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Abstract

Kernel survival analysis models estimate individual survival distributions with the help
of a kernel function, which measures the similarity between any two data points. Such
a kernel function can be learned using deep kernel survival models. In this paper, we
present a new deep kernel survival model called a survival kernet, which scales to large
datasets in a manner that is amenable to model interpretation and also theoretical analysis.
Specifically, the training data are partitioned into clusters based on a recently developed
training set compression scheme for classification and regression called kernel netting that
we extend to the survival analysis setting. At test time, each data point is represented
as a weighted combination of these clusters, and each such cluster can be visualized. For
a special case of survival kernets, we establish a finite-sample error bound on predicted
survival distributions that is, up to a log factor, optimal. Whereas scalability at test time
is achieved using the aforementioned kernel netting compression strategy, scalability during
training is achieved by a warm-start procedure based on tree ensembles such as xgboost
and a heuristic approach to accelerating neural architecture search. On four standard
survival analysis datasets of varying sizes (up to roughly 3 million data points), we show
that survival kernets are highly competitive compared to various baselines tested in terms
of time-dependent concordance index. Our code is available at: https://github.com/

georgehc/survival-kernets

Keywords: survival analysis, kernel methods, neural networks, scalability, interpretability

1. Introduction

Survival analysis is about modeling the amount of time that will elapse before a critical event
of interest happens. Examples of such critical events include death, hospital readmission,
disease relapse, device failure, or a convicted criminal reoffending. A key technical challenge
in survival analysis is that typically when collecting training data, we cannot wait until the
critical event happens for every training data point, such as waiting for everyone in a
clinical study to be deceased. Thus, in our training data, we observe the time duration we
aim to predict for only some but not all of the data points. This is in contrast to standard
classification and regression problem settings in which the target label to be predicted is
observed across all training data. Importantly, the data points that do not encounter the
critical event could still provide valuable information and should not simply be discarded
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from the data analysis. For instance, they may have specific characteristics that significantly
delay when the critical event will happen.

In the last few decades, survival analysis datasets have dramatically grown in size, from
hundreds of data points (e.g., the German Breast Cancer Study Group dataset (Schumacher
et al., 1994)) to now millions (e.g., customer churn data from the music streaming service
kkbox1). We anticipate that in the years to come, survival analysis datasets larger than
ones typically encountered today will become the norm. Meanwhile, we remark that many
survival analysis problems are in high-stakes application domains such as healthcare. For
such applications, it can be helpful for the survival analysis models used to be interpretable.
With these large-scale high-stakes applications in mind, in this paper, we propose a new
deep survival analysis model called a survival kernet that has all of the following properties:

• flexible (model is nonlinear and nonparametric, and achieves concordance indices
nearly as high as or higher than the best baselines tested in our experiments)

• scalable (uses a compression technique to construct a test-time predictor that can
handle large datasets such as the kkbox dataset; also uses a scalable neural net
warm-start initialization strategy)

• interpretable (any data point is represented by a weighted combination of a few clus-
ters, each of which can be visualized—this is somewhat like how topic modeling for
text describes each text document in terms of a few topics, each of which can be
visualized)

• for a special case of the model, comes with a theoretical guarantee on prediction
accuracy (a finite-sample error bound for predicted survival distributions)

In contrast, existing deep survival analysis models that have been developed typically are
not easily interpretable (e.g., Ranganath et al. 2016; Fotso 2018; Chapfuwa et al. 2018;
Giunchiglia et al. 2018; Katzman et al. 2018; Lee et al. 2018; Kvamme et al. 2019; Engelhard
et al. 2020; Zhong et al. 2021; Danks and Yau 2022; Tang et al. 2022). Instead, to get a
deep survival analysis model to be interpretable, Zhong et al. (2022), for instance, model a
subset of features by a linear model (that is straightforward to interpret) and then model the
rest of the features by an arbitrarily complex neural net that they do not aim to interpret.
While this sort of interpretability could be valuable, it does not resolve the difficulty of
interpreting the part of the model that actually uses the neural net. Meanwhile, Chapfuwa
et al. (2020), Nagpal et al. (2021), and Manduchi et al. (2022) have developed deep survival
models that are interpretable in the sense of representing data points in terms of clusters,
but none of these models have accuracy guarantees. Somewhat like using clustering, neural
survival topic models by Li et al. (2020) represents data in terms of “topics”, where each
topic corresponds to specific raw features being more probable and also to either higher or
lower survival times; these models again lack accuracy guarantees. We are aware of only
two existing deep survival analysis models that have accuracy guarantees (Zhong et al.,
2021, 2022), both of which have only been tested on small datasets (the largest real dataset
these authors consider has about two thousand data points) and the theoretical analyses
for these models are limited to a special family of neural nets (involving `0 and sup-norm
constraints) that are not used in practice. We summarize how our proposed survival kernet

1. https://www.kaggle.com/c/kkbox-churn-prediction-challenge
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Table 1.1: Comparison of the proposed survival kernet model with some representative
existing survival models.

Model Nonlinear
No proportional Designed to be Accuracy Comment on

hazards assumption interpretable∗ guarantee† computational scalability‡

Cox (Cox, 1972) 7 7 3 3 SGD

XGBoost (Chen and Guestrin, 2016) 3 7 § 7 7 various optimizations

DeepSurv (Katzman et al., 2018) 3 7 7 7 SGD

DeepHit (Lee et al., 2018) 3 3 7 7 SGD

Nnet-survival (Gensheimer and Narasimhan, 2019) 3 3 7 7 SGD

Cox-time (Kvamme et al., 2019) 3 3 7 7 SGD

Deep Extended Hazard (Zhong et al., 2021) 3 3 ¶ 7 3 SGD

SODEN (Tang et al., 2022) 3 3 7 7 SGD

Neural survival topic models (Li et al., 2020) 3 3 3 7 SGD

Deep Cox mixtures (Nagpal et al., 2021) 3 3 3 7
uses spline fitting procedure with

computation linear in training set size‖

Deep kernel survival analysis (Chen, 2020) 3 3 3 7
SGD but prediction for single point uses
computation linear in training set size

Survival kernets (proposed) 3 3 3 3
SGD + tunable test-time compression

+ scalable warm-start

∗ For models designed to be interpretable, the notion of interpretability varies (the Cox model is linear, neural
survival topic models decompose into a topic model and a survival model that each can be interpreted, Deep Cox

mixtures and survival kernets represents data using clusters, and deep kernel survival analysis can explicitly indicate
which training points contribute to each prediction and what their relative weights are)

† Accuracy guarantees for the deep extended hazard model and survival kernets are for special cases of these models
‡ For some models that can be trained using (minibatch) SGD, doing so is not actually theoretically justified but is

straightforward to implement in practice
§ Specific to using Cox regression as the learning objective, which we do in our experiments

¶ The deep extended hazard model is a hybrid between a proportional hazards model and an accelerated failure time
model so that it partially uses a proportional hazards assumption (but from training, the model could automatically

decide to rely on the accelerated failure time component and not really use the proportional hazards component)
‖ Deep Cox mixtures uses an Expectation-Maximum (EM) training procedure that partly uses minibatches but

every few minibatches looks at the entire training set in computing a survival curve (as a spline) per cluster

model compares to some representative existing models in Table 1.1; note that this table is
partially based on a similar comparison table by Tang et al. (2022).

Our work builds on an existing model called deep kernel survival analysis (Chen, 2020).
Unlike non-kernel-based deep survival models that have been developed, deep kernel survival
analysis and a Bayesian variant by Wu et al. (2021) learn a kernel function that measures
how similar any two data points are. To predict the survival distribution of a specific test
point, these kernel-based methods use information from training points most similar to the
test point according to the learned kernel function. The learned kernel function can help us
probe a resulting survival model. For instance, these kernel functions can provide forecast
evidence in terms of which training points contribute to a test point’s prediction. As pointed
out by Chen (2020), the kernel functions can also be used to construct statistically valid
prediction intervals that are relative (e.g., the hospital length of stay of patients similar to
Alice are within the interval [0.5, 2.5] days with probability at least 80%). Separate from
these practical advantages, a kernel-based approach is also amenable to theoretical analysis,
where we import proof techniques by Chen (2019) to analyze survival kernets.

A key obstacle to using kernel survival models in practice is that at test time, these
models in principle depend on knowing the similarity between a test point and every training
point. The computation involved in a naive implementation becomes impractical when the
training dataset size grows large. In the Bayesian setting, this scalability problem has been
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addressed but without guarantees in the survival analysis setting and also thus far without
experiments on datasets with censoring (Wu et al., 2021).

Our main technical contribution in this paper is to show how to scale deep kernel survival
analysis at test time to large datasets in a manner that not only yields an interpretable model
but also achieves a finite-sample accuracy guarantee on predicted survival distributions.
The resulting model is what we call a survival kernet. We achieve this test-time scalability
by extending an existing data compression scheme (kernel netting by Kpotufe and Verma
(2017) developed for classification and regression) to the survival analysis setting (“survival
kernet” combines “survival analysis” and “kernel netting” into a short phrase). Kernel
netting could be viewed as partitioning the training data into clusters and then representing
any data point as a weighted combination of a few clusters. We show how to visualize such
clusters using a strategy similar to that of Chapfuwa et al. (2020). We remark that Kpotufe
and Verma did not consider interpretability or how to visualize clusters in their original
kernel netting paper.

We next turn to training scalability. Here, minibatch gradient descent readily enables
fitting a deep kernel survival model to large datasets for a specific neural net architecture.
The challenge is that there could be many neural net architectures to try, making the overall
training procedure computationally expensive. Our second contribution is in proposing a
warm-start approach to deep kernel survival model training that drastically reduces the
amount of computation needed when sweeping over neural net architecture choices. Our
proposed warm-start strategy first learns a kernel function using a scalable tree ensemble
such as xgboost (Chen and Guestrin, 2016). We then fit a neural net (trying different
neural net architectures) to this learned tree ensemble kernel function before fine tuning
using survival kernet training (at which point the neural net architecture is fixed). We
call our warm-start approach tuna (Tree ensemble Under a Neural Approximation). We
remark that Chen (2020) had come up with an earlier tree ensemble initialization strategy
but it does not scale to large datasets.

We demonstrate survival kernets with and without tuna on four standard survival
analysis datasets, three of which are healthcare-related on predicting time until death (with
number of data points ranging from thousands to tens of thousands), and the fourth is the
kkbox dataset (millions of data points). Survival kernets with tuna achieve accuracy scores
nearly as high or higher than the best performing baselines that we tested. Meanwhile, using
tuna to accelerate training consistently results in higher accuracy models than not using
tuna and reduces overall training times by 17%–85% in our experiments (with time savings
that are more dramatic on larger datasets). We show how to interpret survival kernet models
trained on all four datasets we consider.

2. Background

We first review the standard right-censored survival analysis setup (model and prediction
task) and deep kernel survival analysis (Chen, 2020). For the latter, we do not address the
Bayesian formulation (e.g., Wu et al. 2021) as the machinery involved is a bit different and
our theoretical analysis later is frequentist. For ease of exposition, we phrase terminology
in terms of predicting time until death although in general, the critical event of interest
need not be death.
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Model Let (X1, Y1, D1), . . . , (Xn, Yn, Dn) denote the training data, where the i-th training
point has feature vector Xi ∈ X , observed nonnegative time duration Yi ≥ 0, and event
indicator Di ∈ {0, 1}; if Di = 1, then Yi is a time until death whereas if Di = 0, then Yi is
a time until censoring (i.e., the i-th point’s true time until death is at least Yi). Each point
(Xi, Yi, Di) is assumed to be generated i.i.d. as follows:

1. Sample feature vector Xi ∼ PX.

2. Sample nonnegative survival time Ti ∼ PT|X=Xi .

3. Sample nonnegative censoring time Ci ∼ PC|X=Xi .

4. If Ti ≤ Ci (death happens before censoring): set Yi = Ti and Di = 1.
Otherwise (death happens after censoring): set Yi = Ci and Di = 0.

Distributions PX, PT|X, and PC|X are unknown to the learning method. We assume that
the distribution PT|X=x is for a continuous random variable with CDF FT|X(t|x) and PDF

fT|X(t|x) = ∂
∂tFT|X(t|x).

Prediction task A standard prediction task is to estimate, for a test feature vector x,
the conditional survival function

S(t|x) := P(time until death > t | feature vector = x) = 1− FT|X(t|x),

which is defined for all t ≥ 0. A closely related problem is to estimate the so-called hazard
function

h(t|x) := − ∂

∂t
logS(t|x) = −

∂
∂tS(t|x)

S(t|x)
= −

∂
∂t [1− FT|X(t|x)]

S(t|x)
=
fT|X(t|x)

S(t|x)
, (2.1)

which is (from the final expression) the instantaneous rate of death at time t given survival
at least through time t for feature vector x. By how the hazard function is defined, S(t|x) =
exp(−

∫ t
0 h(s|x)ds), so estimating h(·|x) yields an estimate of S(·|x).

Kernel estimators Let K : X ×X → [0,∞) denote a kernel function that measures how
similar any two feature vectors are (a higher value means more similar). We explain how
this function can be learned shortly in a neural net framework. For now, consider it to be
pre-specified. Then we can estimate the hazard function as follows.

Hazard function estimator. Let t1 < t2 < · · · < tm denote the unique times of death in
the training data, and define t0 := 0. Then a kernel predictor for a discretized version of
the hazard function is, for time indices ` = 1, 2, . . . ,m and feature vector x ∈ X ,

ĥ(`|x) :=

∑n
j=1 K(x,Xj)Dj1{Yj = t`}∑n
j=1 K(x,Xj)1{Yj > t`−1}

, (2.2)

where 1{·} is the indicator function that is 1 when its argument is true and 0 otherwise. Note
that ĥ(`|x) estimates the probability of dying at time t` conditioned on surviving beyond
time t`−1 for feature vector x. To see this, consider when K(x,Xj) = 1 for all j, in which case
the numerator counts the total number of deaths at time t`, and the denominator counts
the total number of data points that survived beyond time t`−1; adding kernel weights that
are not necessarily always 1 weights the contribution of the j-th training point depending
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on how similar test feature vector x is to Xj . As a corner case, in evaluating equation (2.2),
if the numerator and denominator are both 0, we use the convention that 0/0 = 0.

Survival function estimator. The hazard estimate ĥ(·|x) can be used to estimate the
conditional survival function S(·|x) by taking products of empirical probabilities of surviving
from time 0 to t1, t1 to t2, and so forth up to time t:

Ŝ(t|x) :=

m∏

`=1

(
1− ĥ(`|x)

)1{t`≤t}. (2.3)

This kernel predictor is called the conditional Kaplan-Meier estimator (Beran, 1981) and
has known finite-sample error bounds (Chen, 2019). For equation (2.3), the special case
where K(x, x′) = 1 for all x, x′ ∈ X yields the classical Kaplan-Meier estimator (Kaplan
and Meier, 1958) that does not depend on feature vectors and is a population-level survival
curve estimate:

ŜKM(t) :=
m∏

`=1

(
1−

∑n
j=1Dj1{Yj = t`}∑n
j=1 1{Yj > t`−1}

)1{t`≤t}
. (2.4)

Deep kernel survival analysis To automatically learn the kernel function K, deep kernel
survival analysis (Chen, 2020) parameterizes K in terms of a base neural net φ : X → X̃
that maps a raw feature vector x to an embedding vector x̃ = φ(x) ∈ X̃ ; throughout this
paper we denote embedding vectors with tildes. We always assume that the embedding
space X̃ is a subset of Rd and that kernel function K is of the form

K(x, x′;φ) = K(ρ(x, x′;φ)), ρ(x, x′;φ) = ‖φ(x)− φ(x′)‖2, (2.5)

where K : [0,∞)→ [0,∞) is a nonincreasing function, and ‖·‖2 denotes Euclidean distance.

For example, a common choice is the Gaussian kernel K(u) = exp(− u2

2σ2 ) where σ2 is
the user-specified variance hyperparameter. Learning K or distance function ρ amount to
learning the base neural net φ. The architecture of φ is left for the user to specify, where
standard strategies can be used. For example, when working with images, we can choose φ
to be a convolutional neural net and when working with time series, φ can be a recurrent
neural net.

To prevent overfitting during training, we replace the hazard estimate ĥ(`|x) in equa-
tion (2.2) with a “leave-one-out” training version, and in terms of notation, we now also
emphasize the dependence on the base neural net φ:

ĥtrain(`|i;φ) :=

∑n
j=1 s.t. j 6=iK(Xi, Xj ;φ)Dj1{Yj = t`}∑n
j=1 s.t. j 6=iK(Xi, Xj ;φ)1{Yj > t`−1}

. (2.6)

In particular, the prediction for the i-th training point does not depend on the i-th training
point’s observed outcomes Yi and Di. Similarly, we can define a leave-one-out version
Ŝtrain(t|x;φ) of the survival function estimate Ŝ(t|x) given in equation (2.3).

As for what loss function to minimize to learn the base neural net φ (and thus the kernel
function K for use with the hazard or survival function estimators), one possibility is the
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negative log likelihood loss by Brown (1975):

LNLL(φ) :=
1

n

n∑

i=1

(
LBCE(i;φ) +

m∑

`=1
s.t. t`<Yi

log
1

1− ĥtrain(`|i;φ)

︸ ︷︷ ︸
i-th individual survives at times before Yi

)
,

where LBCE(i;φ) is the binary cross-entropy loss

LBCE(i;φ) := Di log
1

ĥtrain(κ(Yi)|i;φ)
+ (1−Di) log

1

1− ĥtrain(κ(Yi)|i;φ)
,

and κ(Yi) denotes the sorted time index (from 1, 2, . . . ,m) that time Yi corresponds to.
Minimizing LNLL via minibatch gradient descent yields the deep kernel survival analysis
approach by Chen (2020).

Chen also discussed how to incorporate the deephit ranking loss term (Lee et al., 2018),
which could be written

Lrank(φ) :=
1

n2

n∑

i=1
s.t. Di=1

∑

j 6=i
s.t. Yj>Yi

exp
( Ŝtrain(Yi|Xi;φ)− Ŝtrain(Yi|Xj ;φ)

σrank

)
,

where σrank > 0 is a hyperparameter; for simplicity, we use a normalization factor of 1/n2,
which is the same normalization factor used in the deephit implementation that is part of
the now standard pycox software package (Kvamme et al., 2019). Our experiments later
use the following overall deep kernel survival analysis (DKSA) loss term that trades off
between Brown’s loss LNLL and the ranking loss Lrank:

LDKSA(φ) := ηLNLL(φ) + (1− η)Lrank(φ), (2.7)

where η ∈ [0, 1] is another hyperparameter.
Implementation remarks. As stated, the hazard estimator (2.2) as well as the condi-

tional Kaplan-Meier estimator (2.3) are defined in terms of the unique observed times of
death. In practice, Chen (2020) observed that discretizing time into time steps of equal
size can sometimes yield more accurate survival predictions. This discretization acts as a
form of regularization since we are essentially smoothing the resulting estimated hazard
and conditional survival functions. Furthermore, note that the conditional Kaplan-Meier
estimator is defined to be piecewise constant. However, in practice, interpolation improves
test-time prediction accuracy. Chen’s implementation of deep kernel survival analysis uses
the constant density interpolation strategy by Kvamme and Borgan (2021).

Separately, during training, using an infinite-support kernel function such as a Gaussian
kernel works well in practice with neural net frameworks to prevent vanishing gradients. If
we use a kernel function with finite support (such as the box, triangle, or Epanechnikov
kernels), and we initialize φ such that for each training point, no other training point is
found to be similar enough as to have a nonzero kernel weight, then we would struggle to
learn an improved embedding representation. As a concrete example, suppose that we use
the box kernel K(u) = 1{u ≤ 1}, and the base neural net is simply φ(x) = wx for some

7



Chen

scalar weight w ∈ R (i.e., w is the only neural net parameter in this case). Then if during
neural net training, w becomes too large in absolute value (namely, |w| > 1

mini 6=j ‖Xi−Xj‖2 ),

then for all i 6= j,

K(Xi, Xj ;φ) = K(ρ(Xi, Xj ;φ))

= 1{‖φ(Xi)− φ(Xj)‖2 ≤ 1}
= 1{‖wXi − wXj‖2 ≤ 1}
= 1{|w|‖Xi −Xj‖2 ≤ 1}
= 0.

When this happens, the numerator and denominator of the leave-one-out training hazard
estimator (2.6) are both 0, so by the earlier stated convention that 0/0 = 0, the overall
predicted hazard is 0 for all time. This will mean that the loss does not depend on the
neural net parameter w at all, so the gradient of the loss with respect to w is 0. By simply
using an infinite-support kernel function during training, we avoid having to deal with these
zero kernel weight issues.

3. Scalable and Interpretable Test-Time Prediction with an Accuracy
Guarantee

To make a prediction for test feature vector x, we would in principle have to compute the
similarity between x and every training feature vector, which is computationally expensive
for large training datasets. To address this problem, we apply kernel netting (Kpotufe and
Verma, 2017) to deep kernel survival analysis, obtaining a model we call a survival kernet.
Kernel netting constructs a compressed version of the training data for use at test time
using the standard notion of ε-nets (e.g., see the textbook by Vershynin (2018)). As a
technical remark, kernel netting was originally developed for classification and regression;
extending the proof ideas to survival analysis requires carefully combining proof ideas by
Kpotufe and Verma (2017) and Chen (2019). Separately, Kpotufe and Verma did not
consider interpretability in their original kernel netting paper.

Sample splitting For our theoretical guarantee on test time prediction error
later, we assume that the base neural net φ has already been trained on “pre-
training” data (X◦1 , Y

◦
1 , D

◦
1), . . . , (X◦n◦ , Y

◦
n◦ , D

◦
n◦) that are independent of training data

(X1, Y1, D1), . . . , (Xn, Yn, Dn). As shorthand notation, we use X◦1:n◦ := (X◦1 , . . . , X
◦
n◦) ∈

X n◦ , and similarly define Y ◦1:n◦ , D◦1:n◦ , X1:n, Y1:n, and D1:n. The pre-training data
(X◦1:n◦ , Y

◦
1:n◦ , D

◦
1:n◦) need not be sampled in the same manner as the “proper” training

data (X1:n, Y1:n, D1:n). In practice, one could for example take a complete training dataset
and randomly split it into two portions, the first portion to treat as the pre-training data,
and the second portion to treat as the proper training data. After training φ on pre-training
data, we refer to the learned neural net as φ̂. Our theory treats how φ̂ is learned as a black
box, but requires that the output space of φ̂ (the embedding space X̃ ) satisfy some regular-
ity conditions. Later in our experiments, we also intentionally try setting the pre-training
and training datasets to be the same although our theory does not cover this scenario.
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Survival kernets We now state how to train and make predictions with a survival kernet.
At test time, for a test feature vector x, we only consider using training data within
a threshold distance τ from x, where distances are computed via the learned distance
ρ(x, x′; φ̂) = ‖φ̂(x) − φ̂(x′)‖2 with pre-trained neural net φ̂. In particular, at test time, we
replace the function K from equation (2.5) with the “truncated” version

K̂(x, x′; φ̂) = K(ρ(x, x′; φ̂ ))1{ρ(x, x′; φ̂ ) ≤ τ}. (3.1)

From a computational viewpoint, we can take advantage of recent advances in (approximate)
nearest neighbor search data structures for Euclidean distance to find neighbors of x that
are within distance τ (e.g., Andoni et al. 2015; Andoni and Razenshteyn 2015; Malkov and
Yashunin 2020; Prokhorenkova and Shekhovtsov 2020).

Training. The training procedure for a survival kernet works as follows, for a user-
specified (approximate) Euclidean distance nearest neighbor data structure:

1. Learn base neural net φ with pre-training data (X◦1:n◦ , Y
◦

1:n◦ , D
◦
1:n◦) by minimizing

the deep kernel survival analysis loss LDKSA given in equation (2.7) with minibatch
gradient descent, without truncating the kernel function. Denote the learned neural
net as φ̂.

2. For the training (and not pre-training) feature vectors X1:n, compute the embed-
ding vectors X̃1 = φ̂(X1), X̃2 = φ̂(X2), . . . , X̃n = φ̂(Xn), and construct a Euclidean-
distance-based nearest neighbor data structure using training embedding vectors
X̃1:n := (X̃1, X̃2, . . . , X̃n).

3. With the help of the nearest neighbor data structure, compute a subsample of X̃1:n

that we denote as Q̃ε ⊆ X̃1:n, where ε > 0 is an approximation parameter (as ε→ 0,
no subsampling is done, i.e., Q̃ε becomes X̃1:n). Specifically, Q̃ε is an ε-net; Q̃ε can
be computed efficiently with the help of a nearest neighbor data structure as follows:

(a) Initialize Q̃ε to be the empty set.

(b) For i ∈ {1, 2, . . . , n}: if X̃i’s nearest neighbor in Q̃ε is not within Euclidean
distance ε, add X̃i to Q̃ε.

4. For each training embedding vector X̃i, assign it to a single closest exemplar point
in Q̃ε (break ties arbitrarily). After this assignment, each exemplar point q̃ ∈ Q̃ε is
assigned to a subset Iq̃ ⊆ {1, 2, . . . , n} of training points. This could be viewed as a
clustering assignment, where the training points of each cluster is represented by an
exemplar.

5. For each exemplar point q̃ ∈ Q̃ε, recalling that t1 < · · · < tm are the unique times of
death in the training data, compute the following summary functions for ` = 1, . . . ,m:

Dq̃(`) :=
∑

j∈Iq̃

Dj1{Yj = t`}, R+
q̃ (`) :=

∑

j∈Iq̃

1{Yj ≥ t`}. (3.2)

Note that Dq̃(`) is the number of deaths at time t` across training points assigned to
exemplar q̃, and R+

q̃ (`) is the number of these training points that are “at risk” (could
possibly die) at time t`.

Prediction. After training a survival kernet, prediction works as follows:
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For test feature vector x, first compute the embedding vector x̃ = φ̂(x). Then form
the hazard estimate

h̃Q̃ε(`|x̃) :=

∑
q̃∈Q̃ε K̃(x̃, q̃)Dq̃(`)

∑
q̃∈Q̃ε K̃(x̃, q̃)R+

q̃ (`)
for ` = 1, 2, . . . ,m, (3.3)

where K̃(x̃, q̃) := K(‖x̃− q̃‖2)1{‖x̃− q̃‖2 ≤ τ}; as a reminder, K : [0,∞) → [0,∞)
is a nonincreasing function (e.g., K(u) = exp(−u2)). Note that the nearest neighbor
data structure constructed in step 2 of the training procedure can be used to find all
exemplars in Q̃ε within distance τ of x̃ (this is needed to compute K̃). The conditional
survival function can be estimated by computing

S̃Q̃ε(t|x̃) :=
m∏

`=1

(1− h̃Q̃ε(`|x̃))1{t`≤t} for t ≥ 0. (3.4)

As a corner case, if all the kernel weights are zero for test feature vector x, then we
output the training set Kaplan-Meier survival function estimate (2.4) as the prediction.

The form of the predicted survival function and how it relates to the Kaplan-
Meier estimator The predicted conditional survival function S̃Q̃ε in equation (3.4) has

the following interpretation. Consider an embedding vector x̃ = φ̂(x). Suppose that for
some exemplar q̃ ′ ∈ Q̃ε, the similarity score between x̃ and q̃ ′ is equal to K̃(x̃, q̃ ′) = 1,
whereas the similarity score between x̃ and all other exemplars is 0. Put another way, the
embedding vector x̃ is “purely explained” by exemplar q̃ ′ and none of the other exemplars.
Then in this case, equation (3.3) would become

h̃Q̃ε(`|x̃) =
Dq̃ ′(`)

R+
q̃ ′(`)

for ` = 1, 2, . . . ,m,

and equation (3.4) would become

S̃Q̃ε(t|x̃) =

m∏

`=1

(1− h̃Q̃ε(`|x̃))1{t`≤t} =

m∏

`=1

(
1− Dq̃ ′(`)

R+
q̃ ′(`)

)1{t`≤t}
for t ≥ 0, (3.5)

which is precisely the Kaplan-Meier estimator (equation (2.4)) restricted to training points
that have been assigned to the cluster of exemplar q̃ ′ (in Step 4 of the survival kernet
training procedure).

In general, a data point x with embedding vector x̃ can have a similarity score that is
nonzero for multiple exemplars. This is akin to how in topic modeling, a data point could
have nonzero weights for multiple topics. In topic modeling, a key visualization strategy is
to focus on a single topic at a time and look at the distribution of features (i.e., words) that
show up for that topic. This visualization strategy could be thought of as reasoning about
what a data point would look like if it were to be purely explained by a single topic. In
a similar vein, for our survival analysis setting, our visualization strategy later is based on
reasoning about what a data point would look like if it were to be purely explained by a single
cluster or exemplar (again, in our setting, a cluster directly corresponds to an exemplar).
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Equation (3.5) reveals that a data point that is purely explained by exemplar q̃ ′ would have
a predicted conditional survival function that is just the Kaplan-Meier estimator restricted
to data points in the cluster of q̃ ′. Note that plotting such an estimated survival function is
standard in survival analysis and the resulting plots are called Kaplan-Meier curves. Our
visualization strategy later plots the Kaplan-Meier curve specific to each cluster/exemplar.

Connections to deep kernel survival analysis, to the original kernel netting,
and to the original Kaplan-Meier estimator For a survival kernet model, note that
if ε = 0 (i.e., the ε-net consists of all training embedding vectors), and the pre-training
and training sets are set to be identical, then the model becomes an approximate version
of the original deep kernel survival analysis model by Chen (2020). In particular, the
approximation comes from the kernel function being truncated (set to be 0 beyond the
critical threshold distance τ) at test time.

Separately, consider if the base neural net is the identity function φ(x) = x (which would
require no pre-training data to learn, so we skip steps 1 and 2 of the survival kernet training
procedure). Then in this case, we obtain a non-neural-net extension of the original kernel
netting procedure by Kpotufe and Verma (2017) to the survival analysis setting.

Lastly, if ε→∞, then the ε-net Q̃ε would consist of a single exemplar that summarizes
the whole training (and not pre-training) data. Put another way, there would only be a
single cluster that consists of all the training data. If τ → ∞, then the prediction for any
test point would simply be the original Kaplan-Meier survival function (Kaplan and Meier,
1958) fitted to the training data. The prediction would not actually depend on the base
neural net φ in this case.

Outline for the remainder of this section In the remainder of this section, we discuss
three main topics. First, we discuss model interpretability in Section 3.1. The key idea
here has to do with the interpretation we described above of how if a data point were to be
purely explained by a single exemplar q̃ ′, then its predicted conditional survival function is
just the Kaplan-Meier estimator restricted to training points in the cluster of q̃ ′.

Next, we provide an overview of the theory we have developed for survival kernets in
Section 3.2, starting from assumptions and the generalization error used to stating the
main finite-sample guarantee and some interpretations and implications. In a nutshell, our
theory says that if the embedding vectors are in some sense “nice” (satisfying standard
theoretical assumptions made in nonparametric estimation and survival analysis), then a
survival kernet estimates the conditional survival function arbitrarily accurately (up to some
pre-specified time horizon) with high probability as the amount of training data grows large.
The error bound we obtain has an order of growth that, ignoring a log factor, is optimal.

Lastly, we present a variant of our training procedure in Section 3.3 that turns out
to yield significant accuracy improvements in practice although it is not covered by our
theoretical analysis. This variant adds a step at the end of survival kernet training that
fine-tunes the summary functions from training step 5. Specifically, note that the summary
functions Dq̃ and R+

q̃ in equation (3.2) are constructed from training data, and it could be
that these are noisy or inaccurate. After training the base neural net φ and treating it as
fixed, we could then set up a fine-tuning step in which we learn Dq̃ and R+

q̃ in a neural net
framework.
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3.1 Model Interpretability

Visualizing clusters Recall that each exemplar q̃ ′ ∈ Q̃ε corresponds to a cluster of
training points, i.e., there is a one-to-one correspondence between exemplars and clusters.
For tabular data, we can create a heatmap visualization to help us quickly identify how
clusters differ in terms of whether specific feature values are more prominent for specific
clusters. In particular, we set the rows of the heatmap to correspond to different features, the
columns to correspond to different clusters, and the heatmap intensity values to correspond
to the fraction of points in a cluster with a specific feature value. As a concrete example, we
show this heatmap visualization in Figure 1(a) for a dataset on predicting time until death
of hospitalized patients from the Study to Understand Prognoses, Preferences, Outcomes,
and Risks of Treatment (support) (Knaus et al., 1995). For instance, we see that the
leftmost cluster (column) in the heatmap corresponds to patients who often have metastatic
cancer, who are mostly between 49.28 and 76.02 years of age, and who have at least one
comorbidity. In contrast, the rightmost cluster corresponds to young patients without
cancer. Our proposed heatmap visualization is a more visual way of conveying information
like that of Chapfuwa et al. (2020) in their Table 2.

Moreover, per exemplar q̃ ′ ∈ Q̃ε, we can compute its corresponding cluster’s Kaplan-
Meier survival curve using equation (3.5). As we pointed out previously, this predicted
survival curve is precisely what the survival kernet model would predict for a data point
that is purely explained by q̃ ′ and none of the other exemplars. We can plot the survival
curves of different exemplars as shown in Figure 1(b), where we have also included 95%
confidence intervals using the standard exponential Greenwood formula (Kalbfleisch and
Prentice, 1980); the x-axis is the time since a patient entered the study.

Note that the time (x-axis value) at which a Kaplan-Meier survival curve crosses prob-
ability 1/2 (y-axis value) corresponds to a median survival time estimate (since half the
patients survived up to this time and the rest survive beyond this time). Thus, per cluster,
we can obtain a median survival time estimate (if the cluster’s Kaplan-Meier curve never
crosses probability 1/2, then the median survival time is greater than the largest observed
time for the cluster). In fact, for the heatmap in Figure 1(a), we have sorted the clusters
(i.e., the columns) by median survival time from smallest to largest.

Comparing Kaplan-Meier curves across different groups of individuals is standard prac-
tice in survival analysis and gives a quick way to see which group is better or worse off over
time. For instance, in this case, the purple cluster (with median survival time 1760 days)
generally has higher survival probability across time compared to the four other clusters
that have been plotted. Meanwhile, initially the orange cluster (median survival time 129
days) appears worse off than the green cluster (median survival time 225 days) but then
these two clusters’ Kaplan-Meier curves start heavily overlapping after around 1200 days
since patients entered the study.

We remark that the SUPPORT dataset has patients within nine disease groups, of
which three directly are related to cancer (colon cancer, lung cancer, multiple organ system
failure with cancer). For these three disease groups, age and comorbidites are known to
be predictors of survival (e.g., van Eeghen et al. 2015; Asmis et al. 2008; Frey et al. 2007).
In this sense, the heatmap appears to surface some trends that agree with existing clinical
literature. There are of course other variables present too. Overall, our proposed heatmap
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Figure 1: Visualization of the largest 5 clusters found by a survival kernet model trained on
the support dataset (we limit the number of clusters shown for ease of exposition and to
prevent the plots from being too cluttered); more information on how the model is trained
is in Section 5. Panel (a) shows a heatmap visualization that readily provides information
on how the clusters are different, highlighting feature values that are prominent for specific
clusters; the dotted horizontal lines separate features that correspond to the same underlying
variable. Panel (b) shows Kaplan-Meier survival curves with 95% confidence intervals for
the same clusters as in panel (a); the x-axis measures the number of days since a patient
entered the study.

visualization and accompanying survival curve plot is meant as a debugging tool, to help a
modeler see how the clusters relate to raw features and also to survival time distributions,
revealing possible associations that may warrant additional investigation and that could be
discussed with domain experts.

We provide a few technical details regarding how we generated Figure 1(a). Only for
visualization purposes, continuous features have been discretized into 5 equal-sized bins
(fewer bins are used if there are not enough data points in a cluster, or if the 20/40/60/80
percentile threshold values for a continuous feature are not all unique). The survival kernet
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models themselves do not require continuous features to be discretized first. Moreover, we
have sorted the features (i.e., rows of the heatmap) in the following manner: per row, we
compute the intensity range (i.e., maximum minus minimum intensity values), and then
we sort the rows from largest to smallest intensity range, with the constraint that rows
corresponding to the same underlying variable (the same continuous feature that has been
discretized, or the same categorical variable) are still grouped together. For example, the
reason why the variable “cancer” shows up first in Figure 1(a) is that among the three
different cancer rows, one of them has the highest intensity range across all heatmap rows.

Data-point-specific information Next, we observe that for any test feature vector x
with embedding vector x̃ = φ̂(x), its hazard estimate is given by equation (3.3), reproduced
below for ease of exposition:

h̃Q̃ε(`|x̃) =

∑
q̃∈Q̃ε K̃(x̃, q̃)Dq̃(`)

∑
q̃∈Q̃ε K̃(x̃, q̃)R+

q̃ (`)
.

In the numerator and denominator summations, the only exemplars q̃ that contribute to
the calculation are ones for which K̃(x̃, q̃) is positive. Again, since there is a one-to-one
correspondence between exemplars and clusters, this means that each test feature vector’s
hazard is modeled by only a subset of the clusters.

For any test feature vector x, we can readily determine which exemplars/clusters could
possibly contribute to the prediction for x by figuring out which q̃ ∈ Q̃ε satisfy K̃(x̃, q̃) > 0.
Of course, how large these weights are can also give a sense of the relative importance of
the clusters for x. We could, for instance, make the same plots as in Figure 1 but only show
the clusters that have nonzero weight for a specific test feature vector x.

3.2 Theory of Survival Kernets

We now provide an overview of our theoretical analysis of survival kernets. We begin with
assumptions on the embedding space that are standard in nonparametric estimation theory
(Section 3.2.1), although these assumptions are typically imposed on the raw feature space
rather than the embedding space. We then state our assumption on how the embedding
space relates to survival and censoring times (Section 3.2.2). All proofs are in Appendix A.

3.2.1 The Embedding Space

We assume that the raw feature vectors are sampled i.i.d. from a marginal distribution
PX. As we treat the pre-trained neural net φ̂ as fixed, then the random embedding vector
X̃ = φ̂(X) is sampled from some distribution P

X̃
instead. We require P

X̃
to satisfy some

mild regularity conditions.

As an example, we remark that an embedding space that is uniform over a unit hyper-
sphere (i.e., embedding vectors are Euclidean vectors with norm 1) satisfies all the assump-
tions of this subsection. For ways to encourage the learned embedding space to be uniform
over the unit hypersphere, see the papers by Wang and Isola (2020) and Liu et al. (2021).

Our theory requires a technical assumption that ensures that the event that X̃ lands
within distance τ of an embedding vector x̃ ∈ X̃ has a well-defined probability. This event
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could be phrased as X̃ landing in the closed ball of radius τ centered at x̃, denoted as
B(x̃, τ) := {x̃′ ∈ X̃ : ‖x̃− x̃′‖2 ≤ τ}.
Assumption Atechnical. Distribution P

X̃
is a Borel probability measure with compact support

X̃ ⊆ Rd.

Compactness of X̃ eases the exposition. Our results trivially extend to the case where
embedding vectors sampled from P

X̃
land in a compact region (where our theory applies)

with probability at least 1 − δ for some δ ≥ 0, and otherwise when the embedding vectors
land outside the compact region, we tolerate a worst-case prediction error with probability δ.

We use the standard notion of covers, packings, and nets (all specialized to Euclidean
distance).

Definition 1 For any radius ε > 0:

• A subset Q̃ of X̃ is called an ε-cover of X̃ if for any x̃ ∈ X̃ , there exists q̃ ∈ Q̃ such
that ‖x̃− q̃‖2 ≤ ε.
• A subset Q̃ of X̃ is called an ε-packing of X̃ if for any two distinct q̃ and q̃ ′ in Q̃, we

have ‖q̃ − q̃ ′‖2 > ε.

• A subset Q̃ of X̃ is called an ε-net of X̃ if Q̃ is both an ε-cover and an ε-packing of X̃ .

Next, our theory makes use of the standard complexity notions of covering numbers and
intrinsic dimension to describe the embedding space, where lower complexity will correspond
to tighter error bounds. As an illustrative example, we explain how these behave when the
embedding space is the unit hypersphere Sd−1 = {x̃ ∈ Rd : ‖x̃‖2 = 1} (with d ≥ 2).

Definition 2 The ε-covering number of X̃ (for Euclidean distance) is the smallest size
possible for an ε-cover for X̃ . We denote this number by N(ε; X̃ ).

The embedding space X̃ being compact implies that for every ε > 0, we have N(ε; X̃ ) <∞,
and moreover, that X̃ has a finite diameter ∆X̃ := max

x̃,x̃′∈X̃ ‖x̃− x̃′‖2 <∞. For example,

the unit hypersphere Sd−1 clearly has diameter 2. Moreover, its covering number is bounded
as follows.

Claim 3 (Follows from Corollary 4.2.13 by Vershynin (2018)) For any ε > 0, the
unit hypersphere has covering number N(ε; Sd−1) ≤ (4

ε + 1)d.

Covering numbers provide a way to derive error bounds. Another way is to assume a known
“intrinsic dimension” of the embedding space. We use the following notion of intrinsic
dimension.

Assumption Aintrinsic. There exist a positive integer d′ > 0 (called the intrinsic dimension
of P

X̃
) and positive constants Cd′ and r∗ such that for any x̃ ∈ X̃ and r ∈ (0, r∗], we have

P
X̃

(B(x̃, r)) ≥ Cd′rd
′
.

When embedding vectors are on the unit hypersphere, then under a mild regularity
condition, the embedding space has intrinsic dimension d− 1.

Claim 4 If P
X̃

has a probability density function that is 0 outside of Sd−1 and lower-bounded

by a constant cmin > 0 over Sd−1, then the embedding space has intrinsic dimension d− 1.
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We remark that for embedding vectors on the hypersphere, one desirable property is that
they are uniformly distributed (Wang and Isola, 2020; Liu et al., 2021), which is of course
a special case of Claim 4.

3.2.2 Relating Embedding Vectors to Survival and Censoring Times

Next, we impose a survival analysis assumption by Chen (2019), which is a slight variant
on an earlier assumption by Dabrowska (1989).

Assumption Asurvival. In addition to Assumption Atechnical, we further assume that the
conditional survival, censoring, and observed time distributions P

T|X̃, P
C|X̃, and P

Y|X̃ cor-

respond to continuous random variables with PDF’s f̃
T|X̃, f̃

C|X̃, and f̃
Y|X̃. The conditional

survival function that we aim to predict is precisely S̃(t|x̃) :=
∫∞
t f̃

T|X̃(s|x̃)ds. To be able

to estimate this function for any x̃ ∈ X̃ , we assume that censoring does not almost surely
happen for every x̃ ∈ X̃ . Moreover, we assume the following:

(a) (Observed time distribution has large enough tails) For a user-specified time thorizon > 0,
there exists a constant θ > 0 such that

∫∞
thorizon

f
Y|X̃(s|x̃)ds ≥ θ for all x̃ ∈ X̃ .

(b) (Smoothness: embedding vectors that are close by should have similar survival time
distributions and also similar censoring time distributions) PDF’s f̃

T|X̃ and f̃
C|X̃ are

assumed to be Hölder continuous with respect to embedding vectors, i.e., there exist
constants λT > 0, λC > 0, and α > 0 such that for all x̃, x̃′ ∈ X̃ ,

|f̃
T|X̃(t|x̃)− f̃

T|X̃(t|x̃′)| ≤ λT‖x̃− x̃′‖α2 ,
|f̃

C|X̃(t|x̃)− f̃
C|X̃(t|x̃′)| ≤ λC‖x̃− x̃′‖α2 .

For any estimate G̃ of the true conditional survival function S̃, our theory uses the
generalization error

Lsurvival(G̃, S̃) := E
X̃∼P

X̃

[∫ thorizon
0

(
G̃(t|X̃)− S̃(t|X̃)

)2
dt

thorizon

]
.

We only aim to accurately estimate S̃(t|x̃) up to the user-specified time thorizon (that ap-
pears in Assumption Asurvival(a)). We shall plug in the survival kernet conditional survival
function estimate S̃Q̃ε (from step 6 of the survival kernet procedure) in place of G̃.

3.2.3 Theoretical Guarantee on Prediction Accuracy

We are now ready to state the main theoretical result of the paper, which states a general-
ization error bound for survival kernets.

Theorem 5 Suppose that Assumptions Atechnical, Aintrinsic, and Asurvival hold, and we train
a survival kernet with ε = βτ when constructing Q̃ε, where β ∈ (0, 1) and τ > 0 are user-
specified parameters, and the truncated kernel used is of the form in equation (3.1). Let
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Ψ = min{N( (1−β)τ
2 ; X̃ ), 1

Cd′ ((1−β)τ)d′
}, where d′ is the intrinsic dimension. Then when

n ≥ O( K(0)

K(τ)((1−β)τ)d′
),

E
X̃1:n,Y1:n,D1:n

[Lsurvival(S̃Q̃ε , S̃)] ≤ Õ
( 1

n
· K

4(0)

K4(τ)
·Ψ
)

+ (1 + β)2ατ2α · O
(K2(0)

K2(τ)

)
,

where Õ ignores log factors.

The error bound consists of two terms, which correspond to variance and bias respectively.
When the embedding space has intrinsic dimension d′, this error bound is, up to a log factor,
optimal in the case where K(u) = 1 for u ≥ 0, and τ = Õ(n−1/(2α+d′)). In this scenario,
the survival error bound is Õ(n−2α/(2α+d′)), which matches the lower bound for conditional
CDF estimation by Chagny and Roche (2014) (this is a special case of the survival analysis
setup in which there is no censoring). Of course, in practice, K is typically chosen to decay,
so τ should be chosen to not be too large due to the error bound’s dependence on the ratio
K(0)/K(τ).

High-level proof overview We combine proof ideas of Kpotufe and Verma (2017) and
Chen (2019). What these authors consider to be the raw feature space is what we take
to be the embedding space (the output space of the already trained neural net φ̂). In this
high-level proof overview, we only highlight some of the key ideas of our proof.

The bulk of the proof treats the test point x as fixed. Its corresponding embedding
vector is x̃ = φ̂(x). Recall that Q̃ε is the set of exemplars in the embedding space, and that
step 4 of the survival kernet training procedure assigns each exemplar point q̃ ∈ Q̃ε to a
subset Iq̃ ⊂ {1, 2, . . . , n} of training points. In particular, every training point is assigned
to exactly one exemplar so that

{1, 2, . . . , n}︸ ︷︷ ︸
training data indices

=
∐

q̃∈Q̃ε

Iq̃,

where “
∐

” denotes a disjoint union. Following Kpotufe and Verma (2017), an initial key
observation is that the only training points that can possibly contribute to the prediction
for x̃ (i.e., they have nonzero truncated kernel weight) are the ones with indices in

N
Q̃ε

(x̃) :=
∐

q̃∈Q̃ε s.t. ‖x̃−q̃‖2≤τ

Iq̃.

Kpotufe and Verma’s analysis focuses on regression in which they then proceed to analyzing
a kernel-weighted average of the labels of the training points in N

Q̃ε
(x̃). In the survival

analysis setting, the challenge is that prediction is more complicated than taking a kernel-
weighted average of Yi’s.

To address predicting the conditional survival function S̃(·|x̃), the proof strategy by
Chen (2019) uses a Taylor expansion to decompose the predicted log of the estimated
conditional survival function S̃Q̃ε(·|x̃) into three terms:

log S̃Q̃ε(t|x̃) = W1(t|x̃) +W2(t|x̃) +W3(t|x̃),

17



Chen

where W1(t|x̃) is a kernel-weighted average of a hypothetical label that we do not directly
observe (we provide more details on this shortly), W2(t|x̃) is an error term for how well we
can approximate the CDF of the distribution of observed times specific to test embedding
vector x̃, and lastly W3(t|x̃) is a higher-order Taylor series error term. In more detail,
W1(t|x̃) is a kernel-weighted average, where the i-th training point’s label is taken to be

−Di1{Yi≤t}
S̃(Yi|x̃)

; note that this label knows the true conditional survival function S̃(·|x̃). This

hypothetical label only shows up in the proof and is not actually needed when implementing
the model. Similarly, the CDF estimation problem that W2(t|x̃) relates to also only shows
up in the proof and does not need to be implemented.

Chen (2019) does not use a ε-net and his analysis could be thought of as the case
where we take ε → 0 for the ε-net (so that every training embedding vector is its own
exemplar). For this special case, Chen showed sufficient conditions that ensure that
W1(t|x̃) → log S̃(t|x̃), W2(t|x̃) → 0, and W3(t|x̃) → 0. Thus, log S̃Q̃ε(t|x̃) → log S̃(t|x̃),

which can be turned into a statement on the difference S̃Q̃ε(t|x̃)− S̃(t|x̃), without logs.

Extending Chen’s analysis to account for ε-nets requires a bit of extra bookkeeping and,
ultimately, the two main changes are as follows (that at a high-level relate to variance and
bias of the survival kernet estimator):

1. Chen’s original analysis (restated to use our notation) regularly involves the quantity
nP

X̃
(B(x̃, τ)), which is the expected number of training points that land within dis-

tance τ of x̃. Again, keep in mind that the setup Chen considers could be thought of
as every training point being its own exemplar. Thus, the exemplars/training points
that could contribute to the prediction of x̃ is indeed any training point whose em-
bedding vector lands within distance τ of x̃. Thus, when the quantity nP

X̃
(B(x̃, τ)) is

larger, then we should have more training points that contribute to the prediction of
x̃, thus reducing the variance in the estimated conditional survival function.

However, once we use ε-nets with ε = βτ , the complication is that now, the training
points that could contribute to the prediction of x̃ need to be assigned to exemplars
that are within distance τ of x̃. It is possible that a training point x′ with embedding
vector x̃′ satisfies ‖x̃′− x̃‖ ≤ τ but x̃′ could be assigned to an exemplar that is farther
away from distance τ from x̃ so that training point x′ does not actually contribute
to the prediction for x̃. Here, the key observation (which shows up in Kpotufe and
Verma’s regression analysis but is more generally a standard ε-net proof technique)
is that it suffices to consider training points whose embedding vectors are within dis-
tance (1 − β)τ of x̃. These particular embedding vectors will for sure be assigned
to exemplar(s) within distance τ of x̃: any such embedding vector is within distance
(1− β)τ from x̃ and can be assigned to an exemplar that is at most an additional dis-
tance βτ away from x̃ since the set of exemplars is an (βτ)-net. Thus, whereas Chen’s
original analysis depended on the quantity nP

X̃
(B(x̃, τ)), now we instead replace this

quantity with nP
X̃

(B(x̃, (1 − β)τ)) as we want the expected number of training em-
bedding vectors within distance (1 − β)τ (which get assigned to exemplar(s) within
distance τ of x̃) to be large.

2. The other main change is that in Chen’s original analysis, there is a bias calculation
involving Hölder’s inequality. Restated using our notation, the idea is that a training
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embedding vector that is a distance τ away from x̃ incurs a bias in estimating W1(t|x̃)
that scales roughly as τ2α (specifically, see Lemma F.4 of Chen (2019); note that Chen
uses sup norm error so the exponent is just α instead of 2α whereas in this paper,
we use squared error which adds the factor of 2). However, now that we are using
an ε-net, the prediction for x̃ could depend on an exemplar that is a distance τ away
from x̃, and this exemplar could have a training embedding vector assigned to it that
is a worst case distance of τ + βτ = (1 + β)τ away from x̃. Thus, the worst-case bias
incurred is now ((1 + β)τ)2α instead of just τ2α. This same idea shows up in Kpotufe
and Verma’s regression analysis as well.

Overall, we get that for large enough n, with high probability,

Etraining
data

[
1

thorizon

∫ thorizon

0
(S̃Q̃ε(t|x̃)− S̃(t|x̃))2dt

]
≤ Õ

( 1

nP
X̃

(B(x̃, (1− β)τ))
+ ((1 +β)τ)2α

)
.

We then further take the expectation of both sides over the randomness in sampling
the test embedding vector x̃ ∼ P

X̃
. Doing so, the first term on the right-hand side

Ex̃∼P
X̃
[ 1
nP

X̃
(B(x̃,(1−β)τ)) ] can be upper-bounded by 1

n · Ψ that shows up in the statement

of Theorem 5. For details, see the full proof in Appendix A.3.

3.3 Summary Fine-Tuning

Our theoretical analysis crucially relies on the summary functions being the ones stated
in equation (3.2). However, in practice, it turns out that learning the summary functions
improves prediction accuracy. We now discuss how to do this. Specifically, we add a
“summary fine-tuning” step that refines the summary functions Dq̃(`) and R+

q̃ (`) that are
used in the test-time hazard predictor (given in equation (3.3)).

To do summary fine-tuning, we treat everything in the survival kernet model as fixed
except for the summary functions Dq̃(`) and R+

q̃ (`) for each exemplar q̃ ∈ Q̃ε and each
time step ` ∈ {1, . . . ,m}, where as a reminder the time steps t1 < t2 < · · · < tm are at
the unique times of death in the training data. We now use the survival kernet predicted
hazard function given in equation (3.3), which we plug into the deep kernel survival analysis
loss LDKSA given in equation (2.7). Importantly, now when we minimize the loss LDKSA,
we are not learning the base neural net φ from earlier (as it is treated as fixed); we are only
learning the summary functions. Thus, the only additional details needed in explaining
how summary fine-tuning works are in how we parameterize the summary functions. This
requires a little bit of care to encode the constraints that the number of people at risk
monotonically decreases over time and is always at least as large as the number of people
who die over time.

Parameterizing summary functions for number of deaths We parameterize the
summary function Dq̃(`) for the number of deaths at time step ` specific to exemplar q̃ as

Dq̃(`) := exp(γq̃,`) + exp(γbaseline
` ),

where γq̃,` ∈ R and γbaseline
` ∈ R are unconstrained neural net parameters. We initialize

Dq̃(`) to be approximately equal to the value given in equation (3.2) by using the initial
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values

γq̃,` = log
(∑

j∈Iq̃

Dj1{Yj = t`}
)
, (3.6)

γbaseline
` = log(10−12) ≈ −27.631. (3.7)

Note that the 10−12 number in equation (3.7) is just an arbitrarily chosen small constant.
Meanwhile, in computing equation (3.6), to prevent numerical issues, if the summation
inside the log is less than 10−12, then we also set γq̃,` = log(10−12).

Parameterizing summary functions for number of individuals at risk To param-
eterize the summary function for the number of individuals at risk, we first introduce a new
variable for the number of individuals censored at time step ` specific to exemplar q̃:

Cq̃(`) := exp(ωq̃,`) + exp(ωbaseline
` ),

where ωq̃,` ∈ R and ωbaseline
` ∈ R are unconstrained neural net parameters. How these

parameters are initialized works the same way as for the number of deaths and requires
that we count how many people are censored at each time step `, which is straightforward
to compute from the training data (the only minor complication is that the time steps are
for unique observed times of death, and times of censoring could happen at other times—the
simple fix is to consider the number of individuals censored at time step ` to be summed
across all individuals censored at times within the interval (t`−1, t`]).

Finally, it suffices to note that the number of individuals at risk at time step ` specific
to exemplar q̃ is given by the recurrence relation

R+
q̃ (`) = Dq̃(`) + Cq̃(`) + R+

q̃ (`+ 1), (3.8)

where R+
q̃ (m + 1) := 0. In particular, for a specific exemplar q̃, once we have computed

Dq̃(`) and Cq̃(`) for all `, then we can easily compute Rq̃(m), Rq̃(m− 1), Rq̃(m− 2), . . . ,
Rq̃(1) using equation (3.8)—note that we compute these in reverse chronological order.

Final remarks on summary fine-tuning To summarize, summary fine-tuning com-
putes refined estimates of the summary functions Dq̃(`) and R+

q̃ (`) by minimizing the deep
kernel survival analysis loss LDKSA (equation (2.7)) using the hazard function given in
equation (3.3). We treat the pre-trained base neural net φ̂ and survival kernet clustering
assignments as fixed. In fact, the only neural net parameters that we optimize over are the
newly introduced variables γq̃,`, γ

baseline
` , ωq̃,`, ω

baseline
` ∈ R for q̃ ∈ Q̃ε and ` ∈ {1, 2, . . . ,m}.

In terms of model interpretation, summary fine-tuning does not change survival ker-
net cluster assignments and only changes the summary functions Dq̃(`) and R+

q̃ (`) of the
different clusters. For a specific exemplar q̃, we could still compute a survival curve for
the cluster corresponding to q̃ using equation (3.5), where we plug in the refined summary
functions (instead of the original summary functions stated in equation (3.2)). The survival
curve per cluster could still be interpreted as what the survival kernet model would predict
for a data point that is purely explained by a single cluster and none of the other clusters.
However, by using the refined summary functions, equation (3.5) no longer corresponds to
a Kaplan-Meier curve, so we can no longer use the 95% confidence intervals that are meant
for Kaplan-Meier survival curves.
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We remark that simultaneously optimizing the summary functions and the base neural
net φ would be difficult in terms of how we set up the survival kernet framework because
we only determine the exemplars after the base neural net φ has been learned and treated
as fixed (the exemplars are chosen based on the embedding space). If we update the
base neural net, the exemplars would change as would their summary functions, and in
fact even the number of exemplars (and thus, the number of summary functions) could
change. An alternating optimization could potentially be done (i.e., alternate between
optimizing φ, choosing which training points are the exemplars, and then optimizing the
summary functions) but would be computationally costly; for simplicity, we do not do such
an optimization.

4. Scalable Tree Ensemble Warm-Start

Whereas Section 3 focused on constructing a test-time predictor that can scale to large
datasets, we now turn to accelerating the training of the base neural net φ, which happens
in the very first step of survival kernet training. Specifically, we now present a warm-start
strategy for initializing φ prior to optimizing the parameters of φ by minimizing the DKSA
loss LDKSA given in equation (2.7).

Our warm-start strategy begins by learning a kernel function using a scalable tree en-
semble approach such as xgboost (Chen and Guestrin, 2016). Because a kernel function
learned by a tree ensemble is not represented as a neural net, we then fit a neural net to the
tree ensemble’s kernel function via minibatch gradient descent. In short, we warm-start φ
using a Tree ensemble Under a Neural Approximation (tuna). After the warm-start, we
then fine-tune φ using the DKSA loss LDKSA (this is not to be confused with summary
fine-tuning; here we in fact are fine-tuning the base neural net φ and we are not optimizing
over any sort of summary functions). Importantly, at the end of this section, we explain
how tuna can accelerate neural architecture search. Note that our theory in Section 3.2
trivially supports tuna: simply train base neural net φ with tuna on the pre-training data.

Approximating a tree ensemble kernel The key idea behind tuna is that deci-
sion trees and their ensembles implicitly learn kernel functions (Breiman, 2000). Thus,
by using any scalable decision tree or decision tree ensemble learning approach, we can
learn an initial kernel function guess K0. For example, a decision tree has K0(x, x′) =
1{x and x′ are in the same leaf}. For a decision forest K0(x, x′) is equal to the fraction of
trees for which x and x′ are in the same leaf. For gradient tree boosting, the kernel function
is a bit more involved and the general case is given by Chen and Shah (2018, Section 7.1.3).
For xgboost when we add one tree at a time and the final ensemble has equal weight across
trees, then it suffices to set K0(x, x′) to be the fraction of trees for which x and x′ are in
the same leaf.

The kernel function K0 of a tree ensemble does not give us an embedding representation
of the data, where the embedding function is a neural net. However, we can train the base
neural net φ to approximate K0 by minimizing the mean-squared error

1

n◦(n◦ − 1)/2

n◦∑

i=1

n◦∑

j=i+1

(
K(X◦i , X

◦
j )

︸ ︷︷ ︸
to be learned

−K0(X◦i , X
◦
j )

︸ ︷︷ ︸
given by the
tree ensemble

)2
. (4.1)
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As a reminder, “◦” indicates that a quantity is part of pre-training data, and K depends on
the base neural net φ: K(x, x′) = K(‖φ(x)− φ(x′)‖22), where for example K(u) = exp(−u2)
for a Gaussian kernel. To scale to large datasets, we minimize loss (4.1) in minibatches.
The tuna warm-start strategy is as follows:

1. Train a scalable tree ensemble (e.g., xgboost) on the pre-training data; denote its
learned kernel function by K0. For a subset S ⊆ {X◦1 , . . . , X◦n◦} of the pre-training
feature vectors, let KS denote the |S|-by-|S| Gram matrix formed so that the (i, j)-th
entry is given by K0(x◦i , x

◦
j ) where x◦i and x◦j are the i-th and j-th pre-training feature

vectors in S (with elements of S ordered arbitrarily).

2. For each minibatch consisting of pre-training feature vectors x◦1, . . . , x
◦
b where b is the

batch size:

(a) Compute the batch’s tree ensemble Gram matrix K{x◦1,...,x◦b} (defined in step 1) using
K0.

(b) Compute the current neural net’s Gram matrix estimate K̂{x◦1,...,x◦b}, which has

(i, j)-th entry given by K(x◦i , x
◦
j ) = K(‖φ(x◦i )− φ(x◦j )‖22).

(c) Let this minibatch’s loss be the MSE loss (4.1) restricted to feature vectors of the
current minibatch, i.e., the MSE loss between K̂{x◦1,...,x◦b} and K{x◦1,...,x◦b}. Update
parameters of neural net φ based on the gradient of this minibatch’s loss.

As a slight refinement of this warm-start procedure, in our experiments later, between
steps 1 and 2, we initialize the base neural net φ using a different warm-start strategy by
Chen (2020) that is based on multidimensional scaling (MDS) (Borg and Groenen, 2005)
(i.e, within our warm-start strategy, we further use another warm-start strategy). Chen’s
warm-start strategy is computationally expensive to compute, so we use this strategy only
over a small subset of the training data. For details, see Appendix B.

Neural architecture search Step 2 of tuna can be run using different base neural nets
(and step 1 only needs to be run once). Thus, we can search over different base neural net
architectures and choose whichever one achieves the lowest average minibatch loss (the one
described in step 2(c) above). Then when fine-tuning by minimizing the DKSA loss LDKSA,
we do not repeat a search over neural net architectures. Put another way, when searching
over neural net architectures (whether using grid search or a more sophisticated approach
to selecting architectures to try), we focus on minimizing a batched version of the loss (4.1).
We remark that step 2 of tuna does a simple least squares fit without accounting for any
survival analysis problem structure.

5. Experiments

Our experiments are designed to help us understand the empirical performance of survival
kernets in terms of prediction accuracy (Section 5.1) and computation time (Section 5.2).
We consider survival kernets with and without the summary fine tuning, and also with and
without our tuna warm-start procedure. We also provide additional examples of cluster
visualizations for different datasets that we use (Section 5.3). Our code is publicly available.2

2. https://github.com/georgehc/survival-kernets
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Table 5.1: Dataset characteristics.

Dataset Number of data points Number of features Censoring rate

rotterdam/gbsg 2,232 7 43.2%
support 8,873 14 (19∗) 31.97%
unos 62,644 49 (127∗) 50.23%
kkbox 2,814,735 15 (45∗) 34.67%

∗ number of features after preprocessing (note that rotterdam/gbsg dataset’s preprocessing
does not change the number of features)

Datasets We benchmark survival kernets on four standard survival analysis datasets.
We provide basic characteristics of these datasets in Table 5.1, where we have sorted the
datasets in increasing number of data points. The first three datasets are on predicting
time until death. The first dataset rotterdam/gbsg is for breast cancer patients and
technically actually consists of two separate datasets: the Rotterdam tumor bank dataset
(Foekens et al., 2000) and the German Breast Cancer Study Group dataset (Schumacher
et al., 1994). However, these datasets share a common set of features and are frequently
analyzed together (e.g., Katzman et al. 2018; Kvamme et al. 2019; Chen 2020; Zhong et al.
2021), so for the rest of the paper, we denote these as the single dataset rotterdam/gbsg.
The next dataset support is the one we already mentioned in Section 3.1 that is for
hospitalized patients from the Study to Understand Prognoses, Preferences, Outcomes,
and Risks of Treatment (support) (Knaus et al., 1995). The third dataset unos is for
patients receiving heart transplants from the United Network for Organ Sharing.3 The
fourth dataset kkbox is the one on customer churn mentioned in Section 1. These datasets
have appeared in literature although not necessarily all at once in the same paper (e.g.,
Chapfuwa et al. 2018; Giunchiglia et al. 2018; Katzman et al. 2018; Lee et al. 2018; Kvamme
et al. 2019; Chen 2020; Nagpal et al. 2021; Zhong et al. 2021). Data preprocessing details are
in Appendix C.1. For the rotterdam/gbsg dataset, following Katzman et al. (2018), we
treat the Rotterdam data as the training data and the German Breast Cancer Study Group
data as the test data. For the other datasets, we use a random 70%/30% train/test split.

Baseline survival models As baselines, we use an elastic-net-regularized Cox model (de-
noted as elastic-net cox), xgboost (Chen and Guestrin, 2016), deepsurv (Katzman
et al., 2018), deephit (Lee et al., 2018), Deep Cox mixtures (abbreviated as dcm) (Nagpal
et al., 2021), and dksa (Chen, 2020). All neural net models use a multilayer perceptron as
the base neural net. Hyperparameter grids and optimization details are in Appendix C.2.
Note that our hyperparameter grid for elastic-net cox includes no regularization, which
corresponds to the standard Cox model (Cox, 1972). We remark that deephit has been
previously reported to obtain state-of-the-art accuracy on the largest three datasets we have
tested (cf., Lee et al. 2018; Kvamme et al. 2019; as these authors use different experimental
setups, their accuracy numbers are not directly comparable to each other or to ours; how-
ever, our accuracy results yield trends similar to what was found by these authors in terms
of how the baseline methods compare to each other).

3. We use the UNOS Standard Transplant and Analysis Research data from the Organ Procurement and
Transplantation Network as of September 2019, requested at: https://www.unos.org/data/
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Variants of survival kernets For survival kernets, as part of hyperparameter tuning,
we try a number of variants. We always use the Gaussian kernel K(u) = exp(−u2). We fix
the truncation distance to be τ =

√
2 log 10 ≈ 2.146 (i.e., training points contributing to

prediction for a test point must have kernel weight/similarity score with the test point that
is at least exp(−τ2) = exp(−(

√
2 log 10)2) = 0.01), and we further only consider at most 128

approximate nearest neighbors, which are found using the HNSW algorithm (Malkov and
Yashunin, 2020). We comment on different choices of τ in Appendix C.5. For constructing
ε-nets, we set ε = βτ and try β ∈ {1/2, 1/4}. For the embedding space, motivated by
Claims 3 and 4, we constrain the embedding vectors to be on a hypersphere (in preliminary
experiments, we found that leaving the embedding space unconstrained would occasionally
lead to numerical issues during training and did not yield better validation accuracy scores
than having a hypersphere constraint). We try standard neural net initalization (He et al.,
2015) with an exhaustive hyperparameter grid/neural architecture sweep vs our strategy
tuna (denoted in tables as kernet vs tuna-kernet).

When dividing data so that pre-training and training data are not the same, we split
the full training data into 60%/20%/20% pre-training/training/validation sets (neural net
training uses the pre-training and validation sets, with the latter used for early stopping).
When we use this sample splitting, we add the suffix “(split)” to the method name in
tables (e.g., “tuna-kernet (split)” refers to a survival kernet model trained with tuna
warm-start and with pre-training and training sets disjoint). Otherwise, if the pre-training
and training sets are set to be the same, then we split the full training data into 80%/20%
training/validation sets similar to all the baselines, using the validation set for hyperparam-
eter tuning (including early stopping during neural net training); in this case, we add the
suffix “(no split)” to the method name in tables.

Finally, if summary fine-tuning (abbreviated sft) is used, then we also add the suffix
“sft”. For instance, “(no split, sft)” means that pre-training and training data are set
to be the same, and summary fine-tuning is used.

Experimental setup For every dataset and for every model, we repeat the following basic
experiment 5 times (except for a select few cases where the model is too computationally
expensive to run):

1. We randomly split the dataset’s training set into an 80% “proper” training set and a
20% validation set.

2. We train the model on the proper training set using different hyperparameters. The
validation set is used to select the best hyperparameter according to an accuracy
metric (we specifically use the time-dependent concordance index Ctd by Antolini
et al. (2005)).

3. For the model achieving the best validation set accuracy, we use it to predict on the
current dataset’s test set. We record the test set accuracy score achieved (again using
Ctd index).

In our results later, we report the mean and standard deviation of the test set accuracy
scores per dataset and per method across the 5 repetitions of the above basic experiment
(we indicate the few cases where a model is too computationally expensive to run so that
either we only ran the model once or the model could not even finish running a single time).
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Table 5.2: Test set Ctd indices (mean ± standard deviation across 5 experimental repeats,
except for a few cases that run into computational issues).

Model
Dataset

rotterdam/gbsg support unos kkbox

elastic-net cox 0.6660 ± 0.0045 0.6046 ± 0.0013 0.5931 ± 0.0011 0.8438 ± 0.0001
xgboost 0.6703 ± 0.0128 0.6281 ± 0.0031 0.6028 ± 0.0009 0.8714 ± 0.0000
deepsurv 0.6850 ± 0.0160 0.6155 ± 0.0032 0.5941 ± 0.0021 0.8692 ± 0.0003
deephit 0.6792 ± 0.0121 0.6354 ± 0.0047 0.6170 ± 0.0016 0.9148 ± 0.0001
dcm 0.6763 ± 0.0104 0.6289 ± 0.0047 0.6101 ± 0.0023 0.8830∗

dksa 0.6570 ± 0.0139 0.6316 ± 0.0080 out of memory out of memory

kernet (split) 0.6450 ± 0.0086 0.5934 ± 0.0073 0.5936 ± 0.0039 0.8933∗

kernet (split, sft) 0.6478 ± 0.0140 0.6007 ± 0.0040 0.5984 ± 0.0039 0.9027∗

kernet (no split) 0.6599 ± 0.0190 0.6244 ± 0.0026 0.6033 ± 0.0039 0.8942∗

kernet (no split, sft) 0.6621 ± 0.0191 0.6291 ± 0.0059 0.6071 ± 0.0039 0.9029∗

tuna-kernet (split) 0.6510 ± 0.0212 0.6220 ± 0.0026 0.6028 ± 0.0032 0.8952 ± 0.0002
tuna-kernet (split, sft) 0.6544 ± 0.0239 0.6287 ± 0.0050 0.6105 ± 0.0046 0.9049 ± 0.0004
tuna-kernet (no split) 0.6694 ± 0.0163 0.6385 ± 0.0038 0.6130 ± 0.0029 0.8957 ± 0.0005

tuna-kernet (no split, sft) 0.6719 ± 0.0135 0.6426 ± 0.0045 0.6211 ± 0.0025 0.9057 ± 0.0003

∗ we only ran one experimental repeat due to how computationally expensive dcm and the

non-tuna survival kernet variants are, so standard deviations are unavailable for these

As a technical detail, for the first step above, we set random seeds so that per dataset,
the 5 experimental repeats’ have different random splits for the proper training and valida-
tion sets. However, we do not use different random splits across the different models. For
example, for the very first experimental repeat on rotterdam/gbsg, every model would
use the exact same proper training set and also the exact same validation set. We set up
our experiments in this manner so that every model gets access to the same random proper
training/validation splits across the 5 experimental repeats.

5.1 Results on Prediction Accuracy

We report test set Ctd indices in Table 5.2 (mean± standard deviation across 5 experimental
repeats unless some computational issue was encountered, as described above). The main
findings are as follows:

(a) On the largest three datasets (support, unos, and kkbox), the tuna-kernet (no
split, sft) model (i.e., a survival kernet trained with tuna, pre-training data set to
be the same as training data, and summary fine-tuning) achieves the highest mean
test set Ctd indices on support and unos and the second highest on kkbox (second
to deephit).

(b) On the smallest dataset rotterdam/gbsg, tuna-kernet (no split, sft) has
higher accuracy than the other survival kernet variants but the mean Ctd score it
achieves is lower than those of several baselines (deepsurv, deephit, dcm—of which
deepsurv achieves the highest mean Ctd score). tuna-kernet (no split, sft)
does not appear significantly less accurate than these baselines though since the test
set Ctd standard deviations for rotterdam/gbsg across all models are high. For
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example, for the test set Ctd indices of tuna-kernet (no split, sft), the interval
that is within one standard deviation of the mean (namely, 0.6719± 0.0135) contains
the mean test set Ctd indices achieved by deepsurv, deephit, and dcm.4

(c) Our experimental results include two variants of survival kernets that do correspond
to our theoretical analysis (namely kernet (split) and tuna-kernet (split), of
which the latter generally outperforms the former). We point out that tuna-kernet
(split) does outperform a few baselines: it achieves a higher mean test set Ctd index
than elastic-net cox and deepsurv on support, unos, and kkbox. For the
kkbox dataset, tuna-kernet (split) also outperforms xgboost and dcm.

(d) Focusing only on the survival kernet variants, we observe the following general trends:

i. By making the pre-training and training sets disjoint as required by our theory,
the accuracy decreases (this trend generally holds for any variant of survival
kernets where the only difference is whether pre-training and training sets are
disjoint vs set to be the same).

ii. Using summary fine-tuning improves accuracy compared to setting the summary
functions based on equation (3.2) (this trend generally holds for any variant of
survival kernets where the only difference is whether summary fine-tuning is
used).

iii. Using the tuna warm-start strategy improves accuracy compared to standard
neural net initialization (this trend generally holds for any variant of survival
kernets where the only difference is whether tuna is used).

As a minor remark, our kkbox Ctd index is significantly higher for deephit than previously
reported in literature (e.g., Kvamme et al. 2019) because we also try setting the time
discretization grid to be all unique times of customer churn in the dataset, which turns out
to significantly improve deephit’s accuracy for the kkbox dataset (when we discretize to
64 or 128 time steps, the Ctd indices we get are on par with what Kvamme et al. get).

5.2 Results on Computation Time

We next report wall clock computation times for training survival kernet variants and the
baselines in Table 5.3. These training times are inclusive of hyperparameter tuning (which
includes searching over neural net architectures). Our computation time results aim to
show how much our tuna warm-start strategy accelerates training and also to give a sense
of the time needed to train the different models under consideration. All code was run
under similar conditions on identical Ubuntu 20.04.2 LTS instances, each with an Intel
Core i9-10900K CPU (3.70 GHz, 10 cores, 20 threads), 64GB RAM, and an Nvidia Quadro
RTX 4000 (8GB GPU RAM). These compute instances accessed code and data that were
centrally stored on a single network-attached storage system.

4. In fact, when we look at the 5 experimental repeats (as we described in the experimental setup above, for
a specific experimental repeat, all models use the same proper training set and the same validation set),
deepsurv achieved higher test set Ctd index compared to tuna-kernet (no split, sft) only in 3 out
of the 5 experiments: specifically, deepsurv achieved test set Ctd indices 0.693, 0.697, 0.699, 0.673, and
0.663 whereas tuna-kernet (no split, sft) achieved 0.673, 0.649, 0.674, 0.679, and 0.685, respectively.
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Table 5.3: Total training time (mean ± standard deviation across 5 experimental repeats,
except for a few cases that run into computational issues), which includes training using
different hyperparameters. Note that tuna-kernet (split) and tuna-kernet (split,
sft) include the time needed to train an xgboost warm-start model only using pre-training
data, whereas tuna-kernet (no split) and tuna-kernet (no split, sft) include time
to train xgboost on the full training data.

Model
Total training time (minutes)

rotterdam/gbsg support unos kkbox

elastic-net cox 0.294 ± 0.047 0.762 ± 0.031 3.075 ± 0.169 60.171 ± 0.155
xgboost 9.369 ± 0.209 17.885 ± 0.537 73.503 ± 0.420 292.358 ± 1.943
deepsurv 0.140 ± 0.009 0.323 ± 0.016 2.784 ± 0.209 48.621 ± 0.136
deephit 5.083 ± 0.343 9.984 ± 0.373 467.479 ± 5.621 1573.683 ± 5.333
dcm 6.739 ± 0.539 20.667 ± 0.829 1111.717 ± 25.459 38263.568∗

dksa 2.756 ± 0.184 31.135 ± 0.269 out of memory out of memory

kernet (split) 8.917 ± 0.464 47.581 ± 1.354 841.923 ± 80.509 10323.367∗

kernet (split, sft) 9.074 ± 0.480 49.025 ± 1.149 851.257 ± 86.945 10515.057∗

kernet (no split) 23.964 ± 0.588 128.579 ± 3.241 1579.229 ± 58.450 14323.791∗

kernet (no split, sft) 24.103 ± 0.583 129.694 ± 3.094 1595.272 ± 65.490 14673.548∗

tuna-kernet (split) 7.239 ± 0.289 18.510 ± 1.339 160.845 ± 10.788 1586.327 ± 26.143
tuna-kernet (split, sft) 7.500 ± 0.366 19.921 ± 1.758 169.935 ± 7.993 1929.540 ± 16.990
tuna-kernet (no split) 12.762 ± 0.733 32.220 ± 1.109 320.571 ± 33.236 2088.604 ± 86.066

tuna-kernet (no split, sft) 12.941 ± 0.708 33.770 ± 1.801 328.397 ± 31.003 2560.418 ± 65.785

∗ we only ran one experimental repeat due to how computationally expensive dcm and the

non-tuna survival kernet variants are, so standard deviations are unavailable for these

Note that the timing results in Table 5.3 are fair in comparing between the different
variants of survival kernets but not fair in comparing between a survival kernet variant and a
baseline or between two different baselines. The reason for this is that, as aforementioned,
we report training times that are inclusive of hyperparameter tuning. Different models
can have drastically different hyperparameters and hyperparameter grid sizes. We can
easily increase or decrease the number of hyperparameters we try for a model, which can
significantly increase or decrease the overall training time of the model as a result. Because
we use the exact same hyperparameter grid across survival kernet variants, comparing
computation times across them is fair. However, comparing the training times of a survival
kernet variant and of a baseline (or even of two different baselines) does not lead to a
fair comparison due to the hyperparameter grids being different.5 That said, we present
the overall training times across models anyways in Table 5.3 (mean ± standard deviation
across the 5 experimental repeats unless some computational issue was encountered).

5. Note that reporting “per epoch” training times does not give a fair comparison either since, for instance,
training the tuna-kernet (no split, sft) model involves three different kinds of neural net minibatch
gradient descent optimizations (the first is for approximating the xgboost tree ensemble kernel, the
second is for fine-tuning the base neural net using the DKSA loss, and the third is for summary fine-
tuning) whereas, for instance, the baselines deepsurv and deephit each only involve one kind of neural
net minibatch gradient descent optimization. Reporting “per hyperparameter setting” training times
is not straightforward since, for instance, the tuna warm-start strategy could be viewed as further
expanding the hyperparameter grid to include the hyperparameters of the base tree ensemble model
being trained while at the same time never doing an exhaustive grid search.
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The main takeaways from Table 5.3 are as follows:

(a) For each tuna-kernet variant, when we compare it to its corresponding variant that
does not use tuna, then we consistently find that using tuna dramatically reduces
computation time, with savings of 17.3% to 85.4% depending on the specific variant
of survival kernets used and on the dataset. The savings are larger on the larger
datasets; for instance, when only considering the largest three datasets, then the
savings actually range from 59.4% to 85.4%.

(b) Using summary fine-tuning clearly increases training time compared to not using it,
with an increase of 0.58% to 22.6% additional time depending on the specific variant
of survival kernets used and on the dataset.

(c) Even though survival kernets with tuna are significantly faster to train than survival
kernets without tuna, survival kernets with tuna are still relatively expensive to
train when compared to baselines tested (aside from dksa and dcm, both of which
appear to have issues scaling to larger datasets) at least for the hyperparameter grids
that we have used.6

We reiterate that there are trivial ways to reduce or increase the computation time of either
survival kernets or any of the baseline models by simply removing or adding hyperparameter
settings to try. For example, we suspect that for the survival kernet variants and for
deephit, we could remove some of the hyperparameter settings that we had tried while
retaining a similar test set accuracy. Note that the hyperparameter grid we used for every
survival kernet variant is a superset of the one we used for deephit, so we expected the
computation times to be higher for survival kernet variants than deephit. It turns out
though that all the survival kernet variants with tuna have lower overall training times
than deephit on the unos dataset for the hyperparameter grids we used.

As an illustrative example to provide more insight on how much time is spent on different
parts of survival kernet training, we provide a timing breakdown for the tuna-kernet (no
split, sft) model trained on the kkbox dataset in Table 5.4. Note that in this table, we
have separated the computation times for using different ε values in ε-net construction (as
a reminder, we set ε = βτ where the threshold distance is set to be τ =

√
2 log(10) ≈ 2.146,

and we sweep over β ∈ {1/2, 1/4}). For example, we see that if we only tried using β = 1/4
and did not try β = 1/2, then we would reduce the computation time by about 31% in this
case. In Table 5.4, we also provide some detail on the hyperparameters that we sweep over
for the different steps during training. As a reminder, for the tuna warm-start strategy,
the neural net architecture is treated as fixed after we approximate the xgboost kernel
with the base neural net (in particular, trying different neural net architectures happens
during the step labeled “Approximate xgboost kernel with base neural net” in Table 5.4).

6. For dcm in particular, the maximum number of clusters we attempted to use was 6 (which was also
the maximum used by the original authors (Nagpal et al., 2021)) and even so, the total training time
clearly grows at a rate that makes it impractical for use on large datasets (as shown in Table 5.3, a single
experiment on kkbox took over 26 days to run). The issue is that the default behavior in the code by
Nagpal et al. is that every 10 minibatches, it does posterior inference across the entire proper training
set (not just the current minibatch) to update every cluster’s survival curve (represented as a spline).
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Table 5.4: Time breakdown in training the tuna-kernet (no split, sft) model on the
kkbox dataset for our experimental setup (mean ± standard deviation across 5 experi-
mental repeats). The time breakdown for training tuna-kernet (no split) is the same
without the final summary fine-tuning time. Note that our tuna warm-start strategy cor-
responds to the combination of the first two tasks listed below. Also, note that every task
listed below involves tuning different hyperparameters. For details on hyperparameters, see
Appendix C.2. For a slightly more detailed time breakdown that separates the fine-tuning
of the base neural net further to include the different numbers of time steps to discretize
to, see Appendix C.3.

Task Hyperparameter settings Time (minutes)

Train xgboost model 192∗ 292.358 ± 1.943
Approximate xgboost kernel with base neural net 18† 111.987 ± 0.307

Fine-tune base neural net with DKSA loss (β = 1/2) 36‡ 793.884 ± 52.890
Fine-tune base neural net with DKSA loss (β = 1/4) 36‡ 890.374 ± 34.188

Summary fine-tuning 2§ 471.814 ± 37.123

Total 2560.418 ± 65.785

∗ corresponds to the full xgboost hyperparameter grid that we use
† base neural net hyperparameters (number of hidden layers, nodes per hidden layer), learning rate

‡ survival loss hyperparameters (η and σrank from equation (2.7)), number of time steps to
discretize to, learning rate

§ learning rate

5.3 Cluster Visualizations

We now present cluster visualizations of tuna-kernet (no split, sft) models. For sim-
plicity, we only show visualizations for the first experimental repeat.7 For ease of exposition,
we begin with the support dataset since we had already presented a figure for it in Sec-
tion 3.1 (Figure 1). We now also discuss some modified versions of the two plots in Figure 1,
first to how incorporate summary fine-tuning and then, separately, to discuss how to sum-
marize all the clusters found and not just a few. After providing cluster visualizations for
the support dataset, we then provide visualizations for the rotterdam/gbsg, unos, and
kkbox datasets.

SUPPORT dataset For the final tuna-kernet (no split) model trained on the sup-
port dataset that we used to evaluate test set accuracy, we visualize the largest 5 clusters
in Figure 1 using our visualization strategies from Section 3.1. In Section 3.1, we had al-
ready pointed out how one could interpret the different clusters, for instance finding the
rightmost cluster in Figure 1(a) to be of mostly young, cancer-free patients. Meanwhile,
the Kaplan-Meier curves in Figure 1(b) quickly give us a sense of which clusters appear to
be better or worse off than others over time. For this dataset, the largest 5 clusters contain

7. As is standard in machine learning literature, when we talk about model interpretability, we are talking
about interpreting a specific trained model. For example, consider topic models (such as latent Dirichlet
allocation (Blei et al., 2003) or any neural topic model (Zhao et al., 2021)) or prototypical part networks
(Chen et al., 2019). When one re-trains such a topic or prototypical part model using different random
seeds (but leave model hyperparameters fixed), the topics/prototypes learned can vary across random
seeds. Even so, each specific learned model (per experimental repeat) can be interpreted.
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60.5% of the proper training data. There are a total of 73 clusters, many of which are small.
Of course, more clusters can be visualized at once; the plots get more cluttered though.

If instead summary fine-tuning is used and we want to visualize the largest 5 clusters of
the final tuna-kernet (no split, sft) model, then we would make the following changes.
First, note that the final tuna-kernet (no split, sft) model is actually identical to the
final tuna-kernet (no split) model except that summary fine-tuning is used at the very
end, which does not change the survival kernet cluster assignments from the ε-net. Thus, in
terms of cluster visualization, the only main change would be that instead of computing the
survival curve for each cluster using a Kaplan-Meier plot as in Figure 1(b), we would instead
compute the survival curve using equation (3.5) with the learned summary functions. Next,
based on these newly estimated survival curves, we can look at when they cross probability
1/2 to obtain median survival time estimates. The survival curves from summary fine-
tuning in this case are shown in Figure 2; note that these curves are in the exact same
ordering and correspond to the same clusters as in Figure 1 (the same color means the
same cluster although the median survival times change), but as we can readily see, they
look slightly different from the Kaplan-Meier curves from Figure 1(b). Since the survival
curves in Figure 2 are no longer the standard Kaplan-Meier ones, we do not have confidence
intervals for them. Meanwhile, the heatmap in Figure 1(a) remains the same except that
the median survival times at the top would be updated to the new values computed (and
that appear in the legend of Figure 2); note that the columns may have to be reordered
if we still want them to be sorted by median survival time (the new median survival time
estimates based on summary fine-tuning do not have to be in the same order as the original
median survival time estimates based on Kaplan-Meier curves).

We have found that for some clusters, the survival curve from summary fine-tuning is
relatively close to that of the Kaplan-Meier estimate without summary fine-tuning whereas
for other clusters, there could be a larger difference (such as the green cluster shifting upward
at earlier times in Figure 2 compared to in Figure 1(b)). Some possible explanations could
be that the green cluster is in a region of the embedding space that is close to other clusters
and its survival function that gets learned using summary fine-tuning could be thought of
as being estimated from a larger region of the embedding space (rather than just getting
averaged over points assigned to the green cluster by the ε-net), or that even among the
points in the cluster, calculating the survival curve by weighting every point equally (as in
the standard Kaplan-Meier survival curve estimate) does not make as much sense as using
some sort of unequal/nonuniform weighting.

Although there are a total of 73 clusters, we have shown only 5 of them thus far.
While we could visualize all 73 at once using the same visualization ideas as above, the
heatmap and survival curve plots would get cluttered. One way to still visualize information
from all 73 clusters is to use agglomerative clustering (Hastie et al., 2009, Section 14.3.12)
to merge many clusters into larger “superclusters”. For the new superclusters, we can
make visualizations similar to Figure 1. For instance, using standard complete-linkage
agglomerative clustering, we partition the 73 clusters into 10 superclusters in Figure 3. The
resulting feature heatmap in Figure 3(a) gives a more comprehensive view of how features
vary across the entire training dataset. In this case, the second-to-rightmost and third-
to-rightmost columns/clusters in the heatmap each only have one data point, suggesting
that they are outliers among the training data. The rest of the superclusters, however,

30



Survival Kernets

0 250 500 750 1000 1250 1500 1750 2000
Time (days)

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
of

 s
ur

vi
va

l

Largest 5 clusters, listed here based on median survival time (days);
cluster sizes are stated in square brackets

70.00 [499]
104.00 [261]
368.00 [335]
322.00 [1144]
1304.00 [767]

Figure 2: Survival curves for the largest 5 clusters found by the final tuna-kernet (no
split, sft) model trained on the support dataset; the x-axis measures the number of days
since a patient entered the study. Note that the green curve has a higher median survival
time estimate than the red curve; this is not a typo in that we are ordering the clusters the
exact same way as in Figure 1(b). In particular, the median survival time estimates using
summary fine-tuning do not have to be ordered the same way as the median survival time
estimates from the Kaplan-Meier estimator.

exhibit some of the same trends we pointed out earlier when only looking at the largest 5
clusters, such as the rightmost supercluster (with the highest median survival time) tending
to be for younger, cancer-free patients who often have no comorbidities. Among the leftmost
superclusters, we get different common patterns in patient characteristics that are associated
with low survival times (e.g., the leftmost four superclusters have unusually high creatinine
levels possibly indicative of severe kidney disorder, the supercluster with a median survival
time of 80 days corresponds to patients tending to have metastatic cancer and at least one
comorbidity). Meanwhile, the survival curves in Figure 3(b) are more spread out compared
to those in Figure 2.

Note that when we merge clusters into a supercluster, there is a question of how to
compute an aggregated survival curve for the supercluster. If we are not using summary fine-
tuning, then the aggregation is straightforward: we continue to use the standard Kaplan-
Meier survival curve estimator but instead now use data from all patients in a supercluster
to compute that supercluster’s survival curve. However, when using summary fine-tuning,
there is no standard way to aggregate information from different clusters’ learned summary
functions. For simplicity, to come up with the survival curves in Figure 3(b), for the clusters
that are being merged into a supercluster, we take these clusters’ survival curves and then
just take a weighted average to obtain the survival curve for the supercluster (the weights
are proportional to how many points are in each cluster belonging to the supercluster).
The median survival times are then estimated by finding the times in which these survival
curves cross probability 1/2.
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Figure 3: Visualization of 10 superclusters for the final tuna-kernet (no split, sft)
model trained on the support dataset. These 10 superclusters summarize all 73 clusters
found by the tuna-kernet (no split, sft) model by merging clusters using complete-
linkage agglomerative clustering. Panel (a) shows a feature heatmap visualization. Panel
(b) shows survival curves for the same superclusters as in panel (a); the x-axis measures the
number of days since a patient entered the study. The second-to-rightmost and third-to-
rightmost columns/clusters each only have one data point, suggesting that they are outliers.
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Rotterdam-GBSG dataset Next, we plot the feature heatmap and survival curves for
the final tuna-kernet (no split, sft) model trained on the rotterdam/gbsg dataset
(technically trained only on the Rotterdam portion of the data) in Figure 4. In this case
the final model only has a total of 10 clusters, so we plot all 10 of them. This number of
clusters found is also small enough that using the supercluster idea above that we discussed
for the support dataset is unnecessary.

From looking at the heatmap in Figure 4(a), we immediately see a few key patterns:
lower survival times are associated with higher numbers of positive nodes (these are lymph
nodes with cancer) and higher tumor sizes. The rightmost cluster has the highest median
survival time (> 64 months); note that the reason the median survival time is not a precise
estimate here and is only a lower bound is that the estimated survival curve for this cluster
never crosses the probability 1/2 threshold by the last observed time. For this rightmost
cluster, we see that the number of positive nodes is low and also the age distribution
of patients in the cluster also tends to be younger than those of the other clusters. These
qualitative findings agree with previous literature on breast cancer (Sopik and Narod, 2018).

By looking instead at the survival curves in Figure 4(b), we immediately notice a pat-
tern in the survival curves: they roughly look like powers of each other, which happens
when the proportional hazards assumption holds! This observation agrees with the predic-
tion accuracy results from earlier where we saw that the deepsurv model (which uses a
proportional hazards assumption) is the best-performing model we evaluated for rotter-
dam/gbsg. We suspect that the survival kernet model is essentially too flexible of model
in this case (arguably deephit and dcm are also too flexible for this dataset).

UNOS dataset For the unos dataset, automatic hyperparameter tuning led to a final
tuna-kernet (no split, sft) model with a total of 30 clusters that altogether contain
35,080 training points. The largest 5 clusters only account for 87.9% of the proper training
data. For these largest 5 clusters, we plot their feature heatmap and survival curvesin
Figure 5. Note that for the heatmap, to prevent it from getting cluttered, we only show 60
rows in the heatmap even though there are a total of 190 rows after feature discretization
(as mentioned in Section 3.1, we sort features largest to smallest based on the maximum
minus minimum intensity value per row although we keep the same variable together, e.g.,
the different discretized values for “age” remain in sequence together).

From the heatmap in Figure 5(a), we can readily tease apart some trends. For instance,
of the 5 largest clusters, the one with the lowest median survival time contains patients who
are older and whose heart donors are also older. In this cluster, there are also many patients
who are either overweight or obese (BMI value of 25 kg/m2 or higher), which is a known risk
factor for survival of cardiac transplant patients (Russo et al., 2010). The rightmost cluster
with the highest median survival time contains mostly young patients with low weight, low
BMI, and low donor age.

From the survival curves in Figure 5(b), we can tease out some trends among the five
clusters shown. For example, the blue cluster (median survival time 6.25 years) is nearly
always the worst off among the five clusters shown. Meanwhile, the purple cluster (median
survival time 11.66 years) tends to be among the worst off initially (along with the blue
cluster) but then has a higher survival probability than the other four clusters shown after
around 9 years.
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Figure 4: Visualization of all 10 clusters found by the final tuna-kernet (no split,
sft) model trained on the rotterdam/gbsg dataset (technically trained only on the
Rotterdam portion of the data). Panel (a) shows a heatmap visualization that readily
provides information on how the clusters are different, highlighting feature values that are
prominent for specific clusters; the dotted horizontal lines separate features that correspond
to the same underlying variable. Panel (b) shows survival curves (estimated from learned
summary functions) for the same clusters as in panel (a); the x-axis indicates recurrence
free survival time in months.

Visualizing all 30 clusters simultaneously would result in a raw feature heatmap and
survival curve plot that are too cluttered. We again use complete-linkage agglomerative
clustering, this time partitioning the 30 clusters into 10 superclusters, which we then visu-
alize in Figure 6. The resulting feature heatmap in Figure 6(a) provides a more complete
picture of how features vary across the proper training dataset compared to the earlier
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Figure 5: Visualization of the largest 5 clusters found by the final tuna-kernet (no
split, sft) model trained on the unos dataset. Panel (a) shows a heatmap visualization
that readily provides information on how the clusters are different, highlighting feature
values that are prominent for specific clusters; the dotted horizontal lines separate features
that correspond to the same underlying variable. Panel (b) shows survival curves (estimated
from learned summary functions) for the same clusters as in panel (a); the x-axis measures
the number of years since a patient received a heart transplant.

heatmap in Figure 5(a). Note that the rightmost supercluster (with the highest median
survival time of 25.13 years) corresponds to a single patient who can be considered an out-
lier. The five superclusters/columns in the middle of the heatmap (with median survival
times 5.08, 5.88, 7.87, 8.62, and 9.20 years) exhibit trends quite similar to what we already
saw in Figure 5. On the other hand, the other five superclusters (with median survival
times 0.01, 0.04, 15.74, 16.74, and 25.13 years) are all for young patients who receive heart
transplants typically from young donors (in fact, we could use a finer-grain discretization of
continuous features into more than 5 evenly spaced quantiles to reveal that many patients
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in these clusters are pediatric patients). Meanwhile, the survival curves in Figure 6(b) show
much larger differences compared to the earlier plot in Figure 5(b) that was only of the 5
largest clusters.

If we focus only on the five superclusters corresponding to young patients and re-plot
the raw feature heatmap and survival curves only for these five superclusters, we obtain
the plots in Figure 7. As a reminder, our strategy for ranking raw features in our heatmap
visualization depends on which specific (super)clusters are being displayed, which is why the
raw features are ranked differently between Figure 6(a) and Figure 7(a). From Figure 7(a),
we see that the differences in these five superclusters could be explained in part by features
such as whether a Left Ventricular Assist Device (LVAD) was already in place or implanted
at the time of listing, whether inotropic drugs were used, creatinine level at transplant time,
and whether a ventilator was used at transplant time; in fact, these features are known to
be relevant for survival of pediatric cardiac transplantation (Dipchand, 2018).

KKBOX dataset We can repeat the same visualization ideas for the kkbox dataset.
As the ideas are the same, we provide only a summary of findings. Using the same su-
percluster idea presented previously, we visualize 10 superclusters in Figure 8 for the final
tuna-kernet (no split, sft) model trained on the kkbox dataset. These superclusters
summarize all 108,050 clusters found by the final tuna-kernet (no split, sft) model and
contain 1,576,251 data points (the proper training data). We also provide a visualization of
just the largest 10 clusters (containing 28.7% of the proper training data) in Appendix C.4.
Among superclusters corresponding to users who subscribed to the music streaming service
for less than a month, there’s a higher fraction of users who are less than 19 years old
and who have the lowest amount of payment. Among superclusters corresponding to the
longest subscription times, there tends to be fewer previous churns for these users. Many
of the survival curves show a steep drop in survival probability at around the 30-day mark,
corresponding to a one-month promotion period.

Final remarks on visualization We end this section with a reminder that as pointed out
at the end of Section 3.1, a survival kernet model represents the hazard of any feature vector
as a weighted combination of clusters. We can determine which clusters have nonzero weight
for any given feature vector and only visualize these particular clusters. This visualization
could be helpful to provide as “forecast evidence” or to assist model debugging. As an
example, we can find test data with predictions that are inconsistent with the ground truth
(e.g., if the test data point is not censored and its observed survival time is far from the
predicted median survival time, or if the test data point is censored and the predicted
median survival time is much lower than the observed time). For these test data that the
model has difficulty with, we could examine which clusters have high weight, what features
are prominent for these clusters, and what the clusters’ survival curves are. After all, the
predictions are made with these clusters’ summary functions.

6. Discussion

In high-stakes applications such as healthcare, for survival models to be deployed in prac-
tice and producing time-to-event predictions using large (potentially live) streams of data
in years to come, we believe that these models should be accurate, scalable, robust, inter-
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Figure 6: Visualization of 10 superclusters (summarizing 30 clusters) for the final tuna-
kernet (no split, sft) model trained on the unos dataset. Panel (a) shows a feature
heatmap visualization (only 59 rows of features are shown out of 190). Panel (b) shows
survival curves for the same superclusters as in panel (a); the x-axis measures the number
of years since a patient received a heart transplant.
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Figure 7: For the unos dataset, among the 10 superclusters from Figure 6, we now only
display the superclusters with median survival times 0.01, 0.04, 15.74, 16.74, and 25.13 years
corresponding to young patients. Panel (a) shows a feature heatmap visualization (only 59
rows of features are shown out of 190), which has the raw features sorted differently from
Figure 6(a) to emphasize how these young patients’ superclusters differ. Panel (b) shows
survival curves for the same superclusters as in panel (a); as before, the x-axis measures
the number of years since a patient received a heart transplant.
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Figure 8: Visualization of 10 superclusters for the final tuna-kernet (no split, sft)
model trained on the kkbox dataset. These 10 superclusters summarize all 108,050 clusters
found by the tuna-kernet (no split, sft) model by merging clusters using complete-
linkage agglomerative clustering. Panel (a) shows a feature heatmap visualization. Panel
(b) shows survival curves for the same superclusters as in panel (a); the x-axis measures
the number of days since an individual subscribed to the music streaming service.
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pretable, and theoretically sound. Our proposed survival kernet model achieves many of
these properties although some only partially. Specifically, survival kernets are accurate,
scalable, interpretable, and for a special case of the model has a theoretical guarantee. We
discuss a number of limitations of our work next.

Theoretical analysis of the best-performing survival kernet variant As our ex-
perimental results show, the best-performing variant of survival kernets sets pre-training
and training data to be the same and also uses summary fine-tuning. However, neither of
these are covered by our theoretical analysis.

From a technical standpoint, sample splitting (i.e., having pre-training and training data
be disjoint and moreover appear i.i.d.) is crucial in our theoretical analysis. Specifically,
our proof of Theorem 5 routinely uses the fact that the training embedding vectors X̃1 =
φ̂(X1), . . . , X̃n = φ̂(Xn) appear i.i.d. If the pre-training and training data are actually
the same, then the learned base neural net φ̂ is a function of X1, . . . , Xn (along with their
observed times and event indicators), so the embedding vectors are no longer guaranteed to
be independent. We do not currently know of a good way to resolve this technical issue. We
expect that a proof technique that can address this issue would be quite broadly applicable
beyond analyzing survival kernets.8

A key reason for why our theoretical analysis requires sample splitting is that our analysis
is agnostic to the choice of base neural network φ used. We leave the choice of φ up to the
modeler since in practice, this is indeed how neural survival analysis models are used. For
example, depending on the format of raw inputs, different neural net architectures could
be used (e.g., using a multilayer perceptron for tabular data, using a convolutional neural
network or vision transformer for images, using a recurrent neural network for variable-
length time series). Even for the same class of base neural networks, such as multilayer
perceptrons, the modeler could choose to try different options (such as whether to use batch
norm). In contrast, existing neural survival analysis models with theoretical guarantees
(Zhong et al., 2021, 2022) require the base neural network to be a multilayer perceptron
with a number of constraints that are not typically used by practitioners (`0 and sup norm
constraints) and, moreover, their theoretical guarantees assume that the neural network
training finds the global minimum of the training loss, which is typically an impractical
assumption.

As for summary fine-tuning, we suspect that if one treats the learned kernel function
as fixed, then theoretical analysis should be possible although the theory would not say
anything about the learned kernel function. Of course, the theory that we have presented
does not say anything about the learned kernel function either since we treat the base neural
net as a black box. Future work could consider the case when the base neural net is chosen
from a specific family (e.g., a multilayer perceptron with ReLU activations), which could

8. The idea of using sample splitting to get guarantees really is not limited to our problem setup. Another
example of using sample splitting has been in decision forest regression, where a commonly used proof
technique (e.g., Biau 2012; Denil et al. 2014; Wager and Athey 2018; Athey et al. 2019)—that translates
into how the decision trees in the forest are trained—is to split the training data into two portions: the
first portion is used to decide on branching rules for the decision trees, whereas the second portion is
used to decide on predicted labels at the leaves of the trees. In practice, random forests are rarely trained
using this sort of sample splitting and, in fact, this sample splitting empirically can worsen the model’s
prediction accuracy in some circumstances (e.g., see the UCI dataset experiments by Denil et al. (2014)).
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lead to a more nuanced theoretical guarantee (such as what is done by Zhong et al. (2021,
2022) for other deep survival analysis models, although as we already pointed out, their
analysis requires some impractical assumptions on the neural net family).

A separate issue related to the theory is whether it is possible to come up with diagnostics
that could be practically computed for any learned embedding space to assess to what
extent it satisfies the theoretical assumptions relating the embedding space to survival and
censoring times. As far as we are aware, there is no existing way to do this even if the neural
net is the identity function so that the embedding space is just the raw feature space.

Better handling small datasets Survival kernets are inherently nonparametric. They
make predictions using all the training data, possibly with some compression. We saw in
the experimental results that survival kernets do not work as well as several baselines on the
smallest dataset tested (rotterdam/gbsg), for which one possible explanation is that for
this dataset, the proportional hazards assumption is reasonable. A future research direction
could be to figure out how to combine survival kernets with a parametric model so that when
there are too few data points, we mostly use the parametric model (which could, for instance,
use a proportional hazards assumption or an accelerated failure time assumption), and as
more data become available, we gradually transition to taking a nonparametric approach.
Figuring out a seamless way to do this transition could be an interesting research direction
to explore.

Better handling low-dimensional structure The kkbox dataset has a somewhat
peculiar structure not present in the other datasets we considered: the observed survival
times for kkbox are always integers in the set {1, 2, . . . , 759}; even though there are close
to 3 million data points, the number of unique observed times is exactly 759. The number
of unique observed times divided by the total number of data points is equal to 0.000270. In
contrast, this ratio is significantly higher for all the other datasets considered: the ratio is
equal to 0.551 for the rotterdam/gbsg dataset, 0.193 for the support dataset, and 0.149
for the unos dataset. Put another way, the kkbox dataset has a significantly smaller time
grid needed to represent observed times, which could be thought of as some low-dimensional
structure in time. Of course, there could separately be low-dimensional structure present
in the feature vectors themselves.

Currently, survival kernets do not have any sort of special procedure for exploiting
low-dimensional structure. As already stated above, survival kernets are inherently non-
parametric and compute predictions based on similarity scores to training points. If training
feature vectors are noisy, then if we do not denoise the feature vectors somehow (e.g., using
singular value thresholding as is done in principal component regression (Agarwal et al.,
2021)), then we suspect that survival kernets could struggle to learn a good model compared
to a simpler parametric model. While using an ε-net to cluster the training data can help
denoise, right now we do not have an efficient manner that quickly determines what value
of ε should be used. Moreover, this ε-net construction is only done after the base neural net
φ has already been trained, which means relying on the ε-net to denoise would not affect
neural net training itself (for which how we are currently learning the base neural net using
the infinite-bandwidth kernel is not explicitly incorporating any denoising mechanism).

Improving the warm-start strategy and hyperparameter tuning Another possible
explanation for why survival kernets does not achieve the best accuracy on the kkbox

41



Chen

dataset could be that for kkbox, the xgboost initialization is not very good. Note that
even when using xgboost for survival analysis, there are a number of hyperparameters
that can be set, and for simplicity, currently we are just using Cox regression as xgboost’s
objective. At the time of writing, xgboost also supports using accelerated failure time
models with Gaussian, logistic, and extreme value distributions. Sweeping over more of
these options could improve xgboost’s prediction accuracy which could in turn improve
the accuracy of a survival kernet model when using the tuna warm-start procedure with
xgboost.

Separately, as already pointed out by Chen (2020) in the original DKSA paper, using a
tree ensemble to warm-start neural net training is not required. An alternative approach is
to use the base neural net learned from, for instance, deephit (possibly removing a subset
of the final layers of the neural net) and then fine-tuning using the DKSA loss.

Ultimately, although we have demonstrated that our tuna warm-start strategy is clearly
better than using standard random neural net parameter initialization, figuring out the best
warm-start strategy to use for survival kernets (which might be dataset-dependent) remains
an interesting open question. For example, one research direction could be to see whether
contrastive representation learning (e.g., see the survey by Le-Khac et al. (2020)) could be
used to warm-start survival kernet training and, if so, how well it works.

More generally, the tuna warm-start strategy also aims to save time with hyperparam-
eter selection by having some hyperparameters tuned as part of the warm-start procedure
and then treated as fixed afterward. We leave a more thorough investigation of how to opti-
mize hyperparameters for future work. For simplicity, when sweeping over hyperparameters,
we used grid search. We did not explore other strategies such as Bayesian hyperparameter
optimization (e.g., Akiba et al. 2019) nor did we carefully try to determine if some hyperpa-
rameters simply do not need to be tuned at all (in that there is a reasonable default value
that can be used).

Impact of clustering on accuracy and interpretability For survival kernets, one
could easily replace the ε-net-based clustering with another clustering approach. We chose
the ε-net-based clustering for theoretical convenience: ε-nets can easily be constructed in
the greedy manner we had mentioned, and importantly, the resulting clusters come with
theoretical properties. Consequently, ε-nets have been used to prove that “compressed”
versions of nearest neighbor or kernel regression are consistent (Kpotufe and Verma, 2017;
Kontorovich et al., 2017; Hanneke et al., 2021). In contrast, had we used, for instance,
k-means for clustering, then even though k-means at this point also has a lot of known
theory (e.g., Rakhlin and Caponnetto 2006; Ben-David et al. 2007; Kumar and Kannan
2010; von Luxburg 2010; Fränti and Sieranoja 2019), it can be quite unstable in practice
and the resulting clusters do not in general come with theoretical assurances. As such,
we suspect that using k-means clustering with survival kernets would lead to a test-time
predictor that is harder to theoretically analyze.

Putting aside theoretical convenience, by empirically evaluating how a wider range of
clustering algorithms work with our survival kernet framework, we could potentially find
that some of these lead to better prediction accuracy or better model interpretability com-
pared to using ε-net clustering. We remark that especially as our experiments use embedding
vectors that are on a hypersphere, then hyperspherical clustering methods could be used
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such as fitting a mixture of von Mises-Fisher distributions (Banerjee et al., 2005). We leave
an empirical study of using different clustering methods with survival kernets for future
work.

Handling outliers Separately, we point out that even with our ε-net clustering approach,
in practice many clusters could have very few data points assigned to them. Currently
we are not removing such small clusters, although it might make sense to do so or to
somehow flag these clusters as outliers and treat them a bit differently. Even pointing these
clusters out to the user and visualizing them using the cluster visualization approach we had
presented could be useful for model debugging purposes. In fact, this problem of addressing
outliers would also arise if we replace the clustering method with, for instance, DBSCAN
(Ester et al., 1996), which automatically flags various data points as outliers as part of the
clustering procedure.

Calibration When a survival model’s predicted number of critical events within a time
interval closely resembles the observed number, then the model is considered well-calibrated
(Haider et al., 2020). This could be thought of as a different notion of accuracy than the
one we used in our experiments (namely time-dependent concordance index by Antolini
et al. (2005)). We have not considered calibration in our paper, which in practice can be
important. A straightforward way to incorporate calibration is to introduce an additional
loss term such as the X-CAL loss by Goldstein et al. (2020). We leave a thorough inves-
tigation of the calibration properties of survival kernets, with and without the addition of
the X-CAL loss, to future work.

Robustness We have not discussed robustness of survival kernets thus far although in
some sense they already have a limited amount of robustness built-in. Specifically, survival
kernets do not assume a parametric form for the underlying survival distribution; the base
neural net is used only to parameterize the kernel function, which is then plugged into
the nonparametric conditional Kaplan-Meier estimator. By being nonparametric, survival
kernets should be more robust to the data coming from different survival distributions.
In fact, our theoretical guarantee works under a fairly broad range of settings. However,
survival kernets are currently not designed to handle changes in the data distribution such
as covariate shift, where test feature vectors come from a different distribution than that of
training but how feature vectors relate to survival and censoring times remains unchanged at
test time. Modifying survival kernets to better accommodate test data appearing different
from training data is an important future research direction to explore.
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Appendix A. Proofs

We present the proofs for Claim 3 (unit hypersphere’s covering number) and Claim 4 (intrin-
sic dimension of the unit hypersphere) in Appendices A.1 and A.2, respectively. The proof
of our main theoretical result Theorem 5 (survival kernet error bound) is in Appendix A.3.

A.1 Proof of Claim 3

Let {ζ1, ζ2, . . . , ζN} be an ε/2-covering of the d-dimensional unit Euclidean ball (denoted
by Bd) such that N is the smallest value possible, i.e., N = N(ε/2;Bd); note that the unit
Euclidean ball includes the interior of the ball whereas the unit hypersphere Sd−1 is only the
outer shell. We recall a standard result of covering numbers (Corollary 4.2.13 of Vershynin
(2018)) that

N = N(ε/2;Bd) ≤
(4

ε
+ 1
)d
. (A.1)

Then since Sd−1 ⊆ Bd, for every v ∈ Sd−1, there exists some ζj such that ‖v − ζj‖ ≤ ε/2.
This implies that there exists a subset Ξ of {ζ1, ζ2, . . . , ζN} such that every point in Sd−1 is
at most a distance ε/2 from some point in Ξ. Let Ξ∗ be such a subset that has the smallest
size, and denote its unique elements as ξ1, ξ2, . . . , ξ|Ξ∗|.

We next show how to construct an ε-cover for Sd−1 using ξ1, ξ2, . . . , ξ|Ξ∗|. For each point

ξi, note that there exists some si ∈ Sd−1 such that si ∈ B(ξi, ε/2) (if such an si does not
exist, then ξi would not have been included in Ξ∗, i.e., Ξ∗ does not actually have the smallest
size possible while still covering Sd−1). Next, we observe that for any v ∈ B(ξi, ε/2), the
triangle inequality implies that

‖si − v‖2 = ‖si − ξi + ξi − v‖2 ≤ ‖si − ξi‖2︸ ︷︷ ︸
≤ε/2

+ ‖ξi − v‖2︸ ︷︷ ︸
≤ε/2

,

which means that v is also in B(si, ε). Hence,

B(si, ε) ⊇ B(ξi, ε/2).

This means that ∪|Ξ
∗|

i=1B(si, ε) ⊇ ∪|Ξ
∗|

i=1B(ξi, ε/2), and since the latter covers Sd−1, so does the
former. We thus conclude that {s1, s2, . . . , s|Ξ∗|} forms a valid ε-cover of Sd−1. The ε-cover

of Sd−1 that has the smallest size possible is thus upper-bounded by |Ξ∗| ≤ N ≤
(

4
ε + 1

)d
using inequality (A.1). �

A.2 Proof of Claim 4

Let f
X̃

denote the PDF of P
X̃

, where we assume that f
X̃

(z̃) ≥ cmin > 0 for all z̃ ∈ Sd−1, and

f
X̃

(z̃) = 0 for all z̃ /∈ Sd−1. Let x̃ ∈ X̃ and r ∈ (0, 1]. Then

P
X̃

(B(x̃, r)) =

∫

B(x̃,r)
f
X̃

(z̃)dz̃ ≥
∫

B(x̃,r)
cmin · dz̃ = cmin · area

(
Sd−1 ∩B(x̃, r)︸ ︷︷ ︸

C(x̃,r):=

)
.

Note that C(x̃, r) is a hyperspherical cap. We make a geometric observation:

area
(
C(x̃, r)

)
≥ volume

(
C(x̃, r) projected down to Rd−1 in the direction of x̃︸ ︷︷ ︸

A:=

)
,
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<latexit sha1_base64="v14/FHUpDtZ8cnewgOFbL90WLGI=">AAAB/HicbVBNS8NAEN3Ur1q/Yj16WSxCBSmJFPRY9OKxgrWFNpTNZtou3WzC7kZbQv6KFw8K4tUf4s1/47bNQVsfDDzem2Fmnh9zprTjfFuFtfWNza3idmlnd2//wD4sP6gokRRaNOKR7PhEAWcCWpppDp1YAgl9Dm1/fDPz248gFYvEvZ7G4IVkKNiAUaKN1LfL19XeEwtAMx5AOsnO5Vnfrjg1Zw68StycVFCOZt/+6gURTUIQmnKiVNd1Yu2lRGpGOWSlXqIgJnRMhtA1VJAQlJfOb8/wqVECPIikKaHxXP09kZJQqWnom86Q6JFa9mbif1430YMrL2UiTjQIulg0SDjWEZ4FgQMmgWo+NYRQycytmI6IJFSbuEomBHf55VXSvqi59Zrr3tUrDSfPo4iO0QmqIhddoga6RU3UQhRN0DN6RW9WZr1Y79bHorVg5TNH6A+szx8bx5Q+</latexit>

B(ex, r)
<latexit sha1_base64="O6wK90BW1O9QvGwturMb7b7OmZ4=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VrC20oWw203bpZhN3N9US+ju8eFAQr/4Xb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjex2nimGTxSJW7YBqFFxi03AjsJ0opFEgsBWMrmd+a4xK81jemUmCfkQHkvc5o8ZKfveRh2i4CDF7mvbKFbfqzkFWiZeTCuRo9Mpf3TBmaYTSMEG17nhuYvyMKsOZwGmpm2pMKBvRAXYslTRC7Wfzo6fkzCoh6cfKljRkrv6eyGik9SQKbGdEzVAvezPxP6+Tmv6Vn3GZpAYlWyzqp4KYmMwSICFXyIyYWEKZ4vZWwoZUUWZsTiUbgrf88ippXVS9WtXzbmuVupvnUYQTOIVz8OAS6nADDWgCgwd4hld4c8bOi/PufCxaC04+cwx/4Hz+AAKukqo=</latexit>ex

<latexit sha1_base64="giFFaLXvO9qyzaQDslumtkaFkHo=">AAAB6XicbVA9SwNBEJ2LXzF+RS1tFoNgFW4loGXAxjIBYwLJEfY2c8mavb1jd08IIb/AxkJBbP1Hdv4bN8kVmvhg4PHeDDPzwlQKY33/2ytsbG5t7xR3S3v7B4dH5eOTB5NkmmOLJzLRnZAZlEJhyworsZNqZHEosR2Ob+d++wm1EYm6t5MUg5gNlYgEZ9ZJTdovV/yqvwBZJzQnFcjR6Je/eoOEZzEqyyUzpkv91AZTpq3gEmelXmYwZXzMhth1VLEYTTBdHDojF04ZkCjRrpQlC/X3xJTFxkzi0HXGzI7MqjcX//O6mY1ugqlQaWZR8eWiKJPEJmT+NRkIjdzKiSOMa+FuJXzENOPWZVNyIdDVl9dJ+6pKa1VKm7VK3c/zKMIZnMMlULiGOtxBA1rAAeEZXuHNe/RevHfvY9la8PKZU/gD7/MHCwyM3A==</latexit>

1

<latexit sha1_base64="l6nHf+xdsGRwTtwbH3llVAsJzMA=">AAAB+3icbVBNS8NAFHypX7V+pXr0EiyCF0tWCnosePFY0dpCG8tms22XbjZhd6OUmJ/ixYOCePWPePPfuGlz0NaBhWHmPd7s+DFnSrvut1VaWV1b3yhvVra2d3b37Or+nYoSSWibRDySXR8rypmgbc00p91YUhz6nHb8yWXudx6oVCwSt3oaUy/EI8GGjGBtpIFd7YdYjwnm6U12nwanKBvYNbfuzuAsE1SQGhRoDeyvfhCRJKRCE46V6iE31l6KpWaE06zSTxSNMZngEe0ZKnBIlZfOomfOsVECZxhJ84R2ZurvjRSHSk1D30zmQdWil4v/eb1EDy+8lIk40VSQ+aFhwh0dOXkPTsAkJZpPDcFEMpPVIWMsMdGmrYopAS1+eZl0zuqoUUfoulFrukUfZTiEIzgBBOfQhCtoQRsIPMIzvMKb9WS9WO/Wx3y0ZBU7B/AH1ucPxaqUFQ==</latexit>

Sd�1

<latexit sha1_base64="OJOCo7x3Kh85YHJaLSZirGLHHFs=">AAACA3icbVBNS8NAEJ34WetX1JN4WSyCp5JIQY8FLx6rWFtoYtlsN+3SzSbsboQSghf/ihcPCuLVP+HNf+OmzUFbHyy8fW+GmXlBwpnSjvNtLS2vrK6tVzaqm1vbO7v23v6dilNJaJvEPJbdACvKmaBtzTSn3URSHAWcdoLxZeF3HqhULBa3epJQP8JDwUJGsDZS3z70IqxHQZg5ucfE7BNkN/n9oG/XnLozBVokbklqUKLVt7+8QUzSiApNOFaq5zqJ9jMsNSOc5lUvVTTBZIyHtGeowBFVfjY9IUcnRhmgMJbmCY2m6u+ODEdKTaLAVBY7qnmvEP/zeqkOL/yMiSTVVJDZoDDlSMeoyAMNmKRE84khmEhmdkVkhCUm2qRWNSG48ycvks5Z3W3UXfe6UWs6ZR4VOIJjOAUXzqEJV9CCNhB4hGd4hTfryXqx3q2PWemSVfYcwB9Ynz9aOpfL</latexit>

0 2 Rd

<latexit sha1_base64="2iI0j4dQXgyBCU8nHJ2YWEeGiaQ=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK4GjLS567ixmUFawvToWTStA3NJEOSEcrQz3DjQhG3fo07/8ZMO4KKHggczrmXnHvCmDNtEPpwCmvrG5tbxe3Szu7e/kH58OhOy0QR2iWSS9UPsaacCdo1zHDajxXFUchpL5xdZX7vnirNpLg185gGEZ4INmYEGyv5gwibKcE8vVwMyxXkoiUgcuvVBqq1LEFeq46a0MutCsjRGZbfByNJkogKQzjW2vdQbIIUK8MIp4vSINE0xmSGJ9S3VOCI6iBdRl7AM6uM4Fgq+4SBS/X7RoojredRaCeziPq3l4l/eX5ixs0gZSJODBVk9dE44dBImN0PR0xRYvjcEkwUs1khmWKFibEtlWwJX5fC/8ndhevVXHRTrbRRXkcRnIBTcA480ABtcA06oAsIkOABPIFnxziPzovzuhotOPnOMfgB5+0TuuGRgA==</latexit>A

Figure 9: This diagram shows the geometric observation in the proof for the case of d = 3
dimensional Euclidean space. The intersection of the closed ball B(x̃, r) with the unit
hypersphere Sd−1 is a hyperspherical cap, with the “top” of the cap at x̃, and the bottom
is shown in the dotted green line. The surface area of this cap is lower-bounded by the area
of the projection (the solid green circle A; in higher dimensions, this is a ball in Rd−1).

where A is depicted as a solid shaded green circle in Figure 9. The core of the remaining
analysis is in determining the volume of A. With a bit of trigonometry, we can derive that A
is precisely equal to a ball centered at the origin with radius 1

2r
√

4− r2; see Figure 10. Since

r ∈ (0, 1], the radius of A satisfies the bound 1
2r
√

4− r2 ≥ 1
2r
√

3. Thus, the volume of A is

lower-bounded by the volume of a ball in Rd−1 with radius
√

3
2 r, which is π(d−1)/2

Γ( d−1
2

+1)
(
√

3
2 r)

d−1,

where Γ(z) :=
∫∞

0 uz−1e−udu. Putting everything together,

P
X̃

(B(x̃, r)) ≥ cmin · area(C(x̃, r))
≥ cmin · volume(A)

≥ cmin ·
π(d−1)/2

Γ(d−1
2 + 1)

(√3

2
r
)d−1

=
[
cmin ·

π(d−1)/2

Γ(d−1
2 + 1)

(√3

2

)d−1]
rd−1,

which establishes that the embedding space has intrinsic dimension d− 1.

A.3 Proof of Survival Kernet Error Bound (Theorem 5)

To keep the notation from getting cluttered, we use different notation than what is in
the main paper. We drop tildes and instead write the embedding space as U ⊂ Rd. The
training (and not pre-training) embedding vectors (treated as random variables) are written
as U1, U2, . . . , Un ∈ U . Just as in the main paper, we use the notation U1:n = (U1, . . . , Un) ∈
Un. The random test data point’s embedding vector is denoted by the random variable U .
The marginal distribution of embedding vectors is denoted by PU. We denote the ε-net as
Q (treated as a set), which is a subsample of the indices in U1:n (treated as a sequence).
Just as in the main paper, we denote Iq ⊆ {1, 2, . . . , n} to be the indices of the training
points assigned to q ∈ Q. We denote the true conditional survival, censoring, and observed
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<latexit sha1_base64="v14/FHUpDtZ8cnewgOFbL90WLGI=">AAAB/HicbVBNS8NAEN3Ur1q/Yj16WSxCBSmJFPRY9OKxgrWFNpTNZtou3WzC7kZbQv6KFw8K4tUf4s1/47bNQVsfDDzem2Fmnh9zprTjfFuFtfWNza3idmlnd2//wD4sP6gokRRaNOKR7PhEAWcCWpppDp1YAgl9Dm1/fDPz248gFYvEvZ7G4IVkKNiAUaKN1LfL19XeEwtAMx5AOsnO5Vnfrjg1Zw68StycVFCOZt/+6gURTUIQmnKiVNd1Yu2lRGpGOWSlXqIgJnRMhtA1VJAQlJfOb8/wqVECPIikKaHxXP09kZJQqWnom86Q6JFa9mbif1430YMrL2UiTjQIulg0SDjWEZ4FgQMmgWo+NYRQycytmI6IJFSbuEomBHf55VXSvqi59Zrr3tUrDSfPo4iO0QmqIhddoga6RU3UQhRN0DN6RW9WZr1Y79bHorVg5TNH6A+szx8bx5Q+</latexit>

B(ex, r)
<latexit sha1_base64="O6wK90BW1O9QvGwturMb7b7OmZ4=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48VrC20oWw203bpZhN3N9US+ju8eFAQr/4Xb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjex2nimGTxSJW7YBqFFxi03AjsJ0opFEgsBWMrmd+a4xK81jemUmCfkQHkvc5o8ZKfveRh2i4CDF7mvbKFbfqzkFWiZeTCuRo9Mpf3TBmaYTSMEG17nhuYvyMKsOZwGmpm2pMKBvRAXYslTRC7Wfzo6fkzCoh6cfKljRkrv6eyGik9SQKbGdEzVAvezPxP6+Tmv6Vn3GZpAYlWyzqp4KYmMwSICFXyIyYWEKZ4vZWwoZUUWZsTiUbgrf88ippXVS9WtXzbmuVupvnUYQTOIVz8OAS6nADDWgCgwd4hld4c8bOi/PufCxaC04+cwx/4Hz+AAKukqo=</latexit>ex

<latexit sha1_base64="giFFaLXvO9qyzaQDslumtkaFkHo=">AAAB6XicbVA9SwNBEJ2LXzF+RS1tFoNgFW4loGXAxjIBYwLJEfY2c8mavb1jd08IIb/AxkJBbP1Hdv4bN8kVmvhg4PHeDDPzwlQKY33/2ytsbG5t7xR3S3v7B4dH5eOTB5NkmmOLJzLRnZAZlEJhyworsZNqZHEosR2Ob+d++wm1EYm6t5MUg5gNlYgEZ9ZJTdovV/yqvwBZJzQnFcjR6Je/eoOEZzEqyyUzpkv91AZTpq3gEmelXmYwZXzMhth1VLEYTTBdHDojF04ZkCjRrpQlC/X3xJTFxkzi0HXGzI7MqjcX//O6mY1ugqlQaWZR8eWiKJPEJmT+NRkIjdzKiSOMa+FuJXzENOPWZVNyIdDVl9dJ+6pKa1VKm7VK3c/zKMIZnMMlULiGOtxBA1rAAeEZXuHNe/RevHfvY9la8PKZU/gD7/MHCwyM3A==</latexit>

1

<latexit sha1_base64="l6nHf+xdsGRwTtwbH3llVAsJzMA=">AAAB+3icbVBNS8NAFHypX7V+pXr0EiyCF0tWCnosePFY0dpCG8tms22XbjZhd6OUmJ/ixYOCePWPePPfuGlz0NaBhWHmPd7s+DFnSrvut1VaWV1b3yhvVra2d3b37Or+nYoSSWibRDySXR8rypmgbc00p91YUhz6nHb8yWXudx6oVCwSt3oaUy/EI8GGjGBtpIFd7YdYjwnm6U12nwanKBvYNbfuzuAsE1SQGhRoDeyvfhCRJKRCE46V6iE31l6KpWaE06zSTxSNMZngEe0ZKnBIlZfOomfOsVECZxhJ84R2ZurvjRSHSk1D30zmQdWil4v/eb1EDy+8lIk40VSQ+aFhwh0dOXkPTsAkJZpPDcFEMpPVIWMsMdGmrYopAS1+eZl0zuqoUUfoulFrukUfZTiEIzgBBOfQhCtoQRsIPMIzvMKb9WS9WO/Wx3y0ZBU7B/AH1ucPxaqUFQ==</latexit>

Sd�1

<latexit sha1_base64="OJOCo7x3Kh85YHJaLSZirGLHHFs=">AAACA3icbVBNS8NAEJ34WetX1JN4WSyCp5JIQY8FLx6rWFtoYtlsN+3SzSbsboQSghf/ihcPCuLVP+HNf+OmzUFbHyy8fW+GmXlBwpnSjvNtLS2vrK6tVzaqm1vbO7v23v6dilNJaJvEPJbdACvKmaBtzTSn3URSHAWcdoLxZeF3HqhULBa3epJQP8JDwUJGsDZS3z70IqxHQZg5ucfE7BNkN/n9oG/XnLozBVokbklqUKLVt7+8QUzSiApNOFaq5zqJ9jMsNSOc5lUvVTTBZIyHtGeowBFVfjY9IUcnRhmgMJbmCY2m6u+ODEdKTaLAVBY7qnmvEP/zeqkOL/yMiSTVVJDZoDDlSMeoyAMNmKRE84khmEhmdkVkhCUm2qRWNSG48ycvks5Z3W3UXfe6UWs6ZR4VOIJjOAUXzqEJV9CCNhB4hGd4hTfryXqx3q2PWemSVfYcwB9Ynz9aOpfL</latexit>

0 2 Rd

<latexit sha1_base64="3EOrNAqDXXt/G7409oAB8NF1pEs=">AAAB6XicdVBNS8NAEJ3Ur1q/qh69LBbBU0hKQY8FLx5bsLbQhrLZTtq1m03Y3Qgl9Bd48aAgXv1H3vw3bj+EWvTBwOO9GWbmhang2njel1PY2Nza3inulvb2Dw6Pyscn9zrJFMMWS0SiOiHVKLjEluFGYCdVSONQYDsc38z89iMqzRN5ZyYpBjEdSh5xRo2VmqpfrviuNwfx3Ooa+bEqsESjX/7sDRKWxSgNE1Trru+lJsipMpwJnJZ6mcaUsjEdYtdSSWPUQT4/dEourDIgUaJsSUPm6upETmOtJ3FoO2NqRnrdm4l/ed3MRNdBzmWaGZRssSjKBDEJmX1NBlwhM2JiCWWK21sJG1FFmbHZlFZD+J+0q65fc32/WavUvWUeRTiDc7gEH66gDrfQgBYwQHiCF3h1Hpxn5815X7QWnOXMKfyC8/ENdRiNIg==</latexit>r
<latexit sha1_base64="QRXY3yT1/13US4F+R9CU7ThHl0A=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU9yUoh4LXjxWMLbQxrLZbtqlm03Y3Qgl9Dd48aAgXv0/3vw3btoerPXBwOO9GWbmhang2mD87ZTW1jc2t8rblZ3dvf2D6uHRg04yRZlPE5GoTkg0E1wy33AjWCdVjMShYO1wfFP47SemNE/kvZmkLIjJUPKIU2Ks5KvH+kW9X61ht44LIOxezonn4mVSgwVa/epXb5DQLGbSUEG07no4NUFOlOFUsGmll2mWEjomQ9a1VJKY6SCfHTtFZ1YZoChRtqRBM/X3RE5irSdxaDtjYkb6r1eI/3ndzETXQc5lmhkm6XxRlAlkElR8jgZcMWrExBJCFbe3IjoiilBj86nYEFZeXiXtuus1XM+7a9SaeJFHGU7gFM7Bgytowi20wAcKHJ7hFd4c6bw4787HvLXkLGaOYQnO5w+Aao4/</latexit>

r2/2

<latexit sha1_base64="lEBCJVKYlJ8GSy+ZYoBeqGkSXmU=">AAACAnicbVBNS8NAEN3Ur1q/ol4EL4tF8GLIlqIeC148VrC20MSy2W7apZtN3N0IJcSLf8WLBwXx6q/w5r9x20bQ6oOBx3szzMwLEs6Udt1Pq7SwuLS8Ul6trK1vbG7Z2zvXKk4loS0S81h2AqwoZ4K2NNOcdhJJcRRw2g5G5xO/fUelYrG40uOE+hEeCBYygrWRevaeF0pMMpRntVx66lbqrH4sb2p5z666jjsFdJ2Tb1IoqCBVUKDZsz+8fkzSiApNOFaqi9xE+xmWmhFO84qXKppgMsID2jVU4IgqP5t+kMNDo/RhGEtTQsOp+nMiw5FS4ygwnRHWQzXvTcT/vG6qwzM/YyJJNRVktihMOdQxnMQB+0xSovnYEEwkM7dCMsQmEm1Cq5gQ0PzLf0m75qC6g9BlvdpwizzKYB8cgCOAwClogAvQBC1AwD14BM/gxXqwnqxX623WWrKKmV3wC9b7Fw3ElwY=</latexit>

1

2
r
p

4 � r2

(a)

<latexit sha1_base64="93XC/JRAQEx4eq4Lbw7Id6VcTxs=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W962qtWavU3TyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AeCGMrA==</latexit>

1
<latexit sha1_base64="93XC/JRAQEx4eq4Lbw7Id6VcTxs=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W962qtWavU3TyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AeCGMrA==</latexit>

1

<latexit sha1_base64="WPqp713f7kVSTfLQaV91Tv85ODA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRoh4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHryLoF+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophjd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVr2rau2+Vqm7eRxFOIFTOAcPrqEOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AGbRY1P</latexit>

1 � b

<latexit sha1_base64="PvJaXqSYR9AiPq0/Y3RDHqYE5YI=">AAAB6HicbVBNSwMxEJ2tX7V+VT16CRbB05ItpXosePHYgv2AdinZNNvGZrNLkhXK0l/gxYMiXv1J3vw3ZtserPXBwOO9GWbmBYng2mD87RS2tnd294r7pYPDo+OT8ulZR8epoqxNYxGrXkA0E1yytuFGsF6iGIkCwbrB9C73u09MaR7LBzNLmB+RseQhp8RYqRUMyxXsVnEOhN36knguXicVWKE5LH8NRjFNIyYNFUTrvocT42dEGU4Fm5cGqWYJoVMyZn1LJYmY9rPFoXN0ZZURCmNlSxq0UH9PZCTSehYFtjMiZqL/ern4n9dPTXjrZ1wmqWGSLheFqUAmRvnXaMQVo0bMLCFUcXsrohOiCDU2m5INYePlTdKpul7drbVqlQZexVGEC7iEa/DgBhpwD01oAwUGz/AKb86j8+K8Ox/L1oKzmjmHNTifP8+NjOY=</latexit>
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Figure 10: The radius of both the dotted and solid green circles in Figure 9 can be computed
to be equal to 1

2r
√

4− r2. Specifically, in panel (a), we show a 2D view of Figure 9. To
verify that the lengths specified in red, blue, and green in panel (a) are correct, we show the
two shaded right triangles from panel (a) with more detail in panel (b), where we denote the
green and blue lengths as a and b respectively: the Pythagorean theorem says that for the
darker triangle, we have a2 +b2 = r2, and for the lighter triangle, we have a2 +(1−b)2 = 12;

by solving this system of two equations, we get a = 1
2r
√

4− r2 and b = r2

2 .

time distributions as PT|U, PC|U, and PY|U. We write their PDFs as fT|U(t|u), fC|U(t|u),
and fY|U(t|u); their CDFs as FT|U(t|u), FC|U(t|u), and FY|U(t|u); and their tail functions as
ST|U(t|u) = 1 − FT|U(t|u), SC|U(t|u) = 1 − FC|U(t|u), and SY|U(t|u) = 1 − FY|U(t|u). For
a test embedding vector u, the conditional survival function we aim to predict is precisely
ST|U(t|u) for t ≥ 0.

For survival kernets, the only training points that can possibly contribute to the predic-
tion for test embedding vector u (i.e., they have nonzero truncated kernel weight) are the
ones with indices in

NQ(u) :=
∐

q∈Q s.t. ‖u−q‖2≤τ

Iq,

where “
∐

” denotes disjoint union. This union is disjoint since the survival kernet training
procedure assigns each training point to exactly one exemplar in Q. The set NQ(u) could
be thought of as the “neighbors” of u.

For Ymax(u) := maxj∈NQ(u) Yj , the survival kernet hazard function estimate (equa-
tion (3.3)) can be written as follows, using the new notation:

ĝQ(t|u) :=





∑
j∈NQ(u)K(‖u− qj‖2)Dj1{Yj = t}
∑

j∈NQ(u)K(‖u− qj‖2)1{Yj ≥ t}
if NQ(u) 6= ∅ and 0 ≤ t ≤ Ymax(u),

0 otherwise.

(A.2)

Let T be the set of (unique) times until death within the training data, i.e., T := {t′ ∈
[0,∞) : ∃j ∈ {1, . . . , n} s.t. Yj = t′ and Dj = 1}. Then the survival kernet conditional
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survival function estimator can be written as

ŜT|U(t|u) :=
∏

t′∈T
(1− ĝQ(t′|u))1{t

′≤t}.

In the main paper, this estimator is written as S̃Q̃ε(t|x̃). Using the new notation, we state
the survival kernet error guarantee (Theorem 5) in the following proposition (note that this
proposition is more detailed than Theorem 5 and includes constants that we have not tried
to optimize).

Proposition 6 Suppose that assumptions Atechnical, Aintrinsic, and Asurvival hold, and that
for training a survival kernet, we choose ε = βτ when constructing the ε-net Q using U1:n,
where β ∈ (0, 1) and τ > 0 are user-specified parameters. Let

Ψ = min

{
N
((1− β)τ

2
; X̃
)
,

1

Cd′((1− β)τ)d′

}
.

Then for

n ≥ 2

Cd′((1− β)τ)d′
max

{
K(0)

K(τ)θ
,
( 9K2(0)

144K2(τ)
(2 +

√
2)
)1/3

}
,

we have

EY1:n,D1:n,U1:n,U

[∫ thorizon
0 (ŜT|U(t|U)− ST|U(t|U))2dt

thorizon

]

≤ 1

n
·

346K4(0) log(n3 144K2(τ)
9K2(0)

)

θ4K4(τ)
Ψ

+ (1 + β)2ατ2α

[
t2horizon
θ2

(
λ2
T +

3λTf
∗
TλCthorizon

4
+

3(f∗T)2λ2
Ct

2
horizon

20

)

+
12K2(0)

K2(τ)θ4
(λT + λC)2t2horizon

]
,

where

f∗T := max
s∈[0,thorizon],u∈U

fT|U(s|u).

In our theoretical analysis, we assume that the ε-net Q is a random variable that depends
on U1:n, where if we condition on U1:n, then Q becomes deterministic. Note that as stated
previously, we treat U1:n as a sequence (so ordering matters) whereas Q is treated as a set.
Thus, an algorithm that constructs Q from U1:n need not produce the exact same Q if the
ordering of U1:n is shuffled. If a randomized algorithm is used to construct Q, we assume
that it has a random seed that can be fixed, making the algorithm behave deterministically
given U1:n.

A key lemma used in proving Proposition 6 is a lower bound on the number of neighbors
of a test embedding vector u.
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Lemma 7 (Number of training points contributing to prediction – lower bound) Let β ∈
(0, 1). Suppose that we train a survival kernet with threshold distance τ > 0 and compression
parameter ε = βτ , i.e., training embedding vectors U1:n are used to construct a βτ -net Q.
For a fixed choice of embedding vector u ∈ U , let U1:n(u;β, τ) denote the multiset of training
data that land within the closed ball B(u, (1− β)τ). We have the inclusion relationship

U1:n(u;β, τ) ⊆
⋃

j∈NQ(u)

[Uj ]︸︷︷︸
multiset with single element

. (A.3)

In particular, taking the cardinality of both sides, we have the inequality

Ξu := |U1:n(u;β, τ)| ≤ |NQ(u)|. (A.4)

Proof Let u′ ∈ U1:n(u;β, τ). Since U1:n(u;β, τ) = U1:n∩B(u, (1−β)τ), we have ‖u′−u‖2 ≤
(1 − β)τ . Next, let q ∈ Q be the exemplar point that u′ is assigned to by step 4 of the
survival kernet training procedure. By how step 4 works, we have ‖u′ − q‖2 ≤ βτ . We can
then bound the distance between q and u using the triangle inequality:

‖q − u‖2 ≤ ‖q − u′‖2︸ ︷︷ ︸
≤βτ

+ ‖u′ − u‖2︸ ︷︷ ︸
≤(1−β)τ

≤ τ.

This means that u′ is a training embedding vector that is assigned to an exemplar point q
that satisfies ‖u−q‖2 ≤ τ , i.e., u′ corresponds to a training point in NQ(u). This establishes
the subset relationship (A.3).

Throughout our theoretical analysis, we assume that Q is constructed to be an ε-net of U1:n

with ε = βτ just as in Lemma 7, i.e., β ∈ (0, 1) and τ > 0 is the threshold distance for the
truncated kernel.

We also regularly use the variable Ξu defined in equation (A.4). Importantly, since
U1:n are sampled i.i.d. from PU, then Ξu is binomially distributed with parameters n and
PU(B(u, (1−β)τ)). We can ensure that test embedding vector u has enough neighbors with
high probability by asking that Ξu be sufficiently large (for which Lemma 7 guarantees that
|NQ(u)| ≥ Ξu). Specifically, define the good event

Eβ(u) :=
{

Ξu >
1

2
nPU(B(u, (1− β)τ))

}
. (A.5)

We denote the complement of this event as Ecβ(u).

Lemma 8 (Sufficiently many number of neighbors) Suppose that Assumption Atechnical

holds and U1:n are sampled i.i.d. from PU. Let β ∈ (0, 1), τ > 0, and u ∈ U . Then the
probability that good event Eβ(u) does not happen is bounded above as

P(Ecβ(u)) ≤ exp
(
− nPU(B(u, (1− β)τ))

8

)
≤ 8

nPU(B(u, (1− β)τ))
.

Proof The claim readily follows from a multiplicative Chernoff bound of the binomial
distribution and noting that exp(−z) ≤ 1/z for all z > 0.

Another argument used in the proof is that if the j-th training point is a neighbor of
embedding vector u—i.e., j ∈ NQ(u)—then their embedding vectors cannot be too far
apart, i.e., ‖Uj − u‖2 is not too large.
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Lemma 9 (Neighbor embedding vectors are close) Suppose that we train a survival kernet
as in Lemma 7. Let u ∈ U . If j ∈ NQ(u), then

‖Uj − u‖2 ≤ (1 + β)τ.

Proof Let j ∈ NQ(u). This means that the exemplar that the j-th training point is
assigned to, namely qj ∈ Q, must be within distance τ of u. Thus,

‖Uj − u‖2 ≤ ‖Uj − qj‖2︸ ︷︷ ︸
≤βτ

+ ‖qj − u‖2︸ ︷︷ ︸
≤τ

≤ (1 + β)τ,

where we have used the fact that Q is a βτ -net, and NQ(u) is defined to consider all
exemplars within distance τ of u.

We remark that proving the special case when ε = 0 is easier precisely because Lemmas 7,
8, and 9 simplify — we no longer need ε-net arguments. Instead of Lemma 7, we directly
consider training points within distance τ of fixed embedding vector u. Instead of Lemma 8,
we directly consider points landing in the ballB(u, τ). In Lemma 9, there is no multiplicative
approximation error (1 + β) to worry about. In short, we get the same conclusions as these
lemmas except plugging in β = 0.

We present proof of Proposition 6 next.

A.3.1 Proof of Proposition 6

We focus on proving “pointwise” bounds first, which in this case means that we fix both
the test embedding vector u ∈ U and time t ∈ [0, thorizon]. (At the end of the proof, we take
an expectation over the test embedding vector and integrate over time.)

First off, we have the trivial bound |ŜT|U(t|u)− ST|U(t|u)| ≤ 1. Under some good events
holding, we can obtain a nontrivial error bound. The first good event is the same as for
regression Eβ(u) = {Ξu > 1

2nPU(B(u, (1−β)τ))}. We introduce two additional good events.
We define the second good event as

Ehorizon(u) :=
{ ∑

j∈NQ(u)

1{Yj > thorizon}

︸ ︷︷ ︸
d+(u,thorizon):=

>
|NQ(u)|θ

2

}
. (A.6)

Note that for any s ≥ 0, d+(u, s) is the number of neighbors of u that have observed times
Yj ’s exceeding s. When event Ehorizon(u) holds, we have thorizon ≤ Ymax(u). We define the
third and final good event later when we relate estimating the tail function ST|U(t|u) (that
is for survival times Tj ’s that we do not always get to observe in the training data), to
estimating the tail function SY|U(t|u) (that is of observed times Yj ’s that we see all of in
the training data).

Importantly, when both Eβ(u) and Ehorizon(u) hold, then for every time t ∈ [0, thorizon],
the hazard estimator ĝQ(t|u) takes on a nontrivial value given by the first case of equa-
tion (A.2), rather than just being 0. As we show later (Lemma 14), good events Eβ(u)
and Ehorizon(u) simultaneously hold with high probability as n grows large. These good
events holding enable us to write the survival kernet conditional survival function estimate
ŜT|U(t|u) in a form that will be easier to work with.
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Lemma 10 (Convenient form of the kernel survival estimator) Suppose that Assumptions
Atechnical and Asurvival hold, and that the kernel function K is of the form described in
equation (3.1). Consider training a survival kernet with parameter ε = βτ , where τ > 0
is the truncated kernel threshold distance, and β ∈ (0, 1) is a user-specified parameter. Fix
u ∈ U , and condition on events Eβ(u) and Ehorizon(u) occurring. Recall that qj ∈ Q is the
exemplar that the j-th training point is assigned to during survival kernet training. With
probability 1, for all t ∈ [0, thorizon],

ŜT|U(t|u) =
∏

i∈NQ(u)

( d+
K(u, Yi)

Ki + d+
K(u, Yi)

)Di1{Yi≤t}
, (A.7)

where Ki := K(‖u− qi‖2)1{‖u− qi‖2 ≤ τ}, and for any s ≥ 0,

d+
K(u, s) :=

∑

j∈NQ(u)

Kj1{Yj > s}.

Moreover, since Ehorizon(u) = {d+(u, thorizon) >
|NQ(u)|θ

2 } holds, we are guaranteed that

ŜT|U(t|u) > 0 for t ∈ [0, thorizon].

Note that d+
K(u, s) is not the same as d+(u, s) defined earlier (in equation (A.6), which does

not use kernel weights). These quantities are related via the bound d+
K(u, s) ≥ K(τ)d+(u, s).

Proof Fix u ∈ U and t ∈ [0, thorizon]. First off, due to events Eβ(u) and Ehorizon(u)
holding, ĝQ(t|u) is nonzero. Next, Assumption Asurvival implies that ties in Yj ’s happen
with probability 0. Thus, with probability 1, there are no ties in Yj ’s, so

ŜT|U(t|u) =
∏

t′∈T
(1− ĝQ(t′|u))1{t

′≤t} =
n∏

i=1

(1− ĝQ(Yi|u))Di1{Yi≤t}. (A.8)

Next, since there are no ties in Yj ’s, the expression for ĝQ(Yi|u) simplifies as

ĝQ(Yi|u) =
KiDi∑

j∈NQ(u)Kj1{Yj ≥ Yi}
=

KiDi

Ki +
∑

j∈NQ(u)Kj1{Yj > Yi}
=

KiDi

Ki + d+
K(u, Yi)

.

Hence,

(1− ĝQ(Yi|u))Di1{Yi≤t} =
(

1− KiDi

Ki + d+
K(u, Yi)

)Di1{Yi≤t}

=
(

1− Ki

Ki + d+
K(u, Yi)

)Di1{Yi≤t}

=
( d+

K(u, Yi)

Ki + d+
K(u, Yi)

)Di1{Yi≤t}
.

Combining this with equation (A.8), we get

ŜT|U(t|u) =
n∏

i=1

( d+
K(u, Yi)

Ki + d+
K(u, Yi)

)Di1{Yi≤t}
.
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In the RHS, if Ki = 0, then the i-th factor is 1 and thus does not affect the overall product.
Note that Ki > 0 precisely for i ∈ NQ(u). Thus, it suffices to only take the product over
i ∈ NQ(u), which establishes equality (A.7).

When we can write ŜT|U(t|u) using the expression (A.7), then using the Taylor expansion

log(1 + z) =
∑∞

`=1
1
` (

z
z+1)` that is valid for any z > 0, we get

log ŜT|U(t|u) =
∑

i∈NQ(u)

Di1{Yi ≤ t} log
( d+

K(u, Yi)

Ki + d+
K(u, Yi)

)

= −
∑

i∈NQ(u)

Di1{Yi ≤ t} log
(

1 +
Ki

d+
K(u, Yi)

)

= −
∑

i∈NQ(u)

Di1{Yi ≤ t}Ki

Ki + d+
K(u, Yi)

−
∑

i∈NQ(u)

Di1{Yi ≤ t}
∞∑

`=2

1

`[1 + (d+
K(u, Yi)/Ki)]`

= W1(t|u) +W2(t|u) +W3(t|u),

where

W1(t|u) :=
∑

i∈NQ(u)

( Ki∑
j∈NQ(u)Kj

)(
− Di1{Yi ≤ t}

SY|U(Yi|u)

)
,

W2(t|u) := −
∑

i∈NQ(u)

KiDi1{Yi ≤ t}
[∑`∈NQ(u)K`

Ki+d
+
K(u,Yi)

− 1
SY|U(Yi|u)

]
∑

j∈NQ(u)Kj
,

W3(t|u) := −
∑

i∈NQ(u)

Di1{Yi ≤ t}
∞∑

`=2

1

`[1 + (d+
K(u, Yi)/Ki)]`

.

The high-level idea is to show that W1(t|u)→ logST|U(t|u), W2(t|u)→ 0, and W3(t|u)→ 0.
As previously pointed out by Chen (2019), the term W1(t|u) could be thought of as

a kernel regression estimate that averages over hypothetical labels of the form −Di1{Yi≤t}
SY|U(Yi|u)

across i, which knows the true tail function SY|U (of observed times and not survival times).
Of course this true tail function is not actually known.

The term W2(t|u) focuses on how accurately we can estimate the tail function SY|U.
Note that estimating the CDF of the observed times Yj ’s is simpler than estimating the
CDF of the survival times Tj ’s since observed times are known for all training data whereas
survival times are only known for uncensored training data (although the censored data
provide information on survival times as well since censored times are lower bounds on
survival times).

Lastly, the term W3(t|u) vanishes when the number of neighbors of u with observed
times Yj ’s exceeding thorizon is sufficiently large.

For now, we assume that good events Eβ(u) and Ehorizon(u) hold, along with Assumptions
Atechnical and Asurvival before introducing the third and final good event that comes into
play in showing that W2(t|u) → 0. Lemma 10 guarantees that under these conditions,
ŜT|U(t|u) 6= 0 (recall that t ∈ [0, thorizon]). Moreover, using Assumption Asurvival(a) and
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since ST|U(·|u) monotonically decreases, we have ST|U(t|u) ≥ ST|U(thorizon|u) ≥ θ > 0.
Using the fact that for any a, b ∈ (0, 1], we have |a− b| ≤ | log a− log b|, we get

EY1:n,D1:n|U1:n

[
(ŜT|U(t|u)− ST|U(t|u))2

]

≤ EY1:n,D1:n|U1:n

[
(log ŜT|U(t|u)− logST|U(t|u))2

]

= EY1:n,D1:n|U1:n

[
(W1(t|u)− logST|U(t|u) +W2(t|u) +W3(t|u))2

]
.

Next, recall that for any a1, a2, . . . , a` ∈ R, a consequence of Jensen’s inequality is that
(
∑`

i=1 ai)
2 ≤ `∑`

i=1 a
2
i . By applying this inequality to the RHS above, we get

EY1:n,D1:n|U1:n

[
(ŜT|U(t|u)− ST|U(t|u))2

]

≤ EY1:n,D1:n|U1:n

[
(W1(t|u)− logST|U(t|u) +W2(t|u) +W3(t|u))2

]

≤ 3EY1:n,D1:n|U1:n
[(W1(t|u)− logST|U(t|u))2]

︸ ︷︷ ︸
term I

+3EY1:n,D1:n|U1:n
[(W2(t|u))2]

︸ ︷︷ ︸
term II

+ 3EY1:n,D1:n|U1:n
[(W3(t|u))2]

︸ ︷︷ ︸
term III

. (A.9)

We proceed to bound each of the RHS expectations.

Bounding term I As stated previously, W1(t|u) is like a kernel regression estimate. By
a standard bias-variance decomposition,

EY1:n,D1:n|U1:n
[(W1(t|u)− logST|U(t|u))2]

= EY1:n,D1:n|U1:n
[(W1(t|u)− EY1:n,D1:n|U1:n

[W1(t|u)])2]
︸ ︷︷ ︸

variance

+ (EY1:n,D1:n|U1:n
[W1(t|u)]− logST|U(t|u))2

︸ ︷︷ ︸
bias

.

We bound the right-hand side.

Lemma 11 (Bound on term I) Under the same setting as Lemma 10, except where we only
condition on good event Eβ(u) (i.e., good event Ehorizon(u) can optionally hold),

EY1:n,D1:n|U1:n
[(W1(t|u)− logST|U(t|u))2] ≤ K(0)

4θ2K(τ)Ξu︸ ︷︷ ︸
variance term bound

+
(1 + β)2ατ2α

θ2

(
λTt+

f∗TλCt
2

2

)2

︸ ︷︷ ︸
bias term bound

.

Proof (Variance term bound) The variance term equals

EY1:n,D1:n|U1:n
[(W1(t|u)− EY1:n,D1:n|U1:n

[W1(t|u)])2]

=
∑

i∈NQ(u)

( Ki∑
j∈NQ(u)Kj

)2
EYi,Di|Ui

[(
− Di1{Yi ≤ t}

SY|U(Yi|u)
− EY1:n,D1:n|U1:n

[
− Di1{Yi ≤ t}

SY|U(Yi|u)

])2]

︸ ︷︷ ︸
variance of −Di1{Yi≤t}

SY|U(Yi|u)
conditioned on Ui

.
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Note that this sum is not vacuous since under event Eβ(u) and using Lemma 7, |NQ(u)| >
0. Next, note that −Di1{Yi≤t}

SY|U(Yi|u) is a bounded random variable. It is nonzero only when

Yi ≤ t, for which the denominator could be as large as 1 and as small as SY|U(Yi|u) ≥
SY|U(t|u) ≥ SY|U(thorizon|u) ≥ θ using the fact that SY|U(·|u) monotonically decreases and

using Assumption Asurvival(a). Consequently, −Di1{Yi≤t}
SY|U(Yi|u) ∈ [−1

θ , 0], which by a standard

result on bounded random variables implies that the variance of this random variable is at
most 1

4θ2
. Hence,

EY1:n,D1:n|U1:n
[(W1(t|u)− EY1:n,D1:n|U1:n

[W1(t|u)])2] ≤
∑

i∈NQ(u)

( Ki∑
j∈NQ(u)Kj

)2 1

4θ2
.

Then by Hölder’s inequality and Lemma 7,

∑

i∈NQ(u)

( Ki∑
j∈NQ(u)Kj

)2 1

4θ2
≤ 1

4θ2

[
max

i∈NQ(u)

Ki∑
j∈NQ(u)Kj

] ∑

i∈NQ(u)

Ki∑
j∈NQ(u)Kj

︸ ︷︷ ︸
=1

≤ 1

4θ2
max

i∈NQ(u)

K(0)

K(τ)|NQ(u)|

=
K(0)

4θ2K(τ)|NQ(u)| ≤
K(0)

4θ2K(τ)Ξu
,

which establishes the variance term bound.

(Bias term bound) First, recall from equation (2.1) that the hazard function is

− ∂
∂t logST|U(t|u) =

fT|U(s|u)

ST|U(s|u) . Then by the fundamental theorem of calculus,

logST|U(t|u) = −
∫ t

0

fT|U(s|u)

ST|U(s|u)
ds

= −
∫ t

0

1

ST|U(s|u)SC|U(s|u)
SC|U(s|u)fT|U(s|u)ds

= −
∫ t

0

1

SY|U(s|u)
SC|U(s|u)fT|U(s|u)ds, (A.10)

where the last step uses the result that for two independent random variables A1 and A2,
the random variable min{A1, A2} has a tail function (1 minus CDF) that is the product
of the tail functions of A1 and A2; in our setting, Yj = min{Tj , Cj} where Tj and Cj are
conditionally independent given Uj , so SY|U(s|u) = ST|U(s|u)SC|U(s|u).

Next, we have

EY1:n,D1:n|U1:n
[W1(t|u)] =

∑

i∈NQ(u)

( Ki∑
j∈NQ(u)Kj

)
EYi,Di|Ui

[
− Di1{Yi ≤ t}

SY|U(Yi|u)

]
, (A.11)
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where

EYi,Di|Ui
[
− Di1{Yi ≤ t}

SY|U(Yi|u)

]
= −

∫ t

0

[ ∫ ∞

s

1

SY|U(s|u)
dPC|U(c|Ui)

]
dPT|U(s|Ui)

= −
∫ t

0

1

SY|U(s|u)
SC|U(s|Ui)fT|U(s|Ui)ds.

We take the difference of equations (A.11) and (A.10) to get

EY1:n,D1:n|U1:n
[W1(t|u)]− logST|U(t|u)

=
∑

i∈NQ(u)

( Ki∑
j∈NQ(u)Kj

)∫ t

0

SC|U(s|u)fT|U(s|u)− SC|U(s|Ui)fT|U(s|Ui)
SY|U(s|u)

ds.

Note that Assumption Asurvival(b) implies that SC|U(s|·)fT|U(s|·) is Hölder continuous with
parameters (λT+f∗TλCs) and α, where f∗T = maxs∈[0,thorizon],u∈U fT|U(s|u); this maximum ex-

ists by compactness of [0, thorizon] and U . Then by Hölder’s inequality, Assumption Asurvival,
and Lemma 9,

|EY1:n,D1:n|U1:n
[W1(t|u)]− logST|U(t|u)|

≤ max
i∈NQ(u)

∣∣∣
∫ t

0

1

SY|U(s|u)
︸ ︷︷ ︸

≥SY|U(thorizon|u)≥θ

[SC|U(s|u)fT|U(s|u)− SC|U(s|Ui)fT|U(s|Ui)]ds
∣∣∣

≤ 1

θ
max

i∈NQ(u)

∫ t

0
|SC|U(s|u)fT|U(s|u)− SC|U(s|Ui)fT|U(s|Ui)|ds

≤ 1

θ
max

i∈NQ(u)

∫ t

0
(λT + f∗TλCs)‖u− Ui‖α2ds

≤ 1

θ
max

i∈NQ(u)

∫ t

0
(λT + f∗TλCs)((1 + β)τ)αds

=
(1 + β)ατα

θ

∫ t

0
(λT + f∗TλCs)ds

=
(1 + β)ατα

θ

(
λTt+

f∗TλCt
2

2

)
.

Squaring both sides yields the bias term bound.

Bounding term II The term W2(t|u) is related to a CDF estimation problem. Specifi-
cally, define the following estimate of SY|U(s|u):

ŜY|U(s|u) :=
d+
K(u, s)∑
`∈NQ(u)K`

=
∑

j∈NQ(u)

Kj∑
`∈NQ(u)K`

1{Yj > s}.
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Then 1 − ŜY|U(s|u) is a weighted empirical distribution that estimates 1 − SY|U(s|u). We
introduce the third and final good event

ECDF(u) :=
{

sup
s≥0
|ŜY|U(s|u)− EY1:n|U1:n

[ŜY|U(s|u)]|
︸ ︷︷ ︸

♠:=

≤ εCDF

}
, (A.12)

where

εCDF =

√
9K2(0)

4K2(τ)|NQ(u)| log
(
|NQ(u)|3 144K2(τ)

9K2(0)

)
.

We show later (Lemma 14) that this event holds with high probability for large n. Note
that event ECDF(u) is like a variance term, saying that ŜY|U(s|u) is close to its expectation.
We also define a bias term

♥ := sup
s∈[0,t]

|ŜY|U(s|u)− EY1:n|U1:n
[ŜY|U(s|u)]|. (A.13)

Then the following lemma relates W2(t|u) to the variance and bias terms.

Lemma 12 (Bound on term II) Under the same setting as Lemma 10, except where we
now condition on all three good events Eβ(u), Ehorizon(u), and ECDF(u) holding,

(W2(t|u))2 ≤ 12K2(0)

K2(τ)θ4Ξ2
u

+
12K2(0)

K2(τ)θ4

(
♠2 +♥2

)
.

where
♠2 ≤ ε2

CDF, ♥2 ≤ (λT + λC)2t2(1 + β)2ατ2α.

Thus,

EY1:n,D1:n|U1:n
[(W2(t|u))2] ≤ 12K2(0)

K2(τ)θ4Ξ2
u

+
12K2(0)

K2(τ)θ4
[ε2

CDF + (λT + λC)2t2(1 + β)2ατ2α].

Proof We use Hölder’s inequality and a bit of algebra to get

|W2(t|u)| =
∣∣∣∣
∑

i∈NQ(u)

KiDi1{Yi ≤ t}
[

1
SY|U(Yi|u) −

∑
`∈NQ(u)K`

Ki+d
+
K(u,Yi)

]
∑

j∈NQ(u)Kj

∣∣∣∣

≤ max
i∈NQ(u)

∣∣∣∣Di1{Yi ≤ t}
[

1

SY|U(Yi|u)
−
∑

`∈NQ(u)K`

Ki + d+
K(u, Yi)

]∣∣∣∣

= max
i∈NQ(u)

∣∣∣∣
Di1{Yi ≤ t}

∑
`∈NQ(u)K`

(Ki + d+
K(u, Yi))SY|U(Yi|u)

[
Ki + d+

K(u, Yi)∑
`∈NQ(u)K`

− SY|U(Yi|u)

]∣∣∣∣

= max
i∈NQ(u)

∣∣∣∣
Di1{Yi ≤ t}

∑
`∈NQ(u)K`

(Ki + d+
K(u, Yi))SY|U(Yi|u)

︸ ︷︷ ︸
♣i:=

[
Ki∑

`∈NQ(u)K`
+ ŜY|U(Yi|u)− SY|U(Yi|u)
︸ ︷︷ ︸

CDF/tail estimation

]∣∣∣∣

≤ sup
i∈NQ(u),
s∈[0,t]

∣∣∣♣i
[ Ki∑

`∈NQ(u)K`
+ ŜY|U(s|u)− SY|U(s|u)

]∣∣∣, (A.14)
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where the last step uses the fact that for ♣i to be nonzero, we must have Yi ≤ t, for which
we then replace Yi with a worst case s ∈ [0, t] in the CDF/tail estimation problem.

By squaring both sides of inequality (A.14) (and noting that the square can go into the
sup on the RHS) followed by using the fact that (

∑`
i=1 ai)

2 ≤ `∑`
i=1 a

2
i ,

(W2(t|u))2 ≤ sup
i∈NQ(u),
s∈[0,t]

♣2
i

[ Ki∑
`∈NQ(u)K`

+ ŜY|U(s|u)− SY|U(s|u)
]2

= sup
i∈NQ(u),
s∈[0,t]

♣2
i

[ Ki∑
`∈NQ(u)K`

+ ŜY|U(s|u)− EY1:n,D1:n|U1:n
[ŜY|U(s|u)]

+ EY1:n,D1:n|U1:n
[ŜY|U(s|u)]− SY|U(s|u)

]2

≤ sup
i∈NQ(u),
s∈[0,t]

[
3♣2

i

( Ki∑
`∈NQ(u)K`

)2
+ 3♣2

i (ŜY|U(s|u)− EY1:n,D1:n|U1:n
[ŜY|U(s|u)])2

+ 3♣2
i (EY1:n,D1:n|U1:n

[ŜY|U(s|u)]− SY|U(s|u))2
]

≤ 3 max
i∈NQ(u)

♣2
i

( Ki∑
`∈NQ(u)K`

)2
+
(

3 max
i∈NQ(u)

♣2
i

)
♠2 +

(
3 max
i∈NQ(u)

♣2
i

)
♥2,

(A.15)

where the variance term ♠ and bias term ♥ are defined in equations (A.12) and (A.13). We
now bound ♣2

i (
Ki∑

`∈NQ(u)K`
)2, ♣2

i , and ♥2.

Since d+
K(u, ·) and SY|U(·|u) are monotonically decreasing and with the constraint in the

numerator that Yi ≤ t, we have

♣2
i

( Ki∑
`∈NQ(u)K`

)2
=
( Di1{Yi ≤ t}Ki

(Ki + d+
K(u, Yi))SY|U(Yi|u)

)2

≤
( Di1{Yi ≤ t}Ki

d+
K(u, t)SY|U(t|u)

)2

≤
( Di1{Yi ≤ t}Ki

K(τ) · |NQ(u)|θ
2 · θ

)2
by Ehorizon(u),Asurvival(a)

≤
( K(0)

K(τ) · |NQ(u)|θ
2 · θ

)2

=
4K2(0)

K2(τ)θ4|NQ(u)|2

≤ 4K2(0)

K2(τ)θ4Ξ2
u

by Lemma 7. (A.16)
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By similar ideas,

♣2
i =

( Di1{Yi ≤ t}
∑

`∈NQ(u)K`

(Ki + d+
K(u, Yi))SY|U(Yi|u)

)2
≤
( |NQ(u)|K(0)

(K(τ)|NQ(u)|θ/2)θ

)2
=

4K2(0)

K2(τ)θ4
. (A.17)

Lastly, we bound ♥ = sups∈[0,t]♦(s), where ♦(s) := |EY1:n|U1:n
[ŜY|U(s|u)]− SY|U(s|u)|. For

s ∈ [0, t], we have

EY1:n|U1:n
[ŜY|U(s|u)] = EY1:n|U1:n

[ ∑

j∈NQ(u)

Kj∑
`∈NQ(u)K`

1{Yj > s}
]

=
∑

j∈NQ(u)

Kj∑
`∈NQ(u)K`

EYj |Uj [1{Yj > s}].

=
∑

j∈NQ(u)

Kj∑
`∈NQ(u)K`

SY|U(s|Uj). (A.18)

Note that Assumption Asurvival(b) implies that SY|U(s|·) is Hölder continuous with param-
eters (λT +λC)s and α. Then using equation (A.18), Hölder’s inequality, Hölder continuity,
and Lemma 9,

♦(s) =

∣∣∣∣
∑

j∈NQ(u)

Kj∑
`∈NQ(u)K`

(SY|U(s|Uj)− SY|U(s|u))

∣∣∣∣

≤ max
j∈NQ(u)

|SY|U(s|Uj)− SY|U(s|u)|

≤ max
j∈NQ(u)

(λT + λC)s‖Uj − u‖α2

≤ max
j∈NQ(u)

(λT + λC)s(1 + β)ατα

= (λT + λC)t(1 + β)ατα.

Therefore,

♥ = sup
s∈[0,t]

♦(s) ≤ (λT + λC)t(1 + β)ατα. (A.19)

Combining inequalities (A.15), (A.16), (A.17), and (A.19) yields the claim.

Bounding term III Lastly, we have the following bound.

Lemma 13 (Bound on term III) Under the same setting as Lemma 10 (conditioning on
Eβ(u) and Ehorizon(u)) and with the addition of Assumption Aintrinsic and the requirement

that n ≥ 2K(0)

K(τ)θCd′ ((1−β)τ)d′
, we have

EY1:n,D1:n|U1:n
[(W3(t|u))2] ≤ 16K4(0)

K4(τ)θ4Ξ2
u

.
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Proof We write |W3(t|u)| = ∑i∈NQ(u) Υi, where

Υi := Di1{Yi ≤ t}
∞∑

`=2

1

`[1 + (d+
K(u, Yi)/Ki)]`

.

Using the constraint that Yi ≤ t, that d+
K(u, ·) monotonically decreases, and that t ≤ thorizon,

we have

Υi ≤ Di1{Yi ≤ t}
∞∑

`=2

1

`[1 + (d+
K(u, t)/Ki)]`

≤
∞∑

`=2

1

`[1 + (d+
K(u, t)/Ki)]`

≤
∞∑

`=2

1

`[1 + (d+
K(u, thorizon)/Ki)]`

.

Next, recall that good event Ehorizon(u) ensures that d+(u, thorizon) >
|NQ(u)|θ

2 . Furthermore,
d+
K(u, thorizon) ≥ K(τ)d+(u, thorizon), and Ki ≤ K(0), so

1

`[1 + (d+
K(u, thorizon)/Ki)]`

≤ 1

`
[
1 +

K(τ)
|NQ(u)|θ

2
K(0)

]`
.

Hence,

Υi ≤
∞∑

`=2

1

`
[
1 +

K(τ)|NQ(u)|θ
2K(0)

]` .

Noting that
∑∞

`=2
1

`(1+z)`
= log(1 + 1

z ) − 1
1+z ≤ 1

(1+z)2
for all z ≥ 0.46241, then provided

that
K(τ)|NQ(u)|θ

2K(0)
≥ 0.46241, (A.20)

we have

Υi ≤
1

(1 +
K(τ)|NQ(u)|θ

2K(0) )2
≤ 1

(
K(τ)|NQ(u)|θ

2K(0) )2
=

4K2(0)

K2(τ)|NQ(u)|2θ2
.

Thus,

|W3(t|u)| =
∑

i∈NQ(u)

Υi ≤
∑

i∈NQ(u)

4K2(0)

K2(τ)|NQ(u)|2θ2

=
4K2(0)

K2(τ)|NQ(u)|θ2
≤ 4K2(0)

K2(τ)θ2
· 1

Ξu
.

Squaring and taking expectation EY1:n,D1:n|U1:n
of both sides, we have

EY1:n,D1:n|U1:n
[(W3(t|u))2] ≤ 16K4(0)

K4(τ)θ4
· 1

Ξ2
u

.
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The only missing piece is to ensure that condition (A.20) holds. Under event Eβ(u) and
Assumption Aintrinsic, with the help of Lemma 7,

|NQ(u)| ≥ Ξu >
1

2
nPU(B(u, (1− β)τ)) ≥ 1

2
nCd′((1− β)τ)d

′
.

Thus, since we assume that n ≥ 2K(0)

K(τ)θCd′ ((1−β)τ)d′
, we have

K(τ)|NQ(u)|θ
2

≥ K(τ)1
2nCd′((1− β)τ)d

′
θ

2

≥
K(τ)1

2 [ 2K(0)

K(τ)θCd′ ((1−β)τ)d′
]Cd′((1− β)τ)d

′
θ

2

=
1

2
≥ 0.46241,

which verifies that condition (A.20) holds.

Deriving a final pointwise bound Putting together bound (A.9) and Lemmas 11, 12,
and 13, we have that when all three good events Eβ(u), Ehorizon(u), and ECDF(u) hold, and

n ≥ 2K(0)

K(τ)θCd′ ((1−β)τ)d′
,

EY1:n,D1:n|U1:n

[
(ŜT|U(t|u)− ST|U(t|u))2

]

≤ 3EY1:n,D1:n|U1:n
[(W1(t|u)− logST|U(t|u))2] + 3EY1:n,D1:n|U1:n

[(W2(t|u))2]

+ 3EY1:n,D1:n|U1:n
[(W3(t|u))2]

≤ 3

[
K(0)

4θ2K(τ)Ξu
+

(1 + β)2ατ2α

θ2

(
λTt+

f∗TλCt
2

2

)2
]

+ 3

[
12K2(0)

K2(τ)Ξ2
uθ

4
+

12K2(0)

K2(τ)θ4
ε2

CDF +
12K2(0)

K2(τ)θ4
(λT + λC)2t2(1 + β)2ατ2α

]

+ 3

[
16K4(0)

K4(τ)θ4Ξ2
u

]

≤ 1

n
· 332K4(0)

θ4K4(τ)PU(B(u, (1− β)τ))
log
(
n3 144K2(τ)

9K2(0)

)

+ (1 + β)2ατ2α

[
3

θ2

(
λTt+

f∗TλCt
2

2

)2
+

36K2(0)

K2(τ)θ4
(λT + λC)2t2

]
.

When not all good events occur, we resort to the trivial bound

EY1:n,D1:n|U1:n

[
(ŜT|U(t|u)− ST|U(t|u))2

]
≤ 1.
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Abbreviating the three good events as Egood(u) := Eβ(u) ∪ Ehorizon(u) ∪ ECDF(u),

EY1:n,D1:n,U1:n

[
(ŜT|U(t|u)− ST|U(t|u))2

]

= EU1:n

[
EY1:n,D1:n|U1:n

[
(ŜT|U(t|u)− ST|U(t|u))21{Egood(u)}
+ (ŜT|U(t|u)− ST|U(t|u))21{Ecgood(u)}

]]

≤ EU1:n

[
EY1:n,D1:n|U1:n

[
(ŜT|U(t|u)− ST|U(t|u))21{Egood(u)}+ 1{Ecgood(u)}

]]

≤ 1

n
· 332K4(0)

θ4K4(τ)PU(B(u, (1− β)τ))
log
(
n3 144K2(τ)

9K2(0)

)

+ (1 + β)2ατ2α

[
3

θ2

(
λTt+

f∗TλCt
2

2

)2
+

36K2(0)

K2(τ)θ4
(λT + λC)2t2

]

+ EU1:n,Y1:n,D1:n [1{Ecgood(u)}]. (A.21)

We next bound EU1:n,Y1:n,D1:n [1{Ecgood(u)}].

Lemma 14 (The survival analysis good events hold with high probability) Consider the
same setting as Lemma 10 except without conditioning on any good events. Moreover, we

add Assumption Aintrinsic and require that n ≥ 2
Cd′ ((1−β)τ)d′

( 9K2(0)
144K2(τ)

(2 +
√

2)
)1/3

. Then

EU1:n,Y1:n,D1:n [1{Ecgood(u)}] ≤ 14

θ2nPU(B(u, (1− β)τ))
.

We defer the proof of this lemma to Appendix A.3.2 as it is somewhat technical.

Putting together bound (A.21) and Lemma 14, and in particular absorbing Lemma 14’s
bound into the leading error term in (A.21), we get the final pointwise bound: for n ≥

2
Cd′ ((1−β)τ)d′

max
{ K(0)
K(τ)θ ,

( 9K2(0)
144K2(τ)

(2 +
√

2)
)1/3}

,

EY1:n,D1:n,U1:n

[
(ŜT|U(t|u)− ST|U(t|u))2

]

≤ 346K4(0)

nθ4K4(τ)PU(B(u, (1− β)τ))
log
(
n3 144K2(τ)

9K2(0)

)

+ (1 + β)2ατ2α

[
3

θ2

(
λTt+

f∗TλCt
2

2

)2
+

36K2(0)

K2(τ)θ4
(λT + λC)2t2

]
. (A.22)

Completing the proof Finally, we account for randomness in the test em-
bedding vector U ∼ PU and integrate over time. Suppose that n ≥

2
Cd′ ((1−β)τ)d′

max
{ K(0)
K(τ)θ ,

( 9K2(0)
144K2(τ)

(2 +
√

2)
)1/3}

. By Fubini’s theorem, iterated expecta-
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tion, and the final pointwise bound (A.22),

EY1:n,D1:n,U1:n,U

[∫ thorizon
0 (ŜT|U(t|U)− ST|U(t|U))2dt

thorizon

]

=

∫

[0,thorizon]

EU [EY1:n,D1:n,U1:n|U [(ŜT|U(t|U)− ST|U(t|U))2]]

thorizon
dt

≤
∫

[0,thorizon]

1

thorizon
EU

[
1

n
·

346K4(0) log(n3 144K2(τ)
9K2(0)

)

θ4K4(τ)PU(B(U, (1− β)τ))

+ (1 + β)2ατ2α

[
3

θ2

(
λTt+

f∗TλCt
2

2

)2
+

36K2(0)

K2(τ)θ4
(λT + λC)2t2

]]
dt

=
346K4(0) log(n3 144K2(τ)

9K2(0)
)

nθ4K4(τ)
EU
[ 1

PU(B(U, (1− β)τ))

]

+ (1 + β)2ατ2α

[
t2horizon

θ2

(
λ2
T +

3λTf
∗
TλCthorizon

4
+

3(f∗T)2λ2
Ct

2
horizon

20

)

+
12K2(0)

K2(τ)θ4
(λT + λC)2t2horizon

]
.

At this point, we can bound EU [ 1
PU(B(U,(1−β)τ)) ]. This is where covering numbers and in-

trinsic dimension come into play.

Case 1 (using a covering argument) Let ζ1, ζ2, . . . , ζN be a (1−β)τ
2 -cover of U that has

the smallest size possible, i.e., N = N( (1−β)τ
2 ;U). Then

EU
[ 1

PU(B(U, (1− β)τ))

]
≤

N∑

j=1

EU
[1{U ∈ B(ζj ,

(1−β)τ
2 )}

PU(B(U, (1− β)τ))

]
. (A.23)

Note that U ∈ B(ζj ,
(1−β)τ

2 ) implies that B(U, (1−β)τ) contains B(ζj ,
(1−β)τ

2 ). To see this,

let u′ be any point in B(ζj ,
(1−β)τ

2 ). Then by the triangle inequality,

‖u′ − U‖2 ≤ ‖u′ − ζj‖2︸ ︷︷ ︸
≤ (1−β)τ

2

+ ‖ζj − U‖2︸ ︷︷ ︸
(1−β)τ

2

≤ (1− β)τ,

i.e., u′ is also in B(U, (1 − β)τ). Hence, U ∈ B(ζj ,
(1−β)τ

2 ) implies that B(U, (1 − β)τ) ⊇
B(ζj ,

(1−β)τ
2 ), which in turn implies that PU(B(U, (1−β)τ)) ≥ PU(B(ζj ,

(1−β)τ
2 )). Thus, the

RHS of inequality (A.23) can be bounded as

N∑

j=1

EU
[1{U ∈ B(ζj ,

(1−β)τ
2 )}

PU(B(U, (1− β)τ))

]
≤

N∑

j=1

EU
[1{U ∈ B(ζj ,

(1−β)τ
2 )}

PU(B(ζj ,
(1−β)τ

2 ))

]
= N = N( (1−β)τ

2 ;U),

at which point we conclude that EU [ 1
PU(B(U,(1−β)τ)) ] ≤ N( (1−β)τ

2 ;U).
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Case 2 (using Assumption Aintrinsic) For all U ∈ U , we have 1
PU(B(U,(1−β)τ)) ≤

1
Cd′ ((1−β)τ)d′

. Hence, EU [ 1
PU(B(U,(1−β)τ)) ] ≤ 1

Cd′ ((1−β)τ)d′
. �

A.3.2 Proof of Lemma 14

Observe that

Egood(u) = (Eβ(u) ∩ Ehorizon(u) ∩ ECDF(u))c

= Ecβ(u) ∪ Echorizon(u) ∪ EcCDF(u)

= Ecβ(u) ∪ [Echorizon(u) ∩ Eβ(u)] ∪ [EcCDF(u) ∩ Eβ(u)].

Hence, by a union bound

EU1:n,Y1:n,D1:n [1{Egood(u)}]
≤ EU1:n,Y1:n,D1:n [1{Ecβ(u)}]
︸ ︷︷ ︸

(a)

+EU1:n,Y1:n,D1:n [1{Echorizon(u) ∩ Eβ(u)}]︸ ︷︷ ︸
(b)

+ EU1:n,Y1:n,D1:n [1{EcCDF(u) ∩ Eβ(u)}]︸ ︷︷ ︸
(c)

. (A.24)

We upper-bound each of these three terms next.

Term (a) This term is bounded precisely by Lemma 8. In particular,

term (a) ≤ 8

nPU(B(u, (1− β)τ))
. (A.25)

Term (b) For term (b), note that within the expectation there is no dependence on D1:n.
In particular,

EU1:n,Y1:n,D1:n [1{Echorizon(u) ∩ Eβ(u)}]

= EU1:n,Y1:n,D1:n

[
1
{
d+(u, thorizon) ≤ |NQ(u)|θ

2

}
1
{

Ξu >
1

2
nPU(B(u, (1− β)τ))

}]

= EU1:n,Y1:n

[
1
{
d+(u, thorizon) ≤ |NQ(u)|θ

2

}
1
{

Ξu >
1

2
nPU(B(u, (1− β)τ))

}]

= EU1:n

[
1{Ξu >

1

2
nPU(B(u, (1− β)τ))}EY1:n|U1:n

[
1
{
d+(u, thorizon) ≤ |NQ(u)|θ

2

}]]
.

(A.26)

By Assumption Asurvival(a),

|NQ(u)|θ =
∑

j∈NQ(u)

θ ≤
∑

j∈NQ(u)

SY|U(thorizon|Uj) =: µ+. (A.27)

Hence, d+(u, thorizon) ≤ |NQ(u)|θ
2 implies that d+(u, thorizon) ≤ µ+

2 , i.e.,

1
{
d+(u, thorizon) ≤ |NQ(u)|θ

2

}
≤ 1

{
d+(u, thorizon) ≤ µ+

2

}
.
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Thus,

EU1:n

[
1{Ξu >

1

2
nPU(B(u, (1− β)τ))}EY1:n|U1:n

[
1
{
d+(u, thorizon) ≤ |NQ(u)|θ

2

}]]

≤ EU1:n

[
1{Ξu >

1

2
nPU(B(u, (1− β)τ))}EY1:n|U1:n

[
1
{
d+(u, thorizon) ≤ µ+

2

}]]
. (A.28)

We now upper-bound EY1:n|U1:n
[1{d+(u, thorizon) ≤ µ+

2 }], under the constraint that Ξu >
1
2nPU(B(u, (1 − β)τ)). Importantly, since the Y1:n variables are conditionally independent
given U1:n and since NQ(u) is deterministic given U1:n, then after conditioning on U1:n, the
sum

d+(u, thorizon) =
∑

j∈NQ(u)

1{Yj > thorizon}

is over independent random variables and, furthermore, using Lemma 7, the above summa-
tion is not vacuous since |NQ(u)| ≥ Ξu > 0. Thus, with NQ(u) nonempty, the expectation
of the above sum is

EY1:n|U1:n
[d+(u, thorizon)] =

∑

j∈NQ(u)

EYj |Uj [1{Yj > thorizon}] =
∑

j∈NQ(u)

SY|U(thorizon|Uj) = µ+.

Applying Hoeffding’s inequality

EY1:n|U1:n

[
1
{
d+(u, thorizon) ≤ µ+

2

}]
≤ exp

(
− 2(1

2µ
+)2

|NQ(u)|
)

≤ exp
(
− 2(

|NQ(u)|θ
2 )2

|NQ(u)|
)

by inequality (A.27)

= exp
(
− θ2

2
|NQ(u)|

)

≤ exp
(
− θ2

2
Ξu

)
by Lemma 7

≤ 2

θ2Ξu

<
4

θ2nPU(B(u, (1− β)τ))
by good event Eβ(u),

(A.29)

where the last step uses the constraint Ξu >
1
2nPU(B(u, (1− β)τ)).

Stringing together inequalities (A.26), (A.28), and (A.29), we see that

term (b) ≤ 4

θ2nPU(B(u, (1− β)τ))
. (A.30)
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Term (c) Recall that we use the shorthand notation ♠ = sups≥0 |ŜY|U(s|u) −
EY1:n|U1:n

[ŜY|U(s|u)]|. Then term (c) can be written as

EU1:n,Y1:n,D1:n

[
1{♠ > εCDF}1

{
Ξu >

1

2
nPU(B(u, (1− β)τ))

}]

= EU1:n,Y1:n

[
1{♠ > εCDF}1

{
Ξu >

1

2
nPU(B(u, (1− β)τ))

}]

= EU1:n

[
1
{

Ξu >
1

2
nPU(B(u, (1− β)τ))

}
EY1:n|U1:n

[
1{♠ > εCDF}

]]
. (A.31)

Under the constraint that Ξu >
1
2nPU(B(u, (1− β)τ)) and conditioned on U1:n,

1− ŜY|U(s|u) =
∑

j∈NQ(u)

Kj∑
`∈NQ(u)K`

1{Yj ≤ s}

is a weighted empirical distribution constructed from more than 1
2nPU(B(u, (1−β)τ)) sam-

ples. Applying Proposition 3.1 of Chen (2019),

EY1:n|U1:n
[1{♠ > εCDF}] ≤

6

εCDF
exp

(
−

2ε2
CDF(

∑
j∈NQ(u)Kj)

2

9
∑

`∈NQ(u)K
2
`

)

≤ 6

εCDF
exp

(
− 2ε2

CDF(|NQ(u)|K(τ))2

9|NQ(u)|K2(0)

)

=
6

εCDF
exp

(
− 2ε2

CDFK
2(τ)

9K2(0)
|NQ(u)|

)
. (A.32)

We show that our choice of εCDF ensures that the RHS is at most 1
|NQ(u)| , i.e., we want to

show that
6

εCDF
exp

(
− 2ε2

CDFK
2(τ)

9K2(0)
|NQ(u)|

)
≤ 1

|NQ(u)| . (A.33)

Lemma D.1(b) of Chen (2019) says that inequality (A.33) holds under the sufficient condi-
tions

εCDF < 6|NQ(u)| and |NQ(u)| ≥
( 9K2(0)e

144K2(τ)

)1/3
. (A.34)

The latter holds since we assume that n ≥ 2
Cd′ ((1−β)τ)d′

( 9K2(0)
144K2(τ)

(2 +
√

2)
)1/3

, so using good

event Eβ(u), Lemma 7 and Assumption Aintrinsic, we have

|NQ(u)| ≥ Ξu

>
1

2
nPU(B(u, (1− β)τ))

≥ 1

2
nCd′((1− β)τ)d

′

≥ 1

2

[ 2

Cd′((1− β)τ)d′

( 9K2(0)

144K2(τ)
(2 +

√
2)
)1/3]

Cd′((1− β)τ)d
′

=
( 9K2(0)

144K2(τ)
(2 +

√
2)
)1/3

, (A.35)
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which is strictly greater than
( 9K2(0)e

144K2(τ)

)1/3
.

At this point, it suffices for us to show that the condition εCDF < 6|NQ(u)| holds. This
inequality can be written as

|NQ(u)|3 > 9K2(0)

144K2(τ)
log
(
|NQ(u)|3 144K2(τ)

9K2(0)

)
. (A.36)

Define

a :=
9K2(0)

144K2(τ)
, b :=

9K2(0)

144K2(τ)
log
(144K2(τ)

9K2(0)

)
+

18K2(0)

144K2(τ)
.

Then Lemma D.2(c) of Chen (2019) says that if b
a + log a > 1 and

|NQ(u)|3 ≥ a
(

1 +
√

2 log(aeb/a−1) + log(aeb/a−1)
)

=
( 9K2(0)

144K2(τ)
(2 +

√
2)
)1/3

, (A.37)

then

|NQ(u)|3 ≥ a log(|NQ(u)|3) + b =
9K2(0)

144K2(τ)
log
(
|NQ(u)|3 144K2(τ)

9K2(0)

)
+

18K2(0)

144K2(τ)
,

which implies that condition (A.36) holds. In fact, we have already shown that condi-
tion (A.37) holds (see inequality (A.35)). Thus, it suffices to show that b

a + log a > 1.
Indeed,

b

a
+ log a =

9K2(0)
144K2(τ)

log
(

144K2(τ)
9K2(0)

)
+ 18K2(0)

144K2(τ)

9K2(0)
144K2(τ)

+ log
( 9K2(0)

144K2(τ)

)
= 2 > 1.

At this point, we can conclude that condition (A.36) holds, which completes our justifi-
cation that the sufficient conditions (A.34) hold. Thus, we can combine equation (A.31),
inequality (A.32), and inequality (A.33) to get that

term (c) ≤ 1

|NQ(u)| ≤
1

Ξu
<

2

nPU(B(u, (1− β)τ))
, (A.38)

making use of event Eβ(u) and Lemma 7.

Completing the proof Plugging the bounds on terms (a), (b), and (c) (given in inequal-
ities (A.25), (A.30), and (A.38)) back into the union bound (A.24), we get

EU1:n,Y1:n,D1:n [1{(Eβ(u) ∩ Ehorizon(u) ∩ ECDF(u))c}]

≤ 8

nPU(B(u, (1− β)τ))
+

4

θ2nPU(B(u, (1− β)τ))
+

2

nPU(B(u, (1− β)τ))

≤ 14

θ2nPU(B(u, (1− β)τ))
. �
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Appendix B. Details on TUNA

Previously, Chen (2020) showed how to warm-start deep kernel survival analysis using any
pre-trained kernel function, such as one obtained from decision trees or their ensembled
variants (random forests, gradient tree boosting). However, Chen’s strategy does not scale
to large datasets (as we explain shortly). We first state Chen’s strategy (in terms of pre-
training data, although Chen originally stated this in terms of training data) and then we
say how we incorporate it as a warm-start strategy to our own tuna warm-start strategy
described in Section 4.

Warm-start strategy by Chen (2020) Let K0 be a pre-trained kernel function (learned
from, for instance, a random survival forest or xgboost). Then compute the n◦-by-n◦
matrix K, where Ki,j = K0(X◦i , X

◦
j ) for every pair of pre-training feature vectors X◦i and

X◦j . Note that computing the matrix K is prohibitively expensive for large datasets, where
even storing this whole matrix can be impractical. For the moment, suppose that we can
compute and store this matrix. Next, if we are using a Gaussian kernel K(X◦i , X

◦
j ) =

exp(−‖φ(X◦i ) − φ(X◦j )‖22), then by setting this expression equal to Ki,j and with a bit of
algebra, we obtain

‖φ(X◦i )− φ(X◦j )‖2 =

√
log

1

Ki,j
for all i, j.

To prevent division by 0 in the log, we could for instance add a small constant to all values
of K or clip values of K under a user-specified threshold to be equal to the threshold.

Next, we can use metric multidimensional scaling (MDS) (Borg and Groenen, 2005)
to learn an embedding vector X̃MDS

i for each pre-training feature X◦i such that ‖X̃MDS
i −

X̃MDS
j ‖2 ≈

√
log 1

Ki,j
for all pairs i and j. Then for a base neural net φ with a user-specified

architecture, we warm-start φ by minimizing the mean squared error loss

1

n

n∑

i=1

(φ(X◦i )− X̃MDS
i )2.

Effectively we are having the neural net φ approximate the MDS embedding, which approxi-
mates the Euclidean distances induced by the pre-trained kernel function under the assump-
tion of a Gaussian kernel. This MDS-based strategy generalizes to other choices of kernel
functions that can be written in terms of the distance function ρ(x, x′) = ‖φ(x)− φ(x′)‖2,
so long as we can solve the equation K(X◦i , X

◦
j ) = Ki,j for ρ(X◦i , X

◦
j ); in fact, ρ could even

be chosen to be non-Euclidean if generalized MDS is used, which handles non-Euclidean
distances (Bronstein et al., 2006).

Incorporating Chen’s warm-start strategy into TUNA To avoid having to compute
the full n◦-by-n◦ kernel matrix K (and also having to solve MDS for such a large input
matrix), we instead begin by only computing it over a subsample, much like Landmark
Isomap (de Silva and Tenenbaum, 2002). In more detail, our full tuna warm-start procedure
is as follows:

1. Train a scalable tree ensemble (e.g., xgboost) on the pre-training data; denote its
learned kernel function by K0. For a subset S ⊆ {X◦1 , . . . , X◦n◦} of the pre-training
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feature vectors, let KS denote the |S|-by-|S| Gram matrix formed so that the (i, j)-th
entry is given by K0(x◦i , x

◦
j ) where x◦i and x◦j are the i-th and j-th pre-training feature

vectors in S (with elements of S ordered arbitrarily).

1′. (MDS initialization by Chen (2020)) Take a subsample of size nsubsample from the
pre-training feature vectors (e.g., uniformly at random or using an ε-net). Denote the
subsample by Sinit. Compute the gram matrix KSinit . Use Chen’s warm-start strategy
restricted to pre-training data in Sinit and using pre-trained kernel matrix KSinit to
obtain an initial estimate of the base neural net φ.

2. For each minibatch consisting of pre-training feature vectors x◦1, . . . , x
◦
b where b is the

batch size:

(a) Compute the batch’s tree ensemble Gram matrix K{x◦1,...,x◦b} (defined in step 1) using
K0.

(b) Compute the current neural net’s Gram matrix estimate K̂{x◦1,...,x◦b}, which has (i, j)-

th entry given by K(x◦i , x
◦
j ) = K(‖φ(x◦i )− φ(x◦j )‖22).

(c) Let this minibatch’s loss be the MSE loss (4.1) restricted to feature vectors of the
current minibatch, i.e., the MSE loss between K̂{x◦1,...,x◦b} and K{x◦1,...,x◦b}. Update
parameters of neural net φ based on the gradient of this minibatch’s loss.

In our experiments later, for simplicity, we construct Sinit in step 1′ by taking a uniform
subsample of the training data and set nsubsample = 2048.

By running minibatch gradient descent (step 2) for a number of epochs (we use 100 for
support and unos, and 10 for kkbox), we obtain the initial neural net φ̂ that we begin
survival kernet training with.

Appendix C. Details on Experiments

We now provide additional details on data preprocessing (Appendix C.1), and on hyperpa-
rameter grids and optimization (Appendix C.2). An additional cluster visualization is in
Appendix C.4.

C.1 Preprocessing Notes

Continuous features are standardized (subtract mean and divide by standard deviation).
Categorical features are one-hot encoded unless they correspond to features with a clear
ordering in which case they are converted to be on a scale from 0 to 1 (evenly spaced for
where the levels are). The unos data preprocessing is a bit more involved and follows the
steps of Yoon et al. (2018) and Lee et al. (2018). The kkbox dataset is preprocessed via
the pycox package (Kvamme et al., 2019).

C.2 Hyperparameter Grids (Including Neural Net Architecture Settings) and
Optimization Details

We provide hyperparameter grids and optimization details in this section. Before doing so,
we make a few remarks. First, we implement the elastic-net-regularized Cox model as well
as all neural net models in PyTorch (Paszke et al., 2019) so that we can train these models
via minibatch gradient descent, which is helpful due to the size of some of our datasets.
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Note that xgboost supports survival analysis with a few losses. We specifically use the
Cox loss. We train all models that are implemented in PyTorch (including elastic-net
cox) using Adam (Kingma and Ba, 2015) with a budget of epochs 100 (except for the
kkbox dataset, where we use 10). Early stopping is used based on the validation set (no
improvement in the best validation loss within 10 epochs). For simplicity, we always use
a batch size of 1024 (from some preliminary experiments, we find that smaller batch sizes
such as 128, 256, and 512 yield similar results for baselines but for survival kernets, a larger
batch size appears to be helpful).

For the kkbox dataset, because of how large it is, even computing the validation loss is
computationally expensive (Ctd index is a ranking metric that considers every pair of data
points). To make training more practical, we use a subsampling strategy for computing
the validation loss where we randomly partition the validation data into groups of size 214,
compute the Ctd index per group, and then average the indices computed across the groups.
We empirically found this approximation to be close to the exact calculation and takes much
less time to compute. For the test set as well as bootstrap confidence intervals, we do an
exact calculation rather than using this subsampling strategy.

We now list hyperparameter grids of the different methods. Even more details are
available in our code.

elastic-net cox:

• Learning rate: 1.0, 0.1, 0.01, 0.001, 0.0001

• Regularization weight: 0 (corresponds to the standard Cox model (Cox, 1972)), 0.01, 1

• Elastic-net knob for how much to use `1 regularization vs squared `2 regularization: 0
(ridge regression), 0.5 (evenly balance `1 and squared `2), 1 (lasso)

xgboost:

• Number of random features selected per node:
1
2×sqrt of number of features, sqrt of number of features, 2×sqrt of number of features,
use all features

• Learning rate “eta”: 0.1, 0.3, 1

• Number of parallel trees: 1, 10

• Training data subsampling when growing trees: 0.6, 0.8

• Max depth: 3, 6, 9, 12

• Max number of rounds: 100 (for kkbox, only 20)

deepsurv:

• Learning rate: 0.01, 0.001

• Number of hidden layers: 2, 4, 6

• Number of nodes per hidden layer: 32, 64, 128

• Nonlinear activation of hidden layers: ReLU

• Use batch norm after each hidden layer: yes

The final layer (a linear layer) is not a hidden layer and corresponds to a Cox model; it has
1 output node and no bias.

deephit has the same search grid as deepsurv and also additionally has the following:
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• “alpha”: 0, 0.001, 0.01

• “sigma”: 0.1, 1

• Number of time steps to discretize to: 0 (i.e., use all unique observed times of death), 64,
128

Importantly, for discretizing time, we use evenly spaced quantiles of observed times (for
details, see Section 3.1 of Kvamme and Borgan (2021)), which in some circumstances could
result in the number of time steps used be fewer than what the user specifies. For example,
when discretizing to 64 time steps, we take 64 evenly spaced quantiles of observed times.
Suppose that 99.9% of the observed times happen to all be exactly 1 day whereas the other
0.1% of the observed times are exactly 2 days. Then the 64 evenly spaced quantiles would
actually all correspond to 1 day as the observed time. Of course, if all the observed times
are unique, then we would not have this sort of issue.

dcm has the same search grid as deepsurv and also additionally has the following:

• Number of Cox distributions: 3, 4, 5, 6

• Smoothing factor: 10−3

The MLP base neural net’s final number of output nodes is precisely the number of di-
mensions of the embedding space. We set this number to be the minimum of: (1) the
number of nodes per hidden layer, and (2) the number of features in feature space (after
preprocessing).

dksa (we used the reference code by the original author specifically with random survival
forest initialization; the only changes made were to get it to work with our experimental
harness that loads in data, tunes hyperparameters, and gets test set metrics):

• Number of random features selected per node (for random survival forest warm-start):
1
2 × sqrt of number of features, sqrt of number of features, 2× sqrt of number of features

• Minimum data points per leaf (for random survival forest warm-start): 8, 32, 128

• Learning rate: 0.01, 0.001

• Number of hidden layers: 2, 4, 6

• Number of nodes per hidden layer: 32, 64, 128

• Nonlinear activation of hidden layers: ReLU

• Use batch norm after each hidden layer: yes

• Number of time steps to discretize to: 0 (i.e., use all unique observed times of death), 64,
128; we use the same discretization strategy stated above for deephit

The MLP base neural net’s final number of output nodes is set the same way as described
above for dcm.

Note that we always project the base neural net’s output onto a hypersphere of radius√
0.1 (this is mathematically equivalent to projecting to the unit hypersphere but changing

the kernel function to instead be K(u) = exp(−u2/0.1)). In fact, this idea is commonly
used in contrastive learning and the radius is a hyperparameter that can be tuned and is
equal to the square root of two multiplied by what is commonly called the “temperature”
hyperparameter (see for instance the papers by Wang and Isola (2020) and Liu et al. (2021)).

kernet has the same search grid as deepsurv and also additionally has the following:
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• η: 0, 0.001, 0.01 (defined in Lrank as part of equation (2.7); this hyperparameter is
analogous to deephit’s “alpha” hyperparameter)

• σrank: 0.1, 1 (also defined in Lrank as part of equation (2.7); this hyperparameter is
analogous to deephit’s “sigma” hyperparameter)

• Number of time steps to discretize to: 0 (i.e., use all unique observed times of death), 64,
128; we use the same discretization strategy stated above for deephit

• τ :
√

2 log(10) ≈ 2.146 (we additionally set the maximum number of approximate nearest
neighbors to be 128)

• β: 1/4, 1/2 (we construct ε-nets with ε = βτ)

We set the MLP base neural net’s final number of output nodes the same way as the dksa
baseline and again project the base neural net’s output to a hypersphere with radius

√
0.1.

From preliminary experiments, using a unit hypersphere (i.e., setting the radius to be equal
to 1) typically resulted in worse validation accuracy scores.

tuna-kernet is the same as kernet except that our tuna warm-start strategy is used.

C.3 More Detailed Computation Time Breakdown Example

As an illustrative example, we give a more detailed breakdown of Table 5.4 where specifically
for the step that fine-tunes the base neural net with the DKSA loss, we not only separate
computation times with respect to β but we also separate the computation times with
respect to the number of time steps that we discretize to. The resulting breakdown is
shown in Table C.1. This same idea could of course be used to analyze the amount of
time of other hyperparameters too. Specifically for tuna-kernet (no split, sft), we
see that for the kkbox dataset, discretizing using 64 or 128 time steps takes a similar
amount of time (although using 128 time steps is of course a little more costly), while
discretizing using all unique observed times of death is significantly more costly in time
(but for kkbox specifically, it turns out that discretizing using all unique observed times
of death significantly improves accuracy). As a minor technical reminder, as stated in the
Appendix C.2, when 64 time steps are used, we are not guaranteed to have exactly 64 time
steps and we might have fewer (similarly for when 128 time steps are used).

C.4 Additional Cluster Visualization

For the kkbox dataset, we visualize the largest 10 clusters found by the final tuna-kernet
(no split, sft) model in Figure 11. These largest 10 clusters only contain 28.7% of the
proper training data.

C.5 Effect of Changing Threshold Distance τ

While the threshold distance τ for survival kernets could be tuned as part of hyperparameter
tuning, we leave it fixed as we found in preliminary experiments that at least for the different
values of τ that we tried, the qualitative flavor of the results did not drastically change.
Specifically, we tried τ =

√
log 10 (i.e., training points only contribute to the prediction

of a test point if they have kernel weight/similarity score at least 0.1 with the test point),
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Figure 11: Visualization of the largest 10 clusters for the final tuna-kernet (no split,
sft) model trained on the kkbox dataset. Panel (a) shows a feature heatmap visualization.
Panel (b) shows survival curves for the same clusters as in panel (a); the x-axis measures
the number of days since an individual subscribed to the music streaming service.
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Table C.1: Time breakdown in training the tuna-kernet (no split, sft) model on the
kkbox dataset for our experimental setup (mean ± standard deviation across 5 experi-
mental repeats). The time breakdown for training tuna-kernet (no split) is the same
without the final summary fine-tuning time. Note that our tuna warm-start strategy cor-
responds to the combination of the first two tasks listed below. Also, note that every task
listed below involves tuning different hyperparameters. For details on hyperparameters, see
Appendix C.2.

Task Hyperparameter settings Time (minutes)

Train xgboost model 192∗ 292.358 ± 1.943
Approximate xgboost kernel with base neural net 18† 111.987 ± 0.307

Fine-tune base neural net with DKSA loss (β = 1/2, discretize to 64 time steps) 12‡ 163.928 ± 13.769
Fine-tune base neural net with DKSA loss (β = 1/2, discretize to 128 time steps) 12‡ 170.394 ± 16.056

Fine-tune base neural net with DKSA loss (β = 1/2, discretize to all unique observed times of death) 12‡ 459.561 ± 24.087
Fine-tune base neural net with DKSA loss (β = 1/4, discretize to 64 time steps) 12‡ 189.322 ± 10.688
Fine-tune base neural net with DKSA loss (β = 1/4, discretize to 128 time steps) 12‡ 196.903 ± 10.287

Fine-tune base neural net with DKSA loss (β = 1/4, discretize to all unique observed times of death) 12‡ 504.150 ± 15.288
Summary fine-tuning 2§ 471.814 ± 37.123

Total 2560.418 ± 65.785

∗ corresponds to the full xgboost hyperparameter grid that we use
† base neural net hyperparameters (number of hidden layers, nodes per hidden layer), learning rate

‡ survival loss hyperparameters (η and σrank from equation (2.7)), learning rate
§ learning rate

Table C.2: Validation set Ctd indices (mean ± standard deviation across 5 experimental
repeats) for tuna-kernet (no split, sft) using different threshold distances.

Threshold distance
Dataset

rotterdam/gbsg support unos kkbox

τ =
√

log 10 0.6852 ± 0.0212 0.6463 ± 0.0074 0.6134 ± 0.0035 0.9047 ± 0.0008
τ =
√

2 log 10 0.6874 ± 0.0198 0.6483 ± 0.0067 0.6156 ± 0.0022 0.9052 ± 0.0005
τ =
√

4 log 10 0.6887 ± 0.0239 0.6484 ± 0.0055 0.6135 ± 0.0026 0.9030 ± 0.0043

τ =
√

2 log 10 (minimum kernel weight 0.01), and τ =
√

4 log 10 (minimum kernel weight
0.0001). The validation set (and not test set) Ctd indices are shown in Table C.2.

For example, looking specifically at the tuna-kernet (no split, sft) model, findings
(a) and (b) in Section 5.1 still hold when we instead use τ =

√
log 10 (i.e., training points

only contribute to the prediction of a test point if they have kernel weight/similarity score
at least 0.1 with the test point) or τ =

√
4 log 10 (minimum kernel weight 0.0001); look at

Table C.3 and compare the achieved test set Ctd indices with those of the baseline models
in Table 5.2.
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Table C.3: Test set Ctd indices (mean ± standard deviation across 5 experimental repeats)
for tuna-kernet (no split, sft) using different threshold distances.

Threshold distance
Dataset

rotterdam/gbsg support unos kkbox

τ =
√

log 10 0.6708 ± 0.0098 0.6373 ± 0.0047 0.6175 ± 0.0059 0.9051 ± 0.0006
τ =
√

2 log 10 0.6719 ± 0.0135 0.6426 ± 0.0045 0.6211 ± 0.0025 0.9057 ± 0.0003
τ =
√

4 log 10 0.6706 ± 0.0124 0.6403 ± 0.0031 0.6181 ± 0.0026 0.9035 ± 0.0042
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