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Abstract

In this paper we study the lower complexity bounds for finite-sum optimization problems,
where the objective is the average of n individual component functions. We consider
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a so-called proximal incremental first-order oracle (PIFO) algorithm, which employs the
individual component function’s gradient and proximal information provided by PIFO to
update the variable. To incorporate loopless methods, we also allow the PIFO algorithm to
obtain the full gradient infrequently. We develop a novel approach to constructing the hard
instances, which partitions the tridiagonal matrix of classical examples into n groups. This
construction is friendly to the analysis of PIFO algorithms. Based on this construction, we
establish the lower complexity bounds for finite-sum minimax optimization problems when
the objective is convex-concave or nonconvex-strongly-concave and the class of component
functions is L-average smooth. Most of these bounds are nearly matched by existing upper
bounds up to log factors. We also derive similar lower bounds for finite-sum minimization
problems as previous work under both smoothness and average smoothness assumptions.
Our lower bounds imply that proximal oracles for smooth functions are not much more
powerful than gradient oracles.

Keywords: minimax optimization, lower bound, proximal incremental first-order oracle,
finite-sum optimization

1. Introduction

We consider the following optimization problem

min max f(x
xeX ye)y f< 24
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where the feasible sets X C R% and ) C R% are closed and convex. This formulation
contains several popular machine learning applications such as matrix games (Carmon et al.,
2019, 2020b; Ibrahim et al., 2020), regularized empirical risk minimization (Zhang and
Xiao, 2017; Tan et al., 2018), AUC maximization (Joachims, 2005; Ying et al., 2016; Shen
et al., 2018), robust optimization (Ben-Tal et al., 2009; Yan et al., 2019) and reinforcement
learning (Du et al., 2017; Dai et al., 2018).

A popular approach for solving minimax problems is the first-order algorithm which
iterates with gradient and proximal point operation (Chambolle and Pock, 2011, 2016;
Mokhtari et al., 2020b,a; Thekumparampil et al., 2019; Luo et al., 2019). Along this line,
Zhang et al. (2022) and Ibrahim et al. (2020) presented tight lower bounds for solving
strongly-convex-strongly-concave minimax problems by first-order algorithms. Ouyang and
Xu (2021) studied a more general case that the objective function is only convex-concave.
However, these analyses (Ouyang and Xu, 2021; Zhang et al., 2022; Ibrahim et al., 2020) do
not consider the specific finite-sum structure as in Problem (1). They only considered the
deterministic first-order algorithms which are based on the full gradient and exact proximal
point iteration.

In big data regimes, the number of components n in Problem (1) could be very large and
we would like to devise randomized optimization algorithms that avoid accessing the full
gradient frequently. For example, Palaniappan and Bach (2016) used stochastic variance
reduced gradient (SVRG) algorithms to solve Problem (1). Similar to convex optimization,
one can accelerate it by catalyst (Lin et al., 2018; Yang et al., 2020) and proximal point
techniques (Defazio, 2016; Luo et al., 2019). Note that SVRG is a double-loop algorithm,
where the full gradient is calculated periodically with a constant interval. There are also
some loopless algorithms where a coin flip decides whether to calculate the full gradient
at each iteration (Alacaoglu and Malitsky, 2022; Luo et al., 2021). Although randomized
algorithms are widely used for solving minimax problems, the study of their lower bounds
is still open. All of the existing lower bound analysis focuses on convex or nonconvex
minimization problems (Agarwal and Bottou, 2015; Woodworth and Srebro, 2016; Arjevani
and Shamir, 2016; Lan and Zhou, 2018; Hannah et al., 2018; Fang et al., 2018).

This paper considers randomized PIFO algorithms for solving Problem (1), which are
formally defined in Definition 11. These algorithms have access to the prozimal incremental
first-order oracle (PIFO)

h?iIFO (Xv Yy, ’Y) 2 [fz (Xv y)a vxfz (X7 Y)7 _vyfi (X7 y)v pI‘OX}Z_ (X7 y)] ’ (2)

where ¢ € {1,...,n}, v > 0, and the proximal operator is defined as

1 1

y A . 2 2

prox; (x,y) = arg min max {f‘(u,v) + —|x—ul;——|ly — vl } .
i ueRdz veR% ' 2y 2 2y 2

Compared with incremental first-order oracle (IFO), which is defined as hfo(x,y) =
[fi(x,¥), Vxfi(x,¥), —Vy fi(x,y)], PIFO additionally provides the proximal oracle of the
component function. To incorporate loopless methods, we also allow PIFO algorithms to
access the full gradient infrequently with the interval obeying geometric distributions.

We consider the general setting where f(x,y) is L-smooth and (i, jt,)-convex-concave,
i.e., the function f(-,y)— & [|-||3 is convex for any y € ¥ and the function —f(x, -) — & 113
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is convex for any x € X. When p,, iy > 0, our goal is to find an e-suboptimal solution
(%,¥) to Problem (1) such that the primal-dual gap is less than ¢, i.e.,

% y) — mi §) <e.
max f(%,y) —min f(x,y) <«

On the other hand, when p, < 0,1, > 0, f(x,y) is called a nonconvex-strongly-concave
function, which has been widely studied in Rafique et al. (2022); Lin et al. (2020); Ostrovskii
et al. (2021); Luo et al. (2020). In this case, our goal is instead to find an e-stationary point
% of ¢¢(x) £ maxyey f(x,y), which is defined as

Vo), <e.

It is worth noting that by setting the feasible set of y as a singleton, the minimax problem
becomes a minimization problem. Then we can omit the dependence of f on y and rewrite
the function as f(x) with some abuse of notation. When f(x) is convex, our goal is to
find an e-suboptimal solution % such that f(x) — minykey f(x) < e, while when f(x) is
nonconvex, our goal is to find an e-stationary point X such that |V f(x)|, < e.

1.1 Contributions

Our contributions are summarized as follows.

1. We propose a novel construction framework to analyze lower complexity bounds for
finite-sum optimization problems. Different from previous work, we decompose the
classical tridiagonal matrix in Nesterov (2013) into n groups and each component
function is defined in terms of only one group. Such a construction facilitates the
analysis for both IFO and PIFO algorithms (see Definition 11).

2. We establish the lower complexity bounds for finite-sum minimax problems when f is
convex-concave or nonconvex-strongly-concave and {f;}? ; is L-average smooth (see
Definition 2). When f is convex-concave, our lower bounds nearly match existing
upper bounds up to log factors. The results are summarized in Table 1.1

3. For finite-sum minimization problems, we derive similar lower bounds as Woodworth
and Srebro (2016); Hannah et al. (2018); Zhou and Gu (2019) when each f; is L-
smooth or {f;}" ; is L-average smooth. The results are summarized in Tables 3 and
4 in Section 6. Compared to previous work, our framework provides more intuition
about the optimizing process and requires fewer dimensions to construct the hard
instances.

4. For most cases, our lower bounds are nearly matched by IFO algorithms. This implies
that the proximal oracles for smooth functions are not much more powerful than
gradient oracles, which is consistent with the observation in Woodworth and Srebro
(2016).

1. The work of Zhang et al. (2021) appeared on arXiv during the review process of our work.
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Cases Upper or Lower bounds References
o (\/n (Vn+ kz) (Vn+ ky) log(l/e)) Luo et al. (2021)
Ha >0,y >0
Q (\/n (VN + kz) (V1 + Ky) log(l/e)) Theorem 22
@((n + Rzn3/4\/g + Raoy/ M5 04 JRy) log (1) ) Luo et al. (2021)
He =0,y >0
Q(n + R1n3/4\/§ + R, nLeﬁ + n** /Ry log (1) ) Theorem 23
0 0 @((n + @ + (R1+Ry)n3/4\/§) log (1) ) Luo et al. (2021)
Mz = 7/’Ly =
Q(n + % + (Rm—&-Ry)n?’/“\/g) Theorem 24
fte < 0,y >0, o ((n +n3/4, /Iiy)AL€_2) Zhang et al. (2021)
=Q
oy () Q (n+ mkyALe?) Theorem 25; Zhang et al. (2021)

Table 1: Upper and lower bounds under the assumption that {f;}?_; is L-average smooth
and f is (g, pty)-convex-concave. When p, > 0 and g, > 0, the goal is to find an
e-suboptimal solution with diam(X) < 2R,,diam(Y) < 2R,. And when p, < 0,
the goal is to find an e-stationary point of the function ¢¢(x) = maxyey f(-,y)
with A = ¢(x¢) — mink ¢¢(x) and X = R% Y = R%. The condition numbers
are defined as k, = L/, and ky = L/, when g, pt,, > 0.

1.2 Related Work

To contextualize our results, we provide some background related to our topic.

Lower bounds for finite-sum minimization problems. There has been exten-
sive study on this topic. Agarwal and Bottou (2015) established the lower bound Q(n +
v/n(k —1)log(1/e)) when each component is L-smooth and their average is p-strongly con-
vex by a resisting oracle construction, where k = L/ is the condition number. However,
their lower bound only applies to deterministic algorithms. Lan and Zhou (2018) obtained
the lower bound Q((n + v/nk)log(1/¢)) for randomized incremental gradient methods, but
their bound does not apply to multi-loop methods such as SVRG (Johnson and Zhang,
2013) and SARAH (Nguyen et al., 2017). Woodworth and Srebro (2016) provided the lower
bound Q(n + y/nklog(1/e)) for any randomized algorithms using gradient and proximal
oracles. Moreover, when the objective is only convex, their lower bound is Q(n + y/nL/e).
Arjevani and Shamir (2016) established a similar lower bound for the strongly convex case
and their bound also applies to stochastic coordinate-descent methods. Hannah et al. (2018)

improved this bound to Q(%) when k = O(n). Zhou and Gu (2019) proved lower

bounds Q(n + n3/*\/klog(1/¢)) and Q(n + n3/*\/L/e) for the strongly convex and con-
vex case respectively under the weaker condition that the class of component function is
L-average smooth.

When the objective is nonconvex, Fang et al. (2018) proved the lower bound Q(L+/n/c?)
for ¢ = O(v/L/n'/*) under the average smooth condition. Li et al. (2021) improved the
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bound to Q(n + Ly/n/e?) for an arbitrary . Under a more refined condition that objective
is p-weakly convex (see Definition 4), Zhou and Gu (2019) established the lower bound
to Q(1/e2 min{n3/*\/Ly,/nL}) when ¢ is sufficiently small. They also provided the lower
bound Q(1/e? min{\/nLu, L}) when each component is L-smooth.

Upper bounds for finite-sum minimax problems. For Problem (1), if jup, sty > 0
and each f; is L-smooth, the best known upper bound is O ((n + /n(kz+ry)) log(1/¢€)) (Car-
mon et al., 2019; Luo et al., 2019). Furthermore, if each f; has L-cocoercive gradient,
which is a stronger assumption than smoothness, Chavdarova et al. (2019) provided an up-
per bound O ((n + Ky + Ky)log(1/¢e)). If {fi}7, is L-average smooth, Accelerated SVRG
(Palaniappan and Bach, 2016) attained the upper bound O ((n + v/n (ks + #,)) log(1/¢))
and Alacaoglu and Malitsky (2022) obtained the bound O ((n + v/n(ks + Ky))log(1/e)).
Then Luo et al. (2021) improved this bound to O(y/n(v/n + k) (v/n + k) log(1/¢)) by cat-
alyst acceleration. The same technique was also employed to derive lower bounds for the
convex-strongly-concave case where p,, = 0, 1, > 0 (Yang et al., 2020; Luo et al., 2021).

For the convex-concave case (11 = py, = 0), Carmon et al. (2019) established the upper
bound O(n + /nL/e) under the smoothness assumption, while Alacaoglu and Malitsky
(2022) developed the same upper bound under the average smoothness assumption. Luo
et al. (2021) still used the catalyst acceleration and derived a similar bound.

In terms of the nonconvex-strongly-concave case (p, < 0,p, > 0), Luo et al. (2020)
proposed an upper bound O (n+ min{\/ﬁﬁi, ’%2/ + nkyte~?), while Zhang et al. (2021) de-
veloped an upper bound O ((n+ n3/4\/@)L5*2). The latter is better when n = O(k*). We
emphasize that both results are under the average smoothness assumption.

Loopless methods. Variance-reduced methods designed for finite-sum minimization
problems such as SVRG (Johnson and Zhang, 2013), Katyusha (Allen-Zhu, 2018a) and
SARAH (Nguyen et al., 2017) have a double-loop design where the full gradient needs to be
calculated periodically. Recently, many researchers have aimed to study their loopless vari-
ants or devise new loopless methods such that whether to access the full gradient depends on
a coin toss with a small head probability. Equivalently speaking, the inner loop size obeys
the geometric distribution with a small success probability. Such a design facilitates theo-
retical analysis without deteriorating the convergence rates. For example, loopless SVRG
(L-SVRG) was first proposed in Hofmann et al. (2015) and then further analyzed in Kovalev
et al. (2020); Qian et al. (2021) together with loopless Katyusha (L-Katyusha). Loopless
SARAH (L2S) was developed in Li et al. (2020). Other loopless methods include but are not
limited to KatyushaX (Allen-Zhu, 2018b), PAGE (Li et al., 2021) and ANITA (Li, 2021).
For finite-sum minimax problems, there are also many loopless methods (Loizou et al., 2020;
Alacaoglu and Malitsky, 2022; Beznosikov et al., 2023).

The proximal oracle. The proximal oracle provides more information than the gradi-
ent oracle and has been used in algorithm design (Shalev-Shwartz and Zhang, 2013; Defazio,
2016; Lan and Zhou, 2018; Luo et al., 2019). Compared with catalyst acceleration, em-
ploying proximal oracles would neither increase the number of loops nor induce additional
parameter tuning. When each component function enjoys a simple form (Zhang and Xiao,
2017; Du et al., 2017; Lan and Zhou, 2018; Carmon et al., 2019), the proximal operator
can be computed efficiently. In terms of the power of proximal oracles, Woodworth and
Srebro (2016) have shown that for smooth functions, the gradient oracle is sufficient for the
optimal rate. As a comparison, for nonsmooth functions, having access to proximal oracles
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does reduce the complexity and Woodworth and Srebro (2016) presented optimal methods
that improve over those only using gradient oracles.

1.3 Organization

The remainder of this paper is organized as follows. In Section 2, we introduce some neces-
sary notation and definitions and give a concentration inequality for geometric distributions.
In Section 3, we present and discuss the definition of PIFO algorithms. In Section 4, we
define the optimization complexity and construct the hard instances for Problem (1). In
Sections 5 and 6, we provide and analyze our lower bounds for finite-sum minimax and
minimization problems respectively. Finally, in Section 7, we summarize our results and
propose some future research directions.

2. Preliminaries

In this section, we present some necessary notation and definitions used in our paper and
then give a concentration inequality about geometric distributions.

Notation. We denote the set {1,2,...,n} by [n]. ay = max{a,0} represent the positive
part of a real number. The projection operator is defined as Py (x) £ arg miny cy ||x’ — x||,
where X is a convex set and ||-||, is the Euclidean norm. We use 0 for all-zero vectors and e;
for the unit vector with the i-th element equal to 1 and others equal to 0. Their dimensions
will be specified by an additional subscript, if necessary, and otherwise are clear from the
context. We use Geo(p) to denote the geometric distribution with success probability p,
ie., Y ~ Geo(p) implies P[Y = k] = (1 —p)F~lpfor 0 < p < 1, k € {1,2,...}. Finally,
we use the notation O(-),Q(-),0(:) to hide absolute constants that do not depend on any

problem parameter, and notation O(-) to hide absolute constants and log factors.

Definition 1 For a differentiable function p(x) from X to R and L > 0, ¢ is said to be
L-smooth if its gradient is L-Lipschitz continuous; that is, for any x1,x2 € X, we have

IVe(x1) = Vo(xo)ll2 < L [x1 — %2, -
Definition 2 For a class of differentiable functions {¢;(x) : X — R}, and L > 0, {¢;}1"
1s said to be L-average smooth if for any x1,x9 € X, we have

1 n
- D IVei(x1) = Vei(x2) 13 < L |x1 — %23
=1

The assumption of average smoothness is widely used in many finite-sum optimizations (Zhou
and Gu, 2019; Fang et al., 2018; Zhou and Gu, 2019; Alacaoglu and Malitsky, 2022).

Now we discuss the relationship between smoothness and average smoothness. For a
class of differentiable functions {¢;(x) : X — R}, and their average @(x) = 2 > | ¢;(x),
we have the following result

@; is L-smooth, Vi = {p;}i-; is L-average smooth = ¢ is L-smooth.
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Moreover, suppose that ¢; is L;-smooth, @ is L-smooth and {y;} , is L’-average smooth,
we have L < L' < /25" [2and L< 137 | L.

However, L and L’ can be much smaller than L;. For example, if ¢;(x) = % ((ei,x))?,

then we have L; = 1, L = 1/n and L' = 1/y/n. As a result, it is more restrictive to say that
each ; is L-smooth than to say that {¢;}!' ;| is L-average smooth.

Definition 3 For a differentiable function p(x) from X to R, ¢ is said to be convez if for
any x1,X € X, we have

p(x2) > p(x1) + (Vep(x1), x2 — x1) -

Definition 4 For a constant p, if the function ¢(x) = p(x) — § ||x||§ is convez, then ¢ is
said to be p-strongly convex if g > 0 and ¢ is said to be p-weakly convex if p < 0.

One can check that if ¢ is L-smooth, then it is (—L)-weakly-convex.

Definition 5 For a differentiable function o(x) from X to R, we call X an e-stationary
point of ¢ if
Ve[|, <e.

Definition 6 For a differentiable function f(x,y) from X xY to R, f is said to be convex-
concave, if the function f(-,y) is convex for any 'y € Y and the function —f(x,-) is con-

vex for any x € X. Furthermore, f is said to be (ju, jty)-convex-concave, if the function
F(x,y) — L |1x|5 + & [|lyl3 is convea-concave.

Definition 7 We call a minimazx optimization problem mingcy maxycy f(x,y) satisfying
the strong duality condition if

min max f(x,y) = maxmin f(X,y).
min max f(x,y) = maxmin f(x,y)

By Sion’s minimax theorem, if ¢(x,y) is convex-concave and either X or ) is a compact
set, then the strong duality condition holds.

Definition 8 We call (x*,y*) € X x Y the saddle point of f(x,y) if
fx5y) < f(x5y") < f(x,¥7)
for all (x,y) € X x Y.

Definition 9 Suppose the strong duality of Problem (1) holds. We call (X,y) € X X Y an
e-suboptimal solution to Problem (1) if

max f(x,y) —min f(x,y) < &.
yey xeX
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2.1 A Concentration Inequality about Geometric Distributions

In this subsection, we introduce a concentration inequality about geometric distributions.

Lemma 10 Let {Y;}", be independent random variables, and Y; follows a geometric dis-
tribution with success probability p;. Then for m > 2, we have

P

O =

; 40021 i)

Lemma 10 implies that at least with a constant probability, the sum of geometric random
variables is larger than a constant number, which depends on the number of variables and
their success probabilities. Then we can obtain a lower bound of E Y™ | Y;, which is helpful
to the construction in Section 4. The proof is deferred to Appendix A.

3. PIFO Algorithms

In this section, we present our definition of PIFO algorithms. We first discuss previous
definitions in Section 3.1 and our formal definition is given in Section 3.2.

3.1 Discussion on Previous Definitions

In this subsection, we discuss the definitions of oracles and algorithms in previous work on
the minimization problem minycy f(x) = %E?:l fi(x). With some abuse of notation, we
do not distinguish the oracles for minimization problems from those for minimax problems.

IFO and PIFO. The incremental first-order oracle (IFO) is defined as hfo(x) =
[fi(x), V fi(x)], which takes as input a point x € X and a component function f; and re-
turns the function value and the gradient of f; at x. Many lower bounds for minimization
optimization are based on this oracle, e.g., Agarwal and Bottou (2015); Lan and Zhou
(2018); Zhou and Gu (2019). They all consider linear-span randomized first-order algo-
rithms.? For these algorithms, the current point lies in the linear span of previous points
and gradients returned by earlier IFO calls.

Woodworth and Srebro (2016) consider prozimal incremental first-order oracle (PIFO)

which is stronger than IFO and is defined as h?iIFO(X,q/) 2 [fi(x), Vfi(x), prox}i (x)] with

the proximal operator prox}i (x) £ arg min,, { fi(a) + % |x — qu} When f; is convex, any
~v > 0 is feasible. Different from IFO, PIFO provides global information about the function.
To see this, letting v — oo yields the exact minimizer of f;. Based on PIFO, Woodworth
and Srebro (2016) consider the class of any randomized algorithms, a more general class
than linear-span randomized first-order algorithms. We also emphasize that when f; is
nonconvex, 7 should be sufficiently small such that f;(u)+ % |x — ul)3 is a convex function
of u. Otherwise, it can be pretty hard to calculate prox}i (x). Specially, if f is (—p)-weakly
convex, we need to ensure 0 < v < 1/pu.

2. The formal definition is given in Definition 3.3 in Zhou and Gu (2019). Although the results of Agarwal
and Bottou (2015) do not rely on the linear span assumption, this assumption can be made without loss
of generality, as shown in Appendix A of their work.
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Sampling of the component function. Note that both IFO and PIFO depend on
a specific component f;. Different methods use different ways to choose the index i. Some
of them, e.g., SAGA (Defazio et al., 2014), RPDG (Lan and Zhou, 2018), pick ¢ randomly
according to some distribution over [n] and the full gradient is calculated only at the initial
point. However, much more methods need to calculate the full gradient periodically, either
with a deterministic or random interval. For multi-loop methods, e.g., SVRG (Johnson and
Zhang, 2013), Katyusha (Allen-Zhu, 2018a) and SPIDER (Fang et al., 2018), the interval
is predetermined, while for loopless methods, e.g., KatyushaX (Allen-Zhu, 2018b), L2S (Li
et al., 2020), L-SVRG (Kovalev et al., 2020), the interval is a geometric random variable.

The lower bound of Lan and Zhou (2018) requires that the index i, at iteration t is
sampled from a predetermined distribution over [n]. Thus their bound does not apply to
methods such as SVRG and L-SVRG. Woodworth and Srebro (2016); Zhou and Gu (2019)
do not specify the way to choose i;. As a result, their class of algorithms does include those
multi-loop or loopless methods.

Arjevani and Shamir (2016) and Hannah et al. (2018) consider p-CLI algorithms equipped
with the generalized first-order oracle, where the current point and the gradient can be
left-multiplied by preconditioning matrices. They do not specify the way to choose i;, ei-
ther. Thus their lower bounds apply to all the methods mentioned above. Moreover, their
framework can also be equipped with the steepest coordinate descent oracle to incorporate
methods such as SDCA (Shalev-Shwartz, 2016).

3.2 Our Definition

In this subsection, we come back to the minimax problem (1) and formally introduce the
definition of PIFO algorithms.

Recall that the PIFO has been defined in (2). For convenience, we also define the First-
order Oracle (FO) as h?o(x,y) 2 [f(x,y), Vxf(%,¥), —Vy f(x,¥)], which returns the full
gradient information. Since the feasible set of Problem (1) is not necessarily the whole
space, the algorithm should also have access to the projection operators Py and Py. Then
we can define the PIFO algorithms we focus on in our paper.

Definition 11 Consider a randomized PIFO algorithm A to solve Problem (1). Denote the
point obtained by A after step t by (x4,y:), which is generated by the following procedure.

1. Initialize the set H as {(x0,y0)}, the distribution D over [n], a positive number q <
co/n and sett = 1.

2. Sample iy ~ D and query the oracle hJF;,IFO at the current point (Xi—1,y¢—1) and also
it

at a previous point in {(X;,y1) bo<i<t—1, if necessary.

3. Sample a Bernoulli random variable a; with expectation equal to q. If ay = 1, query
the oracle h?o at point (X¢—1,yt—1) and add (x¢—1,yt—1) to H.

4. Obtain (X¢,y:) following the linear-span protocol
(ib S’t) € span {(X0> yO)v SERE) (thla thl)v pI‘OX;Zj (Xla yl) fOT I < j <t,

(vxfij (Xl7yl)7 Ody)7 (de7 _vyfij (XlaYZ)) fOT’ l < .7 S t7
(Vxf(1,v),04,), (0a,, —Vy f(u,v)) for (u,v) € H}.
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5. Projection step: x; = Px(X¢),yt = Py(¥¢)-
6. Output (X¢,yt), or increase t by 1 and go back to step 2.

Let of be the class of all such PIFO algorithms. A PIFO algorithm becomes an IFO algo-
rithm if it queries the IFO at step 2.

Remark 12 We remark on some details in our definition of PIFO algorithms.

(i) The random vector sequence {(it, at)}¢+>1 are mutually independent and each i; is also
independent of a;.

(i) Note that in part 2, we allow PIFO queries simultaneously at the current point and a
previous point. Such a simultaneous query is commonly employed in variance-reduced
methods (Johnson and Zhang, 2013; Fang et al., 2018; Zhou et al., 2020; Luo et al.,
2020).

(iii) In part 4, we allow the algorithm to reuse previously obtained information, e.g.,
(Vxfi;(x1,¥1),04,), (0a,, —Vyfi;(x1,y1)) and PI‘OX}ZJ, (x1,y1) for 1 < j <t. The set H
collects the points where the full gradient is calculated.

(iv) When f; is not convezx-concave, vy should be chosen such that f;(u,v)+ % |x — 3 -

% ly — V|3 is convex-concave w.r.t. to (u,v).

(v) Without loss of generality, we assume that the PIFO algorithm A starts from (x0,y0) =
(0q4,, Ody) to simplify our analysis. Otherwise, we can take {f;(x,y) = fi(x + %0,y +
yo)}iy into consideration.

(vi) Let p; =Pyp|Z =] fori € [n]. The distribution D can be the uniform distribution
or based on the smoothness of the component functions, e.g., p; x L; (Xiao and
Zhang, 2014) or p; < L? (Allen-Zhu, 2018b) for i € [n], where L; is the smoothness
parameter of f;. We can assume that p1 < po < --- < p, by rearranging the component
functions { f;}1,. Suppose that ps; < ps, < --- < ps, where {s;}_, is a permutation
of [n]. We can consider {f;}?_, and categorical distribution D' with f; £ f,, and

Pzop [Z =] = ps,.

Recall that by setting ) as a singleton, we can obtain the definition of IFO and PIFO
algorithms for finite-sum minimization problems.

We emphasize that only the proximal operator of the individual component function f; is
allowed. The algorithm is not accessible to the proximal operator of the averaged function f.
In practice, each f; usually depends on a single sample and enjoys a simple form (Zhang and
Xiao, 2017; Du et al., 2017; Lan and Zhou, 2018; Carmon et al., 2019). Then proxvi (x,y) is

f
easy to calculate. For example, if f;(x,y) = %( 1 %)%, then prox}i (x,y) = I+~vyaa) ) x;
I a;b 17" [x
if £, — v bal 7 — 73iD; -
if fi(x,y) =y 'bsa; x, then Prox . (x,y) [—Wbia: I } [y} For these two exam

ples, prox}i (x,y) can be efficiently computed by the Sherman—Morrison formula. However,
computing prox}(x,y) could be as hard as solving the original problem (1). To see this,
letting v — oo yields the exact solution of problem (1).

10
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Methods for minimization problems. One-loop methods such as SAGA (Defazio
et al., 2014) and PointSAGA (Defazio, 2016) belong to PIFO algorithms. Some methods
such as SVRG (Johnson and Zhang, 2013) and Katyusha (Allen-Zhu, 2018a) have two loops
and the full gradient needs to be calculated at each iteration of the outer loop. Although
these two-loop methods do not satisfy our definition, their loopless variants do. These
loopless variants only have one loop and whether to compute the full gradient depends on
a coin toss with a small head probability, i.e., ¢ in Definition 11. Kovalev et al. (2020) have
shown that loopless SVRG (L-SVRG) and loopless Katyusha (L-Katyusha) enjoy the same
theoretical properties as the original methods. With a constant ¢, these loopless methods
can also be viewed as two-loop methods with a random inner-loop size that obeys the
geometric distribution with success probability ¢q. Other loopless methods that satisfy our
definition include KatyushaX (Allen-Zhu, 2018b), L2S (Li et al., 2020), PAGE (Li et al.,
2021), ANITA (Li, 2021) and so on. For these methods, the order of ¢ is usually O(1/n).
And it suffices to set ¢g = 2.

Now we consider catalyst-accelerated methods. Seemingly these methods do not satisfy
our definition, since they have two loops and the full gradient is calculated at each iteration
of the outer loop. Nevertheless, we can slightly change them without affecting the conver-
gence rate. Firstly, we can replace the algorithm used to solve the inner-loop subproblem,
e.g., SVRG, with its loopless variant. Secondly, note that the complexity of each iteration
of the outer loop is of the order 2(n) (all the components need to be sampled at least once
in the inner loop). At each iteration of the outer loop, we do not update the current point
until the FO is called. In expectation, we need ©(1/q) more steps. Thus, if we choose
g = 0O(1/n), then ©(1/q) = ©(n), implying that such a change makes no difference to the
order of the complexity.

Methods for minimax problems. One can check SAGA (Palaniappan and Bach,
2016) and PointSAGA (Defazio, 2016) are PIFO algorithms. Although SVRG (Palaniappan
and Bach, 2016) does not satisfy our definition, we believe a loopless variant can share the
same convergence properties. Existing loopless methods that belong to PIFO algorithms
include L-SVRHG (Loizou et al., 2020) and L-SVRE? (Alacaoglu and Malitsky, 2022).
Moreover, similar to the analysis above, the catalyst-accelerated methods in Luo et al.
(2021); Zhang et al. (2021) also satisfy our definition. For these methods, the order of ¢ is
still ©(1/n) and we can set co = 2.

Finally, we emphasize that all the methods analyzed above except PointSAGA (Defazio
et al., 2014; Defazio, 2016) are also IFO algorithms. From the results in Table 1 and
the analysis in Section 6, we find that IFO algorithms are powerful enough for smooth
functions.

4. Framework of Construction

In this section, we introduce the framework of our construction to establish the lower bound
for Problem (1). In Section 4.1, we give the definition of the optimization complexity. In
Section 4.2, we construct the hard instances used to prove the lower bound and present
some fundamental lemmas. Now we first highlight the key idea of our construction.

3. The method was renamed by Luo et al. (2021) and we adopt the new name.

11
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Key idea. To construct the hard instance, we partition the tridiagonal matrix in
Nesterov (2013) into n groups and each component function is defined in terms of only one
group. Then the hard instance satisfies a variant of zero-chain property: starting from the
origin, only when a specific component is drawn, can we increase the nonzero elements of
the current point by at most 2. Meanwhile, the number of PIFO calls required to draw this
component obeys the geometric distribution. Consequently, once we prove that we cannot
obtain any e-suboptimal solution or e-stationary point unless we span all the dimensions,
the lower bound on the complexity can be derived by using the concentration inequality of
geometric distributions, as outlined in Lemma 10. As a comparison, previous span-based
construction (Lan and Zhou, 2018; Zhou and Gu, 2019) partitions the variable. In their
construction, the number of nonzero elements of the current point can increase no matter
which component is drawn. A more detailed analysis is deferred to Section 6.1.

4.1 Optimization Complexity

Before presenting the definition of the optimization complexity, we first introduce the func-
tion class we consider. Define the primal function as ¢(x) = maxycy f(x,y) and the dual

function as ;(y) = minkex f(x,y).

Function class. We develop lower bounds for PIFO algorithms that find a suboptimal
solution or near stationary point of Problem (1) in the following sets.

1 n
fCC(RxaRwL,anﬂy) = {f(X,Y) = EZ]CI()Qy) ) f: X X y — R? dla’m(‘)() S 2Rxaa
=1

diam(Y) < 2Ry, {fi}iz, is L-average smooth, f is (uz, ft)-convex-concave }

]:NCC(AvLaMwmuy) = {f(xvy) = iZlfl(XaY) ‘ f: X x y _>Ra ¢(0) _igﬁgd)(x) < Aa

{fi}ic: is L-average smooth, f is (—fiz, {1y )-convex-concave }

We remark that for the second class, u, measures how nonconvex the function is. A natural

upper bound of u, is L. Moreover, we do not specify the dimensions of the feasible set.
That is to say, the two classes include functions defined on X x Y C R% x R% with any
positive integers d, and d,,.

Optimization complexity. Then we formally define the optimization complexity.

Definition 13 For a function f, a PIFO algorithm A and a tolerance ¢ > 0, the number
of queries to PIFO needed by A to find an e-suboptimal solution to Problem (1) or an
e-stationary point of ¢¢(x) is defined as

inf {T' € N | E¢p(xar) —Evp(yar) <e}, if f € Foc(Re, Ry, L, iz, fiy),

TA) ) =
AT {inf{TeN|E||v¢f<XA,T>||2<s}, i £ € Frco(d, L pies i),

12
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where (XA 1,yAT) is the point obtained by the algorithm A at time-step T — 1. The opti-
mization complexity with respect to the two function classes is defined as*

mcc(&Rx,RyaLaMx,My) 2 inf Sup T(A, 1 5)‘
Acof fe]:CC (Rw,Rnyuﬂﬂ')hu‘y)
mNCC(€7 A’ L’ /'LQH Ny) é lnf Sup T(A’ f7 5)

A e Froo (A, Lya,iiy)

When f is convex-concave, the functions we consider have a bounded feasible set and L-
average smooth components. By Sion’s minimax theorem, the strong duality condition
holds. Then the primal-dual gap is a natural measurement of the optimality because this
gap equals zero at the saddle point. In particular, if f is strongly-convex-strongly-concave,
the saddle point (x*,y*) is unique. Then the squared distance ||x — x*[|3+ ||y — y*||3 is also
a widely-used measurement of optimality (Luo et al., 2021). In this case, ¢ is ju,-strongly
convex and 2L2/p-smooth with minimizer x* by Lin et al. (2020, Lemma 23). Similarly,
—1py is p,-strongly convex and 2L?/pi,~-smooth with minimizer y*. If (x*,y*) is an interior
point of the feasible set, we have that & ||x — X*||§ + 2y - y*||§ < dp(x) — Yp(y) <
ﬁ—j [x — x*||5 + ﬁ—j |y — y*||3 holds.” Then the squared distance and the primal-dual gap
are equivalent up to constant factors. As for the nonconvex-strongly-concave case, we aim
to find the stationary point of the primal function and use the norm of the gradient of the
primal function as the measurement.

Note that we use the number of PIFO calls to measure the complexity. We claim that
the infrequent FO calls do not influence the order of this complexity. At each step, the FO
is called with probability ¢ = O (%) Since the computational cost of each FO call is no
larger than that of n PIFO calls, the total cost of PO calls is no larger than the order of
the number of PIFO calls in expectation. Thus our definition of complexity is reasonable,
due to that we usually ignore the influence of constants.

4.2 The Hard Instances

In this subsection, we construct the (unscaled) hard instances used to prove the lower bound.
The constructions for the convex-concave case and the nonconvex-strongly-concave case are
slightly different and presented in Sections 4.2.1 and 4.2.2 respectively. However, they are
both based on the following class of matrices

B(m,w, ) = o € ROmHxm, 3)
1 -1
¢

which is also used in the proof of lower bounds in deterministic minimax optimization
(Ouyang and Xu, 2021; Zhang et al., 2022).

4. Our definition follows from Carmon et al. (2020a).
5. When f is strongly-convex-strongly-concave, we can take the feasible set as {(x,¥): ¢5(x) — ¥y(y) <
¢f(x0) —¥s(yo)} with (x0,yo0) the initial point. Then (x*,y™) is naturally an interior point.

13
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For convenience, we denote the [-th row of the matrix B(m,w, ¢) by b;_1(m,w, (). To
construct a hard instance for the finite-sum optimization problem, we partition the row
vectors of B(m,w, () according to the index sets £; = {{: 0 <1 <m,l=i—1 (mod n)}.
The i-th component is constructed in terms of {b;(m,w,() : I € £;}. This way of partition
is different from those used in Lan and Zhou (2018) and Zhou and Gu (2019) (a detailed
comparison is deferred to Section 6.1). We find that the b;(m,w, () have at most two
nonzero elements and the vectors whose indices lie in the same index sets are mutually
orthogonal, as long as n > 2.

4.2.1 CONVEX-CONCAVE CASE

The hard instance for the convex-concave case is constructed as

n

1
. CC CCy 2 § CC CcC
a Y3 ,6,C - 3 yYs;m, G, C ) 4
z(rg;(l I}I’lej}){ " (X m C ) n i—1 "i (X C ) ( )

where c%C = (c{C,c§9), X = {x e R™ : ||x||, < R}, Y = {y e R": ||ly|l, < R,} and
ri (%, y3m, ()

CC CC
n 3y erbi(m,0,0) Tx+ - [x[3 - S Iyl - nfenx), fori=1,

lel;
- cC CcC .
n Yy eby(m,0,¢) Tx+ LT |x|5 — 2 |lyll5, fori=2,3,...,n.
leL;

Note that bg(m, 0, () = 0, which implies that this hard instance is based on the last m rows
of B(m,w, (). Then we can determine the smoothness and strong convexity coefficients of

icc as follows.

r
Proposition 14 For c?c,cgc >0and 0 < ( < \@, we have that ricc is L-smooth and

(c§€, ¢§C)-convez-concave, and {r Y1, is L'-average smooth, where

L= \/4712 + 2max{c{%, c§°}2 and L' = \/8n + 2max{c{, c§}2.

We find if max{c{®, S} = O(v/n), then L/L' = ©(y/n).
Define the subspaces {Fj}j- as

()

_ )span{ei,ey,..., ey}, for 1 <k <m,
B {0}, for k= 0.

Now we show that the hard instance satisfies a variant of the zero-chain property (Carmon
et al., 2020a).

Lemma 15 Suppose that n > 2 and F_1 = Fy. Then for (x,y) € Fr X Fr—1 and 0 < k <
m, we have that

Vil (x,y) ) . Fra1 X Fg, ifi=k+1(mod n),
! ’ ,ProX oo (X,y) €
<_vyriCC(X,Y) P TzQC( y) Fr. X Fr_1, otherwise,

where we omit the parameters of riCC to simplify the presentation.
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X1 € F1 XT2€]:2 Adrawsrgcor XTsefS
vy c -FO Y1, c ]:1 calls hf at step T3 Y1y I _F2

Figure 1: An illustration of the process of solving Problem (4) with a PIFO algorithm A.

A draws rICC or A draws 1"2CC or
U at step Ty O at step Ty

If the current point is (x,y), the information provided by the PIFO call at (x,y) will
not increase the nonzero elements of (x,y) unless a specific component function is drawn.
Moreover, if such a specific component is drawn, the increase is at most 2. This variant
of zero-chain property is different from the conventional zero-chain property in finite-sum
minimization problems (Lan and Zhou, 2018; Zhou and Gu, 2019), where regardless of
which component is drawn, the nonzero elements of the current point can increase. Such
a difference comes from different ways of partitioning and ensures that our construction
requires a lower dimension (see the analysis in Section 6.2). The proofs of Proposition 14
and Lemma 15 are given in Appendix C.1.

When we apply a PIFO algorithm A to solve Problem (4), Lemma 15 implies that
x; = yy = 0 will hold until algorithm A draws the component f; or calls the FO. Then, for
any t < T1 = ming{t : iy = 1 or a; = 1}, we have x;,y: € Fo while xp, € F; and yp, € Fo.
The value of T can be regarded as the smallest integer such that xp, € Fy \ Fp could
hold. Similarly, for 77 <t < T = ming{t > T3 : iy = 2 or a; = 1}, it holds that x; € F;
and y; € Fo while we can ensure that xp, € F2 and yp, € Fi. Figure 1 illustrates this
optimization process.

We can define Tj to be the smallest integer such that xp, € Fi \ Fr—1 and yr, €
Fr—1 \ Fr—2 could hold. The following corollary demonstrates that we can connect T} to
geometrically distributed random variables.

Corollary 16 Assume we employ a PIFO algorithm A to solve Problem (4). Let
To =0, and Ty = mtin{t it >Tg_1,i =k (mod n) ora; =1} for k> 1. (6)
Then we have
(xt,¥t) € Fp—1 X Fg—o, fJort<Tyk>1.

Moreover, the random variables {Y} }x>1 such that Yy, 2 T}, —Th_1 are mutually independent
and Yy, follows a geometric distribution with success probability py + q — prrq where k' € [n]
satisfies k' = k (mod n).

The basic idea of our analysis is that we guarantee that the e-suboptimal solution of
Problem (4) does not lie in Fj x Fj, for k < m and assure that the PIFO algorithm extends
the space span{(x¢,yo), (X1,¥1),---, (X¢,¥¢)} slowly with ¢ increasing. By Corollary 16,
we know that span{(xo,yo), (x1,¥1),.--, (xX1,—1,¥7,-1)} € Fr—1 X Fr—1. Hence, T}, is the
quantity that measures how span{(xo,yo), (X1,¥1);-- -, (Xt,yt)} expands. Note that T} can
be written as the sum of geometrically distributed random variables. Recalling Lemma 10,
we can obtain how many PIFO calls we need.
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Lemma 17 If M satisfies 1 < M < m,

: CC . ..CC
_ >
i ()~ pigr ) ) 2 o g
YEVNF

and N = Zgﬁtol)), then we have

R cc __.cC S .
min ({I}lg?‘ (xt,v) min (wyt) ) =e¢

Note that rescaling will not influence the zero-chain property. Thus Lemma 17 still holds
for any rescaled version of r®C. It remains to specify the parameters carefully, obtain a
condition of the form (7) and then estimate the order of N. These steps depend on the
specific problem and are deferred to Sections 5.2 to 5.4 and Appendices D.1 to D.3.

The proofs of Corollary 16 and Lemma 17 are given in Appendix C.2.

4.2.2 NONCONVEX-STRONGLY-CONCAVE CASE
For the nonconvex-strongly-concave case, the hard instance is constructed as
1 n
: NCC . NCCy A NCC . NCC
min max r (X, y;m,w,c ) = — Zri (x,y;m,w,c" ) (8)

xER™ yecR™ n -
i=1

where cNCC = (€€ JOC XCCY and

ry YO (%, yim,w, NOO)
Te . b N Tx — A v2 Nccm_lr NCC,, \ _ for i — 1
n Z Y €41 l(mvwa ) X 2 HyHZ + Cy Z (03 xl) n <elay> , tor e =1,
leLl; i=1
nY yTer b 0 Tx — S 14112 4 (NCC S [y Nae,, for i — 2.3
vy 'e1bi(m,w,0) ' x 5 |lyllz + ¢ > D(eg™rmy), ori=2,3,...,n.
lEEi =1

The nonconvex function I' : R — R is

[(x) =120 /x £ 1)

= a,
L 142

which was introduced by Carmon et al. (2021). Since b,,(m,w,0) = 0,,, the vector e,,+1
will not appear in the definition of rNC©. Thus ¥N°C is well-defined and only depends on
the first m rows of B(m,w,(). We can determine the smoothness and strong convexity
coefficients of rN°C as follows.

Proposition 18 For ¢ >0, cY°C cFCC > 0 and 0 < w < V2, we have that rNC is L-
smooth and (—45(v/3 — 1)y CC(c§°C)2, 9C) -convez-concave, and {rN°C}?_, is L'-average
smooth, where

L = \/4n2+42(cYC)2 4+ 180cy “C () °“)? and L' = 2\/4n+(cll\ICC)2+16200(02NCC)2(C3NCC)4.
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X0 € Fo | A draws TII\ICC or | X1y € F1 A draws erCC or | XT, € F2 | A draws TgICC or | XT3 € F3 s
alls U " alls O S S U 5
Yo € -FO calls hf at step T vy c -Fl calls h‘f at step To Y1, c ]:2 calls hf at step T3 Y1y I -FS

Figure 2: An illustration of the process of solving Problem (8) with a PIFO algorithm A.

We find if max{c)¢¢, JCC(cJCC)2} = O(y/n), then L/L' = ©(y/n).

The next lemma shows that the 7“%\1 CC ghare the similar zero-chain property as Lemma 15.

Lemma 19 Suppose thatn > 2, Y€, C3NCC >0 andy < mcg(}/g%. If (x,y) € Fi X Fi
and 0 < k <m — 1, we have that

V.rNC(x,y) > ~ Frs1 X Frr1, if i =k+1(mod n),
i ’ , prox X,y) € ’
<_vyerCC(X7LY) P TFCC( y) Fr X Fp, otherwise,

where we omit the parameters of ri-\ICC to simplify the presentation.

The proofs of Proposition 18 and Lemma 19 are given in Appendix C.3.
It is worth emphasizing that the assumption on « naturally holds. Recall that the choice
of v should satisfy that r;(u,y) + % |x —ul|3 — % ly — V|3 is convex-concave in (u,v).

. . . 1 V241
Proposition 18 implies that we must have v < /3002 < 60070 ((XO0)z -

When we apply a PIFO algorithm to solve Problem (8), the optimization process is
similar to the process related to Problem (4). We demonstrate the optimization process in
Figure 2 and present a formal statement in Corollary 20.

Corollary 20 Assume we employ a PIFO algorithm A to solve Problem (8). Let
To =0, and Ty = mtin{t it >Tg_1,i =k (mod n) ora; =1} for k> 1.
Then we have
(xt,¥t) € Fp—1 X F—1, Jort <Ty, k>1.

Moreover, the random variables {Yy}r>1 such that Yy, £ T, — T are mutual independent
and Yy, follows a geometric distribution with success probability px + q — prrq where k' € [n]
satisfies k' = k (mod n).

The proof of Corollary 20 is similar to that of Corollary 16. Furthermore, the prime-dual
gap in Lemma 17 can be replaced with the gradient norm of the primal function in the
nonconvex-strongly-concave case.

Lemma 21 Let ¢,nco(x) £ maxyerm rNCC(x,y). If M satisfies 1 < M < m and

Join [[Ve,nce(x)ll, 2 9 9)

and N = Zgﬁtol)), then we have

tmin E [Vomce (x|, 2 =
Lemma 21 also holds for any rescaled version of rNCC. It remains to specify the parameters

carefully, obtain a condition of the form (9) and then estimate the order of N. The details
are deferred to Section 5.5 and Appendix D.4.
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5. Lower Complexity Bounds for the Minimax Problems

In this section, we focus on the minimax problem (1), which is restated as follows.

min max f(x,y) = Zfzxy

xeX ye)y

We assume that the function class { fi(x,y)}; ; is L-average smooth, and the feasible sets
X and Y are closed and convex. In addition, f(x,y) is convex in x and concave in y or
f(x,y) is nonconvex in x and strongly-concave in y. The lower bound results are shown in
Section 5.1. The detailed constructions for different cases are shown in Sections 5.2 to 5.5.
Finally, in Section 5.6, we consider the more constrained case where each f; is L-smooth
and briefly introduce the results.

5.1 Main Results

Recall that the comparison of the upper and lower bounds is already shown in Table 1.
In this subsection, we present the formal statements of our lower bounds and give some
interpretation. We emphasize that the methods in Luo et al. (2021); Zhang et al. (2021)
are IFO algorithms from the analysis in Section 3.2, which implies PIFO oracles are not
much more powerful than IFO oracles.

We start with the case where the objective function f is ji,-strongly-convex in x and -
strongly-concave in y. Define the condition numbers x, = L/p, and Ky 2L/ fy- Without
loss of generality, we assume i, < py. According to the relationship between &, s, and
n, we can classify the problem into three cases: (a) f is extremely ill-conditioned w.r.t.
both x and y, ie., ks, ky = Q(y/n); (b) f is only extremely ill-conditioned w.r.t. x, ie.,
ke = Q(Vn),ky = O(y/n); (c) f is relatively well-conditioned w.r.t. both x and y, i.e.,
Kz, Ky = O(y/n). For the three cases, we can prove different lower bounds as follows.

Theorem 22 Letn > 4 be a positive integer and L, jiz, [y, Ry, Ry, € be positive parameters.

” o npeR2 poR2 pyRY
Assume additionally that ky > ky > 2 and € < mm{soomny’ T0 > 800 ( - Then we have

Q ((n+/Faryn) log (1/€)),  for ke, ky = Q(y/n),
“Cle, Ry, Ry, L, iz, 1)) = ((n+n3/4 VEz)log (1/€)),  for ke = Q(Vn), Ky = O(V/n),
Q(n), for Kz, ky = O(V/n).

We mainly focus on the first two cases where at least one condition number is of the order
Q(y/n). Then the lower bound can be summarized as Q(\/n(v/n + kz) (V1 + ky) log(1/¢)),
as shown in Table 1.

Some works focus on the balanced case k; = x,. For example, the upper bound of

Accelerated SVRG/SAGA (Palaniappan and Bach, 2016) is O ((n + #f}@}) log(l/s)).

L-SVRE (Alacaoglu and Malitsky, 2022) also achieves the same upper bound.® At least
for the balanced case, their upper bounds nearly match our lower bound. However, for the

6. The setting in Section 4.3 of Alacaoglu and Malitsky (2022) is slightly different from ours here. However,
the proof of their result can be adapted to the strongly-convex-strongly-concave case.
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unbalanced case, there still exists a gap. Luo et al. (2021) focus on the unbalanced case.
They employ the catalyst technique to accelerate L-SVRE and propose the method AL-
SVRE, which achieves the upper bound O(y/n(v/n + kz)(v/n + £y)log(1/¢)). This bound
nearly matches our lower bound for the unbalanced case up to log factors.

Then we consider the lower bound when the objective function is not strongly convex in
X, i.e., pp = 0. In this case, only the condition number w.r.t. y is well-defined. According
to the relationship between k, and y/n, we can also classify the problem into two cases: (a)
f is extremely ill-conditioned w.r.t. y, i.e., k, = Q(y/n); (b) f is relatively well-conditioned
w.r.t. y, ie., Ky = O(y/n). We can prove the lower bounds as follows.

Theorem 23 Let n > 4 be a positive integer and L, pu,, Ry, Ry, € be positive parameters.
2 2
Assume additionally that Ky > 2 and € < min { LES pyly } Then we have

1 736
Q<n+Rxn3/4 LiR, niﬂ%-n?’/ﬂ‘\/?ylog(%)),forﬁ;y:Q(\/ﬁ),

Q(n—i—Rmng/A‘\/%—i—Rx\/nLEE), for ky=0(/n).

For both cases, the leading term w.r.t. ¢ is of the order ©(y/1/¢) and the only difference
between the two bounds is the term Q(n*/4, /&, log(2)), which is usually much smaller than

the Q(4/1/¢e) term, especially when ¢ is small. The upper bound of AL-SVRE (Luo et al.,
2021) for this case is O((n + Rxn3/4\/§ + R, % + n3/4, [Fy) log(%)), which nearly
matches our lower bound up to log factors.

For the general convex-concave case where p, = u, = 0, we have the following lower
bound.

m(e, Ry, Ry, L,0, j1,)) =

Theorem 24 Let n > 2 be a positive integer and L, R,, Ry, < be positive parameters. As-
sume additionally that e < £ min{R2, R2}. Then we have

Y
LR, R T
mCC(E7Rx,Ry,L,O,O) = Q (n_{_\/ﬁsy_i_(Rx + Ry)n3/4\/z> )
i i LR2R? )
The leading term w.r.t. € is of the order Q(1/¢e). If e = O (W)’ our lower bound is
n T y

Q(n+ @), which matches the upper bound O (n + - in Alacaoglu and

Malitsky (2022) in terms of n, L and €. The upper bound of AL-SVRE (Luo et al., 2021)
for this case is O((n + @ + (R, + Ry)n3/4\/§) log(%)), which nearly matches our
lower bound up to log factors.

Finally, we give the lower bound when the objective function is nonconvex in x but
strongly concave in y.

Theorem 25 Letn > 2 be a positive integer and L, ji., j1y, Ry, Ry, € be positive parameters.

e 2 AL%a o 128(V3+1)npgpy  32nuy
Assume additionally that e < 354561, where o = min {1, T5L2 s Tasr (- Then

we have

AL2
mNC(e, A L, pig, 1) = Q2 <n + ﬂ) :

,Uy52
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For ky = L/py, > 32n/135, we have
AL? AL
Q <n f) Q <n fmln {\/Z, }) .

Ny52

We mainly focus on the ill-conditioned setting x, = (n), where the lower bound has a more
concise expression. Recall that p, measures the nonconvexity of the function. When L is
fixed, we must have u, < L. If we are uninterested in the dependence of the lower bound on
[z, then we can consider the largest function class Fncc (A, L, L, pyy). which corresponds
to the complexity mN“C(e, A, L, L, y) = (n + %), as shown in Table 1.7

As for the upper bound, Luo et al. (2020) propose the method SREDA and estab-
lish the upper bound O (nlog(ky/e) + Lriy/ne™?) for n > k2 and O ((k2 + kyn)Le?) for
n < /ﬁg. Zhang et al. (2021) propose Catalyst-SVRG/SAGA and obtain the upper bound
O (n+ n3/4\/@)AL5_2). When n < k%, the upper bound of Zhang et al. (2021) is bet-
ter; otherwise, the upper bound of Luo et al. (2020) is better. Since we focus on the
ill-conditioned setting, the upper and lower bounds nearly match in terms of ,. And there
is still a n'/* gap in terms of n.

5.2 Construction for the Strongly-Convex-Strongly-Concave Case

In this subsection, we give the exact forms of the hard instance when the objective function
is strongly convex in x and strongly concave in y. We still assume p, < p,. Then we have
ky < Kg. This means that the max part has a smaller condition number and is easier to
solve. According to the magnitude of s, and x,, the construction can be divided into three
cases.

Case 1: kg, ky = Q(y/n). When both condition numbers are no smaller than ©(y/n),
the analysis depends on the following construction.

Definition 26 For fived L, iy, by, Ry, Ry and n such that p, < py and k; > Ky > 2, we
define fscsc, : R™ x R™ — R as follows

[ 2 .
fSCSC,i(X7Y) = )\TZCC (X/57y/67m7 OH_]_a(:SCSC> 9 fOT’ 1 S 1 S TL,

(ky — 2/Ky) Ko sosc _ [ 26y [ 2n 2n
“ \/ 2n thoc ke \| K2 —2’ /15—2 ’
2 4R V2aR 2 L% —2u2
S =min< 2R, an ) a an ) ty and)\:ﬂ— 7'%
k2(1—=2/k2) a+ 1\ k2(1-2/K2)" a—1 2 2n

Consider the minimax problem

10
f(Iél)I(lI;leax fscsc(x,y) ZfSCSCz X,Y), (10)

7. A concurrent work by Zhang et al. (2021) obtains a similar lower bound.
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where X = {x € R™ : [|x||, < Ry} and Y = {y € R™ : |ly||, < Ry}. Define ¢scsc(x) =
maxyey fscsc(X,y) and ¢scsc(y) = minkex fsosc (X, y).

One can check that fscsc belongs to Foc(Rs, Ry, L, piz, pty) and satisfies a condition of
the form (7) (please see Proposition 47 in Appendix D.1). Then we can establish the lower
bound of the complexity for finding e-suboptimal point of Problem (10) by PIFO algorithms.

Theorem 27 Consider the minimazx problem (10) and € > 0. Let ov = 1/ w + 1.

Suppose that

1 . (np.R? 9
n>2, kg > Ky > V2n+2, 5<800m1n{ /{;f{y”",uyRy ,
max R2. 1, R?
and m = {Zlog( {'uxgm Hy y}>J + 1.
€

In order to find (X,y) € X x Y such that E¢scsc(X) — Evscsc(y) < €, any PIFO algo-
rithm A needs at least N queries to PIFO, where N = ) ((n + /nlﬁml‘iy) log (%))

The proof of Theorem 27 is deferred to Appendix D.1.

Case 2: k; = Q(y/n), ky = O(y/n). When only ky is no smaller than ©(y/n), the lower
bound is characterized by the following theorem.

Theorem 28 For any L, fiz, fiy,n, Ry, Ry, € such that n > 4,

1 .
n>4, Ky >V2n+2> Ky > 2, 5§720 L=+/n(L? - p2)/2 — 12,
1 2L/ py — 1
4 n 96

there exist n functions {f; : R™ x R™ — R}, such that the average f = 1 Sy fi €
Foo(Ras By Logias ). Let X = {x € R™: [x], < Ry} and ¥ = {y € B [y, < 7y
In order to find (X,y) € X x Y such that Emaxycy f(X,y) — Emingcx f(x,¥) < €, any
PIFO algorithm A needs at least N queries to PIFO, where N = §) ((n + n3/4, //@'m) log (%)) .

We find that , does not appear in the lower bound. In fact, since &, is relatively small, the
max part is easier to solve than the min part and the min part becomes the main obstacle.
To construct the hard instance, it suffices to consider the separable function of the form
f(x,y) = fo(x) — fy(y) where f, is the hard instance used for finite-sum minimization
problems and f,(y) = & |y|l3. For the details, see Appendix D.1.

Case 3: kg, ky = O(y/n). When both the condition numbers are relatively small, the
lower bound is €2(n), which means that the number of component functions becomes the
main obstacle.
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Lemma 29 For any L, jiz, pty,n, Ry, Ry, € such thatn > 2, L > p,, L > py, and e < %LR%,
there exist n functions { f; : RxR — R}, such that f = %Z?:l fi € Fco(Ry, Ry, L, fia, tby).
Let X ={z e R:|z| <Ry} and Y = {y € R: |y| < Ry}. In order to find (&,y) € X x Y
such that Emaxycy f(2,y) — Emingex f(x,9) < €, any PIFO algorithm A needs at least
N = Q(n) queries to PIFO.

This bound is trivial in some sense, since we usually need to compute the full gradient at least
once, whose complexity is of the order ©(n). The proof is also deferred to Appendix D.1.
Combining Theorems 27, 28 and Lemma 29, we can obtain Theorem 22.

5.3 Construction for the Convex-Strongly-Concave Case

In this subsection, we construct the hard instance when f is convex in x and strongly
concave in y. The condition number &, is still well-defined. Our analysis is based on the
following functions.

Definition 30 For fived L, iy, n, Ry, Ry such that Ky, > 2, we define fcsc,; : R™ xR™ — R
as follows

fCSC,i(va) - )‘ricc (X/Bay/ﬁamv 17CCSC) ;

where

2_92
9 R Ky 2 [[2_9.2
cC5C — 0,2 2n , B = min ‘ 2713/2, Iy and /\:é 7'%
my—2 2(m+1) vm 2 \/ 2n

Consider the minimax problem

1 n
. A
E : (x,y 11
Eg\’l I;le%})( Jesc(x.y) n Jesc.(x.y), 1)

where X = {x € R™ : ||x[|, < Ry} and Y = {y € R™ : ||y|l, < Ry}. Define ¢csc(x) =
maxyey fesc(x,y) and Yosc(y) = minkex fosc(x,y).

One can check that fcsc belongs to Foc(Re, Ry, L, 0, 1) and satisfies a condition of the
form (7) (please see Proposition 48 in Appendix D.2). Then we can establish the lower bound
of the complexity for finding e-suboptimal point of Problem (11) by PIFO algorithms.

Theorem 31 Consider the minimaz problem (11) and € > 0. Suppose that

L?R? R? R, |L?—2u2
n>2, ky > 2, ¢ < min z 7,uy Y\ and m= =2 LAy _9
5184 nu, 36 6 2npye

In order to find (x,y) € X x )Y such that Epcsc(x) —Eicsc(¥) < €, any PIFO algorithm A
needs at least N queries to PIFO, where N = () (n + Rz\/nLﬁ;y/e) .

When &k, is small, the second term of N is also small. When x, = O(y/n), we can provide
a tighter lower bound as follows.
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V2R2L
768f

{?Hmn*/‘l\/@J — 1, there exist n functions {f; : R™ x R™ — R}, such that f =
LS fi € Foo(Ryy Ry, L,0,p1y). Let X = {x € R™ : x|, < R,} and Y = {y € R™ :
lylly < Ry}. Inorderto find (%,y) € XxY such that Emaxycy f(X,y)—Emingcy f(x,¥) <
g, any PIFO algorithm A needs at least N = 2 (n + an3/4\/L/£> queries to PIFO.

Theorem 32 For any L, jy,n, Ry, Ry, e such that n > 2, L > py, € < and m =

The construction of Theorem 32 is similar to that of Theorem 28. We still consider the
separable function f(x,y) = fu(x) — fy(y) where f, is the hard instance used for finite-
sum minimization problems and f,(y) = & |y|l3. The proofs of Theorems 31 and 32 are
deferred to Appendix D.2.

Now we give the proof of Theorem 23.
Proof [Proof of Theorem 23] By Lemma 29, we have the lower bound Q(n) if e < LR2 /4.

Note that if e > =i Q(n) = Q<n+R ”“y). And if e > Y2EL @) =

5184npu, 768y/n’

2
Q <n + Rmn3/4\/§). Then for ¢ < min{Lf%, “%gy }, we have m“©(e, R., Ry, L,0, py) =

Q <n+Rx nky \%TL&) . Tt remains to add the term Q(n%/*, /&, log(2)) for ky = Q(y/n).

Now we construct {Hcsc,i}ieq, Hesc : R™ X R™ — R as follows.
L, o
Hesci(x,y) = & HXHQ —9sc,i(y),

L
Hese(x,y) ZHCSCz (x,y) = HX||§ —gsc(y),

where ggc(y) is py-convex and {gsc(y)};; is L-average smooth. It is easy to check
HCSC S }—CC(RmaRva7O7,Uy)7

L, .2
min Hosa(x, y) = — d max Hosa(%,y) = = ||x||2 — mi .
min csc(x,y) gsc(y) an mas csc(x,y) 5 x5 yeg)lgSC(Y)

It follows that for any (X,¥) € X x ), we have
H in H, ¥) > gsc(§) — mi .
max csc(x,y) — min Hesc(x, 9) 2 gsc() min gsc(¥y)

2
By the result of Theorem 66, for ¢ < % and k, = Q(y/n), we have mS(R,, R, L, 0, 1) =
n3/4, /Ky log (%) This completes the proof. |

5.4 Construction for the Convex-Concave Case
For the general convex-concave case, the hard instance is constructed as follows.

Definition 33 For fized L,n, R;, Ry such that n > 2, we define fco; : R™ x R™ — R as
follows

fCC,i(Xay) = )\,’,iCC (x/,B,y/B,m,l,O) .
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_ LR}
where A = o and B = \/» Consider the minimax problem

12
xmel;lmaxfccxy ZfCszy (12)

where X = {x € R™ : ||x|l, < Rz} and Y = {y € R™ : |lyll, < Ry}. Define ¢cc(x) =
maxycy foc(x,y) and Poc(y) = minkex feo(x,y).

One can check that fcc belongs to Foc(Re, Ry, L,0,0) and satisfies a condition of the
form (7) (please see Proposition 49 in Appendix D.3). Then, we can obtain a PIFO lower
bound complexity for the general finite-sum convex-concave minimax problem.

Theorem 34 Consider minimax problem (12) and e > 0. Suppose that

TN

In order to find (X,y) € X x Y such that E¢cc(X) — Eec(y) < e, any PIFO algorithm A
needs at least N = Q (n+ \/nLR,R,/¢) queries to PIFO.

Note that Theorem 31 requires the condition ¢ < O(L/+/n) to obtain the desired lower
bound. For large €, we can apply the following lemma.

Lemma 35 For any positive L,n, Ry, Ry, e such that n > 2 and ¢ < LR R, there exist
n functions {fi : R x R — R}, such that f = 1 Sy fi € fcc(RmRy,L 0,0). Let
X={zeR:|z|] <R} and Y ={y e R: |y[§Ry} In order to find (z,9) € X x Y
such that Emaxycy f(2,y) — Emingex f(z,9) < €, any PIFO algorithm A needs at least
N = Q(n) queries to PIFO.

This Lemma is similar to Lemma 29. The proofs of Theorem 34 and Lemma 35 are deferred
to Appendix D.3.
Now we can give the proof of Theorem 24.

Proof [Proof of Theorem 24] Note that for ¢ > L;;f/@y, we have () < ‘/ﬁszRy) = Q(n).

Combining Theorem 34 and Lemma 32, we obtain the lower bound 2 (n—i— %)
for e < LR,R,/4. On the other hand, Gcgc defined in the proof of Theorem 32 and

Hgcsc defined in the proof of Lemma 29 are also convex-concave and € > \7/(;5 \fL

Q <n+ Rzn3/4\/§> = Q(n). Thus, we have the lower bound <n+Rxn3/4\£> for

e < LR?/4. Tt is also worth noting that if f(x,y) is convex in x and concave in y, then
—f(x,y) is convex in y and concave in x. This implies the symmetry of x and y. Thus,

we can also obtain the lower bound (2 <n + Ryn3/* \/7 ) for e < LR? »/4. In summary, for

implies

e < LR’CRy , the lower bound is <n + LR“”Ry + (R + Ry)n3/4\/§>. [ ]
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5.5 Construction for the Nonconvex-Strongly-Concave Case

In this subsection, we consider the finite-sum minimax problem where the objective func-
tion is strongly concave in y but nonconvex in x. The analysis is based on the following
construction.

Definition 36 For fized L, jiy, fiy, A, n, we define fncsc,i : R™T x R™H — R as follows

fnesc,i(x,y) = ArNC (x/8,y/B;m 4+ 1, ¥a,cNSC) | for 1 <i <,

where
a=min< 1, 32””3’7 128(v/3 + 1)ty | NOSC 16\/5/@7 VaL va).
135L 4512 L 7 16y/nu,
5308416n°/2 2 <? INENG
Yy
LPa ’ vn/L and m {3483648n52uyJ

Define ¢gncsc(x) = maxyepm+1 fNosc(X,y). Consider the minimax problem

min ma b d b4 13
Juin, max, fnese(x,y) ZfNCSCz Y)- (13)

One can check that fxcsc belongs to Fnoc(A, L, g, ity) and satisfies a condition of the
form (9) (please see Proposition 50 in Appendix D.4). With Proposition 50, we can give
the proof of Theorem 55.

Proof [Proof of Theorem 25| Combining Lemma 21 and the third property of Proposi-
tion 50, for N = %, we have mini<y E ||Véncsc(xt)]|, > €. Thus, in order to find
(x,¥) such that E|Veéncsc(X)|l, < &, any PIFO algorithm A needs at least N PIFO

. am AL\ /a . 2 AL%a
queries, where N = m = Q( 82 ) Since ¢ S m and « S 1, we have

0 (SE5) Z 0 (o + S, .

2
ey

5.6 Smooth Cases

In this subsection, we focus on the more constrained function classes where each component
fi is L-smooth. The results are summarized in Table 2. We defer the definitions of the
function class and optimization complexity and the formal statements of our lower bounds
to Appendix D.5.

In Table 2, we only present the upper bounds of some methods designed for smooth
fi’'s.® Methods designed for the average-smooth functions also apply here and thus the
upper bounds in Table 1 are still valid. However, there exists a gap in all cases.

Compared to the lower bounds in Table 1, the lower bounds in Table 2 have the same
dependence on L, k4, ky, €, but with a weaker dependence on n. Specially. if we replace L,

8. Although the method in Carmon et al. (2019) has two loops and does not satisfy our definition, we list
it here for a better comparison.
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Cases Upper or Lower Bounds References
A VAL Carmon et al. (2019);
fa > 0,1y >0 © ((n + mi”{uwvﬂy}) log(l/g)) Luo et al. (2019)

Q (\/ (n+ kz) (n+ Ky) log(l/s)) Theorem 52
nL Lk 1
pe =0,y >0 Q(n—i—Rz 224 Rey/ =% + /iy log (;)) Theorem 53

- SL(R2+R2
10) (n + M) Carmon et al. (2019)
Mo =0,py =0
Q(n+@+(Rz+Ry)«/%) Theorem 54
MI: <—0£)lzi/§)0 Q (n + ALE\,Z/@) Theorem 55
y =

Table 2: Upper and lower bounds under the assumption that f; is L-smooth and f is
(fta, piy)-convex-concave. The condition numbers are defined as k; = L/p, and
ky = L/py when py, 1, > 0. The definitions of R,, R, and A are given in Table 1.

kg and Ky in Table 2 by \/nL, \/nk, and \/nk, respectively, we can obtain the lower bounds
in Table 1. This is due to the way of partitioning the matrix B(m,w,() in Section 4.2.
Intuitively, we partition the Hessian matrix of the coupling term between x and y and
each component only gets a low-rank part. Propositions 14 and 18 have shown the \/n gap
between the smoothness and average smoothness parameters as long as the non-coupling
term is not too large.

Convex-concave cases. We speculate that when f is convex-concave, the lower bounds
in Table 2 are the best ones within our framework because the corresponding lower bounds
under the average smoothness assumption have been nearly matched by existing upper
bounds. To further improve the lower bounds, one may have to resort to new constructions.

As for the upper bounds, we notice that most work only uses the average smoothness
condition. We guess that the smoothness property of each component function needs to
be better employed because the upper and lower bounds for convex minimization problems
under the two smoothness conditions nearly match (see Tables 3 and 4),

Nonconvex-strongly-concave case. When f is nonconvex-strongly-concave, there
exists a gap between the upper and lower bounds under both smoothness and average
smoothness assumptions. Since the nonconvexity poses more difficulty to the problem, it
remains an open problem whether the upper bounds, the lower bounds, or both can be
further tightened.

9. For the nonconvex-strongly-concave case, we just need to replace L by /nL.
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6. Lower Complexity Bounds for the Minimization Problems

In this section, we focus on the minimization problem
1 n
i =— ; 14
min f(x) = — Elfz(x)7 (14)
1=

where each individual component f;(x) is L-smooth or the function class {f;(x)}? ; is L-
average smooth, the feasible set X is closed and convex such that X C R%. We show that we
can obtain similar lower bounds as those in Woodworth and Srebro (2016); Hannah et al.
(2018); Zhou and Gu (2019).

Recall that Problem (1) becomes Problem (14) if we set ) as a singleton. Then the
definitions of function classes and optimization complexity follow directly from their coun-
terparts in Sections 4.1. The details are deferred to Appendix E.1.

In Section 6.1, we construct the hard instances for Problem (14). In Section 6.2, we
summarize our results and compare them with previous work.

6.1 The Hard Instances

In this subsection, we present the construction of hard instances for Problem (14) and
compare our construction with some related work.

The construction is also based on the class of matrices B(m,w, () define in Equation (3).
We still use b;_1(m,w, ()" to denote the I-th row of B(m,w, () and defined the index sets
Li,..., L, as L; = {l :0 <1l <ml=1i—1 (mod n)} Then the hard instance is
constructed as

1 n
. A
: 2 % r(x; 15
min 7 (x; m, w, ¢, c) nz;n(x,m,w,c,C), (15)
1=
where ¢ = (c1,¢2,¢3), ¥ = {x € R™: ||x||, < R;} or R™, and

Ti(x; m,w,(, C)

2 m_1 .
% Zﬁ ”bl(mawaC)TX“2+%||X||3+02 Z ]._‘(in)—an <elax>7 for i = 17
leL; )

=1

2 m=1 .
25 bu(m,w, ) x|, + 4 x5 +e2 Do T(wa), fori=12,3,...,n.
lel; =1

The nonconvex function I' : R — R is I'(z) £ 120 [/ tzl(j:;)dt. We can determine the
smoothness and strong convexity parameters of r; similar to Propositions 14 and 18. The
details are deferred to Proposition 59 in Appendix E.2.

Omne can check that r(x;m,w,(,c) = ix"A(m,w,()x + ¢ [x]|5 + 2 7 T(xg) —

c3 (e1,x), where
wi+1 -1
-1 2 -1
A(m’w7g) é B(mawaC)TB(m7w7C) = T t.
-1 2 -1
-1 ¢2+1
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The matrix A (m,w,() is widely used in the analysis of lower bounds for convex optimiza-
tion (Nesterov, 2013; Agarwal and Bottou, 2015; Lan and Zhou, 2018; Carmon et al., 2020a;
Zhou and Gu, 2019).

Now we compare our construction with Lan and Zhou (2018) and Zhou and Gu (2019).
In our construction, we partition the row vectors of B(m,w, () into n parts and each com-
ponent function is defined in terms of only one part. All the component functions share
the same x. However, in Lan and Zhou (2018), different component functions have the
same form except that they are based on different subvectors of the high-dimensional x.
Intuitively speaking, we partition the Hessian matrix while Lan and Zhou (2018) partition
the variable. The construction of Zhou and Gu (2019) is more complex than Lan and Zhou
(2018) but the basic idea is the same.

Recall the subspaces {Fj};*, defined in (5). The next lemma shows that the hard
instance also satisfies a variant of the zero-chain property.

Lemma 37 Suppose thatn > 2, ¢; > 0 andx € Fi,, 0 < k <m. If (i) (convex case) ca =0

V2+1
60co

and w =0, or (ii) (nonconvex case) ¢ =0, ca >0, ( =0 and v < , we have

F fi=k+1 d
Vri(x), prox) (x) € ks A ,+ (mod n),
‘ Fi, otherwise.

We omit the parameters of r; to simplify the presentation.

The proof of Lemma 37 are given in Appendix E.7.
We emphasize that the assumption on  naturally holds. Recall that the choice of ~
should satisfy that r;(u)+ % |x — u|]3 is a convex function of u for a fixed x. Proposition 59

1 V241
45(v/3—1)cg — 60c2 ~

In short, if x € Fj, then there exists only one ¢ € {1,...,n} such that hiIFO could
provide additional information in Fj;1. This property is the main difference between the
constructions in Lan and Zhou (2018); Zhou and Gu (2019) and ours. In Lan and Zhou
(2018); Zhou and Gu (2019), no matter which component is drawn, the number of the
nonzero elements of the current point can increase. Such a difference results from the
different ways of partitioning. As a consequence, their hard instances need to be constructed
in a space with a higher dimension than ours. Moreover, our construction also works for
PIFO oracles while the constructions of Lan and Zhou (2018) and Zhou and Gu (2019) only
apply to IFO oracles.

implies that we must have v <

With Lemma 37, we can obtain how many PIFO calls we need as what we did in
Section 4.2. The details are deferred to Appendix E.2.

6.2 Results

In this subsection, we present our lower bounds in Tables 3 and 4, and compare them with
previous upper and lower bounds. It is worth emphasizing that we are not trying to list
all the upper bounds, just to provide a few algorithms that could match our lower bounds.
The formal statements of our lower bounds are deferred to Appendix E.3.
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Cases Upper or Lower Bounds References
O ((n++/kn)log (1/¢)) Defazio (2016); Li (2021)
0 (@] ( 1+7(lli)ogg<(i//§))+) k= 0(n) Hannah et al. (2018)
>
. Q ((n++v/kn) log (1/¢)) , k= Q(n),
( n log( 1/5) ) — o) Hannah et al. (2018); Theorem 63
1+ (log(n/k))+ N '
. o) (n + R\/nL/a) Li (2021)
M =
Q (TL-‘,—R\/’I’LL/E) Woodworth and Srebro (2016); Theorem 64
o (n + & min{y/nL,n|u| + \/n|u\L}) Lan and Yang (2019); Li et al. (2020)
n<o
Q (n + E% min{L, \/n|u|L}) Zhou and Gu (2019); Theorem 65

Table 3: The upper and lower bounds under the assumption that f; is L-smooth and f is
u-strongly convex, convex or p-weakly convex. k = L/ for > 0. The definitions
of R, A and optimization complexity are given in Appendix E.1.

Smooth cases. Table 3 illustrates the upper and lower bounds when each f; is L-
smooth.'® For the strongly convex and convex cases, the upper bounds and lower bounds
nearly match up to log factors, while for the nonconvex case, there is still a y/n gap.
Specially, when x = Q(n), the lower bound is Q(n + Ay/n|u|L/e?) and has been achieved
by Lan and Zhou (2018) up to log factors. When x = O(n), the lower bound is Q(n+A/e?),
while the upper bound by Li et al. (2020) is O(n++y/nA/e?). From the analysis in Section 3.2,
the algorithms in Defazio (2016); Hannah et al. (2018); Li (2021); Lan and Yang (2019);
Li et al. (2020) all belong to PIFO algorithms. In fact, except the one in Defazio (2016),
others are also IFO algorithms.

As for the lower bounds, Hannah et al. (2018) consider the class of p-CLI oblivious
algorithms introduced by Arjevani and Shamir (2016). For these algorithms, we can left-
multiply the gradient by a preconditioning matrix. Thus, the linear-span assumption can
be violated. However, they do not take proximal operators into account. Woodworth and
Srebro (2016) prove the lower bounds for arbitrary randomized algorithms with access to
PIFO oracles. Although smaller than that in Woodworth and Srebro (2016), our class
of algorithms is large enough to include many near-optimal algorithms. Moreover, our
construction is simpler than Woodworth and Srebro (2016). As a result, such a construction
can not only provide more intuition about the optimization process, but also requires fewer
dimensions to construct the hard instances. Specially, for the convex case, our construction

only requires the dimension to be O (1 + R\/L/ (ne)) (see Appendix E.5), which is much
smaller than O (LZ§4 log (@)) in Woodworth and Srebro (2016).

10. The lower bound of Hannah et al. (2018) for k = ©(n) uses the lower bound in Woodworth and Srebro
(2016).
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Cases Upper or Lower Bounds References
w>0, O ((n+n3/4\/ﬁ) log (1/5)) Allen-Zhu (2018b)
=0
" (vn) Q ((n+n3/4\/g) log (1/5)) Zhou and Gu (2019); Theorem 66
0 o (n log(1/e) + Rn3/4\/L/e> Allen-Zhu (2018b)
‘LL =
Q (n+Rn3/4\/L/e) Zhou and Gu (2019); Theorem 67
. o (n + 4 min{y/nL, n3/4«/|p|L}) Allen-Zhu (2017); Li et al. (2021)
w<
0 (n + 4 min{y/nL, n3/4\/|u|L}) Zhou and CGu (2019); Theorem 68

Table 4: The upper and lower bounds with the assumption that { f;}}-, is L-average smooth
and f is p-strongly convex, convex or p-weakly convex. x = L/u for > 0. The
definitions of R, A and optimization complexity are given in Appendix E.1.

Zhou and Gu (2019) only consider the class of IFO algorithms, which is only a subset of
PIFO algorithms. Moreover, our construction still requires fewer dimensions. For the non-
convex case, our construction only requires the dimension to be O(1+ E% min{L/n, /puL/n})
(see Appendix E.6), which is much smaller than O (8% min{L, \/n,uL}) in Zhou and Gu
(2019).

Average smooth cases. For the average smooth cases, the upper and lower bounds
nearly match up to log factors for all three cases. Specially, for the nonconvex case, when x =
Q(y/n), the lower bound is Q(n+An3/4,/|u|L/e?) and has been achieved by repeatedSVRG
in Agarwal et al. (2017); Carmon et al. (2018); Allen-Zhu (2017) up to log factors.!’ When
k = O(y/n), the lower bound is Q(n+ ALy/n/e?) and has been achieved by Li et al. (2021).
One can check that the algorithms in Allen-Zhu (2018b); Li et al. (2021) are both IFO
algorithms. The method repeatedSVRG in Allen-Zhu (2017) can also be modified into IFO
algorithms.'? As for the lower bounds, our results have the same orders as those in Zhou
and Gu (2019) and can apply to PIFO algorithms. And our constructions also require fewer
dimensions than Zhou and Gu (2019). The details are deferred to Appendix E.3.

IFO and PIFO algorithms. From the above analysis, we find that PIFO oracles are
no more powerful than IFO oracles in terms of the complexity for smooth functions. The
PIFO lower bounds have been nearly matched by many IFO algorithms. This is consistent
with the observation in Woodworth and Srebro (2016). From the results in Table 1, this
phenomenon also appears in finite-sum minimax problems under the average smoothness
assumption. As a comparison, Woodworth and Srebro (2016) shows that for Lipschitz but
nonsmooth functions, having access to proximal oracles does reduce the complexity.

11. This method was implicitly proposed in Agarwal et al. (2017); Carmon et al. (2018) and formally named
as repeatedSVRG by Allen-Zhu (2017).
12. Similar to the analysis for catalyst-accelerated methods in Section 3.2.
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7. Concluding Remarks

In this paper, focusing on finite-sum minimax and minimization optimization problems,
we have given a new definition of PIFO algorithms, which have access to proximal and
gradient oracles for each component function and can obtain the full gradient infrequently.
This class of PIFO algorithms is large enough to include many near-optimal methods. We
have developed a novel approach to constructing the hard instance. Instead of partitioning
the variable (Lan and Zhou, 2018; Zhou and Gu, 2019), we partition the classical tridiagonal
matrix in Nesterov (2013) into n groups. Such a construction is friendly to the analysis
of both IFO and PIFO algorithms, providing some intuition of the optimization process
and requiring fewer dimensions than those in Woodworth and Srebro (2016); Zhou and Gu
(2019).

Based on our approach, we have established the lower bounds for finite-sum minimax
problems when f is convex-concave or nonconvex-strongly-concave and { f;}}' is L-average
smooth. Most of the lower bounds are nearly matched by existing upper bounds up to log
factors. For minimization problems, we have derived similar lower bounds as in Woodworth
and Srebro (2016); Hannah et al. (2018); Zhou and Gu (2019). The comparison of upper
and lower bounds shows that for smooth functions, the proximal oracles are not much more
powerful than gradient oracles.

Finally, we propose several future research directions.

e When f is nonconvex-strongly-concave or each f; is L-smooth, there still exists some
gap between the upper and lower bounds. It remains open to design faster algorithms
or tighten the lower bound to close the gap.

e It would be interesting to apply our construction framework to prove the lower bounds
for nonconvex-concave cases.

e The definition of PIFO algorithms can be further extended to include more methods.
For example, the distribution D over [n] and the expectation ¢ of the Bernoulli random
variable need not be stationary over time. Sampling without replacement and methods
that break the linear-span protocol are also worth considering.
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Appendix A. Results of the Sum of Geometric Distributions

In this section, we present the approach to proving Lemma 10. We can view the probability
P[>, Y; > j] as a function of m variables p1,pa, ..., pm:

m
Y Yi>j
=1

We first provide the following useful result about the function f,, ;.

frmgP1:p2; . pm) £ P : (16)
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Lemma 38 Form > 2 and j > 1, we have that

Db i
fm,j(p1>p27'-'apm)2fm,j< = ’L,..., i=117 .

m m

This lemma implies that with the sum of the p; unchanged, the uniform case (all the p; are
equal) is the least heavy-tailed. Since we aim to give a lower bound, it suffices to only focus
on the uniform case. The proof of Lemma 38 is given in Appendix A.1. With Lemma 38 in
hand, we give the proof of Lemma 10.
Proof [Proof of Lemma 10]. Let p = % and {Z; ~ Geo (p)};", be independent geo-
metric random variables. Then we have

P Yi> ————| >P
; AL p@-)]

" m
2 %>
i=1 p

Denote )", Z; by 7. It is easily checked that E[r] = % and Var(r) = w. Hence, we
have

1
P [7’ > 4ET:| =P [T—ET > —zET]

=1—-P |:T—ETS —2ET:| >1-P [[T—ET\ > zET]
1 16Var(T) L 16m(1 —p) 51— 16 - 1’
- 9(ET)?2 9m? - 9n — 9
which completes the proof. |

A.1 Proof of Lemma A.1

Before giving the proof of Lemma 38, we first present some results about f ;. which is
defined in Equation (16).

Lemma 39 The following properties hold for the function fo ;.
1. For j > 1, p1,p2 € (0,1], it holds that

f2,5(p1,p2) ipr(L=p1)? Y+ (1 —p1)?,  if pr=po,
2,j(p1,p2) = N o (1)
7 p2l pl;;_gi(l p2)Ja otherwise.

2. For j > 2,p1 # p2, we have

p1+p2 p1+Dp2
fa,i(p1,p2) > foj ( > .

2 72
Proof 1. Let Y7 ~ Geo(p1),Y2 ~ Geo(pz) be two independent random variables. Then
J
PYi+Ys>j]=Y PYi=0P[Yy>j—I]+P[¥; > ]
=1
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(1—p) " tpr(1 = pa)? ™+ (1 —py)?
1

j

=

‘ J 1—p -1 ‘

:p1(1p2)3‘12( > + (1 =p).
=1

1—po

If p1 = p2, Then P[Y; + Y2 > j] = jp1(1 — p1)? 1 + (1 — p1)7; if p1 < po, we have

(1—p1)) = (1 —p) F(1—p) = p2(1 =p1)? —pi(1 —P2)j_

PYi+Ye>jl=pm
P2 —p1 P2 —P1

2. Now we suppose that p; + ps = ¢ and p; < py. Consider

(c=p)1—p1)) —p1(1+p1—c)
c—2p

h(p1) £ faj(pr,c —p1) =

where py € (0,¢/2). It is clear that

h(c/2) & lim/Qh(pl) = faj(c/2, ¢/2).

p1—cC

If h'(p1) < 0 for p; € (0,¢/2), then there holds h(p1) > h(c/2), i.e.,

p1+p2 p1+Dp2
f2.5(p1.p2) > fa2j < > )

2 72
Note that
W (p1) = ~(L-p) —jle—p)( _pl)j;l_—zgl +p1—¢)f —gpi(1+p1—cf!
(C _pl)(l _pl)j —p1(1 +p1 — C)j
i (¢ —2p1)?
_ [et=p)=j(e=p1)(e=2p1)](1=p1) ' ~[e(1+p1—0) + jpr(c=2p1)](14+pr—c)’ "
(c—2p1)? .

Hence h/(p1) < 0 is equivalent to

c(1 —p1) —jlc—p1)(c—2p1) - <1+101—c>j1 (17)
c(1+p1—c)+jpi(c—2p1) 1-m
Observe that
cl—p) —jle—p)(c=2p1) _, (J — Dele —2p1) a1
c(1+p1—c)+jpi(c—2p1) c(1+p1—c)+jpi(c—2p1) Lac e

: j—1
Letting z = 1;1”211;0, inequality (17) can be written as 1 — foj;/c < (ﬁ) . Note that

(@ +1) = j/2x+ 1) =2 +j§ [@ - ;(7 i 1” g

=0
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N AV
i JJ - I
2+ 3|55 ()]
<zl +j/2007 =27z 4+ 5/2).

That is (z + 1)~ Y(x +j/2) — (j — 1)(x + 1)/~ < 2771 (2 + j/2). Consequently, we have

-1 -1 —1
() o do I
rz+1 x+7/2 x+jp1/c
which is the result we desired. [ |

Now we can give the proof of Lemma 38.
Proof [Proof of Lemma 38] We first prove the continuity of the function f, ;. Actually, we
can prove that

| frn i (P1, D25 - o, Pm) — Fmi (P, D2, -« s pm)| < Glp1 — PhI- (18)

Recall that fo, j(p1,p2,...,pm) = P[>, Yi > j], where {Y; ~ Geo(p;)}™; are indepen-
dent geometric random variables. Let Y] ~ Geo(p}) be independent of the Y;, then by mean
value theorem for 1 <[ < j — 1, there holds

P> =Py >0 =|0-p) - (1 -p)
= 11 = )| |p1 = 4]
<llpr =1t <jlpm —pi],
where ¢ lies on the interval [py,p}]. Consequently, with Z = 31", Y;, we conclude that

|fm7j(p17p27"' 7pm) - fm,j(p/17p2a-~-7pm)‘
=PVi+Z>j]-P[Y{+Z>j]|

Jj—1 j—1
=Y PZ=PY;>j-0|+P[Z>j-1]-> PZ=1P Y] > -] +P[Z>j1]
=1 =1

j—1
gZP[Z:l]‘P[Yl >j--P[Y{>j—-1
=1

7j—1
<jlpr—ph| Y PZ =1
=1
=jlp1 —pIIP[1 < Z <j—1] <jlp1 — pil,

where we have used P [Y; > 0] = 1 in the second equality.
Following from Equation (18) and the symmetry of the function f, ;, we know that

m
‘fmJ(phpQ?’ .. 7pm) - fm7j<p{17p/27 .. Jp;n)‘ S]Z |p2 _p”?

i=1
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which implies that f,, ; is a continuous function.
Furthermore, following the way we obtain the Equation (18) and the fact that

(1—p) =1 <lpy, 1=1,2,---,j—1,

we have |fm j(p1,02,-..,0m) — 1| < jp1. Moreover, by symmetry of the function f, ;, it
holds that

1= fomj(P1,p2, -, pm) < jmin{pi,pa, ..., Pm} (19)

For 1 < j <m —1, we have fp, j(p1,p2,...,pm) =1 and the desired result is apparent.
Then Lemma 39 implies the desired result holds for m = 2.

Form >3, j > mand c € (0,m), our goal is to find the minimal value of f,, j(p1,p2,...,Pm)
with the domain

B = {(phpQ?' . 7pm)

m

me =c¢, p; € (0,1] fori e [m]} :
i=1

For j > m, note that

<P

fmj(c/m,c/m,....c/m) =P

i Zi >3 i Z;i > m]
i=1 i=1
i@ﬁquwaL&:“”%F]
i=1

=1-(£)" <1,
m
where {Z; ~ Geo(c/m)}™, are independent random variables, and we have used that
P[Z; > 1] =1 for i € [m].

By Equation (19), if there is an index ¢ satisfies p; < 0

=1-P

éI<MAd%dWWWm)>QtMm

we have
fm,j(ppra o 7pm) 2 1-— ]pz > fmj(c/m,c/m, R 7C/m)'
Therefore, we just need to find the minimal value of f,, j(p1,p2,...,Pm) with the domain
m
B"'{Qﬁﬁhw--dhﬂ E:pmr—c7p¢€[&1]bri€[Wﬂ},
i=1
which is a compact set. Hence, by continuity of f,, j, we know that there exists (g1, q2, ..., qm) €

B’ such that

min fm,j<p17p27~-'apm):fm,j<Q1,QQ,...,qm),
(p1,D2;--,pm ) EB’

Suppose that there are indexes k,l € [m] such that gx < ¢;. By symmetry of the function
fm,j, we assume that ¢1 < go.
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Let {X{, X,}U{X;}", be independent geometric random variables and X1, X} ~ Geo (2452),
X; ~ Geo(g;) for i € [m]. Denoting Z' = """ 5 X;, we have

fm,j(Q17QQa---7Qm)
=P [X1+ X2+ Z' > j]
j—1
=Y PZ=UPXi+Xo>j—-U+P[Z >j—1]

> P2 =1P[X]+X5y>j-1]+P[Z >j—1]
=1
=P[X|+X5+ 2 > j]

— o @ +aq ataq
m,j 2 ) 2 sy dm |

where the inequality is according to Lemma 39.

However, for [ = m — 2, by Lemma 39, it holds that P [Z' =m — 2] =1 —[[;", ¢ > 0 and
P[X; 4+ Xo>j—m+2]>P[X]+ X, >j—m+2], which implies that

Q1+ q2 q1+q2
fm,j(q17Q2a"'7Qm) >fm,]< e m> .

2 72

Note that 4592 4 9t 4 S~ g — ¢ and 832 € [§,1]. Hence we have

a+q q+q
2 2

,...,qm> en,

which contradicts the fact that (g1, ¢z, ..., ¢n) is the optimal point in B'.
Therefore, we can conclude that

m m m

i=1Pi i=1 Di i=1 Di
fm,j(phpQ?"'apm)me,j <ZZ 1 Z’Zl L 17"'721 1 Z)'

m m m

This completes the proof. |

Appendix B. Technical Lemmas

In this section, we present some technical lemmas.

Lemma 40 Suppose f(x,y) is (lz, fty)-convex-concave and L-smooth, then the function
f(x,y) = M (x/8,y/B) is (AB“;C, %) -convex-concave and )ﬁ‘—g—smooth. If {fi(x,y)} is

L'-average smooth, then the function class {fi(x,y) £ Ni(x/B,y/B) L, is ’%@l—avemge
smooth.
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Lemma 41 Suppose that X = {x € R?: ||x||, < R,}, then we have

X, ifxe X,
Px(x) =
x(x) {RXX, otherwise.
(B[P

Remark 42 By Lemma 41, vectors Px(x) and x are always collinear.

Proposition 43 (Carmon et al. 2021, Lemmas 2, 3 and 4) Let Gyc: R™™ — R be

1 m
Gnyo(x;w,m+1) = B IB(m + 1,w, O)X||§ —w? (e, x) + w? ZF(J?Z)
i=1

For any 0 < w < 1, it holds that
1. T'(x) is 180-smooth and [—45(\/3 — 1)]-weakly conve.
2. Gno(Omi1;w,m + 1) — mingcpmit Gro(x;w,m + 1) < w?/2 + 10wim.

3. For any x € R™" such that x, = xpme1 = 0, Gre(x;w,m) is (4 + 180w?)-smooth
and [—45(v/3 — 1)w*]-weakly conver and

VGl wo,m)ly = w4,

Lemma 44 Suppose that 0 < Ao < (2 + 2\/§))\1, then z = 0 is the only real solution to the
equation

22(z—1)

=0. 20
14 22 (20)

Az 4+ Ag

Proof Since 0 < Ay < (2 + 2v/2)\;, we have
A —4n (M + ) <0,

and consequently, for any z, (A1 + X2)z2 — Aoz + Ay > 0.
On the other hand, we can rewrite Equation (20) as

z((M+ Ao)2? — Noz + A1) =0.

Clearly, z = 0 is the only real solution to Equation (20). |

Lemma 45 Suppose that 0 < Ay < (2 + 2\/§)A1 and A3 > 0, then z1 = zo = 0 is the only
real solution to the equation

zi(z1-1)

A1z1 + )\3(21 — 22) + A 1422 = 0.

22 (20—
129 + )\3(22 — Zl) + Ao 21(+22§1) =0.

(21)
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Proof If z; = 0, then zo = 0. So let assume that z125 # 0. Rewrite the first equation of
Equations (21) as

A+ A3 Qzl(zl—l)_zig

A3 A3 1422 21
Note that
1-+2 - z(z—1)
2 T 14227

Thus, we have

>\1+>\3+§1—\/§<Q'
A3 A3 2 A

Similarly, it also holds

)\1+)\3+ﬁ1—\/§<21

A3 A3 2 T 22 .

By 0 < Ay < (2+ 2v2)A1, we know that A + 1522\ > 0. Thus

)\1+)\3+&1—\@

1.
e N 2

Since z1/2z2 > 1 and 22/2z; > 1 can not hold at the same time, so we get a contradiction. W

Lemma 46 Define the function

k
TegWn,v2, - ue) 2R+ (i —vic)’ + (1 — B)”. (22)

Then we have min Jy g(y1,...,yx) = kﬂ—_’i

Proof Letting the gradient of Jj g equal to zero, we get
2y —yk-1=0, 2y1 —y2— =0, and yiy1 —2y; +yi-1 =0, fori =2,3,... . k- 1.
That is,

—q 1
yi:kk:;ﬂforizl,z...,k. (23)

Thus by substituting Equation (23) into the expression of Jj 5(y1,¥y2,...,yk), we achieve
the desired result. |
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Appendix C. Proofs for Section 4

In this section, we present some omitted proofs in Section 4.

C.1 Proofs of Proposition 14 and Lemma 15

Let B(m, ¢) denote the last m rows of B(m,0,¢) and by(m,¢) = by(m,0,¢) for 0 <1 < m.
Note that bo(m,¢) = 0. For simplicity, we omit the parameters of B, b; and 7;. Then we
have ]§ = (f)l, f)g, e ,f)m)T.

Recall that

L;i={l:0<I<m,l=i—1(modn)},i=1,2,...,n.

For 1 < i < n, let ]?5Z be the submatrix of B whose rows are {B;—}lea* Note that B =

Sy elblT and B; = Zleﬁi elblT. Then 7; can be written as

- ~ C1 Co
Fixy) = n(y Bix) + 5 x5 = 5 lyl3 = nder, %) Ty,

Proof [Proof of Proposition 14] Firstly, it is clear that 7; is (&1, é2)-convex-concave.
Next, note that for l1,ly € L£; and I3 # I, we have |l — lo] > n > 2, thus bl—[le = 0.
Since ¢ < 2, f)le)l < 2, it follows that

2
2
- FTT 2

> biely| =Y yleb/bely<2) (ey) <2llyl3,
lel; 2 lel; lel;

2

. - 2
doeblx| =) (szX) < Y 2(af +at) + Cat sy < 213
leL; 9 €L leL\{m}
Note that

VyTi(x,y) = nBix — éy.
With u = x; — x2 and v = y; — y2, we have

Vi (x1,y1) — Vi (X2, y2) |5
= ||Vxfi(x1,¥1) — Vxii(x2,y2) 15 + | VyTs(x1,y1) — VyTi(x1, y2) 3

2 2
= |lciu+n Z BlelTv + ||[Cav — 1 Z elf)lTu
2 2
<2 (6% [ull3 + & HvH%) + 2n? Z bie/ v| +2n? Z eb/ u
leL; 2 leL; 2
2 N2
<2 (e% 2 + & ||v||§) +dn? Y (ejv) +2m2 Y (bfu)
lel; lel;
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< (2max{ér, &) +40%) ([lul3 + V1)

where the first inequality follows from (a + b)? < 2(a? + b%). In addition,

1o "
- > IVFE(x1, y1) — Vii(x2,¥2) 13
i=1

m 2 mo. 2
<2 (él Hqu + & HvH%) + 4nz (elTv) + 2n2 (blTu)
=1 =1
~ 2 ~ 2 2 2
<2 (& il + B IVI3) + 4 1vI3 + 8 [ull

< (2max{é, &} + 871) (IIUIIS + ||V||§) :

Thus, 7; is \/4n2 + 2max{¢y, & }2-smooth, and {7}7; is \/8n + 2max{éy, & }2-average
smooth. |

Proof [Proof of Lemma 15| Note that

B — ., 1<li<m, - - ;o 1<i<m,
elblTX:{(:Ul Tiy1)e = m and blelTy:{yl(el er11) m

szema l = m; Cymem, l =m.

For x,y € Fi with 1 < k < m, we have
~ f l = kj ~ ._F l — k
eb)x € b " and bie]'y € L ' (24)
Fr—1, l#k. Fi, l # k.
Recall that

Vxri(x,y) =n Z bie]y + &1x — nejly;_qy,
leL;

VyFi(x,y) =n Z eb/ x — éay.
leL;

By Inclusions (24), we have the following results.

1. Suppose that x,y € Fy. It holds that Vy7i(x,y) = ne; € Fi, Vx7j(x,y) = 0 for
Jj > 2 and Vy7j(x,y) = 0 for any j.

2. Suppose that x € F; and y € Fp and 1 € £;. It holds that Vy7j(x,y) = éix +
neily_1y € Fi for any j, Vy7i(x,y) € F1 and Vy7;(x,y) = 0 for j # i.

3. Suppose that x € Fi1,y € Fi, 1 <k <mand k+1 € £;. It holds that V,7;(x,y) €
Fi1 for any j, Vy7i(x,y) € Fry1 and Vy7j(x,y) € Fy, for j # .

Now we turn to consider (u;, v;) = prox} (x,y). We have

B 1
Vxri(ug, vi) + ;(uz —x) =0,
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5 1
Vyi(ug, vi) — ;(Vz' -y)=0,
that is
S [
—nB; (52 + %) L, ’

where x; = x/’y—i—nel]l{i:l} and y =y /7. Recall that for 1,1y € £; and 1 # la, BZBZQ =0.
It follows that

DRl LT AT RN
BZBZ = Z elbl Z blel = Z elbl blel y
leL; leL; leL;

which is a diagonal matrix. Assuming that

1 nZ o~ ~
D, 2 (é+-)1,+——B,B =diag(d;1,d;2,...,dim
<62+7> +51+1/’Y ) lag( ,1, 4.2, y Uy, )7

~ —1
(51 + %) L, nBZT X;

I e R I

[ 1 2 _BTPp-B. _ BTH-17 =~
——D. "B, D~ y
L C1+1/y1 ¢ i
1 % 2 —1f £ T % C o Th-lg
_ RSy (51_?1/7)2 Zle[li di.l blbl X — {;1.:11/7 Zleﬁi blel D; YI ‘ (25)

n -1, +T%. —1g
a7 2t dig @by Xi + Dy

Note that for 1 < k < m, y € Fi implies Di_ljf € Fr and x € Fi implies x; € Fi. And
recall that

b BT (z1 —21) (e —epy1), 1<m,
Cxpem, [ =m.

Then for x € Fj, with 1 < k < m, we have
. Frrr, 1=k,
bib/x € { 7 F (26)
Fk, I # k.
By Inclusions (24), (26) and Equation (25), we have the following results.

1. Suppose that x,y € Fo. It holds that x; € F; and x; = 0 for j > 2, which implies
u; € 7 and u; = 0 for j > 2. Moreover, v; = 0 for any j.

2. Suppose that x € F1,y € Fp and 1 € £;. It holds that u; € 72, v; € 1 and u; € Fq,
v; € Fo for j # 1.
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3. Suppose that x € Fyi1, ¥y € Fr, 1 <k <m—1and k+1 € £;. It holds that
u; € Frio, Vi € Fiy1 and uj € Fiqq, v; € Fy, for j # 1.

This completes the proof. |

C.2 Proofs of Corollary 16 and Lemma 17

Proof [Proof of Corollary 16] First, we note that by Lemma 41, the projection operations
Px(x) and Py(y) do not affect the nonzero elements of the vectors x and y.

Then we prove the first claim by induction on k. Clearly, it holds that (xg,yo) =
(0,0) € Fo x F_1. Suppose that (x;,y:) € Frp—1 X Fre—2 for any t < to where k()
is the positive integer such that Ty < t < Tyy). By Lemma 15, for ¢ < Tj)-1,
Vricc(xt,yt),prox;’gc (X6, Y1) € Fito)—1 X Fhto)—2 for any i; for Tyup—y <t < tg, ap =0

and Vrgc(xt,yt),proxzcc(xt,yt) € Fr(to)=1 X Fr(tg)—2 for any ¢t < j < to. It remains to
i

check Vrgﬁl(xt,yt),proxzcc (x¢,y¢) for Th—1 < t < to and the value of a4 1. By
ZtOJrl

Lemma 15,

F X Fl(to)—1s if ¢ = k(tg) (mod n),
VTg(?H(Xt,Yt)a PTOX:cc (xt,yt) € { Hto) Flto)=1 o ( 0) ( )

ity +1 ]:k(to)—l X ]:k(to)—% otherwise.

Thus, if it,11 = k(to) (mod n) or a1 = 1, we have Tj) = to + 1 < Thg)41- Thus,
k(to + 1) = k(to) + 1 and (Xtg+1,¥Yto+1) € Fr(to+1)—1 X Fh(to+1)—2- Otherwise, we still
have Tk(to)—l <th+1< Tk(to)' Thus, k(to + 1) = k(t9) and (Xt0+1,yt0+1) S ]:k(to-i-l)—l X
Fr(to+1)—2-

Consequently, we have (x;,yt) € Frp—1 X Fr)—2 for any t. Since k(t) is monotone
increasing, we have (x¢,y¢) € Fr—1 X Fr—o for any ¢t > T}, and k > 1.

Next, note that

P[T}, — Thp1 = 3]
=P [iTk71+17ék/, N ,iTk71+5,17£k'/, aT,_,+1 = O, ces Ty 45—1 = O7 iTk,1+S:k/ or aTk71+3:1]
=(1—pr)* (1= 9)° ' (ow + ¢ — Pra),
where k¥ = k(mod n),1 < k' < n and the last equality is due to the independence of
{(it,at) }t>1. So Yy = T} — T—1 is a geometric random variable with success probabil-

ity pxr + q¢ — prrq. The independence of {Yj}x>1 is just according to the independence of
{(ir, ae) ez =

Proof [Proof of Lemma 17] For ¢t < N, we have

E (13’1%:;( rCC (x4, v) — Elelfvl rCC (u, yt)>

e (ua Yt)

>E <maxrcc(xt, V) —minr N < TM+1> PN < Tyr41]

vey ueXx
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> 9eP [N < TM+1] ,

where Ths41 is defined in (6), and the second inequality follows from Corollary 16 (if N <
Thry1, then x; € Fpy and yy € Fay—q1 C Fpy for t < N).

By Corollary 16, Ths+1 can be written as Th11 = Zl]\ifl Y, where {Y;}1<j<npr41 are
independent random variables, and Y; follows a geometric distribution with success prob-
ability ¢ £ py + q — prq where I’ = I(mod n), 1 < I’ < n. Moreover, recalling that
p1 < py < -+ < pn, we have Zf\ilﬂ @ < (M+1)(244q) < (M+1)(1+ cy)/n. Therefore,
by Lemma 10, we have

M+41

(M +1)n
ZY> 1+CO)

which implies our desired result. |

P [TM-H > N >

1
_97

C.3 Proofs of Proposiiton 18 and Lemma 19

Let B(m w) denote the first m rows of B(m,w,0) by and b;(m,w) = by(m, w,0) for 0 <
[ < 'm. Note that b (m w) = 0. For simplicity, we omit the parameters of B bl and 7;.
Then we have B = (bo,bl,... | )T

m—1
Let G(x) £ Y I'(z;). Recall that
i=1

Li={l:0<1<m,l=i—1(modn)},i=1,2,...,n

For 1 < i < n, let ]?)z be the submatrix whose rows are {BlT}zeg' Note that B =
Zﬁal el+1f)l—r and ]/-5)1 = Zleﬁi el+1l3l1—. Then #; can be written as

. = ¢ .
il y) = n (y.Bix) = 5 I¥3 + @G (ex) — n fer,¥) Liic).

Proof [Proof of Proposition 18] Denote s;(x,y) = 7i(x,y) — ¢2G(¢3x). Similar to the proof
of Proposition 14, we can establish that for any x1,x2,¥y1,¥y2,

IWsi(1, 1) = VsiCa, y2) 3 < (402 + 263) (Il = xall3 + lys = y2ll3)

and
1 n
=S IV sitxa,y1) — Vsitxzva)l < (80 +223) (I = xal3 + lva — vall)

By Proposition 43 and the inequality (a+b)? < 2(a?+b%), we have #; is (—45(V/3 — 1)é2¢3, é1)-
convex-concave,

V71, 31) = Vi vl < (\/4n2 12 4 1806263) VI =l + 1 — ol
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and

1 n

- D IVii(x1,¥1) — Vii(x2, y2)ll3 < (160 + 467 + 648006,¢3) <HX1 — %23 + lly1 — Y2H§> -
i=1

Now we prove the Lemma 19.
Proof [Proof of Lemma 19] Note that

- wx1et, [ =0, N wyier, [ =0,
eH_lblTx = and blelTHy =
(1 —mp1)eppr, 11T <m. viri(er —ey1), 1<I<m.

For x,y € Fi with 1 < k < m, we have

- Fi =k N Fi l=k—-1
e b/ x € b " and bie,,y € b ’ (27)
Fr, 1#k. Fr—1, l#Fk—1

Recall that
Vfi(x,y) =n Y biefyy + é26VGE(@3x),
leL;

Vyti(x,y) =n Z el+1BlTx — ey +nerly_qy.
leL;

By Inclusions (27), we have the following results.

1. Suppose that x,y € Fy. It holds that V«#;(x,y) = 0 for any j, Vy7i(x,y) = ne; € Fy
and Vy7j(x,y) =0 for j > 2.

2. Suppose that x,y € Fi, 1 <k <m and k € £;. It holds that Vx7;(x,y) € F}, for
any j, Vy7i(X,y) € Fr1 and Vy7(x,y) € Fy for j # 1.

Now we turn to consider (u;,v;) = proxzi (x,y). We have

Vs, vi) + ~(w; — x) = 0,
Y
Vyfi(ug, vi) — ,1y(Vz‘ -y)=0,
that is
%Im n]/?;;r

= 5]

where X = x/7v, ¥; = y/v + neily—yy and &; = ¢263VG(E3w;). Recall that for Iy, s € L;
and I1 # I3, b by, = 0. It follows that

—nB; (&1+1) Ly

88T 0T o T e T
BB/ = ) enib D biefly | =) epab biefys,
leﬁi ZEEZ‘ ZEEZ‘
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which is a diagonal matrix. Denote
. 1 ~ = .
Di £ <C1 + ’Y> Im + ’yn2BiBiT = dlag (di71, d@g, ey di,m) .
For 0 <l <m,l € L; implies d; ;41 = ¢1 + % + 2vn?. Then we have
1 ST -1
e @) 5
Vi —nB; <61 + %) I, Vi

_’}/Im — VQnQﬁZDflﬁi —ynﬁz—D;l [5( — ﬁz}
ynD; !B, D; ! Yi

V(& =) =0 Yep, digt bib] (% = W) =y e, el DY
—1 2 5 ~ —1x ;
7216& dz’.l+1el+1blT(X — ;) + Dy

that is
W+l — ) di bbb =% — 470 Y dil bbb % — 1 biel D; i (28)
ZGEZ' leﬁi lE[:Z'
vi =7 Z d; )\ erab] (X — @) + Dy (29)
leL;

We first focus on Equations (28). Recall that 0; = é2¢63VG(é3u;) and

BT wlrieq, [ =0,
1Dy T =
(1 —2z141)(er —€41), 0<I<m.

For simplicity, let w; = (u1,uo,...,uy)" and G; = (d1,4s,...,%y,) ", and denote the
right hand side of Equations (28) by w. Recalling the definition of G(x), we have u; =

A2 2/(A
A~ Cguj(Ezu—1)

for I < m and 4,, = 0. We can establish the following claims.
1. f0<i<m—1and ! € L;, we have

2.2 -1 \ 4 2.2 -1 -
u; + (’y —v°n dz,z+1) U +y°n d“Hqu = wy,

(30)
U1 + 72”2dz‘_,ll+1ﬁl + (7 - 72”2dz‘_,ll+1> U1 = Wig1-
Setting w; = wi11 = 0 yields
(1 - Z'ynQd;llJrl) uy + ynZlelﬂ(ul —u1) + (7 — 272n2d;ll+1) =0,
<1 — 2fyn2d;ll+l) Up41 + ’yn2d;ll+l(ul+1 — ) + (’y — 272n2di_’ll+l> U1 = 0.
‘—1 V241

Recalling that d; ;41 = ¢1 +1/y+2yn?, we find 1—2’y712dz 141 > 0. Since y < G062 e
’ 3
can apply Lemma 45 with z; = ¢3u; and 29 = ¢3uy41 and conclude that u; = w1 = 0.
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2. If m—1€ L;, we have

Um—1 + <’Y - ’72712651-_,%) Up—1 = Win—1, (31)
Uy, + 'anQd;glﬁm,l = W,
Setting wy,—1 = w,, = 0 yields
Um—1 + <7 - 72n2d1:7}1> ﬁm—l = 07

'ynZd;Tlnum,l — (1 — 'ynQd;nll) Uy, = 0.

Recalling that d; ;11 = ¢ + 1/ + 29n? and v < VZHL e have 0 < v — 'anQd;}n <

60222
v < 6}62;12 Applying Lemma 44 with z = ¢ésu,,—1, we conclude that w,,—1 = 0. It
3

follows that u,, = 0.

3. If0<l<mandl,l—1¢ L; we have
up + Yl = wy. (32)
Setting w; = 0 and applying Lemma 44 with z = ¢3u;, we conclude that u; = 0.

Note that for 1 < k < m, x € Fi implies x € F;, and y € Fj, implies D;lyi € Fp. And for
x € F, with 1 < k < m, we have

. Frs1, 1=k
bb e { TF ’ (33)
Fry  1#k

Then we can provide the following analysis.

1. Suppose that x,y € Fy. Note that 0 € £;.

For j = 1, we have X = 0 and y; € F;. Since 0 € £y, Inclusion (27) implies w € Fj.
Then we consider the solution to Equations (28). Since n > 2, we have 1 ¢ £;. If
2 € L4, we can consider the solution to Equations (30) or (31) and conclude that
ug = 0. If 2 ¢ L1, we can consider the solution to Equation (32) and conclude that
ug = 0. Similarly, we obtain w; = 0 for [ > 2, which implies u; € F;. Since 1 ¢ L1,
by Inclusion (27) and Equations (29), we have v; € Fj.

For j # 1, we have X = y; = 0. It follows that w = 0. Note that 0 ¢ £;. If 1 € L,
we can consider the solution to Equations (30) or (31) and conclude that u; = 0.
If 1 ¢ L;, we can consider the solution to Equation (32) and conclude that u; = 0.
Similarly, we obtain u; = 0 for all [, which implies u; = 0. By Equations (29), we
have v; = 0.

2. Suppose that x,y € F, 1 <k <mand k € L;.

For j = i, we have x,y; € F. If k. = m — 1, clearly u;,v; € F,,,. Now we assume
k < m — 1. Inclusions (33) and (27) imply w € Fi4+1. Then we consider the solution
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to Equations (28). Since n > 2, we have k+ 1 ¢ £;. If k+ 2 € L;, we can consider
the solution to Equations (30) or (31) and conclude that ugio = 0. If K+ 2 ¢ L;,
we can consider the solution to Equation (32) and conclude that ug,o = 0. Similarly,
we obtain w; = 0 for [ > k + 2, which implies u; € Fjy1. Since k+ 1 ¢ L;, by
Inclusion (27) and Equations (29), we have v; € Fj41.

For j # i, we also have X, y; € F},. Since k ¢ L;, by Inclusions (27) and (33), we have
w € Fi. If k+1 € L, we can consider the solution to Equations (30) or (31) and
conclude that ugy; =0. If K+ 1 ¢ L;, we can consider the solution to Equation (32)
and conclude that ug4q = 0. Similarly, we obtain w; = 0 for [ > k + 1, which implies
u; € Fj. Since k ¢ L;, by Inclusion (27) and Equations (29), we have v; € Fy,.

This completes the proof. |

Appendix D. Proofs for Section 5

In this section, we present the omitted proofs in Section 5.

D.1 Proofs for the Strongly-Convex-Strongly-Concave Case
With fscsc and {fscsc,i}i, defined in Definition 26, we have the following proposition.
Proposition 47 For anyn > 2, m > 2, fscsc and fscsc in Definition 26 satisfy:

1. {fscsc,i}iq is L-average smooth and each fscsc,i is (fg, fhy)-convez-concave. Thus,
fscsc 18 (fe, py)-convex-concave.

2. The saddle point of Problem (10) is

x __ 2Pp 2n 2 T
X 1_; L2—2;L§ (Q7q 7"'7qm) )

.
y' =8 (q,qQ,u-,qm‘l, \/O‘T“qm) :

where q = gTj Moreover, ||x*||, < Ry, ||y*|ly < Ry.

3. For1<k<m-—1, we have

B2 (L2 — 20:2)
: B S v) 2k
in_ pscsc(x) S Yscsc(y) = GRS

Proof

1. Just recall Proposition 14 and Lemma 40.

2. Tt is easy to check fscsa(x,y) = §<y,1§ (m, C) x> + x| = )2 = B¢ (er,x)

2 1, /L2—2p3
WhereC: a—ﬂand§:)\/62:§ Ty

zero, we obtain

. Letting the gradient of fscsc(x,y) be

~ 2 ~ ~
y = iB(m, Q)x, <,uzI + §—B(m, ¢)'B(m, C)) x = [éey. (34)
Hy Hy
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Note that
Hably _ SN flg fly _ Snpig _ 8n _ 4
&2 L2 =2py (kg —2uy  (ky —2/ky) ke o?—1
One can check ¢ is a root of the equation 22— (2 + “2#) z+1 = 0. By some calculation,

the solution of (34) equation is

B . Sl
X*:iy)g(q’qa-‘-aqm)T’ y =8 Q7q27"'7qm 1’7 )

(I—q ¢
Moreover, from the definition of 3, we have
|2 = By (4 = ¢*" %) _ BPryd’ PR -2/m) o
T (1-gP(1-?)e T (1-qP(1—¢?)E 8na -
and
2 2m 2m 2 2m+1 2 2
(12 2( 4 —4q q 29" +4q 2 2q o(a—1) 2
ly*llz =5 <l—q2 +C2> B 1—¢q2 _Bl—qZ P 4o T Y

. Define ¢gosc(x) = maxyerm fscsc(X,y) and ¥scsc(y) = mingerm fsosc(x,y). We
first show that

s ~ B
_ >_75
min pscsc(x) max Ysosc(y) > CEn
2_ 2 ~
where £ = 34/“52"% . Recall that fsosc(x,y) = € (v, B (m,O)x) + & |x|3 -
& HyH% — B¢ (e1,x), where ¢ = %H Then we can rewrite fscsc(x,y) as
2 2
L € 5 SIES 2 p
fsescbey) = =15 |y = > Bm Qx| + 5= [Blm, Qx|+ 55 Il — B¢ fer, )
v 2 y

(35)

- ~ 2
Thus ¢gcsc(x) = % HB(m, C)XH2 + & %[5 — B¢ (e1,x). For x € Fy, let x be
the first k coordinates of x. Then we can rewrite gscsc as &k(i) = éscsc(x) =
2 = ~
= Bk, 1%

V¢r(x) = 0k, we obtain

2
2+“7“” |%]|3— B¢ (e1, %) , where &, is the first k coordinates of 1. Letting

iﬁ(k, 1) "Bk, 1)X + pa% = é1. (36)
Y

Recall that “z@y = a24_1 and ¢ = g—;% One can check ¢ and 1/q are two roots

of the equation 22 — (2 + “2#) z 4+ 1 = 0. By some calculations, the solution to

Equations (36) is

oo Bpyla+ D"t o 1 \T
% = T ¢.q ¢ —q)
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B2uy(atl) g—g*+?

and the value of mian]:k éscsc (X) is minxe]:k &SCSC (X) = — 1 TFq2F T
On the other hand, observe that
£ = B¢ |IP € n 2
fsosolxy) = 5 |lx+=B(m, () Ty—"=e1| = 2>—||B(m, ) Ty—geu | — EL iy 3.
K Mg 9 2y
(37)
It follows that Yscsc(y) = 2§n (m Oy — 6e1H — B HyH2 For y € Fy, let y
be the first k£ coordinated of y Then we can rewrite @SCSC as wk(y) = wscsc(y) =
HB )Ty — ﬂelH — —m (61, y)% — & HSIH%, where €1, €, are the first k ordi-

nates of e; and ey, respectively. Letting V@;k(y) = 0y, we obtain

2 2 _
i ( (k,1)B (k,1)T+ékég)y+uyyzﬁiB

x

(k’ 1)é1

Then, we can check that the solution to the above equations is

k
. Bgtt (% — gk, g h 1 gkl 1T
Y = gl ¢ =),
. 7 . . 7 6252 1+ 2k+1
and the optimal value of ¥gcsc(y) is mingc 7, ¥scsc(y) = — el e It follows

that

min ¢ x) — max ¥
min dscsc(x) max Yscsc(y)

B ,82,uy(a + 1) q— q2k+1 ﬁ2£2 14+ q2k+l

- 4 1+ q2k+1 'uz(a + 1) 1— q2k+2

__ B€ pamy(at+D)?q 1—g* g2 14
@) 42 4@ p(at1) 1- g

_ ,8252 1+ q2k+1 B 1— q2k
fo(a+ 1) \T = g2h+2 ~ T g2k

_ /8252 2q2k+1 _|_q2k’ 4 q2k+2 /8262 q2k
el T 1) (- @)A1 ) = o 1)

Clearly, we have minxexnz, ¢scsc(x) — maxyeynz, Yscsc(y) > minxer, pscsc(x) —
maxyeF, Pscsc(y). It remains to show that minyer, dscsc(x) = minker, pscsc(x)
and maxycr, ¥scsc(y) = maxycr, ¥scsc(y). Recall the expressions (35) and (37).
It suffices to prove ||X[|, < R, and ||y|, < R, where

&——51§<m,<w[ ] e, g8
Mz Orm—k Hx Hy

Uno[;ly

By some calculation, we have

2¢2 2 1— 4k+2
I3 = 2SO (A 2tk 1)
2 (1= g2 \ 1—¢
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2 2 4k+2

12 B 7 —q k

1918 = e (St + 204 )
(14 ¢2++1) l—q

“(10g 1)°
Note that max,~gzq® = log % e (log q) and logr — r2 < —r for any r > 0. It follows

log %

that max,~gxzq¢® <e “°d¢ =¢q. Then we have

(YT g sk (R P P S Cate. o) | Gl P
2T 2(1-g)® \1-¢? AR 16np5a -
2 2 2 2 2
A 112 2 q 2 26%q B(a—1) 2
< < < < .
This completes the proof. |

Proof [Proof of Theorem 27] Let ¢ = 2=+. For s, > K, > /2n+2, we have a =

a+1
—2 z _ _
tm=Pmlts 11> /2, = 23 > Y21 and &y — 2/ky > Ky /2,
2 ¢2 2__ 2
Let M = rog(g(a;ﬁgzs/ﬁ ¢ )J where £ = %\/ L 23“”. Then we have
min_ ¢gcsc(x) —  max  scsc(y) = e 9e.
XEXNFar YEVNFm o (a + 1)#1 N

where the first inequality follows from the third property of Proposition 47.
2232¢2
First, we need to ensure 1 < M < m. Note that M > 1 is equivalent to ¢ < _aBE

a+1)ue
Recall that
2 4R, V2
8 = min d 2R, an , R an 7 aR, ‘
w2(1—=2/k2)" a4+ 1\ k2(1-2/k2) a—1

When 8 = 2R, %, noticing that OE(;'J:II)%Q is increasing for o > 1, we have
T y

5
q262€2 _ O[(O[ B 1)2M R2 > \/5(\/5_ 1) L R2
Ia+ D, Y(a+1)3"7" "= 9 e
When 8 = 4B [ —an =y oticing that o2 — 1 = (w=2/mke o Raky o ala—l)® 4o
at+14/ xZ(1-2/k2)’ g 2n = 2n (at1)*

increasing for o > 1, we have

2422¢2 _1)3 42 (V2 —1)" 2
¢CHE_ 20(a—1)F e WV2(V2-1) Ry

9a+ Dy 9 a+1)°(a—1) v 9 Kaky

When 3 = \/%Ry’ noticing that “25%* = —'- and ‘()‘(O‘_l) is increasing for a > 1, we have

a—1 £2 1 a+1)?
242¢2 — 2 (v2-1)°
PRE a1 VEGE-D'
9 a+ p, 18(a+1)2"7 Y 18 Y
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2
Thus, ¢ < % min {”’gffw, Ly RS} is a sufficient condition for M > 1. Similarly, we can
zhy

obtain

B2£2 1 . n,ugﬁR?j 9
L N - ,
o D = %5 min oty sy Ry (38)

On the other hand, since —2= < ‘[E we have

a—1

[2¢2 < {OZM:;:R;ZC 2a(a — 1), R? Ozusz

1 2 . 2 2
9(Oé + 1)Hx = ni 9(a + 1)’ 9(0[ + 1)3(04 _ 1)7 18(0& — 1) } =9 ln{/’bl’ o My y} (39)

Note that the function h(8) = 1 (}Hl) —g is increasing when 8 > 1 and limg_, y» h(5) = 0.
og ﬂ

With g = g—jr%,there holds h(v/2) < — - — 5 < 0, which implies

Then by (39) we have

ro|Q
[V
|
V
(N]e)
_|_
=
®

Thus, we have verified 1 < M < m. Moreover, —loéq > 2 + h(v/2) implies

Clog(q) ~ 2 2n 4 4n

where the last inequality is due to ry, —2/ky > k,/2 and \/2(a + b) > /a+ /b for a,b > 0.
By Lemma 17, for M > 1 and N = (4%127;, we have that min,<y E¢scsc(x:) —
ming<y Evscsc(y:) > € holds. Therefore, in order to find (%,y) € X x Y such that

Epscsc(x) — Evgcsc(y) > €, A needs at least N PIFO queries, where

(M +1)n n 1 N B2e?
V= 4(1+ o) = 4(1+ o) ( 10g((1)) o (9(0 + 1)uxs>

1 >1\/('€y_2/'iy)'%+1+h<\/§)2\/§< K’C'{y+1)+h(\f2),

= 4(1 i co) ( ’?))12’2@/ + \f +h (ﬁ)) log (min {n“ngééSx“y)a MyRZ}>
o (e (1))

where the second inequality is by (39). This completes the proof. |

n

and fgo defined in Definition 69 with p and R replaced by p, and R,. We construct
{GSCSC,i}?:17 GSCSC :R™ x R™ — R as follows

Proof [Proof of Theorem 28| Let o = 2r==1) 1. Consider the functions {fscitizy

1
Gscsc,i(X,y) = fsc,i(x) — ?y lyll3
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Gsosc(x,y) ZGSCSCZ<X y) = fsc(x) — % 1115 -
=1

By Proposition 59 and Lemma 40, we can check that each component function Gscsc,; is
L-smooth and (fiz, f1y)-convex-concave. Then Gscsc is (e, fy)-convex-concave. Moreover,
we have

. . oy 2
G - d G — _ 2y .
max scsc(x,y) = fsc(x) an min scsc(x,y) )r(rg)r;fsc(y) 5 lyll3

It follows that for any (X,y) € X x ), we have

max G X,y) — min G X,y) > X) — min X).
max scsc(X,y) min scsc(x,¥) > fsc(x) XEstc()

Note that s, > v2n + 2 = Q(/n). By Theorem 74, for L = % — u2,

R (a—1)° 1 [2(L/pe—1 + R
agqu <a ) and m= |~ AL pe = 1) )—i-l log<'u9‘fx> +1,
n

in order to find (x,y) € & x Y such that E (maxycy Gscsc(X,y) — mingex Gscsc(x,¥)) <
g, PIFO algorithm A4 needs at least N = (2 ((n + n3/4,/fix) log ( )) queries.
2

Moreover, k, > n/2+ 1 implies o > /2. Then we have (o‘—ﬁ) > (g:) 4% This

completes the proof.

Proof [Proof of Lemma 29] Consider the functions { Hscsc,i : R x R — R} ; where

L(.2_ .2 <

2 (z®—y*) —nLRyx, fori=1,
Hscsci(z,y) =9 7 ( 9 2) ’ :

5 (:U -y ) , otherwise,
and Hscsc(z,y) = & Sy iy Hscsci(z,y) = %(I —y?) — LRyz. Tt is easy to check that
{Hscsc,i}iq L-average smooth and (ji, jty)-convex-concave for any 0 < ji,, pty < L. More-
over, we have

L LR2 L
max HSCSC(HC y) = =2?> — LR,z and min Hgcgc(z,y) = T _ 2
lyl< 2 |z|<Rq 2 2
Note that for ¢ > 2, it holds that
V.H (z,y) = Lz and prox, (z,y) = m i
oHscsc,i(z, y) = PrOXpose ) =\ o3 T T 7 1)

This implies xt = z9p = 0 will hold till the PIFO algorithm A draws Hgscsc,1. Denote
T = min{t : 44 = 1}. Then, the random variable T" follows a geometric distribution with
success probability p1, and satisfies P [T > n/2] = (1—pp)l»=1D/21 > (1—1/n)(*=D/2 > 1/2,
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where the last inequality is according to that h(8) = (%)5/ 2 is a decreasing function and
limg_,o0 R(B) = 1/y/e > 1/2. Consequently, for N =n/2 and t < N, we know that

E < max Hscsc(xt,y) — min Hscsc(%yt))

> E | max H T, y) — min H Syt < T | PIT >t
> (Iylél)%(y scse(®t, y) min scsc(®, yr) > [ ]

=E H 0,y) — min H 0, t<T|P|T >t

(s Fscsc(0.) — min Hecsol0.u)|e <T) BT > 1
L 2

> QRIIP [T > N|]>LR2/4 > ¢.
Thus, to find (2,9) € X x Y such that Emax,<r, Hscsc(#,y) —Eminj,<p, Hscsc(r, ) <
e, PIFO algorithm A needs at least N = Q(n) queries. [ |

D.2 Proofs for the Convex-Strongly-Concave Case
With fcse and {fosc,i}ie, defined in Definition 30, we have the following proposition.
Proposition 48 For any n > 2, m > 2, fcsc,; and fcsc in Definition 30 satisfy:

1. {fcsc,itiey is L-smooth and each fcsc, is (0, py)-convez-concave. Thus, fcsc is
(0, py) -convex-concave.

2. For1 <k <m-—1, we have

' kuyB?  ReB | L* —2u3
— > — +
xené\lflr?fk dosc (X) ygjli%}}k Yesc (y) o 2 2 2n(k + 1) ’

(L2 /2 —2)/(2n) }
2(m+1)3/2 rm [

where = min { fia
Proof

1. Just recall Proposition 14 and Lemma 40.

2. Tt it easy to check foso(x,y) = € (y,B (m,1)x) — 4 [ly[}3 - B¢ (e1,%) , where ¢ =
B2 = % Ltiju?, Define ggcgc(x) = maxycrm fcsc(x,y). We first show that

. ~ k:,uyﬁz Rxgﬁ
— > — .
it Pese B T By vese) = T e

On one hand, we have

dosc(x) = max (¢ (y.B(m, 1)x) = £ ly[3 - 8¢ (e1,))

yeR™

2
—B(m, 1)x

z = ?
— max <_2y y - 2+2MyHB(m,1>x)(2—ﬁf<e1,x>> (40)
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For x € Fj, let x be the first k coordinates of x. We can rewrite qgcsc(x) as
~ - ~ 2 ~ ~
Or(X) £ foso(x) = 5o HB (k, 1)x

of e;. Letting V(Bk(~) = 0, we get B(k,1)"B(k,1)x = 5§ye1 The solution is x* =

s (k,k —1,...,1)T. Noting that X3 = BE’;y bt )@hH1) < LQS/Z%_Q(m+1)3 < R2,
_kﬂyﬁ
kg5

— B¢ (é1,x), where €; is the first k& coordinates

we obtain minyexynr, &CSC(X) =
On the other hand,

min (x,B(m, 1)y = fer) = min — x|, ||[B(m, 1)y - e

xeX Ix[l,<Ra (41)
ﬁ(m¢ 1)Ty - Bell 9’
. . . _ R = Te
v:fhere the equality will hold when either x = Bty —Fer <B(m7 'y ,Bel) or
B(m,1)"y — Be; = 0. It follows that
- mi B T Hy 2
dosoly) = min (¢ (x.B (m, 1)y = fer ) — £ |1y3)
xE (42)

= _Rx§

= T
‘B(m7 1) y—ﬂelu —*” I5-
We can upper bound maxyecynz, ¥csc(y) as

max vieso(y) = max (<Rt ||[Blm, )Ty - fea, - 42 lyI3)

YEYVNF yeEYVNF,
< max< ngB m,1)7 BelH )
yeFi
£8
= _Rl‘g\/‘]k,ﬁ(yhy27 s 7yk) < _\/kxﬁu

where Jj, 5 is defined in (22) and the last inequality follows from Lemma 46.

It remains to prove mingexynr, ¢csc(x) = mingernr, QNSCSC(X). Recall the expres-

sion (40). It suffices to show that ||y||, < R, where y = u%ﬁ(m, 1) [OX ] Since
m—Fk
B < %, one can check ||y||, < R, does hold.
This completes the proof. |

Proof [Proof of Theorem 31] Since L/u, > 2, we have L? — 2;@ > L?/2. Then e <

L2R2? (L2—2u§)Ri Cae o R, [L?—2u2 R, [L?—243
5184nLy < 55020 , which implies that m > 4 and F Ty 2> 35 TITHE +1. It

Rx L2 —2p o Ry
follows that m > T . Then with ¢ < —5z*, we have
L2 /pg—2 L2/u

2m3/2 \/ S
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which implies that § = min fe ;?;/f%j 2)/(271)7 \I/%f’n} = = (2?;/4/_1;2,)73/22)/(271). Following
Proposition 48, for 1 < k < m — 1, we have
, kpyB82  R.B | L*—2u3
_ >
<2, Pesct) s wesel) 2 = S g+ 1)
 (BP=2pp)R3 2(m + 1) —kVE+ 1
16n1,, (m+13VE+1

Define M £ L%J Then we have M = L%\/L;ﬁgw —1>2and M <m.

. m 283/2_83/2 . .
Since 2(M +1) = 2|2 +2 > m+ 1 and h(B) = 37— is a decreasing function

when 8 > [y, for k = M we have

(12 - 2%2)R2 4y3-1 (I %R
i — > > >9
Ll dosclx) = max Yesoly) 2 g TSI 12 Sonpg (M +1)2 = O

. . 29,2
where the last inequality is due to M + 1 < % m .

By Lemma 17, for N = Zgﬁtol)), we have miny<n E (¢csc(xt) — Yesc(ye)) > €. There-

fore, in order to find suboptimal solution (x,y) € X x Y such that E (¢csc(x) — ¥esc(¥)) <
e, algorithm A needs at least N PIFO queries, where

L2 — 9242
N " (B ST oy ror [
4(1 + co) 12 2npye yE

This completes the proof. |

Proof [Proof of Theorem 32] Consider the functions { fc;}7 ; and fc defined in Definition
79 with R replaced by R,. We construct {Gcsc i}l 1, Gese : R™ x R™ — R as follows

i
Gesc,i(x,y) = foi(x) — ?y Iyl
n

1
Geso(x,y) =~ > Gosci(x,y) = fo(x) — % Iy 13 -
=1

By Proposition 59 and Lemma 40, we can check that each component function Gcsc;; is
L-smooth and (0, p,))-convex-concave. Then Gcgc is (0, 1y )-convex-concave. Moreover, we
have

max Goso(X,y) = fo(x) and - minGeso(x,y) = min fo(x) - % Iyll3 -
It follows that for any (X,y) € X x ), we have

max Gosc(X,y) — min Gose(x,y) > fo(X) — min fo(x).
yey xeX xeX

55



HAN, XIE AND ZHANG

By Theorem 80, for

2 4
\fR and m = \/ﬁ]%w711/4\/f —1
- 768f 12 € ’

in order to find (%X,y) € X x Y such that E (maxycy Gese(X,y) — mingex Gesc(x,y)) < e
PIFO algorithm A needs at least N = Q (n + R, n3/ 4 g) queries. |

D.3 Proofs for the Convex-Concave Case
With foc and {fcc,i}?, defined in Definition 33, we have the following proposition.
Proposition 49 For any n > 2, m > 3, fcc, and foc in Definition 33 satisfy:

1. {fcc,i}i is L-average smooth and each fcc; convex-concave. Thus, foc is convex-
concave.

2. For1 <k <m-—1, we have

LR.R
min — 1max P —
XEXNFy $oc(x) yEVNFi Yoely) 2 8nm(k + 1)

Proof

1. Just recall Proposition 14 and Lemma 40.

2. Tt is easy to check foc(x,y) = \/% <y, B (m,1) x> — f;im (e1,x) . By similar analysis
from Equation (41) to Equation (42) of the proof of Proposition 48, we can conclude

that
LR, LR,
LR, || - R,
= — 1 —_——
vee(y) B(m,1) 'y Wi B

Note that ¢oc(x) = maxyey foo(x,y) > maxyecy mingey foo(x,y) = maxyey (y) >
Y(y*) = 0, where y* = %Ln € Y. Therefore, we have mingecxnz, ¢cc(x) =
¢cc(0) = 0. On the other hand, following Lemma 46, we can obtain

max_vico(y) = mu i | Bm, 1) Ty - e — I T
YEVNFy YEVNFr  +/8n Vmo g V8n /m(k + 1)
where the optimal point is y* = (k:fﬁ(k,k —1,...,1,0,...,0)", which satisfies
1¥y*lly = (k+}1%§\/ﬁ k(k+1)6(2k+1) < Ry. Finally, note that k+1 > m/2. Thus we obtain

LR,R,
_ >
s, Poolx) = B, veel) 2 R
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This completes the proof. |

Proof [Proof of Theorem 34] The assumption on ¢ implies m > 3. Let M £ [(m — 1)/2] =

Lg?gfﬁj — 1. Then we have M > 1 and m/2 < M +1 < (m+1)/2. By Proposition 49, we

have
LR,R LR,R LR.Ry
min X) — max > Y z_ Y > ¢,
i bce(x) g Yeely) 2 S LD) A1)~ 2(m+1)\f >
Hence, by Lemma 17, for N = Zgﬁtol))’ we know that min;<n E (pcc(x¢) — Yec(ye)) > e.
Thus, to find an approximate solution (X,y) € X x Y such that E (¢cc(x) — ¢oc(y)) <
g, the PIFO algorithm A needs at least N queries, where N = 4(111:0) ([Iégffﬂ) =
o) (n + M) ) m
€

Proof [Proof of Lemma 35] Consider the functions {Hcc,i : R x R — R} ; where

Lxy —nLR,y, fori=1,
Heegi(w,y) = { ’

Laxy, otherwise,

and Hoe(z,y) = %Z?:l Hcci(x,y) = Lry — LRyy. Consider the minimax problem
minj;|<gr, Maxy|<g, Hce(z,y). It is easy to check that {Hcc,}7, is L-smooth and each
Hcgc; is convex-concave. Moreover, we have

max Hoc(z,y) = LRy|lr — R;|, and min Hec(z,y) = —LR,(|y| +y) <0,
lyI<Ry |z|<Rs

and it holds that minj,|<g, maxy,<gr, Hcc(z,y) = max),<g, ming<gr, Hee(z,y) = 0.
Note that for ¢ > 2, we have

V.Hceo,i(x,y) = Ly, VyHce,i(z,y) = Lz, and proxf}fccyi (z,y) = (I{J;V;‘:_yl’ 121;‘272[/1341)
which implies 2y = y; = o = yo = 0 will hold till the PIFO algorithm A draws Hcc;1.

Let T'= min{¢ : 9y = 1}. Then, the random variable T" follows a geometric distribution
with success probability p;, and satisfies P [T > n/2] = (1—py)l(*=D/2 > (1—-1/n)(*-D/2 >
1/2, where the last inequality is according to that h(8) = ( %)6/ 2 is a decreasing function
and limg_,o h(8) = 1/y/e > 1/2. For N =n/2 and t < N, we know that

E <H|laX Heoe(z,y) — |f‘nln Hee(w, yt))
y|< z|<

>E ax HCC (x¢,y) — mln Hcc(w Yt) ’ t < T) P [T > t]

|z|<

|| <R

E< XHCCOy)—mchch }t<T>]P’[T>t]
R
P[T > N] > LR,R,/4 > c.
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Thus, to find (#,7) € X x Y such that Emax),<p, Hcc(2,y) — Eming<g, Hee(w,9) <e
algorithm A needs at least N = Q(n) PIFO queries. [ ]

D.4 Proofs for the Nonconvex-Strongly-Concave Case

With fxcsc, ¢ncsc and { fncsc,i b, defined in Definition 36, we have the following propo-
sition.

Proposition 50 For any n > 2, L/p, > 4 and g2 < %, the following properties
hold:

1. {fncsc,i}ie, is L-average smooth and each fxcsc,i is (—pa, by)-convez-concave.
2. ¢ncsc(0) — mingegpm+1 onesc(x¥) < A.
3. m>2 and for M =m — 1, mingcr,, | Voncsce(x)] > .

Proof [Proof of Proposition 50]

1. By Proposition 18 and Lemma 40, we have that fxcsc,i is (—p1, p2)-convex-concave
and { fncsc,i i, l-average smooth where

_45(V3 - 1)L« _
H1 = 256n,uy >~ ,u:ta H2 = [y,
M 1600022 o L 2f+16‘/ﬁ“y+45ﬁ0‘L <L
n .
S\f 256nu2 ~ 8y/n L 8Ny |

Thus each component fnxcsc,i iS (—fa, tty)-convex-concave and {fncsc,itie, is L-
smooth.

2. WeAﬁrst give a closed form expression of ¢nggc. For simplicity, we omit the parameters
of B. It is easy to check

fnesc(x,y)
L N 1 5 VAL & 1 |aL 1 |AL
=~ _(y,Bx)-"¢ NVEEENTD o X | -5 22 .
16\/ﬁ<y’ X> 2 HyHQ—i_lﬁ\/ﬁuy; I\ et T3\ v ey

Then we can rewrite fncsc(X,y) as

2

Hy 1 L = 1 [AL
= — —= —_— 7B —_ = —_—
Inesc(x,y) 5 |IY o (16\/77 X=7 \/ﬁe1 2
1 L =~ 1 /AL

2

ValL & 1 [aL
i ; P et VOAL NP (o VAR
16yn 4 \/ﬁe12+16\/ﬁﬂy; AW
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It follows that

Pnesc(x) = QL

2
L o AL VAL & 1
v (=
oy 2 <4V )

Bx_ -./22
16/n 4 Vi,

L s 12 L [VaiL vaL = 1 VEL
= s B s e o0+ s 27 (3
512n 41, 2 64p, V' n3/2 16fuy 4 /\\/ﬁ
LM
32v/npy

Letting x = i /\L\O/‘gx, we have

: AL AL
Onosc(X) £ onoso(x) = 15 (2 B H —Vake +O‘Z”1)+32fnuy'

By Proposition 43,

O _ . _ 7 0 o . 7 ~
énesc(0) in énosc(x) = ¢nesc(0) iéﬁ}?ﬂ@ﬁNCSC(X)

_ AL XCl%mam Hﬁ&%nMﬁ2+3$lﬂmnMﬁ%n
161, /an L2« L2\ /a
165888 3317760

A <A

= 3183643 ' 3483648

AL2\/E AL2q
3483648ne2pu, = 3483648ne2puy

3. Since a < 1, we have > 2 and consequently m > 2. By

Proposition 43,

. ValL ~ -
i [Voncso(l = /377 i [Vvescts)],

3/4
> vaL AL« > 0c.
- ANn 16py/an 4~

This completes the proof. |

D.5 Results for the Smooth Cases

In this subsection, we give the formal statements of the lower bounds in Table 2.

Function class We develop lower bounds for PIFO algorithms that find a suboptimal
solution or near stationary point of Problem 1 in the following sets

1 n
FEC(RLIHRZJ’LHU/:MMZ/) = {f(X,y) = ﬁz.fl(xay> ‘ f: X X y — Ry dla'm(X) S 2RLE7
=1
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diam()) < 2Ry, f; is L-smooth, f is (44, 11y )-convex-concave },
A 1 ¢ .
fNCC(AvLaanuy) = {f(xvy) = ﬁZfl(xay) ‘ f: X x y — Ra ¢(0) _igﬁc‘gb(x) < Aa
i=1

fi is L-smooth, f is (— ., ity )-convex-concave }

We can also add a condition that each component function is (fi, p1,)-convex-concave to the
definition. This induces a more restrictive function class but will not affect our construction.
Such a definition better matches the assumptions of some upper bounds, e.g., Luo et al.
(2019).

Optimization complexity We formally define the optimization complexity as follows.

Definition 51 The optimization complexity with respect to function classes Fo(A, R, L, j1)
and Floa(A, R, L, i) is defined as

mSC(E,RQnRvavﬂxaﬂy) é inf sup T(A7 f7€)7
Acd feFcc(Ra, Ry, L, g, jty)
mECC(E,AvLaﬂmﬂy) = inf Sup T(A’ f7 8)7

Aed feJ:NCC(Asz,U‘$7H’y)

where T'(A, f,¢) is defined in Definition 13 with Fcc and Fncc replaced by Féo and Fee-

The lower bounds are listed as follows. Let k; = L/, and &, = L/, denote the condition
number if they are well-defined.

Theorem 52 Letn > 4 be a positive integer and L, jiz, j1y, Ry, Ry, € be positive parameters.
. . 2. R2

Assume additionally that kK, > ky > 2 and ¢ = O (mln {%,uyRi,uyRZ}). Then we

have

((n4/Fary) log (1/€)),  for ke, ky = Q(n),
((n+y/Ren)log (1/€)),  for ky = Q(n), Ky = O(n),

Q
mgc(€7R$7RyaL7ﬂmauy) = Q
Q(n), for Kz, ky = O(n).

The best known upper bound complexity in this case for IFO/PIFO algorithms is
O ((n + #j;@}) log(1/€)> (Luo et al., 2019). There still exists a \/n gap to our lower
bound.

Theorem 53 Let n > 2 be a positive integer and L, ji,, Ry, Ry, € be positive parameters.
Assume additionally that Ky > 2 and e = O (min {LR%, ung}). Then we have

Q(n+R, %—FRM/ %4—./11@ log (i)) . for ky = Q(n),

CC

X9 7L7 ) -
mSC(e, Ry, Ry, L, 0, 1) _ o )
Q| nt+Rey/ 4R/ 722 ) for ky = O(n).
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Theorem 54 Let n > 2 be a positive integer and L, R, Ry, < be positive parameters. As-

LRy Ry
1

sume additionally that € < . Then we have

LR,R 7
mfc(e’vaRy’L»O,(J):Q(m o (Ry +R)\/€>.

Theorem 55 Let n > 2 be a positive integer and L, ., j1y, A, € be positive parameters.

2 2
Assume additionally that €2 < 272%%, where e = min {1, 8(\@—2},’);2 Bally %0’2‘1’ } Then we
have
AL%/a
NCC
m e, A, L, g, =0 .
e ( Pz fhy) <n nriye? )

For iy > n?/90, we have

AL%/a AL fz
Q — Y =0 — mi =5,
(e S ) = (e Smin v )

With p; = L, we obtain the result in Table 2

The proofs of these theorems are similar to those of Theorems 22 to 25. We just list
some key lemmas here and omit the lengthy proofs.

When f is convex-concave, without loss of generality, we still assume pi,, < 1. The hard
instances for Theorems 52 to 54 can be directly derived previous constructions. Spe(:lally, for
the hard instances constructed in Definitions 26, 30 and 33. it suffices to replace L by L £

\/ M + 2/@ One can check that by Proposition 59 and Lemma 40, each component
functlon is L-smooth and (p, jty)-convex-concave after this replacement. Moreover, we
have L > \/%Lforn >2and L < \/%Laslongasn 24andL2/,u§ >n—2> 2.
For the hard instances constructed in the proofs of Theorems 28 and 32, there are also
corresponding lower bounds in terms of the smoothness parameter. And the hard instances
constructed in the proofs of Lemmas 29 and 35 also have L-smooth and (fig, pty)-convex-
concave component functions. As a result, the lower bounds in terms of the average smooth
parameter can be transformed into those in terms of the smooth parameter.

When f is nonconvex in x and strongly concave in y, the hard instance is constructed
as follows.

Definition 56 For fized L, fiz, jiy, A, n, we define fncsci: R™ x R™T — R as follows

flesci(xy) = M (x/B,y/Bym + 1, o, c}Y5C) | for 1 <i <,

where

" 90L’ 4512 * L 7 dnpy’
82944n3 2e?
L3«

a:mm{l iy (V3 +1>”2ﬂwﬂy}, arese - (11, oL ),

, B=2yAn/L andmz{ AL*/a J

217728n2e?
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Consider the minimax problem

1 n
min  max fy x,y) & = x (x. V). 43
omin, Tax, fReso(x,y) n;:l fResci(x,y) (43)

Define ¢\cga(x) = Maxy cgm+1 fRese(x,y)-

Then we have the following proposition, whose proof is similar to that of Proposition 50
and is omitted.

Proposition 57 For any n > 2, L/u, > 4 and e2 < %, the following properties
hold:

1. fResc, @8 L-smooth and (—py, py)-convez-concave.

2. PNosc(Om+1) — mingepm+1 Plogo(X*) < A.

8. m >2and for M =m — 1, minger,, [|Véicge(X)|ly > 9e.

The proof of Theorem 55 is similar to that of Theorem 25 and is omitted.

Appendix E. Details for Section 6

In this section, we provide the details and omitted proofs in Section 6.

E.1 The Setup

Function class We develop lower bounds for PIFO algorithms that find the suboptimal
solution or near stationary point of Problem (14) in the following four sets.

1 n

FeR L) = {160 = 1 3 i) | £:2 - R diom() < 2R
i=1

fi is L-smooth, f is p-strongly convex },

Pl L) = {700 = 1 3 £:60) | 12 5 R £(0) — jnt £ <
=1

xeX

fi is L-smooth, f is (—pu)-weakly convex },
1 n
i=1
{fi}i, is L-average smooth, f is u-strongly convex }

Feld L) = {16 = 230509 | 12 5 R £0) - inf ) < A
=1

xeX
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{fi}iu, is L-average smooth, f is (—u)-weakly convex }

For the definitions of F& and JFY, we can also add a condition that each component
function is p-strongly convex or (—pu)-weakly convex to the definitions respectively. This
induces a more restrictive function class but will not affect our construction. In fact, the
component function of the hard instances constructed in Woodworth and Srebro (2016),
Hannah et al. (2018) and Zhou and Gu (2019) is also u-strongly convex or (—pu)-weakly
convex.

Optimization complexity We formally define the optimization complexity as follows.

Definition 58 For a function f, a PIFO algorithm A and a tolerance ¢ > 0, the number

of queries needed by A to find e-suboptimal solution to the Problem (14) or the e-stationary
point of f(x) is defined as

T(A f.o)= inf {T" € N|Ef(x4,7)— minkey f(x)<e}, if f € F&(R,L,pu) U Fc(R, L, 1),
inf {T € N|E|Vf(xar)l,<e}, if f € Fc(A, L, p) UFnc(A, L, p)

where x4, 15 the point obtained by the algorithm A at time-step T'.
Furthermore, the optimization complexity with respect to these function classes are de-
fined as

(8 R L :u) = inf Sup (Aa f76)7
ACS feFa(R, L)

mC(e,R,L,p) £ inf sup  T(A, f,e).
AES feFo(R,Lyp)

( A,L,p) & inf sup T(A, f,e),
AT FeFLo(A L)

NC(e, A, L,pu) & inf sup T(A, f,e).
AET feFnc(ALp)
E.2 More Properties of the Hard Instances

In this subsection, we present more properties of the hard instance {r;}"; constructed in
Section 6.1. First, We can determine the smoothness and strong convexity parameters of
as follows.

Proposition 59 Suppose that 0 < w, < V2 and ¢; > 0.

1. Convex case. For ca =0, we have that r; is (2n+c1)-smooth and c; -strongly-convet,
and {r;}?_, is L'-average smooth where

4
L' = \/n [(n+c1)? +n?] + .

2. Non-convex case. Forc; =0, we have that r; is (2n-+180cz)-smooth and [—45(+/3—
1)ca]-weakly-convez, and {r;}?_, is 4\/n + 4050c3-average smooth.
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The proof of Proposition 59 is given in Appendix E.7.

Recall the subspaces {F}}}", which are defined as

_ Jspan{e;, ez, - ey}, for 1 <k <m,
"7 ) {0y, for k = 0.

When we apply a PIFO algorithm A to solve the Problem (15), Lemma 37 implies that
x; = 0 will hold until algorithm A draws the component r; or calls the FO. Then for any
t < Ty = mindt: i =1ora =1}, we have x, € Fy while xp, € F; holds. The value of
T can be regarded as the smallest integer such that xp, € F; \ Foy could hold. Similarly,
for Ty <t < Ty = ming{t > T : iy = 2 or a; = 1}, there holds x; € F; while we can ensure
that X1, € Fa.

We can define T}, to be the smallest integer such that xp, € Fj \ Fr_1 could hold.

We give the formal definition of T}, recursively and connect it to geometrically distributed
random variables in the following corollary.

Corollary 60 Assume we employ a PIFO algorithm A to solve the Problem (15). Let

To=0, and T, = mtin{t it >Tg_1,it =k (mod n) orap =1} for k> 1. (44)

Then we have
Xy € Frp—1, fort<Tp,k>1.

Moreover, the random variables {Y}; }i>1 such that Yy, £ Ty, — Th_1 are mutual independent
and Yy, follows a geometric distribution with success probability py + q — prrq where k' € [n]

satisfies k' = k (mod n).

The proof of Corollary 60 is similar to that of Corollary 16. The basic idea of our analysis
is that we guarantee that the minimizer of r does not lie in Fj, for k& < m and assure that
the PIFO algorithm extends the space of span{xg, X1, ...,x;} slowly with ¢ increasing. We
know that span{xg,x1,...,x7,} € Fr_1 by Corollary 60. Hence, T}, is just the quantity
that measures how span{xg, X1, ..., x;} expands. Note that T} can be written as the sum of
geometrically distributed random variables. Recalling Lemma 10, we can obtain how many
PIFO calls we need.

Lemma 61 Let H.(x) be a criterion of measuring how x is close to solution to Prob-

Zem (15). If M satisfies 1 < M < m, mingexnr,, Hr(x) > 9¢ and N = ZEJI\{L})), then we
ave

inEH, >
min r(x¢) > €

Remark 62 If r(x) is convex in x, we set H.(x) = r(x) — minkex r(x). If r(x) is non-
convez, we set Hy(x) = ||Vr(x)]], .

The proof of Lemma 61 is similar to that of Lemma 17.
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E.3 Main Results

In this subsection, we present the formal statements of the lower bounds in Tables 3 and 4.

E.3.1 SMooTH CASES

We first focus on the smooth cases, i.e., the results in Table 3. When p # 0, the conditon
number is denoted by k = L/p.
When f is strongly-convex, we have the following result.

Theorem 63 Let n > 2 be a positive integer and L, u, R, e be positive parameters. Assume
additionally that k = L/p > 2 and ¢ < LR?/4. Then we have

Q((n++/rn)log (1/¢)), for k= Q(n),

*C 7R7L> =
m,. (e 14) {Q (n + (m) log (1/6)) ,  for k=0(n).

From the analysis in Appendix E.4, our construction only requires the dimension to be
O(1 + y/r/nlog(1/¢)), which is much smaller than O(kn/e) in Woodworth and Srebro
(2016).

Next, we give the lower bound when the objective function is not strongly convex.

Theorem 64 Let n > 2 be a positive integer and L, R, be positive parameters. Assume
additionally that ¢ < LR?/4. Then we have

ml(e, R, L,0) = Q (n—i—R\/m)

From Appendix E.5, our construction requires the dimension to be O(1+ R+/L/(ne)), which
is much smaller than O(L2R*/£?) in Woodworth and Srebro (2016).
Finally, we give the lower bound when the objective function is non-convex.

Theorem 65 Letn > 2 be a positive integer and L, i, A, € be positive parameters. Assume

additionally that % < 81A62§n’ where o = min {1, %, %}. Then we have

AL
mlC(e, A L) =Q (n + \/&>

£2

For n > 180, we have

Q<n+A€;/a> :Q<n+?2min{l},\/m}>.

From the analysis in Appendix E.6, our construction only requires the dimension to be
O <1 + E% min{L/n, \/,uL/n}), which is much smaller than O (E% min{L, v/nuL}) in Zhou
and Gu (2019).
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E.3.2 AVERAGE SMOOTH CASE

Then we give the results for the average smooth cases, i.e., the results in Table 4. When
w # 0, the condition number is still denoted by x = L/ .
When f is strongly convex, we have the following result.

Theorem 66 Let n > 4 be a positive integer and L, u, R, € be positive parameters. Assume
additionally that k = L/p > 2 and ¢ < LR%/4. Then we have

Q ((n+n3/*/k) log (1/2)) , for k = Q(y/n),

Ce,R, L, p) =
m- (e 1) {Q (n—i— (W) log(l/s)), for k = O(y/n).

From the analysis in Appendix E.4, our construction only requires the dimension to be
O(1 4 /r/Vnlog(1/¢)), which is much smaller than O(n + n/*\/rlog(1/¢)) in Zhou and
Gu (2019).

The next theorem gives the lower bound when f is only convex.

Theorem 67 Let n > 2 be a positive integer and L, R,e be positive parameters. Assume
additionally that e < LR?/4. Then we have

mC(e, R, L,0) = Q (n n Rn3/4\/L/z-:)

From Appendix E.5, our construction requires the dimension to be O(1 + R\/L/(y/ne)),
which is much smaller than O(n + n*/*\/L/¢) in Zhou and Gu (2019).

Finally, we give the lower bound when the objective function is non-convex.

Theorem 68 Letn > 2 be a positive integer and L, u, A, € be positive parameters. Assume

additionally that €% < 435456f’ where o = min {1 \[I;L‘f” V775 } Then we have

AL,/
mgNC(s, AL p) =9 <n + €2na>

For n > 270, we have

(0 S0 o+ S i {2}

From the analysis in Appendix E.6, our construction only requires the dimension to be

O <1 + 8% min{L/\/n, \/,uL/\/ﬁ}) , which is much smaller than O (E% min{\/nL, n3/*/uL})
in Zhou and Gu (2019).

E.4 Construction for the Strongly-Convex Case

The analysis of lower bound complexity for the strongly convex case depends on the following
construction.
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Definition 69 For fized L, pu, R,n such that L/p > 2, let a = W 1. We define
fsc,i : R™ = R as follows

2

fSC,i(X) = )\7’7; <X/ﬁa m, 07 T_Hv

cSC>,f0r1§i§n,

where ¢5¢ = (%,0, 1), A= Qﬁﬁi"f and B = 2R‘fn Consider the minimization

problem

min fso(x Z fsca( (45)

x€EX
where X = {x € R™ : ||x|, < R}.
With this definition, we have the following proposition.
Proposition 70 For any n > 2, m > 2, fsc; and fsc in Definition 69 satisfy:
1. fsc is L-smooth and p-strongly-convex. Thus, fsc is p-strongly-convexz.

2. The minimizer of the function fsc is

. 2R/«
x* = argmin fgc(x) = \F(ql,q2, ™7,
xeR™ a—1
where o = Lffl) +1and q= g—ﬁ Moreover, fsc(x*) = —“aij and ||x*||y < R.

3. For1 <k<m-—1, we have

2
: pR7a o
> .
(hin fso(x) —min fso(x) =
Proof

1. Just recall Proposition 59 and Lemma 40.

2. Tt is easy to check fsc(x) = § B (m,0,¢) x||3+4 |[x||3— &8 (e1, %), where £ = \/3? =
(L—p)/(2n) and ¢ = a+1 Letting V fsc(x) = 0, we have

Since % = ELJL — a24 oq = g—;i is a root of the equation z? — (Z—i— 2"">z+1 =0.

Note that (2 + 1 + 7 2"“ = %, one can check that the solution to Equations (46) is
2

xr = Bl gl g2 g™ = e 2 g™ T and feo(xt) = et

—)‘(a4 D “alif‘ Moreover, we have

4R2Oé q2 _ q2m+2 4R205 q2

*12 2
— . < . = R~
= e S 1o
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3. fxe F, 1 <k <m,then 441 =240 =--- = = 0.

Let y be the first k coordinates of x and Ay, be first k£ rows and columns of A (m,0, ().
Then we can rewrite fso(x) as fu(y) 2 fsc(x) = %yTAky —¢p(é1,y), where é; is
the first k coordinates of e;. Let V fi(y) = 0. By some calculation, the solution is

(e=1B" ¢ 1 b e g 1)
21 T ) ¢",q ¢ =4t

Aa—1) 1—g%k

Thus, minke 7, fsc(x) = mingepr fr(y) = —=7— TP and
Qi fse(x) - min fso(x)
Ma—1) 1— g%
kY e
>>Ic11y%fsc( x) — fso(x*) = 1 (1 [ i
_AMa—1) 5 144¢ pRa o
R Y e e
This completes the proof. [ |

With this hard instance, we have the following result.

Theorem 71 Consider the minimization problem (45) and € > 0. Suppose that

pR? (o —1)\2 1 L/p—1 uR?
> < — = | = e - Latahdl
n>2 ¢ 13 (a+1> and m 1 2 - + 1| log 9 +1,

where a = 4/ % + 1. In order to find x € X such that Efsc(X) — mingkey fsc(x) < €,
any PIFO algorithm A needs at least N queries to PIFO, where

N = & (n—l_\/%)log(%))’ fOT%Z%_Fl’
& ”WWWM%)) for2 <& <841

2

“}?Ha. Since a > 1, we have “TRQ <A < pR?. Let M = Llogg(ﬁ)‘;/f)} then

Proof Let A =
we have minkexnr,, fsc(x) — mingex fsc(x) > APPM > 9e, where the first inequality is
according to the third property of Proposition 70.

By Lemma 61, if 1 < M < m and N = E%i??, we have that min<y Efsc(x¢) —
mingey fsc(x) > € holds. Thus, in order to find X € & such that E fgo(X)—mingex fsc(x) <
€, A needs at least N queries.

We estimate —log(q) and N in two cases.

1. If L/u > n/2+ 1, then a = /2 M+1 > /2. Observe that function h(8) =

s increasing when § > 1. Thus, we have

log(g ) o2
1 1 a 1 L/ip—1
oa(a) 1og< ) 23 + h(V2) 2‘/27n +1+h(V2)
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> \f <\/2L//J;_1+1) +h(V2)
and

V= %:2? N 4(lico) Qloi(ligg/f)J " 1) = 8(11%) <_10g1(q)> log (9Ae>

n 1 /L/ju—1 /2 uR? nlL 1
> S(1-tco) <2\/ - +4+h(\/§)> log <1€ =0 ((n—l—ﬁ) log <€>> .

2. If2<L/u < n/2+ 1, then we have

N o ol/i=l g
—log(q) = log (0:1) = log <1 + “) =log |1+ 2/“7—11_
< log (1 - m> < log (W) < log (W) , (47)

where the first inequality and second inequality follow from L/u — 1 < n/2 and the

last inequality is according to ﬁ < % for x > 2.

Note that n > 2, thus -5 <2 < ﬁ, and hence n > L/u, i.e. log(nu/L) > 0.
Therefore,
M+1 1 2 1
s st ) ()
4(1+co) — 8(1+co) \ log(q) 18¢ 1+ log(nu/L) €

Recalling that we assume that ¢? > ;g@ > QA—E, thus we have

n 1 n

N Sira (‘bg(q)) e <9A> > Siva) (‘bgl(q)) (=2108l0) = g1 oy

Therefore, N = 2 (n + (m) log (%))
log(9e/A)

At last, we must ensure that 1 < M < m, that is 1 < og g < m. Note that
limg_, 400 h(B) = 0, so —1/log(q) < /2. Thus the above conditions are satisfied when

m = {WJJﬂgi( QL/‘;_l+1>10g<’$2>+1:(9<\/510g<i>>,

€ 1 a712
andzﬁg(m)- n

For the average smooth case, the hard instance can be directly derived from Definition 69.
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Definition 72 For fized L, i, R,n such that L/pn > 2, consider { fsc}i—q, fsc and Prob-
. L. . = (L2 — 12
lem (45) defined in Definition 69 with L replaced by L = % — .

The following proposition ensures the hard instance is L-average smooth and gives the
relationship between the smoothness parameter and the average smoothness parameter.

Proposition 73 Consider {fsci}l', and fsc defined in Definition 72. For n > 4 and
K= % > 2, we have that

1. fsc(x) is p-strongly-conver and { fsci}i_, is L-average smooth.
2. PL<L<\/ELandi=1L>2
Proof

1. It is easy to check that fgc(x) is p-strongly-convex. By Proposition 59 and Lemma 40,
{fsc,i}iq is L-average smooth, where

~ ~ 2 ~
. L—pu |4 L 2 2 2(L2 + p2
joLopdynl/ptnl +<~ n >:\/< 1) e
2n \\n\ Ljp—1 L/p—1 n

2. Clearly, L = M —p2< /L.
Furthermore, according to x > 2 and n > 4, we have

EQ—%LQZ%LQ—gﬁ—uQ: 2(%2—@—1)>M2<ﬁ_1)20.

- [ < aL
and/@—EZWZ/@zZ
This completes the proof. |

Recalling Theorem 71, we have the following result.

Theorem 74 Consider the minimization problem (45) and € > 0. Suppose that Kk =
2 =

L/ipw>2,n>4 ¢ < %(g—_ﬂ) and m = p (\/2%_1—4—1) log(’gf)J + 1 where

o=/ % +1, and L = M — u2, In order to find x € X such that Efsc(x) —
mingex fsc(x) < g, any PIFO algorithm A needs at least N queries to PIFO, where

_ {Q ((n+n3/4\/ﬁ) log (1/¢)) , for k = Q(y/n),
0 (n + (m) log (1/5)) . for k= O(Vn).

For larger e, we can apply the following Lemma.

Lemma 75 For any L,u,n,R,e such that n > 2 and ¢ < LR?/4, there exist n func-
tions {f;i : R — R}, such that fi(x) is L-smooth, {fi}?_, is L-average smooth and
f(@) = L3 fi(x) is p-strongly-convex. In order to find |#] < R such that Ef(3) —

min, <g f(z) <&, PIFO algorithm A needs at least N = )(n) queries.
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Proof Consider the following functions {Gsc i }1<i<n, Gsc : R — R, where

Gsc,i(z) = Z2? —nLRz, fori=1,

Gsci(z) = -7, fori=2,3,...,n

and Ggc(x) = %Z?:l Gsc,i(z) = %1‘2 — LRz. Note that {Gsc,;}; is L smooth and
p-strongly-convex for any p < L. Observe that 2* = argmin, g Gsc(z) = R, Gsc(0) —
Gsc(z*) = LTRZ and |2*| = R. Thus 2" = arg min, < Gsc().

dGscal)) s = 0 and proxg;,, (0) = 0. Thus z; = 0 will hold till our

first-order method A draws the component Ggsc 1. That is, for t <T = argmin{t : i, = 1},
we have z; = 0.

For i > 1, we have

Hence, for t < p , we have

1 1 LR2
EGsc(2t)—Gsc(z*) > E |:GSC($t)_GSC(x*)‘2pl < T} P [2191 < T] — P [2191 < T} :

Note that T follows a geometric distribution with success probability p; < 1/n, and

P [T> 21] =P [T> {1H :(1—p1)LﬁJ > (1_p1)ﬁ >(1—1/n)"? > =

D1 2p1

where the second inequality follows from h(z) = w

Thus, for t < ﬁ, we have EGgc(z) — Gso(z*) > LR2 > ¢. Thus, in order to find
|Z] < R such that EGsc (%) — Gsc(z*) < e, A needs at least >n/2=Q(n) queries. W

is a decreasing function.

Proof [Proof of Theorem 63| It remains to explain that the lower bound in Lemma 75 is

2
the same as the lower bound in Theorem 71 for ¢ > “1—1;2 (a—*l> . Suppose that R2 >

a+1
1 [a—1 2 [o k—1 L
78(044»1) , O = QT—FlaHdH:ﬁ

1. If K > n/2 + 1, then we have a > V2 and

(n+M)log(1§> (mm)log( “)

1
4 (n +/kn) —om) + ~ 4/kn
a1 1= V2/2)a
4
< O(n) + 51 = 0O(n),

where the second inequality follows from log(1l 4+ x) < x and the last inequality is
according to a > \/2k/n. Then we have Q(n) = Q ((n + /kn)log (1)) .
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2. If2<L/pu < n/2+1, then we have

<1 T (10g?nu/L))+> g (f) : <1 T <1ong/L>>+> <2 o <a

n @v2-bn\\ _ 0
S<1+(log(W/L))+> (210g< Lip >>_O( :

a+1
—1

)

where the second inequality is by applying (47). As a consequence, we have Q(n) =

(s los (1) +n)

This completes the proof.
The proof of Theorem 66 is similar to that of Theorem 63.

E.5 Construction for the Convex Case

The analysis of lower bound complexity for the convex case depends on the following con-

struction.

Definition 76 For fized L, R,n, we define fc; : R™ — R as follows

fC,z‘(X) = )\ri (X/B;m707 17CC) ) fOT’ 1 S l S n,

where c® = (0,0,1), X\ = % and B = % Consider the minimization problem
min fo(x Z fou( (48)

where X = {x € R™ : ||x|, < R}.

Then we have the following proposition.

Proposition 77 For any n > 2, m > 2, the following properties hold:
1. fc, is L-smooth and convex. Thus, fc is conved.

2. The minimizer of the function fc is

2
x* = argmin fo(x) = % (m,m—1,...,1)",
xER™ L
here § = Y3 _EL__ ) = =" 4nd <
where § = %5 i1z Moreover, fo(x*) = =75 and ||x*[|, < R.

3. For1 <k <m, we have

min_ fo(x) — min fo(x) =

k
XEXNFy xEX nL (m )

Proof
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1. Just recall Proposition 59 and Lemma 40.

2. Tt is easy to check fo(x) = & [|B(m, 1)x||2 — & (1, %), where £ = Y2 —BL__ Let

(m+1)3/2n
V fc(x) = 0, that is %A(m,(), 1)x = % e1. One can check that the solution is x* =
2§(m m—1,...,1)7, and fo(x*) = —TS;. Moreover, we have
. A€ m(m +1)(2m +1) _ 4€2 2
3. The second property implies mingex fo(x) = —";—55. Following some similar calcula-
tions to the above proof, we have arg min,c ynz, fo(x) = QL—'S(k‘, k—1,...,1,0,...,0)7,
. 2 . . 2
and minkexnr, fo(x) = —%. Thus mingexnr, fo(x) — mingey fo(x) = SLL (m k).
This completes the proof. |

Next, we show the lower bound for functions fc; defined above.

Theorem 78 Consider the minimization problem (48) and € > 0. Suppose that

So e BL 0B
=5 E=agm M AN 2ne

In order to find X € X such that Efc(X) —mingey fo(x) < €, any PIFO algorithm A needs
at least N queries to PIFO, where N = (n+R\/nL/5).

Proof Since € < we have m > 3. Let £ = For M = Lm—J > 1, we have

384 ’ ( +1)3/2 2
m—M > (m+1)/2, and
, £2 3R’°L m—M _ 3R’L 1
min  fo(x) — min fo(x) = =—=(m — M) = > > 9e,

xE€XNFs xEX nL dn (m+1)3~ 8 (m+1)2

where the first equation is according to the 3rd property in Proposition 77 and the last
inequality follows from m + 1 < Ry/L/(24ne).

Similar to the proof of Theorem 71, we have mini<y E fc(x¢) — mingex fc(x) > € by
Lemma 61. In other words, in order to find x € X such that Efc(x) — mingey fo(x) < g,
A needs at least N queries.

At last, observe that

— 2
N:(M—H)n: n m+1 2n(m 1) > P RL_2 —o(nsr nL ’
4(14co)  4(14co) | 2 8 8 24ne €

where we have recalled ¢ < £

3 4 in last equation. |

The hard instance for the average smooth case can be derived from Definition 76.

Definition 79 For fized L, R,n, consider { fc;}—, and fc defined in Definition 76 with L
replaced by \/gL.
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It follows from Proposition 59 and Lemma 40 that fc is convex and {fc;}-, is L-average
smooth. By Theorem 78, we have the following conclusion.

Theorem 80 Consider the minimization problem (48) and € > 0. Suppose that

2 R’L V1 [L
n > 2, 5§£R— and m = —SRnfl/‘l — | —1.
768 /n 12 €

In order to find x € X such that E fc(X) —mingex fo(X) < €, any PIFO algorithm A needs
at least N queries to PIFO, where N = (n + Rn3/4\/§>.

Proof [Proof of Theorem 64] To derive Theorem 64, it remains to consider the case

e > ‘7/35\%. By Lemma 75, there exist n functions {f; : R — R} such that f;(x)
is L-smooth and f(z) = 23", fi(z) is convex. In order to find |#| < R such that

Ef(#) — ming<g f(z) < &, PIFO algorithm A needs at least N = (n) queries. Since

€ > ‘7/6581%\%, Qn) =Q (n +R "5L> This completes the proof. [ |

The proof of Theorem 67 is similar to that of Theorem 64.

E.6 Construction for the Nonconvex Case

The analysis of lower bound complexity for the nonconvex case depends on the following
construction.

Definition 81 For fived L, 1, A,n, we define fxc,i: R™™ — R as follows
fnci(x) = Ay (x/B;m + 1, ¥/a,0,eN9), for 1 <i<n,

where

1
a:min{l,w,&)}, "¢ = (0,0, Va),

2
m_{AL\/aJ’)\_B%Sna and 8 — /3L

40824ne? La3/?

Consider the minimization problem

xeRm+1

min | fre(x) £ - freix). (49)
=1

Then we have the following proposition.

2 < ALx

Proposition 82 For any n > 2 and e* < g5::3-,

the following properties hold:
1. fnc,i is L-smooth and (—p)-weakly-convex. Thus, fnc is (—p)-weakly-convez.

2. ch(O) — MiNycgm+1 ch(X) < A.
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3. m>2 and for M =m — 1, minger,, |V fnc(x)|ly > 9e.
Proof

1. By Proposition 59 and Lemma 40, fnc,; is (—/1)-weakly convex and l-smooth where

_ 45(v/3 — 1)a _ 45(v/3 — l)La - 45(v/3 = 1)L (V3 + 1)npu _

l

! 32 3n 3n 30L K
(2n+180a)A L

b= S = (20 + 1800) < L.

Thus each f; is L-smooth and (—u)-weakly convex.

2. By Proposition 43, we know that

1944ne®  38880ne?
fxe(0) = min | fro(x) < A(Va/2+10am) = ne” ne”
xER™

1944 38880
< = A.
- 40824A + 40824A A
ALQ\/E AL%«

3. Since a < 1, we have 7 and consequently m > 2. By Proposition 43,

we know that

40824ne? — 40824ne

/4N /4N AL o34
min ||V x)||, 2> = =4/ ——— =0e.
This completes the proof. |

Next we prove Theorem 65.
Proof [Proof of Theorem 65] By Lemma 61 and the third property of Proposition 82, in
order to find x € R™"! such that E ||V fnc(X)|l, < &, PIFO algorithm A needs at least

N queries, where N = 4({1}:1@0) = Q(A@/&) Since €2 < Sﬁiﬁgn and o < 1, we have
Q(44%) —a(n+ 242, n

The analysis of lower bound complexity for the non-convex case under the average
smooth assumption depends on the following construction.

Definition 83 For fized L, 1, A,n, we define fxci: R™™ — R as follows
fNC,i(X) = )‘Ti (X//Bam + 17 %70a6NC) ) fOT 1<i< n,

) 8(VBH D)V [n | no
a:mln{l,m, 570 (0 C :(O,oz,\/a),

ALVa 20736./n<>
— RS = = 4 L-
" {217728\/7154 A= T mdB=ayAvn/

Consider the minimization problem

where

x€Rm+1

min | Frc() 2 3" ). (50)
=1
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Then we have the following proposition.

ALa

ais67m the following properties hold:

Proposition 84 For any n > 2 and e? <

1. fxci is (—p)-weakly-convex and { fxci )t is L-average smooth. Thus, fxc is (—u)-
weakly-conve.

2. fnc(0) — mingepm+1 fno(x) < A.
3. m>2 and for M =m — 1, minger,, ||V fnc(x)|ly > 9e.
Proof

1. By Proposition 59 and Lemma 40, fxc,; is (—l1)-weakly convex and {fnc;}™, is
lo-average smooth where

45(v3 — DaX  45(V/3 - 1)L/ - 45(v3 — 1)L’ 8(v/3 + 1)y/npu _

l = =

! 2 16y/n = 16yn 451 H
AU ,

lg =4v/n+ 4050042@ = 4\/ﬁx/n + 405002 < L.

2. By Proposition 43, we know that

) 10368y/ne?  207360+/ne?
Inc(0) — min fne(x) < AMVa/2 + 10am) = v + v m
xeR™

L'« L'y«
1 2
< 0368 At 07360A _A
217728 217728

AL \/a AL«
217728/ne? = 217728,/ne?

3. Since a < 1, we have and consequently m > 2. By Proposition

43, we know that

' v - 043/4)\ a3/4)\ A\ Oc3/4
min X = = = Oe.
2 WWine®ll 2 =5~ = AT = o 16
This completes the proof. |

Next we prove Theorem 68.
Proof [Proof of Theorem 68] By Lemma 61 and the third property of Proposition 84, in
order to find * € R™*! such that E ||V fnc(X)|l, < &, PIFO algorithm A needs at least

N queries , where N = 350 = € (ALE‘Q/TH> . Since €2 < %Eﬁ% and a < 1, we have
0 (A1) _ g (s + 21/ .
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E.7 Proofs of Proposition 59 and Lemma 37
We use ||A| to denote the spectral radius of A. Recall that b, | is the I-th row of B,

G(x) = mi:f I'(x;) and

L;i={l:0<1<m,l=i—1(modn)},i=1,2,...,n.

For simplicity, we omit the parameters of B, b; and r;.

For 1 <i < n, let B; be the submatrix whose rows are {blT Then r; can be written

}leﬁi‘
as

ri(x) = 5 IBix|3 + 5 13 + e2G(x) — eam (e1,%) L.
Proof [Proof of Proposition 59|
1. For the convex case,
ri(x) = 5 IBix[3 + 5 1] — esn (er,x) Ly,
Obviously, r; is ¢j-strongly convex. Note that

(w,B/Bu) = Bl = 3 (b u)’
leL;

= > (w—wp)’ Pl ey + Culliner,y < 2]l
leﬁi\{07m}

where the last inequality is according to (z + y)? < 2(2? 4+ ¢?), and [} — ls| > n > 2
for ly,1l3 € L;. Hence, B;—BiH < 2, and

|V2ri(x) || = HnBiTBi —l—cJH <2n+ c1.

Next, observe that

2
[Vri(x1) = Vrixo)ll3 = || (BT Bi + erl) (x1 = x2) |

Let u = x1 — x9. Note that

(ul — uH_l)(el - el+1), 0<!l<m,
bb/ u = { wue, 1=0,

CQumem, =m.
Thus,
- 2
H(nBi B; + clI)uH2
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2

=lln > (w—w)(er — eryr) + nwuiljger,y +nCul Limes,) + c1u

leL\{0,m} 2
= Y [(nlw —war) + crw)?® + (—n(u — wyr) + cruge)?]
leL£\{0,m}
+ (nw? + 1) Loy + (0GP + )l Mimery + Y uf
1-1,1¢L;
I#0,m

<2[(m+e)?+n] | D (uf +uiy) + uilpoes,y + unlimesy | + i ul3,
lGﬁi\{O,m}

where we have used (2n + ¢1)? < 2 [(n + ¢1)? + n?].

Therefore, we have

1 n
- D IVri(x1) = Vri(x2)|l3
i=1
1 m
<= Al te)? +n’]uf +
=0
4 2 2
< [+ e + 07 ] [ul; + e [full;,

In summary, we get that {r;}" , is L’-average smooth, where

4
L' = \/ [(n+c1)?+n? +
n
2. The results of the non-convex case follow from the above proof, Proposition 43 and
the inequality (a + b)? < 2(a® + b?).

This completes the proof. |

Proof [Proof of Lemma 37]
1. For the convex case,
n 2, G 2
i) = 5 B2+ Sl — e (en, %) 1y
Recall that

(1 — 1) (e —epy1), 0<1<m,
bleTX = wz.rlel, = 0,

Cxpmem, {=m.
For x € Fy, we have x = 0, and

Vri(x) = csne; € Fi,
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Vrj(x) =0 (j > 2).

For x € Fi, (1 <k < m), we have

Fr, 14K,
bb, x € {f: o fk
+1 — .

Moreover, we suppose k € L;. Since

Vr;(x) = nBjTBjx +e1x —egne L)

=n Z bleTX +cx — 03ne1]l{j:1},
leﬁj

it follows that Vr;(x) € Fr41 and Vrj(x) € Fi (J # 1).

Now, we turn to consider u = prox;, (x). We have

1 1
(nBjTBj + <01 + ) I) u = c3neq ]l{jzl} + ;x,

Y
ie.,
u= dl (I + dQB;rBj)_ly,
where d; = 61+11/v’ dy = 614?1/7’ and y = cgnejlyj_y + %x.
Note that

1 -1
(I+dB/B;) ' =I-B] (d21 + BjB;F> B;.

If k=0and j > 1, we have y =0 and u = 0.
If k=0 and j =1, we have y = cgne;. Since w =0, Bye; =0, so u= 1y € Fi.
For k > 1, we know that y € F;. And observe that if |l — I'| > 2, then blTbl/ =0,

and consequently BijT is a diagonal matrix, so we can assume that él + BijT =
diag(Bj1, .. - ’Bj:\ﬁjl)‘ Therefore,

1£5]
u=diy—di Y _Bjsby by,
s=1
where we assume that £; = {l;1,...,0c,}-

Thus, we have prox;;(x) € Fpy1 for k € L; and prox/, (x) € Fi, (j # 1)

2. For the non-convex case,

n
ri(x) = 5 HBijg + caG(x) — c3n (e1,x) Ly

79



HAN, XIE AND ZHANG

Let I(z) be the derivative of I'(z). First note that I'(0) = 0, so if x € Fj, then

VG(x) = (T'(21), T (x2), ..., T (z;m1),0) " € Fi.

For x € Fp, we have x = 0, and
Vri(x) = csne; € Fq,
Vri(x) =0 (5 > 2).
For x € Fj, (1 < k < m), recall that

(21 —2141) (&1 —e31), 0<l<m,
bb/ x = { wlzie, 1=0,

Cxpem, [ =m.
Suppose k € L;. Since

Vrj(x) = nB;-rBjx + c2VGE(x) — caneq Lyj—1y

=n Z blblTX +2VG(x) — canerlyj—y,
lEﬁj

it follows that Vr;(x) € Fr41 and Vrj(x) € Fi (j # 1).

Now, we turn to consider u = prox;; (x). We have
1
Vrj(u) + ;(U -x) =0,

that is
1
n Z bbb/ + =1 | u+VG) =y,
lEl:j v

where y = cgneily—y + %x. Since v < *égz;l, we have the following claims.

(a) fO<l<m—1and! € Lj, we have

1 uf(u — 1)
n(u — up1) + ;Ul + 12062W =Y
1 ufy (U —ll) 5D
(w1 —w) + —wp1 + 12002H1—2 = Yl41-
v L4 ujy4

By Lemma 45, y; = y;1 = 0 implies u; = u;41 = 0.
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(b) If m —1 € Lj, we have

1 w2 (g — 1
N (tm—1 = Um) + —Um—1 + 120cg— il m ) _ Y1
Y 14+wur,
" (52)

(U — Um—1) + ;um = Ym.

If ym—1 = ym = 0, we obtain

142 2 -1
Stem Um—1 + 120c2 umfl(qu ! ) =0
(243) =3
n—+— | Uy — —Up-1=0.
Y Y
By Lemma 44, uy,—1 = uy = 0.
(c) If m € L;, we have
1
nCupy, + ;um = Ym- (53)
Ym = 0 implies u,, = 0.
(d) Ifl>0and [ — 1,1 ¢ L;, we have
1 u?(u; — 1)
= 120c; ————21 =y 54
s+ 1206, g Loem = (54)

By Lemma 44, y; = 0 implies u; = 0.

For x € Fy and j = 1, we have x = 0 and y = nw?e;. Since n > 2, we have 1 ¢ L.
If 2 € L1, we can consider the solution to Equations (51), (52) or (53) and conclude
that ug = 0. If 2 ¢ £, we can consider the solution to Equation (54) and conclude
that ug = 0. Similarly, we can obtain u; = 0 for [ > 2, which implies u € Fj.

For x € Fypand j > 1, we have y = 0 and 0 ¢ £;. If 1 € £;, we can consider
the solution to Equations (51) or (52) and conclude that u; = 0. If 1 ¢ £, we can
consider the solution to Equation (54) and conclude that u; = 0. Similarly, we can
obtain u; = 0 for all [, which implies u = 0 € Fy.

For k > 1, we know that y € Fj. Suppose k € L;.

If j =i, we have k +1 ¢ L;. If K = m — 1, clearly we have u € Fiy;. Now we
suppose k < m — 1. If k+ 2 € L;, we can consider the solution to Equations (51),
(52) or (53) and conclude that ugio = 0. If £k + 2 ¢ £, we can consider the solution
to Equation (54) and conclude that ugio = 0. Similarly, we can obtain u; = 0 for
[ > k + 2, which implies u € Fj4;.

If j # 4, wehave k ¢ L;. If k+1 € L;, we can consider the solution to Equations (51),
(52) or (53) and conclude that ugyq = 0. If k+ 1 ¢ L, we can consider the solution
to Equation (54) and conclude that ugy; = 0. Similarly, we can obtain u; = 0 for
[ > k 4+ 1, which implies u € Fy.

This completes the proof. |
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