||,, as defined in (2) is indeed a norm. In

particular, if ¢(-) = ||-||® for some norm ||-||, then we have [[[l = [I[|- Also, it is not difficult
to show that 1 satisfies the following properties, so that the Bregman divergence is also
absolutely homogeneous. This would allow us to easily normalize the weight vector w in our
computations.

(Vi (w), w) =B -p(w) (5a)
Dy (cw, cw') = c|’ Dy, (w,w') VeeR. (5b)

For a detailed discussion of potentials under Assumption 1, we refer the readers to Appendix C.
We note that this assumption is quite general and covers several previously studied cases
of mirror descent:

m When ¢ = 3 I-||3, we recover gradient descent.

m When 1) =1 ||H3, we have the so-called p-norm algorithm (where 1/p+1/q = 1) (Grove
et al., 2001; Gentile, 2003).

m The potential () = % ||||§ for p > 1 is particularly of practical interest because the
mirror map Vi updates becomes separable in coordinates and thus can be implemented
coordinate-wise independent of other coordinates:

vic, {wenll e (bl -sign (wi ) w
e {wm = gl sign(urli) - gV L ()L e

In comparison, the p-norm algorithm is not coordinate-wise separable since it requires
computing [Jw||, at each step (see, e.g., (Gentile, 2003, eq. (1))). This potential
P(-) = ;1) [[-[I5; was first considered by (Azizan et al., 2021b) in the case of regression in
which the loss function has unique minimizer. In an earlier version of this work (Sun
et al., 2022), we analyzed this potential in the case of classification with strictly monotone
losses and named mirror descent with this potential as p-norm GD, or p-GD in short,
because it naturally generalizes gradient descent to £,-norms.

Remark 11 In this paper, we do not consider the case where the potential is the negative
entropy function (which recovers the multiplicative weights or the hedge algorithm from the
online learning literature) because this potential function requires all the weights to be positive,
which would be too restrictive in our problem setting.



SUN, GATMIRY, AHN, AND AZIZAN

Remark 12 [t is worth noting that the steepest descent algorithm, which follows the update
rule
) 1
Wy = argmin { |wl|? 4 (VL(wy), w)}

w 277
for a general norm |||, is not an instance of mirror descent since § |[? is in general not a
Bregman divergence. Further, this update rule does not have a closed-form solution and thus
cannot be solved efficiently. In this section, we will see that mirror descent with potential
() = HHﬁ for any 8 > 1 will induce the same 1mplicit bias as steepest descent for strictly
momnotone losses.

Finally, recall that in Section 2.1, we discussed our assumptions on the dataset. With
the definition of ||| > We can now state these assumptions more precisely.

Assumption 2 The dataset {(x;,y;)}"; C R? x {£1} is linearly separable so there exists
w* € RY s.t. sign((w*, x;)) = y; for all i € [n]. Let [[ly + e the dual norm to |-||,. The
input variables x; are bounded that there exists constant C' > 0 where max({|z|y , [|zill, ) < C
for all i € [n].

3.1 Main theoretical results

We extend Theorems 8-10 to the setting of mirror descent with potential functions satisfying
Assumption 1. Building upon the analysis in our previous work (Sun et al., 2022), we resolve
several major obstacles in the analysis of implicit regularization of linear classification where
we apply a general class of MD to strictly monotone loss functions:

m We approach the classification setting with strictly monotone loss by considering the
limit of a sequence of constrained optimization problems. Then each constrained problem
has a unique and finite minimizer, and these solutions trace out the regularization path.
Our analysis builds upon the techniques employed by Ji et al. (2020). In addition
to generalizing regularized direction to a more general geometry, we derive stronger
justification for using regularized direction by connecting the analysis of implicit bias
under different types of loss functions.

m Our argument addresses the concern from Gunasekar et al. (2018) that the implicit bias
of regression and classification problems are “fundamentally different.” In Gunasekar et al.
(2018), it was noted that gradient descent’s implicit bias is dependent on the initialization
for regression problems, but not for classification problems. In this section, we argue
that it is sufficient to reframe the classification setting as a sequence of carefully chosen
regression problems.® Then, we find that the dependence on the initialization vanishes
after taking the limit.

m On a more technical note, one challenge in analyzing mirror descent lies in the cross terms
of the form (Vi (w), w'), which lack direct geometric interpretations. We demonstrate
that under Assumption 1, these terms can be simplified nicely and still induce a variety
of desired geometric properties on the implicit bias.

6. Recall that, in Section 2.1, we define “regression problem” as the case where the loss function has a unique
and attainable minimizer.

10
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We start our discussion with the following main result.

Theorem 13 For a separable linear classification problem, if the reqularized direction u'
exists, then with sufficiently small step size, the iterates of MD with a potential function
satisfying Assumption 1 converge to u;b in direction:

. w r
lim —— = U, (6)

Next, we shall introduce the key ideas behind this theorem. We motivate our use of
regularized direction by first considering the regression setting and then highlighting the
additional challenges we must overcome in the classification setting. For over-parameterized
regression problems, there exists some weight vector w such that L(w) = 0. Then, we can
apply Lemma 2 to get

Dy (w,wi) = Dy(w, wis1) + Dy—nr(wit1,wr) +nDp(w, we) + n(L(wi1) — L(w))

By our choice that L(w) = 0, the equation above implies that Dy (w,w;) > Dy (w,wi41) for
sufficiently small step-size 1. This can be interpreted as MD having a “decreasing potential”
of the from Dy, (w,-) during each step. Using this property, Azizan and Hassibi (2019a)
establishes the implicit bias results of mirror descent in the regression setting.

We now return to the classification case and note that for strictly monotone losses, there
are no attainable minimizers. Therefore, the choice of w we make in the regression case
would not be valid for classification problems. Instead, we relax the “decreasing potential”
property to hold for only a single step so that, at each time ¢, we choose a reference vector w;
satisfying L(w) < L(w¢41). The following result, which is a generalization of (Ji et al., 2020,
Lemma 9), shows that we can let w; be some scalar multiples of the regularized direction.

Lemma 14 If the regularized direction u!, exists, then Yo > 0, there exists rq, such that for
any w with [|wl|,, > ra, we have L((1 + a) [[wl],, u;,) < L(w).

We note that, due to Lemma 4, the condition in Lemma 14 is met for any sufficiently
large time t. Then, at time ¢, we can pick Lemma 2’s reference vector to be a “moving target”
ctuy, so that L(ciuy) < L(wgy1). Recall from the definition of the regularized direction, each
choice of ctuy, approximately corresponds to the solution of argminnw”wgq L(w). Hence,
intuitively speaking, our analysis converts the classification problem into a sequence of
regression problems by constructing a constrained optimization problem at each update step.
Let us formalize this idea. We begin with the following inequality:

Dy (cruy, wiy1) < Dy (e, wi) — nL(wer1) + nL(wy), (7)

where ¢; is taken to be ~ Hthw.?
Now we modify (7) so that it can telescope over different iterations. One way is to add

Dy (ct+1u:ﬁ, wt+1> on both sides of (7) and move Dy, (CtU&,, wt+1> to the right-hand side as

7. To be more precise, we want ¢; = (1 + «) [lwe||,,; and reason behind this choice is self-evident after we
present Corollary 15.

11
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follows:

Dy, (ct+1u;,, Wet1)
< Dy (Ctu;{n wt) — nL(weg1) + nL(wy) + Dy, (Ct+1UI¢,, wet1) — Dy (Ctuqrp7 Wei1)
= Dy (cruy, wi) — nL(wer) + nL(we) + P(ceuy) — Pleauy) — (Vi(wier), (ceen — c)uy,)

Summing over t =0,...,T — 1 gives us

Dy, (eruy, wr) < Dy (couy, wo) — nL(wr) 4+ nL(wo) + ¢ (cruy) — ¢ (couy,)

T-1 i (8)
(Vp(wig1), (cr1 — co)uy,)
=0

If we show that right-hand side of (8) is bounded, then exploiting the homogeneity of 1)
(Assumption 1) and dividing both sides by céi would yield that Dy (uy,, wr/ [|wrll,) — 0 as
T — oo. Therefore, after normalization, all terms in (8) dependent on the initialization wy
would vanish. We note that L(wr) € O(1) due to Lemma 3 and ¢(cruy,) = c? because 1 is

homogeneous. So, we turn our attention to the final term ), <V1/)(wt+1), (cty1 — ct)u:l}>.

We first only consider the product <V¢(wt+1), uzp> Invoking the MD update rule, we get:

(Vip(wig1) — Vip(wy), u¢>—< nVL(w), uy).

The inner product <VL(wt), u[z)> on the right-hand side is difficult to compute directly.

So, we exploit the property of u;/) to bound this quantity. We recall from the definition of
regularized direction that u;ﬁ is the direction along which we achieve the smallest loss and

hence VL(w;) must point away from uy, i.e., it must be that <VL(wt), u{b> SAVEL(wy), wy)

(up to lower-order terms). The following result formalizes this intuition.
Corollary 15 Forw so that |wl|,, > ra, we have (VL(w), w) > (1+a) |w|, <VL(w), u:p>
Proof This follows from the following inequality
(VL@w), w—(1+a) [wllul)) = Liw) = L((1 + a) [lw] uf) = 0,
where the first inequality is due to the convexity of L and the second inequality is due to

Lemma 14. [ |

Therefore, we are left with

(Vi (wig1) = Vp(wy), uy) 2 (=nVL(we), we),

Under our choice of homogeneous potential as detailed in Assumption 1, one can invoke
Lemma 2 and Equation (5) to lower bound the quantity (—nV L(w;), wy) in terms of ¢ (we1)
and ¥ (w;), and this step is detailed in Lemma 24 in Appendix E.2. It follows that the

quantity <V¢(wt+1), u:b> can be bounded with a telescoping sum, where we can show that

12
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<V¢(wt+1), u;/)> € Q(Hwtﬂﬁ*l). Then, the final term in (8) turns into another telescoping

sum in ¢;’s and |Jw|’s. Unwinding the above process, we show that

T—1
> (Vi(wira), (e — e)uly) € Q[lwrll),
t=0

which cancels out the quantity ¢ (cruy,) in (8). After normalization, it must be the case that

Dy, (u{b, we/ ||wt||¢> converges to zero in the limit as t — co. Putting everything together,
we obtain Theorem 13. A formal proof of this result can be found in Appendix E.3.

The final missing piece to Theorem 13 would be the existence of the generalized regularized
direction. In general, finding the limit direction !, would be difficult. Fortunately, we can
sometimes appeal to the generalized max-margin direction, which can be computed by solving
a convex optimization problem. The following result is a generalization of (Ji et al., 2020,
Proposition 10) and shows that for common losses in classification, the regularized direction
and the max-margin direction are the same, hence proving the existence of the former.

Proposition 16 If we have a loss with exponential tail, e.g. lim,_,o €(z)e®* = b, then under
a strictly convex potential v, the generalized reqularized direction u:/) exists and it is equal to
the generalized max-margin direction u$

The proof of this result can be found in Appendix E.5. Note that many commonly used
losses in classification, e.g., logistic loss, have exponential tails.

3.2 Asymptotic convergence rate

In this section, we characterize the rate of convergence for Theorem 13. As an immediate
consequence of the proof of Theorem 13, one can show the following result in the case of
linearly separable data.

Corollary 17 Under the same setting as Theorem 13, the iterates of MD follows the rate of

convergence:
Wi —(8-1)
D N, €0 ( ) )
v (uw Hwthp) Hthw

To fully understand the convergence rate, we need to characterize the asymptotic behavior
of [[wi||,. In the following result, we quantify [|w|,, for the exponential loss. We note that
similar conclusions can be drawn for other losses with an exponential tail, e.g. logistics loss.
For the sake of simplicity, our analysis in this section focuses on the exponential loss.

Recall that from Assumption 2, max; ||z, , < C, and the max-margin direction uy) satisfies

Yi <:ci, u$> > 4y Vi € [n]. Then, we have the following bound on [|w[,,.

Lemma 18 For exponential loss, the iterates of MD satisfies Hthw € O(logt). In particular,
we have

lwdly _ 4 B

1 .
a(logt—ﬁloglogt)—l—O(l) and hf‘,iilolp gt =W 51

[welly, >
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The proof of this lemma can be found in Appendix F.
It follows that mirror descent with homogeneous potential has a poly-logarithmic rate of
convergence.

Corollary 19 For exponential loss, the iterates of MD have convergence rate

Wt 1
Dy |uy,—— | €O ———].
¢< v Hwtnw) <1ogﬁl<t>>

As we previously discussed, the Bregman divergence Dy (-, -) generalizes the Euclidean
distance to the geometry induced by the potential function ). Therefore, the quantity

Dy, (uy, we/ ||wt||¢) the most natural measure of the angle between the generalized regu-

larized direction u;) and the MD iterates w;. For the case of gradient descent, our result
recovers the rate derived in (Soudry et al., 2018).

3.3 Accelerated convergence with variable step size

The result in the previous section shows that MD with a fixed step size converges to the
maximum-margin solution with a poly-logarithmic rate. In this section, we demonstrate an
accelerated convergence rate with adaptive step sizes. In particular, we consider a form of
normalized mirror descent:

V L(wy)

Vi (wer) = Vip(wr) — MINLwol,,

Although the quantity ||VL(w)H¢7* may not be simple to compute, we claim that it
differs from L(w) by at most a constant. Recall that 4y, = maXHwszl{mini y;w ' x;}. Hence,

Zexp —Yiw xz)ym Ti > ’Yw Zexp —Yyiw J,‘Z) = ’WJL( )

IVL(w)ll,,. = e
v =1

For an upper bound on ||VL(w)]|, ., we note that, by Assumption 2, z;’s are bounded:

n
<3 exp(—yow" @) il < C- L(w).
’1/17* =1

Z exp(—yiw ' ;)i
i=1

IVL(w)lly . =

From this observation, we Will replace ||VL(wy)l|, , with the more readily available
quantity L(w¢). By letting n; = \/t+71’ we now consider the update rule

o VL(w)

V¢(wt+1) - Vw(wt) \/m L(wt) )

which is a direct mirror descent extension of the normalized gradient descent algorithm

studied in (Nacson et al., 2019). In Appendix D, we will discuss the choice of step sizes when
we use the exponential loss.

To prove the rate of convergence, we follow a similar strategy as we did in the case of

fixed step size. First, we show that the magnitude of the iterates w; can be upper bounded.

(N-MD)

14
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Lemma 20 For exponential loss, the iterates of the normalized mirror descent (N-MD)
satisfies

w
lim sup | tHw <At B

t—o0 \/7? _7¢ 6_1.

And with this lemma, we can proceed to show a lower bound on the magnitude of w;.

Lemma 21 For exponential loss, if the potential function satisfies Assumption 1 with 8 < 3
and is continuously twice differentiable, and the initial loss is sufficiently small that L(wg) <
5=, then the iterates of the normalized mirror descent (N-MD) satisfies Jwell, € Q(tB=H/2=0)
for any ¢ > 0.

These two lemmas together represent a normalized mirror descent counterpart of Lemma 18.
Then, we can apply Lemmas 20 and 21 to the same proof technique as Theorem 13. Compared
to the fixed step size case, the main difficulty here lies in that we no longer obtain a telescoping
sum like (8) when the step size is not constant. We overcome this difficulty by controlling
the terms that do not telescope are of lower order than Dw(CTU{D, wr) using the asymptotic
growth rate on |[wel|,, for a certain range of 3. In particular, we show that such terms vanish
after normalization. Hence, the normalized mirror descent algorithm converges to the same
implicit bias as MD, but at a much faster rate.

Theorem 22 For a separable linear classification problem with exponential loss, if the
potential function satisfies Assumption 1 with 1 < 8 < %(3 +/5) and is continuously twice
differentiable, and the initial loss is sufficiently small that L(wp) < %, then normalized
mirror descent (N-MD) converges to the generalized mazimum-margin direction at a rate

Wt _ _1_R2
Dy | u™, € O (tB38-1-8%/2+8¢)
¢<¢ku> ( )

for any ¢ > 0.

In the case of gradient descent, the rate becomes O(t~1/2+2¢). We note that Nacson et al.
(2019) presented their convergence rate for normalized gradient descent in terms of the
difference in margin: 42 — y(w/ ||welly) € O(logt/+/t). While their result is not directly
comparable to our result here, it intuitively matches the rate we derived through Lemma 21
and Theorem 22.

We also note that our result requires a warm-up period to find a small initial loss
L(wg) < 1/(2n)®. One way to achieve this is by warm-starting with MD and switching to
N-MD after the condition is met. From what we had shown about the convergence rate of
MD with a fixed step size (see the proof of Lemma 18), the warm-up period is at most O(n)
steps. In practice, we observe that such a warm-start scheme is not necessary.

The proofs for this section can be found in Appendix G. For experiments illustrating
faster convergence with normalized MD, please see Section 4.2.

8. This is not necessary when 8 = 2, but our proof requires initial loss L(wo) be small for other values of .
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Figure 2: An example of p-GD (MD with potential ¢(-) = % [[-[I7) on randomly generated

data with exponential loss and p = 1.5,2,3. (1) The left plot is a scatter plot of the data:
x’s and e’s denote the two different labels (y; = +1). The dotted line is the o max-margin
classifier. For clarity, other ¢, max-margin classifiers are omitted from the plot. (2) The
middle plot shows the rate which the quantity Dy (uf, wy/ [Jwi||,) converges to 0. (3) The
right plot shows how fast the p-norm of w; grows. We can observe that the asymptotic
behaviors of these plots are consistent with Corollary 19.

4. Experiments

In this section, we perform various experiments to complement our theoretical results in
Section 3 and to illustrate the performance of MD in practical settings. We will apply
mirror descent (MD) with various homogeneous potentials of the form v (-) = zl) H||£ , so that,
according to our results in Section 3, the iterates converge to the generalized maximum-
margin solutions with respect to the £,-norm. As we previously discussed, when 3 = p, the
MD update rule can efficiently computed because it is coordinate-wise separable (see the
update rule (p-GD)). Hence, our experiments also highlight the efficacy of p-GD, which is
MD with potential function () = % II. We naturally pick p = 2, which corresponds to
gradient descent. Because the mirror map Vv would not be invertible at p = 1 and oo, we
choose p = 1.1 as a surrogate for ¢1, and p = 10 as a surrogate for {o,. We also consider
p = 1.5,3,6 to interpolate these points. In addition to applying p-GD, we also present several
experiments with more general potential functions where 5 # p. This section will present a
summary of our experimental results; the complete experimental setup and full results can
be found in Appendices I and J.

4.1 Linear classification

Visualization of the convergence of MD. To visualize the results of Theorem 13 and
Corollary 19, we randomly generated a linearly separable set of 15 points in R%2. We then
employ MD on this dataset with exponential loss ¢(z) = exp(—z) and one million iterations
at a fixed step size n = 1073. For the experiments involving p-GD, we pick p = 1.5,2,3. And
for experiments on more general MD potential, we consider p = 2,3 and 5 = 1.5,2, 3.

In the illustrations of Figure 2, the mirror descent iterates w; have unbounded norm and
converge in direction to u,'. These results are consistent with Lemma 4 and with Theorem 13.
Moreover, as predicted by Corollary 19, the exact rate of convergence for Dy, (ug‘, we/ Htht)
is poly-logarithmic with respect to the number of iterations. And in the third plot of Figure 2,
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Figure 3: An example of MD with potential ¢(-) = % HHf)) on the same dataset as in Figure 2.

To verify the conclusion of Corollary 19, we plot the quantity Dy (uf, wy/ [lwl|,) for p = 2
(left figure) and p = 3 (right figure). We see that the rate of convergence is faster for higher
values of the exponent 5, which is consistent with Corollary 19.

Table 2: Size of the linear classifiers generated Table 3: Size of the linear classifiers gener-
by p-GD (after rescaling) in £1.1,¢2,¢3 and f19 ated by MD with potential t(-) = X H||12) (after

norms. rescaling) in ¢y 1,¢2,¢3 and £1g norfns.
| b [ 6 | 65 [ o | ba [ 6 ] b5 | o
p=1.1]5.477 | 1.637 | 1.093 | 0.696 p—=1.1]5.136 | 1.864 | 1.276 | 0.795
p=2 | 6.161 | 1.224 | 0.684 | 0.382 p= 6.161 | 1.224 | 0.684 | 0.382
p=3 7.299 1.296 | 0.667 | 0.309 p=3 7.305 1.275 | 0.652 | 0.301
p=10 9.032 1.515 | 0.740 | 0.280 p=10 9.132 1.477 | 0.712 | 0.266

the norm of the iterates w; grows at a logarithmic rate, which is the same as the prediction
by Lemma 18.

In Corollary 19, the convergence rate of MD is dependent on the homogeneity parameter
B of the potential function, where larger exponent 3 leads to faster convergence. We see
that this is consistent with our observation in the second plot of Figure 2 and Figure 3. In
the second plot of Figure 2, we see that p-GD enjoys faster convergence for larger p, and in
Figure 3, we see that for the same value of p, larger exponent 3 led to faster convergence to
the same generalized maximum-margin direction with respect to £p,.

Implicit bias of MD in linear classification. We now verify the conclusions of The-
orem 13. To this end, we recall that w; is parallel to the generalized SVM solution
argmin,, {||wl|, : v(w) > 1}. Hence, we can exploit the linearity and rescale any classifier
so that its margin is equal to 1. If the prediction of Theorem 13 holds, then for each fixed
value of p and independent of the value of 3, the classifier generated by MD with a potential
P(-) = 1% ||H§ should have the smallest £,-norm after rescaling.

To ensure that wj' are sufficiently different for different values of p, we simulate an
over-parameterized setting by randomly selecting 15 points in R'%0. We used a fixed step
size of n = 107 and ran one million iterations for different p’s.

Tables 2 and 3 shows the results for p = 1.1, 2, 3 and 10; under each norm, we highlight the

smallest classifier in boldface. In Table 2, we applied p-GD. And in Table 3, we applied MD
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Figure 4: An example of p-GD (MD with potential ¢(-) = %D |I?) and normalized p-GD on
randomly generated data with exponential loss and p = 1.5. (1) The left plot is the empirical
loss. (2) The middle plot shows the rate which the quantity Dy (ur,, w/ [|well,) converges to
0. (3) The right plot shows how fast the p-norm of w; grows.

with a fixed exponent 8 = 2, which is known as the p-norm algorithm in the literature (Grove
et al., 2001; Gentile, 2003). Among the four classifiers we presented, p-GD with p = 1.1 has
the smallest ¢ 1-norm. And similar conclusions hold for p = 2,3,10. Although MD converges
to wy' at a very slow rate, we can observe a very strong implicit bias of p-GD classifiers
toward their respective ¢, geometry in a highly over-parameterized setting. This suggests we
should be able to take advantage of the implicit regularization in practice and at a moderate
computational cost. For a more complete result with additional values of p, we refer the

readers to Appendix J.1.

4.2 Experiments with normalized MD

We now demonstrate a faster rate of convergence with the normalized mirror descent update
(N-MD) from Section 3.3. Because the v/t + 1 term in the update rule (N-MD) would
dominate at small ¢, we rescale the denominator by a factor of A > 0 so that

_mo VL(w)
VI+ N L(w) '
Here, we present experimental results for p-GD (along with its normalized counterpart) with

p = 1.5. Additional results for p = 2 (which is equivalent to gradient descent) and p = 2.5
are deferred to Appendix J.2.

Vip(wit1) = Vip(wr) (9)

Linear classification. For a clean visualization of the rate of convergence, we again use
the 2-dimensional synthetic dataset from Section 4.1. We reuse the same choice of hyper-
parameters for mirror descent with a fixed step size. As for normalized mirror descent update
(9), we use a base step size 79p = 1072 and scale A = 1073. Since normalized MD converges
much more quickly, we only run for 25000 iterations.

As shown in Figure 4, the normalized p-GD algorithm converges to the generalized
maximum margin much faster than p-GD with fixed step sizes, which is consistent with the
predictions made by Corollary 19 and Theorem 22. Also, we see that the empirical loss
decreases very rapidly for normalized p-GD, which means it is able to find classifiers with
very large margins in just a few iterations.
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Figure 5: Training loss of p-GD and normalized p-GD on the MNIST dataset and p = 1.5.
(1) The left plot involves a fully connected network. (2) The right plot involves a conv-net.

Image classification on MNIST. For a more involved example, we apply p-GD to the
MNIST dataset (LeCun et al., 1998). For this task, we use two different architectures: 1)
a 2-layer fully connected network with 300 hidden neurons and ReLU activation, and 2)
a convolutional network with two convolution layers and batch-norm. We train the fully
connected network for 200 epochs and the convolution network for 50 epochs. The detailed
specification of this experiment can be found in Appendix I.

As shown in Figure 5, normalized p-GD again achieves faster convergence. Finally, we
note that the lower loss achieved by normalized p-GD translates to better generalization
performance. For the fully connected network, normalized p-GD has a test accuracy of 98.37%,
whereas standard p-GD has a test accuracy of 97.65%. And for the convolutional network,
normalized p-GD has a test accuracy of 99.19%, whereas standard p-GD has a test accuracy
of 98.68%. These experiments demonstrate that normalized MD enjoys a faster convergence
rate and its practical utility in performing better at test time.

4.3 Deep neural networks

Going beyond linear models, we now investigate p-GD in deep-learning settings in its impact
on the structure of the learned model and potential implications on the generalization
performance. As we had discussed in Section 3, the implementation of p-GD is straightforward,
to illustrate the simplicity of implementation, we provide code snippets in Appendix H.
Thus, we are able to effectively experiment with the behaviors of p-GD in neural network
training. Specifically, we perform a set of experiments on the CIFAR-10 dataset (Krizhevsky
et al., 2009). We use the stochastic’ version of p-GD with different values of p. We choose
a variety of networks: VGG (Simonyan and Zisserman, 2014), RESNET (He et al., 2016),
MOBILENET (Sandler et al., 2018) and REGNET (Radosavovic et al., 2020).

Implicit bias of p-GD in deep neural networks. Since the notion of margin is not
well-defined in this highly nonlinear setting, we instead visualize the impacts of p-GD’s
implicit regularization on the histogram of weights (in absolute value) in the trained model.

In Figure 6, we report the weight histograms of RESNET-18 models trained under p-GD
with p = 1.1,2,3 and 10. Depending on p, we observe interesting differences between the

9. Instead of applying p-GD update with the whole dataset, we use a randomly drawn mini-batch at each
iteration.
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Figure 6: The histogram of weights in RESNET-18 models trained with p-GD (MD with
potential ¢(-) = ]lo |I7) for the CIFAR-10 dataset. For clarity, we cropped out the tails and
each plot has 100 bins after cropping. The trends of these histograms reflect the implicit
biases of p-GD: the distribution of p = 1.1 has the most number of weights around zero, and

the maximum weight is smallest when p = 10.

Table 4: CIFAR-10 test accuracy (%) of p-GD on various deep neural networks. For each
deep network and value of p, the average £ std. dev. over 5 trials are reported. And the
best-performing value(s) of p for each individual deep network is highlighted in boldface.

| VGG-11 | RESNET-18 | MOBILENET-V2 | REGNETX-200MF
p=1.1 88.19 £+ .17 92.63 £+ .12 91.16 + .09 91.21 £+ .18
p=2(SGD) | 90.15 & .16 93.90 + .11 91.97 + .10 92.75 + .13
p= 90.85 + .15 94.01 + .13 93.23 + .20 94.07 + .12
p=10 88.78 4+ .37 93.55 + .21 92.60 + .22 92.97 + .16

histograms. Note that the deep network is most sparse when p = 1.1 as most weights
clustered around 0. Moreover, comparing the maximum weights, one can see that the case of
p = 10 achieves the smallest value. Another observation is that the network becomes denser
as p increases; for instance, there are more weights away from zero for the cases p = 3, 10.
These overall tendencies are also observed for other deep neural networks; see Appendix J.3.

Generalization performance. We next investigate the generalization performance of
networks trained with different p’s. To this end, we adopt a fixed selection of hyper-parameters
and then train four deep neural network models to 100% training accuracy with p-GD with
different p’s. As Table 4 shows, interestingly the networks trained by p-GD with p = 3
consistently outperform other choices of p’s; notably, for MOBILENET and REGNET, the case
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of p = 3 outperforms the others by more than 1%. Somewhat counter-intuitively, the sparser
network trained by p-GD with p = 1.1 does not exhibit better generalization performance but
rather shows worse generalization than other values of p. Although these observations are
not directly predicted by our theoretical results, we believe that understanding them would
establish an important step toward understanding the generalization of over-parameterized
models. For additional experimental results, we refer the readers to Appendix J.4.

IMAGENET experiments. We also perform a similar set of experiments on the IMAGENET
dataset (Russakovsky et al., 2015), and these results can be found in Appendix J.5.

5. Conclusion and Future Work

In this paper, we provided a unifying view of controlling implicit regularization using mirror
descent. More specifically, we analyzed the implicit regularization of the mirror descent
algorithm for linear classification problems with strictly monotone losses (e.g. logistics and
exponential losses) and showed that for the general class of homogeneous potential functions,
mirror descent converges in direction to the generalized regularized /max-margin direction.
This result, along with prior literature Gunasekar et al. (2018) and Azizan and Hassibi
(2019a), shows that mirror descent can induce implicit regularization with respect to a
general geometry for both regression and classification problems. Besides gradient descent,
no other algorithm is known to exhibit implicit regularization in both settings. Hence, this
work completes the analysis of the first optimization algorithm that can control the implicit
regularization for both general geometry and different classes of loss functions. Finally, we
ran several experiments to corroborate our theoretical findings and to illustrate the practical
applications of mirror descent. The experiments are conducted in various settings: (i) linear
models in both low and high dimensions, (ii) real-world data with highly over-parameterized
nonlinear models.
We conclude this paper with several important future directions:

m As discussed in Section 4.3, different choices of p for the p-GD algorithm result in different
generalization performance. It would be interesting to develop a theory that explains under
what conditions can we show that certain MD potentials lead to better generalization
performance.

m Another interesting line of work is to extend this analysis to more sophisticated optimiza-
tion algorithms such as Adam or RMSprop. While we proved the convergence for a very
simple adaptive step size strategy in Section 3.3, it would be interesting to see if such
analysis can be strengthened to cover the algorithms most commonly used in practice.
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Appendix A. Extended Version of Table 1

Table 5: Conceptual summary of our results. In the case of well-specified linear
regression, there is a complete theory of implicit regularization with respect to a general
geometry; it is shown that mirror descent converges to the interpolating solution that is closest
to the initialization. However, such characterization in the separable linear classification
setting is missing in the literature. In this paper, we prove the implicit regularization of
mirror descent with a class of homogeneous potentials and extend the result of gradient
descent beyond the £o-norm. Compare to Table 1, here we consider an arbitrary initialization
wp in the regression setting.

’ ‘ Regression (e.g. square loss) ‘ Classification (e.g. logistic loss) ‘

argmin,, ||w — wo ||, argmin,, 3 [wl|3
Gradient Descent s.t. w fits all data s.t. w classifies all data
(ie. ¥(-) =2 3) Soudry et al. (2018)
Ji and Telgarsky (2019a)

argmin,,, Dy, (w, wo) argmin,, ¢ (w)

(Engl et al., 1996, Thm 6.1)

s.t. w fits all data s.t. w classifies all data
Gunasekar et al. (2018)
Azizan and Hassibi (2019a)

Mirror Descent

This work

Appendix B. Proofs for Section 2
B.1 Proof of Lemma 2

The overall proof follows (Azizan et al., 2021b). We make several modifications to make it
better applicable to the classification setting. Note that in the classification setting, there is
no w € R? that satisfies L(w) = 0.

Proof We start with the definition of Bregman divergence:
Dy (w,wir1) = P(w) — h(wig1) — (Vih(wig1), w — wigr) .
Now, we plugin the MD update rule Vi)(w;y1) = Vip(wy) — nV L(wy):
Dy (w,wir1) = P(w) — h(wip1) — (Vib(wy), w —wepr) +n(VL(we), w—wiy).
We again invoke the definition of Bregman divergence so that:

Dy (w, wer1) = P(w) = Y(wey1) — (VY(wiy1), w — wep1),
Dy (wiy1, wi) = (wirr) — Y(we) — (Vb(we), wipr —we)
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It follows that

Dy (w, wig1) = (w) — P(we) — (Vp(we), w — wy)
+(Vip(we), wep1 —we) — p(wesr) + P (wy)
+n{(VL(w), w—wis1)
= Dy (w, w) — Dy (wis1, we) +n (VL(we), w —wit1)

Next, we consider the term (VL(w¢), w — wi—1):

(VL(wy), w—wi—1) = (VL(wy), w—wy) — (VL(wy), w1 —wy)
+ L(wi1) — L(we) = L(wegr) + L(we) (1)
= (VL(wt), w—wy) + Dp(wep1,wy) — L(weyr) + Lwy),

where the last step holds because L is convex.
Combining (10) and (11) yields:

D’lﬁ (’LU, wt)
= Dy (w, wir1) + Dy (wip1, we) = n((VL(wy), w —we) + Dp(wiyr, wy) — L(wegr) + L(wy))
= Dy (w, wes1) + Dy—yr (i1, we) = n(VL(wy), w—we) + nL(wes1) — nL(we),

where in the last step, we note that Bregman divergence is additive in its potential. This gives
us (1b). And for (1a), we use the definition of Bregman divergence again, i.e. Dp(w,w;) =
L(w) — L(wy) — (VL(w), w— wy):

Dy (w, wy) = Dy (w, wig1) + Dy—yr (i1, wi) — 0 (VL(wr), w—wy)
+ nL(w) — nL(we) + nL(wi1) — nL(w)
= Dy (w,wey1) + Dy, (weg1, wi) +nDp(w, wi) — nL(w) + nL(wis1) -

This completes the proof of Lemma 2. |

B.2 Proof of Lemma 3

Proof This is an application of Lemma 2 with w = wy:

0 = Dy(wi, wig1) + Dy—pr(wig1, wy) — nL(wg) + nL(wigr)
= nL(w) = Dy(wi, wis1) + Dy—pr(Wegr, we) + nL(wis1) 2 nL(wegr)

where we used the fact that Bregman divergence with a convex potential function is non-
negative. |

B.3 Proof of Lemma 4

Proof By Lemma 3, L(w;) is decreasing with respect to ¢, therefore the limit exists. Suppose
the contrary that lim; ,oo L(w¢) = & > 0. Since the data is separable, we can pick w so that
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L(w) < /2. Applying Lemma 2, the following holds for all ¢:

Dy (w,wiy1) = Dy(w, wi) — Dy—yr(wig1, w) — nDp(w, we) + nL(w) — nL(wegr)
< Dy(w,wt) +ne/2 — ne = Dy(w, wy) —ne/2

Hence, Dy (w,w;) < Dy(w,wp) — tne/2. This implies that limsup,_, . Dy (w, w;) = —o0,
contradiction. |

Appendix C. Properties of Potential Functions under Assumption 1

In this section, we shall establish several useful properties for potential functions satisfying
Assumption 1. First, we will show that ||-[|,;, as defined in (2), is a valid norm induced by
the potential .

m Since ¢ is positive definite, |[w][,, = 0 only when w = 0.

m By applying homogeneity and the definition of ||| »» we have

[sw]|,, = inf{c > 0:¢(sw/c) <1}

:mf{”O ‘| |‘ o () < }
—intfes 00w () <1h =1l ful,

m To show the triangle inequality, we consider any vectors wy,ws € R% and let a = ||w1 | "
and b = [lwzl|,. Because ¢ is convex, we have

wy + wo a w1 b Wy a w1 b w9
I R i .22 <« . i . 22\ 1.
w( a+b> w(a—l—b PR b>a+bw<a>+a+bw<b>

Therefore, [Jwy + w2, < a+ b, as desired.

Therefore, |-, is a norm. Note that, due to continuity, we have ¢ (w/ [|wl|,,) = 1. It follows

that, by homogeneity, we can write ¥ (-) = ||-||’ e

Next, we show that convexity and S-absolute homogeneity imply strict convexity. So,
we can in fact relax the conditions in Assumption 1 where 9 is only required to be convex.
Another consequence of this fact is that the potential 1(-) = ||-|® for any norm ||| satisfies
the conditions in Assumption 1. For any A € (0, 1), we have

Az + (L= Nyl < Azl + @ =N lylly)” < AMzlg + @ =2 [yl

The first inequality is due to the triangle inequality and the second inequality holds because
the map z + |2|? is strictly convex whenever 8 > 1. Therefore, 1 is strictly convex.
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By appealing to the limit definition of gradient, we can show (5), so that the Bregman
divergence is also homogeneous.

Y(w + hw) — p(w)

(Vip(w), w) = lim

h—0 h
h)? —
= lim (1+h)1¢(w) — 8- (w)

Dy (cw, cw') = ¢p(cw) — p(cw’) — (Vip(cw'), c(w —w'))
= |e[fp(w) — |e[Pp(w’) — lim

(w' + h(w — w')) = p(w')
h

= |e¥(w) — |el’(w’) = [el” (Vi (w'), w—w')

= |/’ Dy, (w,w') VeeR.

= el (w) — [elPp(uf) — Jim [l

Finally, through the triangle inequality, we can show that Vi (w) and w are “parallel” in
the sense that

[V (w), w)| = [(Vip(w), v)|,Vv st ], = [[wll, - (12)
Proof From the limit definition, we have

(Vo(w), v) = lim Y(w + ho) — y(w)

= 1‘
h1—>0 h

For any h > 0, we have
Y(w+ hv) = w+ ko], < ([w]l, + hllw],)? = (1 + hw),
and similarly,
Y(w +ho) = [[w+ holl}, > (Jwll, = wll,)? = $((1 = h)w).
Therefore, we have that
Y(w — hw) — ¢ (w)

(w + hv) — p(w) (w + hw) — (w)

lim < lim < lim
h—0 h ~ h—0 h ~ h—0 h ’
and hence

(Vo (w), —w) < (Vi(w), v) <(V(w), w) = [{(VY(w), v)| < [{(V(w), w)].

Appendix D. Discussion of Step Sizes

In this section, we provide the details for Remark 5. In particular, we discuss the existence
of small step size n such that ¢ — nL is convex. We break down this discussion into two
parts; first, we analyze the case of standard mirror descent update (MD) with fixed step size,
and secondly, we consider the case of normalized mirror descent (N-MD) with time-varying
step sizes. For concreteness, we focus on the exponential loss ¢(z) = exp(—z).
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D.1 MD with fixed step size
We first use Assumption 2 to directly bound the Hessian V2L

< exp(—yiw ' 3;)C* = C2L(w)

2 =1

1 n
HV2L(w)H2 = Hn Z;exp(—yiw—rxi)xix;-r
1=

It follows that if ¢ is u-strongly convex, then n < m ensures that ¥ — nL is convex
at wg. By applying Lemma 3 and induction, we can conclude that ¢ — nL is convex at
all iterates {w;};2,. For instance, gradient descent falls under this case because it has a
1-strongly convex potential ¢(-) = 3 I-1I3.

However, for any 8 # 2, ¥ is not strongly convex, and we shall consider the cases where
B € (1,2) and 8 > 2 separately. When 8 € (1,2), we invoke the following fact:

Lemma 23 Consider a function v : R* — R satisfying Assumption 1,

n If there exists m > 0 so that inf)j,),=1 HV Y(w H2 > m, then Hv% H2 >m ||wH26_2
m [f there exists M > 0 so that supj,,—1 V2 (w H2 < M, then ||V (w) H2 <M Hng_z

The matriz norm used here is the operator norm induced by the £y vector norm.

It follows that HV%/J H2 € Q(||wH'2372) as long as it is uniformly positive on the unit circle.
Then, since ||VZL( )H2 decays exponentially with respect to ||wl|,, there exists n > 0 so
that ¢» — nL is convex for all iterates {w;}{2, and this n can be computed from a finite
horizon over the iterates. For instance, the p-GD potential ¢(-) = % |||}, satisfies the desired
condition on V29 whenever p € (1,2).

For 3 > 2, we alternatively consider the potential ¢/(-) = £ ||-||3 + ¢(:) for some small
€ > 0. Intuitively, this modified potential should induce the same implicit bias as the original
potential since their asymptotic tails are the same. Formally, because Bregman divergence is
additive, we can plug ¢’ into the proof of Theorem 13 and show that mirror descent with
potential ¢’ converges to u[z) Since v’ is strongly convex, the existence of step size 7 is
assured. In practice, we find that directly applying mirror descent with potential v already

works well.

D.2 Normalized MD with variable step sizes

We claim that there exists sufficiently small g > 0 so that n; = \/"LL(wt)*l satisfies ¥ — L

being locally convex at all 1terates {wi}2y. Recall that ||V2L(w)||, < C*L(w). If 1 is
p-strongly convex, then 79 < 4z guarantees that 1) — ;L is convex at the iterates {w;}§2.
Therefore, our analysis from the previous section still applies for g > 2.

And for 8 € (1,2), we apply a more careful analysis. We first leverage the upper bound
on [[wl[, from Lemma 20. From Assumption 1, we can show that infj,,—1 1 (w) is positive.
Therefore,

furl, < (ot ot >)1/Buwtuweo<( inf w<w>)w¢i> — O(vA).

[[w][;=1 [[w][;=1
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Combining with Lemma 23, we have that “Vzw(wt)|’2 € Q(\/fﬂiz) C w(1/4/t) for B € (0,1).
Since we have

|| V2L(wy)|), < Jf‘)ﬁc? € 0(1/VA),

there exists sufficiently small g > 0 where 1) — 1L is convex at respective iterates {w;}52.

D.3 Proof of Lemma 23

Proof We directly compute the derivatives through their limit definition. For any vector v,

P(w/ llwlly + b/ [[wlly) = d(w/[wlly)
h

= wlls Vo(w/ [[w]l,) " (v/ [[wll,)
= wlly ! Vep(w/ w]ly) Tv

= ||wl||? 1
oo} Jim

Therefore, Vi(w) = [[w]ly ™ Vib(w/ [wlly).

As for the second derivative, for any vectors v, v, we have

T T
vy V2(w)vr = }llin% Vip(w + hvg) Zl - Vi(w) v
Vi (w/ |[wlly + hva/ [[wlly) Tor — Vb (w/ w]l,) Tor
h

= l|lw||? ' 1
lwlfy ™ lim

= [[wlly ™" (va/ [[wlly) " V2(w/ [wl],)vr
= [lwlly 2 vg V2 (w/ [lw]|y)vr

Therefore, VZh(w) = |lwl|5 2 V24 (w/ |w||5). Now, this Lemma immediately follows from
the computation above. |

Appendix E. Proofs for Section 3.1
E.1 Proof of Lemma 14

Proof Let 74 be the margin of “:/; Under separability, we know 4 > 0. Recall the definition
of the regularization path. There exists sufficiently large r, so that

w(llwlly)
——
||’LUH¢

Y

<
C
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whenever HwHw > ro. Recall that, from Assumption 2, C' > max;—1 . p ||331H¢* Then, for
all i € [n], we have

yi (wlllwly), @) =i (@lwlly) = Jwll, ), @)+ (ol @)
< a3 llwly ol /C + v (wl, s 2:)
< a7 Jully +yi (el vy, =)
<y (1 +a) Juwlly g, o)
Since the loss L is decreasing, we have
L((1+a) [l uf) < L@ (wll,) < Liw),

as desired. ]

E.2 Lower bounding the mirror descent updates

Lemma 24 For any potential ¢ satisfying Assumption 1, the mirror descent update satisfies
the following inequality:

(B = Dp(wira) — (6 = Dp(we) + nL(weyr) — nL(we) < (=nVL(wt), wy) (13)

Proof This result follows from Lemma 2 with w = 0:

Dy (0,wi) = Dy (0, we41) + Dy—nr (Wet1, we) + 0D (0,wr) + nL(wegr) — nL(0)
= Dy (0, wis1) +nDp (0, we) + nL(wis1) — nL(0)
= Dy (0, wi41) + n(L(0) — L(wy) = (VL(we), —wy)) + nL(wet1) — nL(0)
= Dy (0, wet1) +n(VL(wy), we) +nL(wegr) — nL(wy)

Rearranging the terms yields
Dy (0, we41) — Dy (0,wr) + nL(wig1) — nL(we) < (=nVL(wy), wy)
We conclude the proof by noting that for any w € R%,
Dy (0,w) = 9(0) = ¢(w) = (Vip(w), —w) = (V(w), w) —P(w) = (5 - 1)y (w),

where the last equality follows from the homogeneity of Bregman divergence (5). |

E.3 Proof of Theorem 13

Proof Consider arbitrary o € (0,1) and define r, according to Lemma 14. Since
limy o lwill, = oo, we can find to so that [Jwell,, > max(1,7,) for all ¢ > to. Let
et = (1+ o) [lwe]-
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Substitute w = ctu;} into Lemma 2, we get
Dy, (ctu;,, th) < Dy (ctu:/),wt) +n <VL(wt), ctu;, — wt> —nL(wey1) + nL(wy).
By Corollary 15, we have <VL(wt), ctu;b — wt> < 0. Therefore,

Dy (Ctu&),wt_Fl) < Dy (ctu[p,wt) —nL(wet1) + nL(wy).
It follows that
Dy (cop1uy, wii1)
< Dy (cruly, wy) — nL(weyr) + nL(we) + Dy (coprugy, wiyr) — Dy (couy, wiyr)
= Dy (cufy, wy) — nL(wegr) + nL(we) + Y(cppruly) — O(cuy) — (Vip(wipr), (o — co)uy,)

Summing over t = tg,...,T — 1 gives us

Dy (cruy, wr) < Dy (cruly, wy) — nL(wr) +nL(wg,) + ¥ (eruy) — ey uy)
T—1
- Z (Vip(wigr), (cer1 — co)uyy) (14)
t=to

Now we want to establish a lower bound on the last term of (14). To do so, we inspect
the change in V) (w;) from each successive mirror descent update:

(Vwisn) — Viblun), ) (150)
= (—nVL(w), uw (15b)
1

(=nVL(wt), wy) (15¢)
(8 = Dllwesallf = (8 = 1) llwl§ + nE(wesn) = nL(wy)) — (154)
= (8 =)l = (8= 1) ell) + nE o) —niw) - (150)

where we applied Corollary 15 on (15¢) and Lemma 24 on (15d).
Now we bound (15¢). We claim the following identity and defer its derivation to
Section E.4.

1 1
(B - 1)(Hwt+1Hﬁ — Jlwll) > B(me\lﬁ - Hthi ) llwell - (16)
We are left with

-1 -1
lwepa |l = [l
1+«

(Vip(wisr) = Vip(wy), uly)

v

B + nL(wit1) — nL(wy).
Summing over t = tg,...,T — 1 gives us

—1 -1
lwrl " = lwoll
1+«

(Vip(wr) = Vip(wy), uy) > 8- +nL(wr) —nL(wy).  (17)
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With (17), we can bound the last term of (14) as follows:

T—1 T wy A1 4 01
Z (Vi (wigr), (cor1 — cr)uy,) > Z Pl ot )(Ct —ct-1)

t=to t=to+1 l1+a
T
Z (lwell ™"+ O@) (fwilly, = llwi—1]l,,)
T
> (el = lweal1) + 0(1) - ([wrlly, — llwioll,)
t=to+1
= |lwrl[}, + O([wrll,,) (18)

where we defer the computation on the last inequality to Section E.4.
We now apply the inequality in (18) to (14). Note that 1 (cru’) = (1 + )” ||wT||i We
now have the following:

Dy (14 ) Jwrlly o wr) < Juorl (4 @) = ) +Owrl,). (19)
After applying homogeneity of Bregman divergence, and define ¢ € (0,1) so that a = =,
we have 5 5
wTr 1—(1—-¢
Dy () (1— )t ] < ol € (ﬁ ) Lo, (20)
forl, frll

Let wr = HJ)UTTM We note that Bregman divergence in fact satisfies the Law of Cosines (see,
e.g., Azizan and Hassibi (2019b)):

Lemma 25 (Law of Cosines)
Dy (w,w') = Dy (w,w") + Dy (w”,w') = (Vo (v') = Vi (w"), w—uw"

Therefore,

Dy (uy, br) < forlly ,(‘1 ;\|<1 9, Dy (1 — e)ibr, tir)
Wy
— (Vi) — V(1 — e)ir), ul, — (1 — )ir) + o(1)
<SA-(1-e)+((1-e)f —1)+Be+28(1—(1-¢)"") +o0(1)

And we defer the computation for the last inequality to Section E.4. Taking the limit as
T — oo, we have that

lim sup Dy <u¢7 m wr ) < pe+26(1—(1— 5)5*1) (22)

T—o0 ”qj;

Note that the RHS vanishes in the limit as € — 0. Since the choice of € is arbitrary, we have
wr/ ||lwrll, — uy, as T — oo.
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Remark 26 Because Bregman divergence is additive, we can extend this theorem to the case

where the potential can be written in the form of 1 = i1 + 19, where Y1 and 1o satisfy the

conditions of Assumption 1 with homogeneity constants B1 and Bo, respectively, and $1 < Bs.

In the end, all terms associated with 1 would vanish because they are of lower order and we
. . w

will be left with Dy, (uy,, m) — 0.

E.4 Auxiliary Computation for Section E.3
To show (16), we claim that for 6 > —1 and 5 > 1, we have

551((1 4P 1) > (1+6)P 1 - 1.

Note that we have equality when § = 0, and now we consider the first derivative:

° {B,@_l((l L8P 1)~ (14+6)° "+ 1} — (8- 1)5(1+6)2,

which is negative when ¢ € [—1,0) and positive when ¢ > 0, so this identity holds. Now, (16)

follows from setting 0 = ([|wet1ll, — [lwell,)/ [[well,, and then multiplying by 3 - Hthi on
both sides.
To finish showing (18), we claim that for § > —1 and § > 1, we have

[13((1 +6) —1) < 6(1+8)1.

Note that we have equality when § = 0, and now we consider the first derivative:
d [1 8 -1 B2
% E((l—i—(?) —1)—=6(1+9) =—(B—10(14)""7=,

which is positive when § € [—1,0) and negative when ¢ > 0, so this identity holds. Now, the
last inequality of (18) follows by setting 6 = ([|w¢||,, — [[wi-1l,,)/ lwe-1]l,, and then multiply
by 3 - Hthi on both sides.
Finally, we simplify the RHS of (21) by taking advantage of the fact that wr is normalized:
Dy (1= e)ibr, dr) = (1 =€) ¢(ir) — () + (Vi(r), ebr)
= (1=~ 1)+ e

And note that for any vector v and € € (0, 1), we have

1

(V((1 = e)ibr), v) = 1 (Vo((1 — )ibr), (1 <)o)
1 (L ey £ h(1 =)o) — (1~ )ir)
1—¢en—o0 i h i
= (1-¢) ! lim Y(wr + hv) —h¢((1 — &)ir)

= (1—o)" " (Vy(ar), v).
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It follows that

[(Vap(ibr) — V(1 — e)ibr), ufy — (1 — £)iir)|
<V1/)(IDT), u;p — (1 — 6)’(Z)T>‘

= (1= —ep |

< (1= (1 =&)"Y) ((Ve(ir), )|+ [(Vi(ar), (1—e)ir)])
< (1= (=) ) ([(V(ir), br) |+ | (V(br), (1-e)ir)])
<(1—-(1—-e) HBR2—e) <28(1—(1—¢)"

where the second to last line follows from (12).

E.5 Proof of Proposition 16

Proof We first show that u;L‘ is unique. Suppose the contrary that there are two distinct unit
||| y-norm vectors uy # ug both achieving the maximum-margin 4. Then ug = (u1 + u2)/2
satisfies

. 1 1 .
Vi, i (us, x;) = Y (ur, x;) + Vi (ug, x;) >4y

Therefore, ug has margin of at least 4. Since ¢ is strictly convex, we must have [us||,, < 1.
Therefore, the margin of ug/ [lus||,, is strictly greater than 4y, contradiction.
Define B’ > 0 so that £(z)e®* € [b/2,2b] for any z = B%, where B > B’. Note that

L(Buy) = Zﬁ(yi (Buy, i)) < n-L(Bjy) < 2bn - exp(—aBy)
i=1

Suppose the contrary that the regularized direction does not converge to u;‘;, then there
must exist € € (0,%,/2) so that there are arbitrarily large values of B satisfying

min gy (P8 N 5
. Yi B Ti ) =Yy .
And this implies
_ . b .
L(@(B)) 2 £(B(y —€)) 2  exp(—aBy) exp(aBe)

Then, for sufficiently large B > B’, we have exp(aBe) > 4n = L(w(B)) > L(Buy),
contradiction. Therefore, the regularized direction exists and u:p = ug}‘ |

Appendix F. Proofs for Section 3.2
F.1 Proof of Corollary 17

Proof This is an immediate consequence of (19) and (20). |
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F.2 Proof of Lemma 18
For the following proof, we assume without loss of generality that y; = 1 by replacing every
instance of (z;,—1) with (—x;,1).
Proof For the upper bound, we consider a reference vector w* = ’y; 1u1”;. By the definition
of the max-margin direction, the margin of w* is 1 and [Jw*||,, = ’?1;1 From Lemma 2, we
have

Dy (w*log T, wy) = Dy(w*log T, wit1) + Dy—yr(wis1, wi) — (VL(wy), w*logT —wy)

— nL(wt) + nL(wis).

We first bound the quantity (VL(w;), w*logT — w;) by expanding the definition of expo-

nential loss:

(VL(wy), w*logT — wy)

I

<Vw exp(— (w, x;)) , w*logT—wt>

W=Wt

1

7

I
NE

(exp(— (wy, @i))zi, we —w*logT)
1

<.
Il

exp(— (w*log T, x;)) exp(— (wy — w*log T, x;)) (x;, wr —w*logT)

Il

s
Il
—

1 1 n

T e el

NE

<
i=1

where the last line follows from the definition of w* and the fact that for any x € R, we have
e %z < 1/e. It follows that

n
Dy (w*log T, wy) > Dy (w* log T, wiy1) — T nL(we) +nL(wit1).

Summing over t =0,...,T — 1 gives us
Dy (w*log T,wo) > Dy(w* log T, wr) — - — nL(wo) +nL(wr).
e

Due to the homogeneity of Bregman divergence with respect to the S-absolutely homogeneous
potential ¢, we can divide by a factor of log® T' on both sides:

wo wT
D * >D * —o(1). 23
w(w’logl)_ w<w’logl> o(1) (23)

As T' — oo, the left-hand side converges to Dy, (w*,0) = ¢ (w*) = @&ﬂ. Let w = wr/logT,
we expand the right-hand side as
Dy (w*,w) = Pp(w”) — (@) — (VY (@), w" —b)
=47+ (B =) @], — (Ve (d), w*)
~—1

> 457+ (8- 1) @) - ,Z;”er (Vi(), @) |

n— ~ ~— ~ —1
=4, + (B = 1) @], - By, @l
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where the inequality follows from (12).
If [|wr/log T, > @;1 : % for arbitrarily large T', then Dy (w*,wr/logT) > ﬁ;ﬁ for
those T'. This in turn contradicts inequality (23). Therefore, we must have

lwrll,, B
lim sup I ——
T—o0 IOgT v ﬁ -1

Now we can turn our attention to the lower bound. Let m; = y(w;) be the margin of the
mirror descent iterates. Then,

Due to Lemma 4, we also know that m; 1220 .
By the definition of the max-margin direction, we know that ~y([|w||, uy) = m¢. Then

by linearity of margin, there exists w* so that y(w*) = (1 + E&%)m, and [w*, <
(1+ %) Hthw. It follows that
L") = £ S expl- (0, 22) < exp(—r(w") = = exp(-m)
ni T o :

Under the assumption that the step size 7 is sufficiently small so that ¥ — nL is convex
on the iterates, we can apply the standard convergence rate of mirror descent (Lu et al.,

2018, Theorem 3.1):
1

L(wt) = L(w") < %f% (w*, wo)
From our choice of w*, we have
1 1 .
%exp(—mt) < ﬁDzﬂ (w™*, wp)
1
ot

After dropping the lower order terms and recalling the upper bounds on [|w*||,, and [[wel|,,,

we have 5 5
1 1 log(2n) 1 B
N — < —_
™ exp(—my) < O(1) pr <1 + e > <7¢ 51 logt

(Y (w”) = P(wo) — (Vi (wo), w* —wo))

Since m; is unbounded, the quantity 1 + log(2n) g upper bounded by a constant. Taking the

m
logarithm on both sides yields t
my > logt — Bloglogt + O(1)

Finally, we use the definition of margin to conclude that m; < (wy, z;) < C - Hthw.
Therefore,

1
||wt||¢ > a(logt — Bloglogt) + O(1).
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Appendix G. Proofs for Section 3.3
G.1 Proof of Lemma 20

This proof follows the same technique as Lemma 18. For simplicity, we assume without loss
of generality that y; = 1 for all i by replacing every data point of the form (z;,—1) with
(—aﬁi, 1).

Proof We consider a reference vector w* = 'Ay; 1u$. By the definition of the max-margin

direction, the margin of w* is 1 and [Jw*||,, = '}1;1. From Lemma 2, we have
Dy(w* VT, wp) = Dy(w VT, wis1) + Dy yr (wegn,wr) = (VL(we), w*VT —wy)
— meL(we) + mL(wigr).

We first bound the quantity <VL(wt), w* T — wt> by expanding the definition of exponen-
tial loss:

<VL(wt), wvT — wt>

= Z <Vw exp(— (w, x;))
i=1

- Zn:<eXp(_ (we, wi))wi, wi —w*\/T>

i=1

_ iexp (— (w VT, 2:)) exp (= {we —wVT, ) (2i w,—wVT)

zn:exp(—ﬁ) : é €o <;) ,

=1

w=w¢

, wNT — wt>

IN

where the last line follows from the definition of w* and the fact that for any € R, we have
e Tx < 1/e. It follows that
DwW*\/f we) > Dw(W*\/i wit1) — o(1/T) — neL(we) + neL(wit1)

> Dy(w* VT, wei) — o(1/T) — J:Ll .

Summing over t = 0,...,T — 1 gives us
Dy (w*VT,wp) > Dy(w*VT,wr) — O(VT).

Due to the homogeneity of Bregman divergence with respect to the S-absolutely homogeneous
potential ¢, we can divide by a factor of T%/2 on both sides:

Dy <w*, \“;%) > D, <w*, %) —o(1). (24)
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As T — o0, the left-hand side converges to Dy, (w*,0) = ¢ (w*) = ‘yz;ﬁ. Let @ = wr/VT, we
expand the right-hand side as
Dy (w*,w) = (w") = p(w) = (Vip(@), w* — )
=37+ (8= 1) [l — (Ve(@), w’)
,3/—1
24,7+ (B =D 8l = pa| (V). @) |
Wlly
A - o—1 =181
=37+ (B =1l - B3, ol
where the inequality follows from (12).
If HwT/ﬁH > 4L B for arbitrarily large T', then D, (w* wT/ﬁ> > ’y—ﬂ for those
o~ e B ) ) v
T. This in turn contradicts inequality (24). Therefore, we must have
[wrlly, B
lim sup <AL
T—o0 \/T ¥ ﬁ -1
as desired. |

G.2 Proof of Lemma 21

Proof Given sufficiently small g, we have that ¢ — nL is convex. From relatively
smoothness (Lu et al., 2018, Proposition 1.1), we have

1
L(th) S L(wt) + <VL(’LUt), W41 — wt> + EDl/,(thrl,wt).

By applying the mirror descent update rule (MD) to the RHS, the following holds for any w:

L(th) § L(wt) + <VL(wt), w — wt> + ;D¢(w,wt). (25)

Let Aw be the vector satisfying
—(VL(wy), Aw) = |[VL(w),. [|Aw], = [[VL(w)|[7,. = | Awl]]} .

Then, we choose the vector w so that w — wy = n,(t + 1)~/? Aw for some constant ¢ > 0
which we will determine later.
Next, we bound the Bregman divergence with Lagrange’s remainder:

Y(w) < P(we) + (Vip(we), w—wy) + ;Azl(lopl)(w —wy) "V (wy + Mw — wy)) (w — wy)

R
Note that by construction, ||Awl|,, = [[VL(w¢)ll, ., < C - L(w). Hence, it holds that

lw —willy, = me(t + 1)~ | Awl|, < C-no.
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Next, when L(wp) < 5, we have

1 1
(wy) - z;eXp( wy ;) > - exp( min w, i),
1=
— —log L(w;) < minw/ a; +logn < C - |lw, + logn,
K3
= [Jw, > log2/C.

Also, from Assumption 1, we can show that for any vector w, the norms [wl[, and [[w]|,
differ by up to a constant factor:

~1/8 1/8
<”131|af:1w(w)> lwlly < llwll, < (I Suplw(w)) lwlly, - (26)

Therefore, for sufficiently small 79, we have ||w — w|, < 2 [Jwyll,. Applying Lemma 23 yields
1 2 —
R < gl —wil @)™ sup [V20@)],-
vl|ly=

Invoking (26) again, there exists a constant B > 0 so that

B ., B - L
R < o [lw—wil[ el = (e + 1)~ [ Awllf ]}, -
Because Dy (w,w;) < R, we return to (25) and conclude that
_ B _ _
L(wi1) < Lwr) —mu(t+ 1) [VL(w) [, + 5om(t+1)7° | Awlly [

» B . _
= L(we) = mlt + 1)~ VL)l L + St + 1)~ (VL) |3, el

= L) (1= e+ 1720 4 Tt -+ 1)
B _
< L(wy) exp <—770(t + 1) (D25, 4 S o(t+ 1)~ 2072, ||y ||} 2) :

where we let §; = (%

the previous inequality through t =0,...,7T — 1 to get

2
) . Since C' - |lw||,, > min; w'z; > —log L(w), we propagate

\%

1
Jwrl, =~ log L(wr)

T-1
1 B B
"o (Z (277628 = oo 1) o402 ) 10gL<wo>>

= o

T—
>0 ( tf(c+1)/2 _ t7(20+1)/2 ||wt||ﬁ_2> ’
t=0

where the second inequality holds as 4y L(w) < [[VL(w)l|, . < C - L(w) = & bounded.
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Recall that Lemma 20 gives us [lwl|, € O(t~/?). Picking ¢ = max(8 — 2,0) + 2 for
arbitrarily small ¢ > 0 gives us

T-1

Hthd} €N (Z 1(1=8)/2=C _ t(l—ﬁ)/2—2C> cn (t(3—,3)/2—(> :
t=0

as desired. [ |

G&.3 Proof of Theorem 22

This proof mostly follows the same steps as that of Theorem 13.
Proof Consider arbitrary a € (0,1) and define r, according to Lemma 14. Since
limg oo [lwell, = oo, we can find ?y so that [lwll, > max(1,r,) for all ¢ > to. Let
ct = (1+ o) [lwe]

Substitute w = cyuy, into Lemma 2, we get

Dy (Ctu&),wt_Fl) < Dy (ctuzp,wt) + <VL(wt), ctugp — wt> —nL(wet1) + nL(wy).
By Corollary 15, we have <VL(wt), Cty, — wt> < 0. Therefore,

Dy (CtU:p>wt+1) < Dy (Ctuzpa wt) — e L(weg1) + meL(wy)
< D¢ (ctu;/,, U)t) + 770(t + 1)71/2.

It follows that

Dy, (Ct-‘rluqr/nwt—i-l)
< Dy (cpuly, wy) +no(t + )72+ Dy (cepruy, wig1) — Dy (couy, wiyr)
= Dy (coutly, wi) +no(t + 1) + 4 (crpaugy) — (euly) — (Vip(win), (e — cr)uly)

Summing over t = tg,...,T — 1 gives us
T—1
Dy (eruly, wr) < Dy (ciotily, we) + Y mo(t+1) 72+ p(eruly) — th(crouly)
t=to

T-1
=Y (V(wenr), (crrr — culy)

t=to
= Dy (ciyuly, wyy) + O(VT) + (epul,) — ¥(croul,)
T-1
=D (Ve(wirn), (corr — cr)uly) (27)
t=to
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Now we want to establish a lower bound on the last term of (27). To do so, we inspect
the change in Vi (w;) from each successive mirror descent update:

(Ve (wesr) = Vip(wr), ul) (282)
= <—77tV1L(wt)= ) (28b)
= [ o) el (=mVL(w), we) (28¢)
> o - (0= 0 = 6= ) ] ) = k) 250
2 ety (8 Dl = 8= 0 ) = T (25¢)

where we applied Corollary 15 on (28¢c) and Lemma 24 on (28d).
Now we bound (28¢). We claim the following identity and defer its derivation to
Section E.4.

(8 = V) (llwerally, = lwellg) = Blweally ™" = llwelly ™) lwelly (29)

From Lemma 21, we have that for any ¢ > 0, [Jw|,, € Q(tB=H/2=C). Therefore,

neL(w) _ ot +1)"'? € O(t~2B/2+¢)
il el '

We are left with

-1 -1
lwega = [lwell}

_ —2+8/2+¢
1+« ot )

(Vip(wig1) — Vip(wy), uly) >3-
Summing over t = tOv s 7T -1 giVeS us

-1 -1
lwr " = Jlwoll

(Vo (wr) = Vip(wy), uy) > - T — 0TI (30)
With (30), we can bound the last term of (14) as follows:
T-1
D (Vp(wiga), (cipr — couly)
t=to
T -1 _ —148/2+¢
Bllwell,,— —O(t )
> Z (ct — ci-1)
t=to+1 1 +o
T
= > Blllwllf = 0O (fwilly — hwieall,y)
t=to+1
T
> 3 (lwdll}, = lwiall})) = 0@ 525) - (lwr |y — llwig )
t=to+1
= [lwr|, — O(@ A2 Jwg|,) (31)
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where we defer the computation on the last inequality to Section E.4.
We now apply the inequality in (31) to (27). Note that (cru’) = (1 + )” ||U)T||i We
now have the following:

Dy ((1+ ) Jwrly uwr ) < llwrlf ((L+ )’ = 1) + OWT + T4 flu ).

After applying homogeneity of Bregman divergence, and define ¢ € (0,1) so that a = =,
we have

8 _
wr ) _ Jorlly (= (1-¢)) Lo (\/T—l-T LH6/2+¢ \wTle)).

lwrlly,

D¢ (u:ﬂ, (1 — 8)

lwr |5 lwr |}

For the remainder term to vanish, we apply Lemma 21 and want that for sufficiently small
¢>0,
?%B—BV2—O >1/2,
B-1D(B=8)/2-¢ >-1+pB/2+C

Solving the system gives that we need 1 < 8 < 3(3+V/5). Therefore, for 1 < 8 < (3 +V/5),

we have 5
wr ><Hwﬂuu—wl—a%

‘wTqu

Dy, <u1'/},(1 —6)‘ HwTHi o(1).

The lower-order term can be more precisely written as
0 (T—(3B—1—52)/2+BC> 7

which gives us the rate at which the error term vanishes. Now, to finish showing convergence,
the rest of the proof follows exactly as that of Theorem 13. |
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Appendix H. Practicality of p-GD

To illustrate that p-GD can be easily implemented, we show a proof-of-concept implementation
in PyTorch. This implementation can directly replace existing optimizers and thus require
only minor changes to any existing training code.

We also note that while the p-GD update step requires more arithmetic operations than a
standard gradient descent update, this does not significantly impact the total runtime because
differentiation is the most computationally intense step. We observed from our experiments
that training with p-GD is approximately 10% slower than with PyTorch’s optim.SGD (in
the same number of epochs),'” and we believe that this gap can be closed with optimization.

Listing 1: Sample PyTorch implementation of p-GD

import torch
from torch.optim import Optimizer

class pnormSGD (Optimizer):
def __init__(self, params, 1lr=0.01, pnorm=2.0):
# p-norm must be strictly greater than 1
if not 1.01 <= pnorm:

raise ValueError ("Invalid p-norm value: {}".format (pnorm))

defaults = dict(lr=1r, pnorm=pnorm)
super (pnormSGD, self).__init__(params, defaults)
def __setstate__(self, state):
super (pnormSGD, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure ()

for group in self.param_groups:
lr = group["1lr"]
pnorm = group["pnorm"]

for param in group["params"]:
if param.grad is None:
continue

x, dx = param.data, param.grad.data

# \ell_p-p potential function
update = torch.pow(torch.abs(x), pnorm-1) * \
torch.sign(x) - 1lr * dx
param.data = torch.sign(update) * \
torch.pow(torch.abs (update), 1/(pnorm-1))

return loss

10. This measurement may not be very accurate because we were using shared computing resources.

46




CONTROLLING IMPLICIT BIAS VIA MIRROR DESCENT

Appendix I. Experimental Details

All of the following experiments were performed on compute nodes equipped with an Intel
Skylake CPU + one Nvidia V100 GPU. The experiments involving linear models were CPU
only and experiments with convolutional network models took advantage of the GPU’s
acceleration.

I.1 Linear classification

Here, we describe the details behind our experiments from Section 4.1. First, we note that we
can absorb the labels y; by replacing (x;,y;) with (y;z;,1). This way, we can choose points
with the same +1 label.

For the R? experiment, we first select three points (%, %), (%, %) and (%, %) so that the
maximum margin direction is approximately %(1, 1). Then we sample 12 additional points

from N'((3,3),0.155). The initial weight wy is selected from A(0, I>). We ran p-GD with
fixed step size 1073 for 1 million steps. As for the scatter plot of the data, we randomly
re-assign a label and plot out (x;,1) or (—x;, —1) uniformly at random.

For the R'% experiment, we select 15 sparse vectors that each have up to 10 nonzero
entries. Each nonzero entry is i.i.d. sampled from U(—2,4). Because we are in the over-
parameterized case, these vectors are linearly separable with high probability. The initial

weight wy is selected from A(0,0.11199). We ran p-GD with step size 10™* for 1 million steps.

1.2 Normalized MD experiements

For the first experiment with the synthetic dataset in R?, we use the same choices of hyper-
parameters as above. The only difference is that we only run for 25000 iterations due to
faster convergence of normalized MD.

For the MNIST experiments, we used two different models, the first one is a two-layer
fully connected neural network with 300 neurons in the hidden layer and ReLLU activation and
the second one is a convolutional network with two convolution layers (see exact specification
next page). For both models, we applied cross-entropy loss and batch size of 512. To avoid
numerical issues in the normalized MD update (9), we divide by max(L(w;), 107°) instead
of the empirical loss directly.

For the fully connected network, we train for 200 epochs in total and use a learning
rate schedule that starts with n = 0.1 and decays by a factor of 5 at the 120th, 150th, and
180th epochs. In the normalized MD update (9), the base step size 7y follows the same
schedule and has scale factor A = 0.1. These parameters were chosen to closely match the
setup in (Nacson et al., 2019, Section 4.2) when p = 2, but our experiments used mini-batch
instead to better reflect a practical training scenario.

For the convolutional network, we train for 50 epochs in total and use a learning rate
schedule that starts with 7 = 0.02 and decays by a factor of 5 at the 30th and 40th epochs.
In the normalized MD update (9), the base step size ng follows the same schedule and has
scale factor A = 1.0.
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Layer Output Shape

| -Conv2d: 3x3 kernel [512, 32, 26, 26]
| -BatchNorm2d : [612, 32, 26, 26]
| -RelLU: [5612, 32, 26, 26]
| -MaxPool2d: 2x2 kernel [612, 32, 13, 13]
| -Conv2d: 3x3 kernel [5612, 32, 11, 11]
| -BatchNorm2d: [612, 32, 11, 11]
| -ReLU: [612, 32, 11, 11]
| -MaxPool2d: 2x2 kernel [612, 32, 5, 5]

| -Flatten: [512, 800]

| -Linear: [612, 64]

| -ReLU: [512, 64]
|-Linear: [512, 10]

1.3 CIFAR-10 experiments

For the experiments with the CIFAR-10 dataset, we adopted the example implementation
from the FFCV library.!! For consistency, we ran p-GD with the same hyper-parameters for
all neural networks and values of p. We used a cyclic learning rate schedule with a maximum
learning rate of 0.1 and ran for 400 epochs so the training loss is almost equal to 0.'?

1.4 ImageNet experiments

For the experiments with the ImageNet dataset, we used the example implementation from
the FFCV library.'?® For consistency, we ran p-GD with the same hyper-parameters for all
neural networks and values of p. We used a cyclic learning rate schedule with a maximum
learning rate of 0.5 and ran for 120 epochs. Note that, to more accurately measure the effect
of p-GD on generalization, we turned off any parameters that may affect regularization, e.g.
with momentum set to 0, weight decay set to 0, and label smoothing set to 0, etc.

Appendix J. Additional Experimental Results
J.1 Linear classification

We present a more complete result for the setting of Section 4.1 with more values of p. Note
that Table 2 is a subset of Table 6 and Table 3 is a subset of Table 8, as shown below. Within
each trial, we use the same dataset generated from a fixed random seed.

We first observe the results of p-GD in Tables 6 and 7. Except for p = 1.1, p-GD produces
the smallest linear classifier under the corresponding ¢,-norm and thus consistent with the
prediction of Theorem 13. When p = 1.1, Corollary 19 predicts a much slower convergence

11. https://github.com/libffcv/ffcv/tree/main/examples/cifar

12. This differs from the setup from Azizan et al. (2021b), where they used a fixed small learning rate and
much larger number of epochs.

13. https://github.com/libffcv/ffcv-imagenet/
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rate. So, for the number of iterations we have, p-GD with p = 1.1 in fact cannot compete
against p-GD with p = 1.5, which has a much faster convergence rate but similar implicit
bias. The second trial shows a rare case where p-GD with p = 1.1 could not even match p-GD
with p = 2 under the ¢; ;-norm.

Next, we fix the value of 5 and look at the results of MD with potential ¥(-) = % ||||I2) in
Tables 8 and 9. We are able to observe the same general trend as we did for p-GD. However,
because we fixed the value of the exponent 3, the various linear classifiers generated by MD
would have similar rates of convergence. We note that in both trials, MD with potential
P(-) = % |l | led to the smallest classifier in ¢1.1-norm, which is consistent with Theorem 13.
Table 6: Size of the linear classifiers generated by p-GD (after rescaling) in ¢1, 1.1, 415, {2, {3, g
and ¢19 norms. For each norm, we highlight the value of p for which p-GD generates the

smallest classifier under that norm. (Trial 1)

f1 norm | £11 norm ‘ {15 norm ‘ {5 norm ‘ {3 norm ‘ fg norm ‘ {10 norm | £, norm

p=11| 7.398 5.477 2.592 1.637 1.093 0.780 0.696 0.629
p=15]| 7.544 5.348 2.237 1.296 0.803 0.558 0.514 0.505

p= 8.985 6.161 2.315 1.224 0.684 0.429 0.382 0.366
p= 10.820 7.299 2.592 1.296 0.667 0.369 0.309 0.278
p= 12.714 8.523 2.957 1.441 0.711 0.360 0.281 0.229

p=10 | 13.484 9.032 3.123 1.515 0.740 0.367 0.280 0.213

Table 7: Size of the linear classifiers generated by p-GD (after rescaling) in ¢1, ¢1 1, ¢1.5, {2, (3, {g
and 19 norms. For each norm, we highlight the value of p for which p-GD generates the
smallest classifier under that norm. (Trial 2)

‘ /1 norm ‘ {11 norm ‘ {15 norm ‘ {5 norm ‘ {3 norm ‘ fg norm ‘ f1p norm ‘ {+ norm

p=11| 10.278 7.731 3.776 2.408 1.610 1.162 1.058 0.973
p=15| 8.835 6.222 2.549 1.450 0.873 0.577 0.512 0.463

p=2 10.161 6.962 2.609 1.375 0.760 0.464 0.406 0.387
p= 11.681 7.926 2.863 1.449 0.754 0.419 0.348 0.316
p= 13.454 9.083 3.217 1.592 0.797 0.410 0.321 0.261

p=10 | 14.290 9.630 3.392 1.669 0.828 0.417 0.321 0.244
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Table 8: Size of the linear classifiers generated by MD with potential ¢(-) = % ||H12? (after
rescaling) in £y, 01 1,41 5,02, ¢3,¢s and {1y norms. For each norm, we highlight the value of p

for which MD with potential ¥(-) = % ||H12? generates the smallest classifier under that norm.
(Trial 1)
‘ f1 norm ‘ {11 norm ‘ /1.5 norm ‘ {5 norm ‘ {3 norm ‘ f¢ norm ‘ {19 norm | {5, norm
p=11]| 6.526 5.136 2.780 1.864 1.276 0.900 0.795 0.700
p=15]| 7.338 5.231 2.215 1.292 0.803 0.552 0.498 0.473
p= 8.985 6.161 2.315 1.224 0.684 0.429 0.382 0.366
p= 10.871 7.305 2.567 1.275 0.652 0.360 0.301 0.276
p= 12.836 8.953 2.919 1.406 0.687 0.346 0.269 0.220
p=10 | 13.738 9.132 3.091 1.477 0.712 0.349 0.266 0.201

Table 9: Size of the linear classifiers generated by MD with potential ¢(-) = % ||H12? (after

rescaling) in £y, 01 1,41 5,02, (3,05 and {19 norms. For each norm, we highlight the value of p
for which MD with potential ¢(-) = % ||H§ generates the smallest classifier under that norm.
(Trial 2)

‘ f1 norm | £11 norm ‘ {15 norm ‘ {5 norm | £3 norm | {g norm | {19 norm | £, norm

p=11]| 7.277 5.646 2.996 2.032 1.453 1.118 1.039 0.980
p=15]| 8.671 6.133 2.529 1.438 0.867 0.582 0.527 0.509

p= 10.161 6.962 2.609 1.375 0.760 0.464 0.406 0.387
p= 11.783 7.948 2.828 1.420 0.735 0.409 0.340 0.306
p= 13.877 9.272 3.194 1.553 0.767 0.392 0.309 0.250

p=10 | 14.685 9.800 3.360 1.625 0.795 0.397 0.306 0.237

J.2 Experiments with normalized MD

We present additional experiments on normalized MD that expand upon what we presented
in Section 4.2. We compare normalized p-GD against the standard p-GD for p = 1.5,2 and
2.5.

For p = 1.5 and 2, normalized p-GD enjoys much faster convergence and we can see that
its training loss in both synthetic dataset and MNIST is significantly lower than that of
standard p-GD. The picture for p = 2.5 is less clear, where normalized p-GD enjoys a similarly
sizable advantage in rate of convergence for synthetic dataset while struggling somewhat
on the MNIST dataset before learning rate decay kicks in. But in all cases, the final loss
achieved by normalized p-GD is much lower and we see that the lower training loss translates
to better test performance on the MINST dataset, where normalized p-GD is better than
standard p-GD by about 0.2-0.7 percent. These observations are consistent with our analysis
on more general normalized mirror descent, as reflected by the statement of Theorem 22.
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Figure 7: Examples of p-GD and normalized p-GD on randomly generated data with exponen-
tial loss and p = 1.5,2,2.5. (1) The left plot is the empirical loss. (2) The middle plot shows
the rate which the quantity Dy (ul, w;/ |lw]|,) converges to 0. (3) The right plot shows how
fast the p-norm of w; growths.
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Figure 8: Example of p-GD and normalized p-GD on the MNIST dataset and p = 1.5,2,2.5.
(1) The left plot is the empirical loss at training time. (2) The right plot is the test accuracy.

Table 10: MNIST accuracy (%) of p-GD versus normalized p-GD for a fully connected network.
Note that the normalized version has better generalization for all values of p.

| Mirror descent (p-GD) | Normalized p-GD

p=15 97.65 98.37
p =2 (SGD) 97.95 98.34
p=25 98.29 98.48
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Figure 9: Example of p-GD and normalized p-GD on the MNIST dataset and p = 1.5,2,2.5.
(1) The left plot is the empirical loss at training time. (2) The right plot is the test accuracy.

Table 11: MNIST accuracy (%) of p-GD versus normalized p-GD for a convolutional network.
Note that the normalized version has better generalization for all values of p.

‘ Mirror descent (p-GD) ‘ Normalized p-GD

p=15 98.68 99.19
p =2 (SGD) 98.99 99.23
p=25 99.08 99.27
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J.3 CIFAR-10 experiments: implicit bias

We present more complete illustrations of the implicit bias trends of trained models in
CIFAR-10. Compared to Figure 6, the plots below include data from additional values for
additional values of p and more deep neural network architectures.

We see that the trends we observed in Section 4.3 continue to hold under architectures
other than RESNET. In particular, for smaller p’s, the weight distributions of models trained
with p-GD have higher peaks around zero, and higher p’s result in smaller maximum weights.
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Figure 10: The histogram of weights in RESNET-18 models trained with p-GD for the
CIFAR-10 dataset. For clarity, we cropped out the tails and each plot has 100 bins after
cropping. Note that the scale on the y-axis differs per graph.
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Figure 11: The histogram of weights in MOBILENET-v2 models trained with p-GD for the
CIFAR-10 dataset. For clarity, we cropped out the tails and each plot has 100 bins after

cropping.
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Figure 12: The histogram of weights in REGNETX-200MF models trained with p-GD for the
CIFAR-10 dataset. For clarity, we cropped out the tails and each plot has 100 bins after

cropping.
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Figure 13: The histogram of weights in VGG-11 models trained with p-GD for the CIFAR-10
dataset. For clarity, we cropped out the tails and each plot has 100 bins after cropping.
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J.4 CIFAR-10 experiments: generalization

We present a more complete result for the CIFAR-10 generalization experiment in Section 4.3
with additional values of p.

In the following table, we see that p-GD with p = 3 continues to have the highest
generalization performance for all deep neural networks.

Table 12: CIFAR-10 test accuracy (%) of p-GD on various deep neural networks. For each deep
net and value of p, the average 4+ std. dev. over 5 trials are reported. The best-performing
value(s) of p for each individual deep net is highlighted in boldface.

\ VGG-11 |  RESNET-18 MOBILENET-V2 | REGNETX-200MF
p=1.1 88.19 + .17 92.63 + .12 91.16 + .09 91.21 + .18
p=1>5 88.45 + .29 92.73 + .11 90.81 £+ .19 90.91 £+ .12
p=2(SGD) | 90.15 + .16 93.90 + .11 91.97 + .10 92.75 + .13
p=3 90.85 + .15 94.01 + .13 93.23 + .26 94.07 + .12
p==6 89.47 + .14 93.87 + .13 92.84 + .15 93.03 + .17
p=10 88.78 + .37 93.55 £+ .21 92.60 £+ .22 92.97 + .16

J.5 ImageNet experiments

To verify if our observations on the CIFAR-10 generalization performance hold up for other
datasets, we also performed similar experiments for the much larger ImageNet dataset. Due
to computational constraints, we were only able to experiment with the RESNET-18 and
MOBILENET-V2 architectures and only for one trial.

It is worth noting that the neural networks we used cannot reach 100% training accuracy
on Imagenet. The models we employed only achieved top-1 training accuracy in the mid-70s.
So, we are not in the so-called interpolation regime, and there are many other factors that
can significantly impact the generalization performance of the trained models. In particular,
we find that not having weight decay costs us around 3% in validation accuracy in the p = 2
case and this explains why our reported numbers are lower than PyTorch’s baseline for
each corresponding architecture. Despite this, we find that p-GD with p = 3 has the best
generalization performance on the ImageNet dataset, matching our observation from the
CIFAR-10 dataset.

Table 13: ImageNet top-1 validation accuracy (%) of p-GD on various deep neural networks.
The best-performing value(s) of p for each individual deep network is highlighted in boldface.

| RESNET-18 | MOBILENET-V2

p=11 64.08 63.41
p=15 65.14 65.75
p =2 (SGD) 66.76 67.91
p=3 67.67 69.74
p=6 66.69 67.05
p=10 65.10 62.32
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