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Abstract

The study of loss-function distributions is critical to characterize a model’s behaviour
on a given machine-learning problem. While model quality is commonly measured by the
average loss assessed on a testing set, this quantity does not ascertain the existence of
the mean of the loss distribution. Conversely, the existence of a distribution’s statistical
moments can be verified by examining the thickness of its tails.

Cross-validation schemes determine a family of testing loss distributions conditioned
on the training sets. By marginalizing across training sets, we can recover the overall
(marginal) loss distribution, whose tail-shape we aim to estimate. Small sample-sizes di-
minish the reliability and efficiency of classical tail-estimation methods like Peaks-Over-
Threshold, and we demonstrate that this effect is notably significant when estimating
tails of marginal distributions composed of conditional distributions with substantial tail-
location variability. We mitigate this problem by utilizing a result we prove: under certain
conditions, the marginal-distribution’s tail-shape parameter is the maximum tail-shape pa-
rameter across the conditional distributions underlying the marginal. We label the resulting
approach as ‘cross-tail estimation (CTE)’.

We test CTE in a series of experiments on simulated and real data1, showing the
improved robustness and quality of tail estimation as compared to classical approaches.
Keywords: Extreme Value Theory, Tail Modelling, Peaks-Over-Threshold, Cross-Tail-
Estimation, Model Ranking

1. Introduction

Loss function distributions form critical subjects of analysis, serving as barometers for ma-
chine learning model performance. In the context of a particular model and associated
machine learning task, the true distribution of the loss function is typically elusive; we
predominantly have access to a finite sample set, born from diverse choices of training and
testing sets. To facilitate performance comparisons across different models based on the
underlying loss function distributions, a spectrum of methodologies has been established.

1. The code is available at https://github.com/ehaxholli/CTE
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Traditional strategies derive from information criteria such as the Akaike Information Cri-
terion (AIC) (Akaike, 1973, 1974), an asymptotic approximation of the Kullback-Leibler
divergence between the true data distribution and the fitting candidate, and its corrected
version (AICc) (Sugiura, 1978; Hurvich and Tsai, 1989), in addition to the Bayesian In-
formation Criterion (BIC) (Schwarz, 1978). The application of these information criteria,
especially the AIC, is often constrained by the multiple inherent approximations and as-
sumptions (Burnham and Anderson, 2007), making them less feasible in certain scenarios.
However, it warrants mention that more recent penalized criteria have considerably ex-
panded their suitability for realistic setups (Birge and Massart, 1995; Arlot and Massart,
2009). Simultaneously, other methodologies, termed splitting/resampling methods, have
been devised, wherein a subset of the data is deployed to assess the performance of the
trained model. This group of methodologies is expansive, predicated on a diverse range of
partitioning and evaluation strategies addressing data heterogeneity and imbalance (Ney-
man, 1934; Cochran, 2007).

In the domain of cross-validation strategies (Allen, 1974; Stone, 1976, 1977), the common
metric employed for gauging model performance is the sample mean of the loss function
distribution. This practice, which invariably provides a finite numerical value, does not
assure the existence of the first or higher order statistical moments. Moreover, this metric,
in spite of its prevalence, should not necessarily be construed as a sole indicator of the
model’s performance, as it does not necessarily quantify its robustness to the underlying
data distribution and model architecture. Furthermore, while it is true that aforementioned
methods allow to rank models according to their relative performance on a given data set,
these scores still have limited value in quantifying the overall stability of a model. From a
theoretical perspective, there is a connection between the uppermost existing moment of a
distribution and the thickness of its tail, which underscores the significance of examining
the behavioural traits and decay rate of the tails of loss function distributions and their
relation to the stability of the model.

In order to proceed, we first must be able to model the tails of distributions and to
quantify their “thickness”. Extreme Value Theory (EVT) is an established field concerned
with modelling the tails of distributions. One of the fundamental results in EVT is the
PickandsBalkemaDe Haan Theorem, which states that the tails of a large class of distri-
butions can be approximated with generalized Pareto ones (Pickands, 1975; de Haan and
Ferreira, 2007). In practice, the shape and scale parameter of the generalized Pareto are
approximated from a finite sample, while its location parameter is always zero. It is the
shape parameter which quantifies tail thickness, with larger values corresponding to heavier
tails. The resulting estimation method is called Peaks-Over-Threshold (POT).

In the context of distributions of loss functions, for each training set, there is a corre-
sponding conditional loss function distribution over points in the sample space. The actual
total loss function distribution, the entity of our interest, is the weighted sum (integral) of
all such conditional distributions, that is, it is the distribution created after marginalizing
across the space of training data sets. In practice, we have a finite number of conditional
distributions, as we have a finite number of training sets. Furthermore, for each of these
conditional distributions, we only possess an approximation of them, derived from the sam-
ples in the testing set. The empirical approximation of the total loss function distribution
therefore consists of the union of the sample sets of conditional distributions. Within this

2



On Tail Decay Rate Estimation of Loss Function Distributions

setting, the estimation of the tail shape of the total loss function distribution could be
ideally carried out by applying POT on this union of samples.

In theory, as we show in this work, the role of the thickest conditional tails in determining
the decay rate of the marginal is preserved, since the marginal and conditional distributions
are defined everywhere, which allows the assessment of tails at extreme locations. Unfor-
tunately, in practice, the finiteness of the sampling affects the estimation of the tail of the
marginal distribution, as the tails may be poorly or not even represented across different
conditional distributions. To be more specific, during marginalization, samples from the
tails of heavy tailed distributions can be overshadowed by the samples from the non-tail
part of individual thin tailed ones. This suggests that modelling the tails of a marginal
distribution by the usual application of POT can give inaccurate results in practice.

In this paper, we develop a general method to mitigate the issue of estimating the tails
of marginal distributions, when there exists a large variability between locations of the
individual conditional distributions underlying the marginal. To this end, we demonstrate
that under some regularity conditions, the shape parameter of the marginal distribution is
precisely the maximum tail shape parameter of the family of conditional distributions. We
refer to the method constructed from this result as cross tail estimation, due to similarities
that it shares with Monte Carlo cross validation. The proposed solution enables a reduction
in the sample size requirements, in the experiments we conducted. In the context of model
comparison, our theory establishes that, under some assumptions, we can estimate the
shape of the total loss distribution, by simply investigating the models prediction, without
the need for target data. Furthermore, we show evidence of polynomial decay of tails of
distributions of model predictions, and empirically demonstrate a relationship between the
thickness of such tails and overfitting. An additional benefit of using the approach proposed
here instead of the standard POT, is the reduced computational time in the case that the
marginal is estimated from many conditional distributions.

The following is a summary of the structure of the paper: In Section 2 we recall some
of the main concepts and results from Extreme Value Theory. In Section 3, we state and
generalize the main problem, which we tackle in Section 4, by building our theory. We
conclude Section 4, by proving three statements which are useful for the experimental part,
and by highlighting the relation between the tail of a distribution and its moments. In the
final section, we show experimentally that our method can improve estimation in practice,
as compared to the standard use of POT.

2. Related Work and Background

This section initially provides a succinct overview of Monte Carlo cross validation (Kuhn
and Johnson, 2013), given its conceptual similarities with the proposed method, “cross
tail estimation”. The subsequent subsection outlines standard results and definitions from
extreme value analysis, forming the bedrock of the statements presented in Section 4.

2.1 Monte Carlo Cross Validation

Let D = {(x1, y1), . . . , (xn, yn)}, be a set of data samples drawn form the same distribution.
During each iteration i we sample k samples Di = {(xπ(1), yπ(1)), ..., (xπ(k), yπ(k))} without
replacement from the original data set D, and consider it as the training set for that
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iteration. The set D \ Di is then used as the testing set. The quantity of interest during
iteration i is the sample mean of the loss of the model trained on Di, namely f̂Di , over the
points of the testing set:

M̃L
i :=

1

|D \Di|
󰁛

j∈D\Di

L(f̂Di(xj), yj), (1)

for a given loss function L.
We evaluate the total performance of the model, based on its average performance over
different choices of the training/testing sets, that is, the true evaluation metric is:

M̃L :=
1

m

m󰁛

i=1

M̃L
i =

1

m

m󰁛

i=1

1

|D \Di|
󰁛

j∈D\Di

L(f̂Di(xj), yj), (2)

where m is the number of iterations (data partitions).
A detailed discussion on cross validation, elucidating its similarities with our proposed
method for tail estimation in marginal loss function distributions, namely ’cross tail esti-
mation’, is presented in Subsection 3.2.

2.2 Extreme Value Theory

Extreme value theory (EVT) or extreme value analysis (EVA) is a branch of statistics
dealing with the extreme deviations from the median of probability distributions. Extreme
value theory is closely related to failure analysis and dates back to 1923, when Richard von
Mises discovered that the Gumbell distribution is the limiting distribution of the maximum
of an iid sequence, sampled from a Gaussian distribution. In 1928, Ronald A. Fisher and
Leonard H. C. Tippett in (Fisher and Tippett, 1928), characterized the only three possible
non-degenerate limiting distributions of the maximum in the general case: Frechet, Gumbel
and Weibull. In 1943, Boris V. Gnedenko, gave a rigorous proof of this fact in (Gnedenko,
1943). This result is known FisherTippettGnedenko theorem, and forms the foundation of
EVT. The three aforementioned limiting distributions of the maximum can be written in
compact form and they are known as the class of extreme value distributions:

Definition 1 The Generalized Extreme Value Distribution is defined as follows:

Gξ,a,b(x) = e−(1+ξ(ax+b))
− 1

ξ
, 1 + ξ(ax+ b) > 0, (3)

where b ∈ R, ξ ∈ R \ {0} and a > 0. For ξ = 0, we define the generalized Extreme Value
Distribution as the limit when ξ → 0, that is

G0,a,b(x) = e−e−ax−b
. (4)

Theorem 2 (FisherTippettGnedenko) : Let X be a real random variable with distri-
bution FX . Denote by {X1, X2, . . . , Xn} a set of iid samples from the distribution FX , and
define Mn = max{X1, . . . , Xn}. If there exist two sequences {ci > 0}i∈N and {di ∈ R}i∈N,
such that

c−1
n (Mn − dn)

d−→ F as n → ∞, (5)
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for some non-degenerate distribution F , then we must have F (x) = Gξ,a,b(x), for some
b, ξ ∈ R, a > 0.

If X is a random variable as in Theorem 2, such that F (x) = Gξ,a,b(x), we say that FX is in
the Maximum Domain of Attraction of Gξ,a,b(x), and we write FX ∈ MDA(ξ). Depending
on whether ξ > 0, ξ = 0, ξ < 0, we say that FX is in the MDA of a Frechet, Gumbell, or
Weibull distribution respectively.

Definition 3 A Generalized Pareto distribution (GPD) with location parameter zero is
defined as below:

Gξ,σ(x) =

󰀫
1− (1 + ξ x

σ )
− 1

ξ for ξ ∕= 0

1− e−
x
σ for ξ = 0

, (6)

where x > 0 when ξ > 0 and 0 < x < −σ
ξ for ξ < 0. The shape parameter is denoted by ξ,

while the scale parameter by σ > 0.

(Balkema and de Haan, 1974) and (Pickands, 1975) proved that the limiting distribution
of samples larger than a threshold is a Generalized Pareto distribution, whose location
parameter is zero.

Theorem 4 (PickandsBalkemaDe Haan) : Let X be a random variable with distribu-
tion FX and xF ≤ ∞ such that ∀x > xF , F̄X(x) = 0. Then FX ∈ MDA(ξ) ⇐⇒ ∃g :
(0,∞) → (0,∞) such that

lim
u→xF

sup
y∈[0,xF−u]

|F̄X
u (y)− Ḡξ,g(u)(y)| = 0, (7)

where F̄X
u (y) = 1−FX(y+u)

1−FX(u) .

This result forms the basis of the well-known Peak-Over-Threshold (POT) method which is
used in practice to model the tails of distributions. The shape parameter can be estimated
via different estimators such as the Pickands Estimator or the Deckers-Einmahl-de Haan
Estimator (DEdH), (Dekkers et al., 1989).

Definition 5 Let X1, X2, . . . , Xn be iid samples from the distribution FX . If we de-
note with X1,n, X2,n, . . . , Xn,n the samples sorted in descending order, then the Pickands
estimator is defined as follows:

ξ̂
(P )
k,n =

1

ln 2
ln

Xk,n −X2k,n

X2k,n −X4k,n
. (8)

Definition 6 Let X1, X2, . . . , Xn be iid samples from the distribution FX . If we denote
with X1,n, X2,n, . . . , Xn,n the samples sorted in descending order, then the DEdH estimator
is defined as follows:

ξ̂
(H)
k,n = 1 +H

(1)
k,n +

1

2

󰀳

󰁃(H
(1)
k,n)

2

H
(2)
k,n

− 1

󰀴

󰁄
−1

, (9)
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where

H
(1)
k,n =

1

k

k󰁛

j=1

(lnXj,n − lnXk+1,n) (10)

and

H
(2)
k,n =

1

k

k󰁛

j=1

(lnXj,n − lnXk+1,n)
2. (11)

An important result which we are going to use frequently in our proofs is Theorem 10,
which can be found in (Embrechts et al., 2013; de Haan and Ferreira, 2007), and gives the
connection between the maximum domain of attraction and slowly varying functions.

Definition 7 A positive measurable function L is called slowly varying if it is defined in
some neighborhood of infinity and if:

lim
x→∞

L(ax)

L(x)
= 1, for all a > 0. (12)

Theorem 8 (Representation Theorem, see (Galambos and Seneta, 1973)) : A pos-
itive measurable function L on [x0,∞] is slowly varying if and only if it can be written in
the form:

L(x) = ec(x)e
󰁕 x
x0

u(t)
t

dt
, (13)

where c(t) and u(t), are measurable bounded functions such that limx→∞ c(x) = c0 ∈ (0,∞)
and u(t) → 0 as t → ∞.

Proposition 9 (Mikosch et al., 1999) If L is slowly varying then for every 󰂃 > 0:

lim
x→∞

x−󰂃L(x) = 0. (14)

Proof We give a proof in Appendix A for the sake of completeness.

Theorem 10 : If X ∈ MDA(ξ) and xF is such that ∀x > xF , F̄X(x) = 0 then:

• ξ > 0 ⇐⇒ F̄X(x) = x
− 1

ξL(x), where L is slowly varying,

• ξ < 0 ⇐⇒ F̄X(xF − 1
x) = x

1
ξL(x), where L is slowly varying,

• ξ = 0 ⇐⇒ F̄X(x) = c(x)e
−

󰁕 x
w

1
a(t)

dt
, w < x < xF ≤ ∞, where c is a measur-

able function satisfying c(x) → c > 0 as x ↑ xF , and a(x) is a positive, absolutely
continuous function (with respect to the Lebesgue measure) with density a′(x) having
limx↑xF

a′(x) = 0. If xF < ∞ then limx↑xF
a(x) = 0 as well.
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3. Setup and Problem Statement

In the initial subsection, we establish a formal framework to address the problem of tail
modelling for loss distributions, and elucidate how unsatisfactory results can arise from a
naive application of the Peaks-Over-Threshold (POT) method. Subsequently, in the second
subsection, we present Cross-Tail-Estimation (CTE), a novel methodology that addresses
these shortcomings. A salient feature of this section is the illustration of the analogy between
CTE and Cross-Validation, providing an intuitive understanding of CTE. In the concluding
subsection, we lay the groundwork for the upcoming Section 4. In this forthcoming section,
we provide the theoretical justification, in the form of Theorem 21, for the application of
our introduced method, CTE.

3.1 Problem Statement

We assume that each data sample (X,Y ) comes from distribution D and that the sampling
is independent. We use the symbol X to denote the features and the symbol Y to denote
the labels (targets). The training set will be defined as a random vector comprised of iid
random vectors (X,Y ) sampled from D. More precisely, after fixing a natural number k,
we define a training set as V = [(X,Y )1, (X,Y )2, . . . , (X,Y )k], where each (X,Y )i has
distribution D. On the other hand, a test point U naturally is defined as a sample from D,
i.e., U = (X,Y ). In practice, the realisation of U should not be an entry in V .
A model which is trained on V to predict Y from X is denoted as ĥV (X). The prediction
error on the testing datum U of a model trained on V is denoted as WV (U). For the
remainder of the paper we assume that WV (U) > 0 and notice that the probability density
function of WV (U) is

fW (w) =

󰁝
fW,V (w,v)dv =

󰁝
fV (v)f(w|V = v)dv =

󰁝
fV (v)fv(w)dv, (15)

therefore the distribution function of WV (U) is:

FW (w) =

󰁝
fV (v)Fv(w)dv. (16)

Fv(w) is the distribution of the prediction error (loss) of the model trained on training set
v, while FW (w) is the unconditional distribution of the loss.

Standard methods such as the Peaks-Over-Threshold (POT) approach, when employed
directly for estimating the tails of general marginal distributions like FW (w) in Equation
(16), may yield unsatisfactory outcomes.

To provide insight into the problem, let’s simplify the scenario for a moment, by assuming
that some random vector V can be either v1 or v2, each with an equal likelihood. In the
situation where V = v1, assume Fv1(w) corresponds to a thick-tailed distribution, wherein
even the first moment does not exist. Conversely, if V = v2, suppose Fv2(w) takes the form
of a Gaussian distribution, characterized by a large mean. Under these conditions, Equation
(16) simplifies to FW (w) = 1

2Fv1(w) +
1
2Fv2(w). It is known that the tail shape parameter

of FW (w) =
󰁓n

i=1 p(vi)Fvi(w) is determined by the conditional distribution Fvi(w) with
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the thickest tail. In our case, n above is 2, and the tail of FW (w) is defined by the fat
tail of Fv1(w). Suppose we proceed with the standard POT approach, that is, we integrate
out the random variable V , and subsequently estimate the shape parameter of the tail of
FW (w). In practical scenarios, this translates to merging the samples from both conditional
distributions into a singular array. Given the finite nature of sample sizes in such cases,
it’s conceivable that none of the samples of W from the thick-tailed distributions surpass
those from the Gaussian distribution, owing to the discrepancies in their locations. As a
consequence, the sample tail of the marginal (mixture) distribution takes its shape from
the sample tail of the Gaussian Fv2(w), while in reality, the tail of FW (w) is dictated by
the heavy tail of Fv1(w). In the ideal scenario with limitless sampling, we would expect to
determine the true tail shape. Yet, within the constraints of practical applications, it may
be necessary to estimate the tail shape parameters of Fv1(w) and Fv2(w) individually.

A natural question that arises in the case that V has a continuous distribution as in Equa-
tion (16) is whether the tail of the marginal FW (w) is still determined by the largest tail of
the conditional distributions Fv(w). As we will prove in Section 4, under some regularity
conditions, the answer is in the affirmative.

3.2 Cross Tail Estimation

We will denote with ξv the tail shape parameter of Fv(w) and with ξ the shape tail parameter
of FW (w). Our goal in Section 4 is to prove that under some regularity conditions if ∃v,
such that ξv > 0, then ξ = max{ξv|v}, and if ∀ξv ≤ 0, then we have ξ ≤ 0. This motivates

Algorithm 1 Naive Cross Tail Estimation

Input: Data D = [(x, y)1, (x, y)2, . . . , (x, y)n]; the Pickands or DEdH estimator
Define: A = {}
Fix the number of training sets (rounds): m ∈ N
repeat

1. sample (x, y)π(1), . . . , (x, y)π(k) from (x, y)1, (x, y)2, . . . , (x, y)n
2. train model ĥv on v = [(x, y)π(1), . . . , (x, y)π(k)]

3. calculate the prediction errors Wv(U) of model ĥv on the testing set D \ v
4. group the calculated prediction errors in the set Ev(D)
5. apply the Pickands or DEdH estimator on Ev(D) to estimate ξv
6. add ξ̂v to A

until |A| = m
return maxA if maxA > 0, else return ‘non-positive’

Algorithm 1 which we name “Naive Cross Tail Estimation” (NCTE). Since for each v, the
estimated ξ̂v is prone to estimation errors, taking the maximum ξ̂v over all v tends to cause
NCTE to overestimate the true ξ, especially when the number of conditional distributions
Fv(w) is large. For this reason we propose Algorithm 2, named ’Cross Tail Estimation’
(CTE), where we split the samples from Fv(w) into p sets in order to get p estimates of
the tail shape parameter of Fv(w), that is {ξ̂1v, ξ̂2v, ..., ξ̂

p
v}. Our final estimation of ξv is

the average of the p estimations, i.e., 1
p

󰁓p
i=0 ξ̂

i
v. A more detailed justification for utilizing
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Algorithm 2 is given in Appendix E. We notice that Algorithm 2 is identical to Algorithm
1 when p = 1.

Algorithm 2 Cross Tail Estimation

Input: Data D = [(x, y)1, (x, y)2, ..., (x, y)n]; the Pickands or DEdH estimator
Define: A = {}
Fix the number of training sets (rounds): m ∈ N
repeat

1. sample (x, y)π(1), ..., (x, y)π(k) from (x, y)1, (x, y)2, ..., (x, y)n
2. train model ĥv on v = [(x, y)π(1), ..., (x, y)π(k)]

3. calculate the prediction errors Wv(U) of model ĥv on the testing set D \ v
4. group the calculated prediction errors in the set Ev(D)
5. split Ev(D) into {E1

v(D), ..., Ep
v(D)}

6. apply the Pickands or DEdH estimator on each Ei
v(D) to get an estimate ξ̂iv of ξv

7. average over p to get the final estimate ξ̂v = 1
p

󰁓p
i=0 ξ̂

i
v of ξv

8. add ξ̂v to A
until |A| = m
return maxA if maxA > 0, else return ‘non-positive’

Remark : Estimating particular statistics of FW (w) through the statistics of Fv(w) as in
in Algorithm 1 and 2 is a key component of Cross Validation. During Cross Validation,
a training set v and a testing set D \ v are selected in each iteration, during which the
following conditional expectation is then estimated:

E[WV (U)|V = v] =

󰁝
wfv(w)dw. (17)

The estimates of E[WV (U)|V ] received in each iteration are then averaged to get an esti-
mation of the total expectation:

EU,V (WV (U)) =

󰁝
wf(w)dw =

󰁝
fV (v)

󰁝
wfv(w)dwdv =

=

󰁝
fV (v)E[WV (U)|V = v]dv = E[E[WV (U)|V = v]].

(18)

In the language of Section 3.1, the mean of distribution FW (w) is the average of the means
of the conditional distributions Fv(w).
This statement about sums stands parallel with our claim about extremes: the shape pa-
rameter of the tail of FW (w), if positive, is the maximum of the shape parameters of the
tails of the conditional distributions Fv(w).

3.3 The General Problem

Generalizing the problem stated in Section 3.1 requires considering a one dimensional ran-
dom variable of interest X, dependent on other random variables {Z1, Z2, ..., Zn}, such that
the probability density function of X is

fX(x) =

󰁝
f(z1, ..., zn, x)dz1 · · · dzn (19)
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=

󰁝
f(z)f(x|z)dz =

󰁝
f(z)fz(x)dz. (20)

Integrating with respect to x we get

FX(x) =

󰁝
f(z)F (x|z)dz =

󰁝
f(z)Fz(x)dz. (21)

In this case, with regards to the previous section, we notice that Z = V is the training set
on which we condition, while X = W is the random variable of interest. In Section 4, we
give several results which relate the tails of FX(x) and F (x|z), culminating with Theorem 21
which justifies the usage of the CTE algorithm, by providing limiting behaviour guarantees.

4. Theoretical Results

In this section, we build our theory of modelling the tails of marginal distributions, which
culminates with Theorem 21. We conclude this section by proving three statements which
are useful in the experimental Section 5, and give the relation between the existence of the
moments of a distribution and the thickness of its tails. Unless stated otherwise, the proofs
of all the statements are given in Appendix A.

4.1 Tails of Marginal Distributions

For two given distributions, whose tails have positive shape parameters, we expect the one
with larger tail parameter to decay slower. Indeed:

Lemma 11 If F1 ∈ MDA(ξ1), F2 ∈ MDA(ξ2), and ξ1 > ξ2 > 0, then limx→∞
F̄2(x)
F̄1(x)

= 0.

In a similar fashion, regardless of the signs of the shape parameters, we expect the one
with larger tail parameter to decay slower. In fact we have the following:

Lemma 12 If F1 ∈ MDA(ξ1) and F2 ∈ MDA(ξ2) then:

1. If ξ1 > 0 and ξ2 = 0 then limx→∞
F̄2(x)
F̄1(x)

= 0.

2. If ξ1 = 0, xF1 = ∞ and ξ2 < 0 then limx→∞
F̄2(x)
F̄1(x)

= 0.

3. If ξ1 > 0 and ξ2 < 0 then limx→∞
F̄2(x)
F̄1(x)

= 0.

Despite the fact that a linear combination of slowly varying functions is not necessarily
slowly varying, the following statement holds true:

Lemma 13 If for i ∈ {1, . . . , n} we let Li(x) be slowly varying functions, and {a1, . . . , an}
be a set of positive real numbers, then

L(x) =

n󰁛

i=1

aiLi(x)

is slowly varying.
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In the case of a mixture of a finite number of distributions the following known result
holds:

Theorem 14 Let Z : Ω → A ⊂ Rn be a random vector where |A| < ∞. At each point
z1, . . . , zn ∈ A, we define a distribution Fzi(x) ∈ MDA(ξi) and assume that ξmax :=
max(ξ1 = ξz1 , . . . , ξn = ξzn) > 0. If the set {p1, . . . , pn} is a set of convex combination
parameters, that is

󰁓
i
pi = 1 and pi > 0 then:

F (x) =

n󰁛

i

piFzi(x) ∈ MDA(ξmax). (22)

If ξmax ≤ 0 then if ξF exists we have ξF ≤ 0.

Proof While this result is well known, we give an alternative proof in Appendix A, using
the Pickands-Balkema-De Haan Theorem.

From now on, we assume that the functions FA(x) =
󰁕
A fZ(z)Fz(x)dz defined on any

element A of the Borel σ − algebra induced by the usual metric are in the MDA of some
extreme value distribution. Furthermore, we assume that the pdf fZ(z) is strictly positive
everywhere in its domain.

Proposition 9 states that every slowly varying function is sub-polynomial. That is for
any δ > 0 and any slowly varying function L(x), if we are given any γ > 0, then we can find
x(L, δ, γ) > 0, such that for all x > x(L, δ, γ), the inequality x−δL(x) < γ holds. However,
since x(L, δ, γ) depends on the function L, assuming that we have a family of {Lz|z ∈ A},
where A is a measurable set, the set {x(Lz, δ, γ)|z ∈ A} can be unbounded, suggesting that

the beginning of the tail of F̄z(x) = x
− 1

ξz Lz(x) can be postponed indefinitely across the
family {Fz|z ∈ A}. These concepts are formalized in the following:

Definition 15 For a set A, the family of sub-polynomial functions {Lz(x)|z ∈ A} is called
γ-uniformly sub-polynomial if for any fixed δ > 0, there exists a γ(δ) so that the set {x0|z ∈
A} is bounded from above, where x0 = x0(Lz, δ, γ) is the smallest value for which when
x > x0 we have x−δLz(x) < γ.

Proposition 16 Let Z : Ω → A ⊂ Rn be a random vector where A is measurable and define
a family of sub-polynomial functions {Lz(x)|z ∈ A}, which we assume is γ-uniformly sub-
polynomial. Then for a probability density function fZ(z) on A induced by Z, the function
L(x) =

󰁕
A fZ(z)Lz(x)dz is sub-polynomial.

In the following theorem, we assume that all conditional distributions have positive tail
shape parameters, and we show that the marginal distribution cannot have a tail shape pa-
rameter larger (smaller) than the largest (smallest) tail shape parameter across conditional
distributions. Furthermore, if the tail shape parameters vary continuously across the space
of conditional distributions, then the tail shape parameter of the marginal is precisely the
same as the maximal tail shape parameter of the conditional distributions.

11
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Theorem 17 Let Z : Ω → A ⊂ Rn be a random vector where A is measurable. At each
point z ∈ A define a distribution Fz(x) ∈ MDA(ξz), and suppose there exist ξlo, ξup such
that ∀z ∈ A, 0 < ξlo ≤ ξz ≤ ξup. Furthermore, let Lz(x) be the slowly varying function
corresponding to Fz(x). If the family {Lz(x)|z ∈ A} is γ-uniformly sub-polynomial, then
for F (x) =

󰁕
A fZ(z)Fz(x)dz we have ξlo ≤ ξF ≤ ξup. Furthermore, if ξz is continuous in

z, then ξF = ξmax, where ξmax := sup{ξz|z ∈ A}.

Similarly to the case when Fz(x) are in the MDA(ξz) for ξz > 0, if we wish to extend
the results above, regularity conditions are required for the ξz ≤ 0 case. We notice that
if Fz(x) ∈ MDA(ξ) for ξ ≤ 0, then F̄z(x) itself is sub-polynomial, whether its support is
bounded or not. This observation motivates the following:

Definition 18 For a set A, define the family of distribution functions FA = {Fz(x)|z ∈ A},
and define A+ = {z|ξz > 0}, A− = {z|ξz ≤ 0}. We say family FA has stable cross-tail
variability if,

• {Lz(x)|z ∈ A+} is γ-uniformly sub-polynomial,

• {F̄z(x)|z ∈ A−} is γ-uniformly sub-polynomial.

We notice that in the previous theorem, if for all z we have 0 < ξz ≤ 󰂃, then ξF ≤ 󰂃. If
the corresponding family FA = {Fz(x)|z ∈ A} has stable cross-tail variability, this holds
independently from the lower bound of {ξz|z ∈ A}. Indeed:

Lemma 19 Let Z : Ω → A ⊂ Rn be a random vector where A is measurable. At each point
z ∈ A define a distribution Fz(x) ∈ MDA(ξz), and suppose that ∀z ∈ A, ξz ≤ 󰂃. If the
family {Fz(x)|z ∈ A} has stable cross-tail variability, then for F (x) =

󰁕
A fZ(z)Fz(x)dz we

have ξF ≤ 󰂃.

Corollary 20 Let Z : Ω → A ⊂ Rn be a random vector where A is measurable. At each
point z ∈ A define a distribution Fz(x) ∈ MDA(ξz), and suppose that ∀z ∈ A, ξz ≤ 0. If
the family {Fz(x)|z ∈ A} has stable cross-tail variability, then for F (x) =

󰁕
A fZ(z)Fz(x)dz

we have ξF ≤ 0.

Proof We notice that for any 󰂃 > 0, we have ξz < 󰂃 for all z ∈ A. Hence, from the previous
Lemma we conclude that ξF ≤ 󰂃, ∀󰂃 > 0.

Finally, we prove the generalization of Theorem 17 in the case that the tail shape parameters
ξZ of the conditional distributions are real numbers:

Theorem 21 Let Z : Ω → A ⊂ Rn be a random vector where A is measurable. At
each point z ∈ A define a distribution Fz(x) ∈ MDA(ξz), where ξz is continuous and
ξmax > 0. If the family {Fz(x)|z ∈ A} has stable cross-tail variability, then for F (x) =󰁕
A fZ(z)Fz(x)dz we have ξF = ξmax. In the case that ξmax ≤ 0 then ξF ≤ 0.

Examples when the conditions of Theorem 21 hold, as well as when they are violated,
can be found in Appendix C and B, respectively.

12
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4.2 Useful Propositions for the Experimental Part

In this subsection, we prove three statements which are useful in the experimental Section
5, and state the well-known relation between the existence of the moments of a distribution
and the thickness of its tails.

Proposition 22 Let FX be the distribution of the random variable X. We define X1 to be
a random variable whose distribution is the normalized right tail of FX , that is:

FX1(x) =

󰀫
0 for x ≤ 0
F (x)−F (0)
1−F (0) for x > 0

. (23)

Similarly we define X2 whose distribution is the normalized left tail of FX ,

FX2(x) =

󰀫
0 for x < 0
F (0)−F (−x)

F (0) for x ≥ 0
. (24)

If FX1 ∈ MDA(ξ1), FX2 ∈ MDA(ξ2), and max{ξ1, ξ2} > 0, then:

ξ|X| = max{ξ1, ξ2}.

If FX1 ∈ MDA(ξ1), FX2 ∈ MDA(ξ2), and max{ξ1, ξ2} ≤ 0, then:

ξ|X| ≤ 0.

Proof Since

F|X|(x) = P(|X| < x) = P(X < x|X > 0)P(X > 0) + P(−X < x|X ≤ 0)P(X ≤ 0)

= p1FX1(x) + p2FX2(x),
(25)

Theorem 14 gives the desired conclusion.

Proposition 23 Let X be a random variable such that X ∈ MDA(ξX > 0). If we define
Y to be equal to Xα, for some α ∈ R+, then Y ∈ MDA(ξY ) where ξY = αξX . If ξX ≤ 0
then ξY ≤ 0.

It is important to notice that we can estimate the shape of the tail of WV (U) by also
conditioning on the test label y:

fW (w) =

󰁝
fW,Y (w,y)dy =

󰁝
fY (y)f(w|Y = y)dy =

󰁝
fY (y)fy(w)dy (26)

FW (w) =

󰁝
fY (y)Fy(w)dy. (27)

We use this fact to prove the following:

13
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Proposition 24 Let the loss function be defined as WV (U) = |Y − f̂V (X)|p for some p ∈
R+, and let Fy(t) be the distribution of f̂V (X) given Y . If we assume that the distribution
of the labels Y has bounded support S, that the family {Fy(t)|y ∈ S} has stable cross-tail
variability, and that the shape parameters ξy of Fy(t) change continuously, then the tail

shape parameters of WV (U) and |f̂V (X)|p share the same sign, and are identical if either
of them is positive.

There exists a strong connection between the Maximum Domain of Attraction of a
distribution, and the existence of its moments (see Embrechts et al. (2013)):

Proposition 25 If F|X| is the distribution function of a random variable |X|, and F|X| ∈
MDA(ξ) then:

i) if ξ > 0, then E[|X|r] = ∞, ∀r ∈ (
1

ξ
,∞), (28)

ii) if ξ ≤ 0, then E[|X|r] < ∞, ∀r ∈ (0,∞). (29)

This means that, for a model with a positive loss function whose distribution has a
shape parameter that is bigger than one, even the first moment of that loss function dis-
tribution does not exist. Hence, we would expect that our model has an infinite mean,
which would suggest that this model should be eliminated during model ranking. However,
if every model has an infinite expected loss, it’s not advisable to eliminate them all. An
alternative approach could be to utilize the tail thickness and medians of the loss function
distributions to guide decision-making about which models to keep.

In Proposition 24, we showed that if we condition on the testing set, under some assump-
tions, we can estimate the shape of the total loss distribution, that is the distribution of
WV (U), by simply investigating the models prediction, without the need for target data.
This can also be motivated from the moments of WV (U) as shown in Appendix D.

5. Experiments

In this section, we demonstrate the significance of Theorem 21. In the first subsection, we
show experimental evidence that the estimated shape parameter of the marginal distribu-
tion, coincides with the maximal shape parameter of individual conditional distributions.
In the second subsection, we show that when the sample size is finite, as it is the case
in practice, the method proposed by Theorem 21 (cross tail estimation) can be necessary
to reduce the required sample size for proper tail shape parameter estimation of marginal
distributions. Furthermore, in the third subsection, we compare the standard POT and
cross tail estimation on real data. For the considered regression scenarios, we notice that
when these shape parameters are calculated by cross tail estimation, the magnitude of shape
parameters of the distribution of model predictions increases significantly when the model
overfits. We also notice that such a relationship does not hold in the case that we use
directly the POT method to estimate the aforementioned shape parameters. Finally, in the
fourth subsection, we discuss the computational advantages of using cross tail estimation.

14
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5.1 Validity of Cross Tail Estimation in Practice

The main problem that we tried to tackle in the previous section was estimating the shape
parameters of the tail of distribution F (x):

F (x) =

󰁝
f(z)Fz(x)dz, (30)

via tail shape estimation of the conditional distributions Fz(x). In what follows, we provide
experiments showing that this is feasible in practice.

5.1.1 Experimental Setting

For simplicity, we set z to be one dimensional, and thus denote the conditional distributions
Fz as Fz, where z ∈ R. In this case Equation (30) becomes

F (x) =

󰁝
f(z)Fz(x)dz. (31)

First, we define f(z) as a mixture of Gaussian distributions. To do so we choose a mean
µi from a uniform distribution in [−5, 5] and then a standard deviation σi from a uniform
distribution between [0, 4], together defining a Gaussian distribution gi(z). We repeat this

process for 30 Gaussian distributions and define f(z) =
󰁓30

i=1
gi(z)
30 .

Second, we define the function ξz as

ξz =
(nz+2m2+kz3)e−|z|+a

b + c

d
, (32)

where n = 1, m = 2, k = 2, b = 5.76, a = −3b−3.80, d = (78ξmax+
29
8 )

−1 and c = dξmax+3.
The ξmax in the variables c, d determines the maximum value that the function ξz takes as
long as ξmax ∈ [−4, 5]. More details about the function ξz are provided in Appendix G.

Third, we define Fz(x). If ξz ≤ 0, then we define Fz(x) as a Generalized Pareto distri-
bution (GPD) where the scale parameter is set to 1 and the tail shape parameter is ξz.

Otherwise we define Fz(x) as 1 − x
− 1

ξz . The choice of ξmax completely determines each ξz
and hence each Fz(x), thus it fully defines F (x) in Equation (31).

We run the experiments for different values of the parameter ξmax, that is, ξmax takes
the following 45 values {−4,−4 + 0.2,−4 + 0.4, ..., 5}. We denote these ξmax values as
ξj = −4 + 2j

10 , where j ∈ {0, ..., 45}. Each choice of j defines a particular maximal value
ξmax = ξj and thus a marginal distribution Fj(x) as on the left side of Equation (31). Also
since the particular choice j of the maximum ξmax determines all corresponding ξz in Equa-
tion (32) then we denote ξz as ξz,j .

For each j we repeat p times Algorithm 3. On repetition k, the algorithm returns ξ̂kj which
is an estimation of ξj . As guided by the ideas laid in Appendix E, our final estimation of

ξj after p repetitions of Algorithm 3 above is ξ̂j =
1
p

󰁓p
k=1 ξ̂

k
j .
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Algorithm 3 Construction of a Continuous Mixture Distribution and Direct POT Usage

define: J = {}
fix the number of iterations: M ∈ N
repeat

a) Sample a z from the distribution f(z)
b) For that z, calculate ξz,j (given that ξmax = ξj)
if ξz,j ≤ 0 then

c) Sample a point x from a GPD with location zero, σ = 1, shape parameter ξz,j .
d) J = J ∪ {x}

else

c) Sample x from Fz(x) = 1− x
− 1

ξz,j

d) J = J ∪ {x}
end if

until |J | = M
apply the Pickands or DEdH estimator on J to estimate ξj , the shape parameter of
Fj(x).
return the estimated value of ξj

5.1.2 Experimental validation of CTE using the Pickands estimator

We show the results of the experiment described above, when the Pickands Estimator is
applied. In this study, a comprehensive set of experimental outcomes has been illustrated
in Figure 1. Here, the parameter M , delineated in the preceding subsection, is assigned
values from the set {105, 106, 107, 108}. In the context of these experiments, p was set to
10 as a constant across all trials. The experiments were performed encompassing a total of
10 runs to capture potential variability and better reflect the stochastic nature of the process.

In order to acquire a more robust and representative understanding of the results, given the
inherent variability of the experimental setup, statistical metrics including the mean and
standard deviation were computed across these multiple experimental runs.

Upon examining the obtained results, they seem to align with our initial theoretical ex-
pectations. Specifically, when the maximum tail shape parameter within the mixture of
conditional distributions is of positive value, the estimated shape parameter of the marginal
distribution is that identical positive value. On the other hand, if the maximum tail shape
parameter within the conditional distributions is negative, the estimated shape parameter
of the marginal distribution duly returns a negative value. This symmetry in the estima-
tions provides a degree of confidence in the validity of the conducted experiments and the
consistency of the underlying theoretical framework.

Complementary results, pertaining to a replica of the above-described experiment, wherein
the DEdH Estimator is utilized, can be found in Appendix I.
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Figure 1: In cases where the maximum tail shape parameter in the mixture of conditional
distributions is positive, the estimated shape parameter of the marginal is equal
to this maximal value. If this maximum value is negative, the estimated shape
parameter is negative. These results were obtained using the Pickands estimator.

5.2 Robustness to Variance in the Location of Conditional Distributions

In Subsection 5.1, we presented empirical evidence to substantiate Theorem 21. Notably,
for computational expediency, we elected to set all conditional distributions with a location
parameter of zero. This decision was motivated by the fact that, if location parameters were
permitted to exhibit significant variability, the direct Peaks Over Threshold (POT) approach
would necessitate an unfeasibly large sample size to verify our claims. This issue is addressed
in the current subsection, wherein we illustrate that the CTE approach provides a suitable
remedy. Specifically, in Subsection 5.2.1, we outline modifications to the experimental
setup from Subsection 5.1 that allow for variation in the location parameter, and present
the experimental results accordingly. In Subsection 5.2.2, we apply the CTE approach to
the same marginal distributions as in Subsection 5.2.1, and demonstrate that it allows for
correct estimation of shape parameters. Additional experiments, in more simplified settings,
highlighting the necessity of CTE are provided in Appendix F.
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5.2.1 Applying POT directly when the location of conditional
distributions exhibits substantial variability

In order to ensure high variability of the location of conditional distributions Fz(x), we
modify step (c) in the if statement of Algorithm 3 into (c*) as delineated in Algorithm 4.

Algorithm 4 Modification of Algorithm 3 to Ensure High Location Variability

if ξz,j ≤ 0 then
c) Sample a point x from a GPD with location zero, σ = 1, shape parameter ξz,j .
d) J = J ∪ {x}

else

c*) Sample x from Fz(x) = 1− x
− 1

ξz,j . Translate x by adding 1
ξz,j

4 , i.e., x = x+ 1
ξz,j

4 .

d) J = J ∪ {x}
end if

This adaptation ensures that conditional distributions with lower positive shape param-
eters are situated at greater distances from the origin, thereby augmenting the probability
that their tails will dominate over those that exhibit heavier tails.

Figure 2: Estimation of the shape parameter of the marginal by direct application of POT.
We utilize the Pickands estimator as our estimator of choice.
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The results in Figure 2 show that the estimators predict that the shape parameter of the

tail is constantly 4 as the tail of the marginal is determined by ξz,j
−4 instead of 1− x

− 1
ξz,j

which merely becomes noise around ξ−4
z,j . This changes once ξmax = ξj becomes larger

than 4, in which case the tails of the conditional distribution are once again determined by

1− x
− 1

ξz,j .

Complementary results, pertaining to a replica of the above-described experiment, wherein
the DEdH Estimator is utilized, can be found in Appendix I, Figure 15.

5.2.2 Enhancing parameter estimation accuracy through the CTE approach

We demonstrate that the CTE method can effectively recover the true shape of the tail
of the marginal, even in cases where the conditional distributions exhibit highly varying
locations, as observed in Subsection 5.2.1. To ensure objectivity, we define the functions
f(z), ξz,j , and Fz,j(x) in a consistent manner as before, thereby ensuring that all marginal
distributions under consideration are equivalent to those studied in previous cases. As per
the definition of the CTE, the sampling and estimation procedure is described in detail in
Algorithm 5.

Algorithm 5 Application of CTE on the Mixture Distribution Defined in Algorithm 4

sample K values z from f(z)
for each z do

Calculate ξz,j (given that ξmax = ξj)
for l = 1 to p do

if ξz,j ≤ 0 then
Sample a set S of N samples from a GPD with shape parameter ξz,j , scale σ = 1.

else

Sample a set S of N samples from Fz(x) = 1− x
− 1

ξz,j .
Translate each sample x in S as follows: x = x+ 1

ξz,j
4 .

end if
Apply the Pickands or DEdH estimator on S to get an estimate ξ̂lz,j of the shape
parameter ξz,j of Fz,j(x)

end for
As guided by the ideas laid in Appendix E, our final estimation of ξz,j after p repetitions

of the process above is ξ̂z,j =
1
p

󰁓p
l=1 ξ̂

l
z,j .

end for
We select the maximal ξ̂z,j from the K predicted values (corresponding to the K sampled

z). According to Theorem 21 the estimated ξ̂j should be close to ξj .

return ξ̂j , the estimated value of ξj

We set p = 10 at all times. Furthermore, for the sake of fairness, we sample the same
number of points from each marginal distribution as in the previous subsection, that is, we
set KN = M . Since we set K = 50, in order for M to take values in {1e5, 1e6, 1e7, 1e8},
N needs to take values in {2e3, 2e4, 2e5, 2e6}. We execute the experiment 10 times, and to
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Figure 3: Estimation the shape parameter of the marginal using CTE. We utilize the
Pickands estimator as our estimator of choice.

account for variability across the different runs, we compute the mean and standard devi-
ation of the results, which are shown in Figure 3. Naturally, the more K is increased the
more likely we are to sample the z corresponding to the conditional distribution with the
maximal shape parameter. Theorem 21 provides assurance that as the value of K increases,
our estimation progressively converges to the true shape parameter of the marginal distri-
bution. The conducted experiments indicate that merging samples from various conditional
distributions, which form the marginal, may potentially be detrimental when estimating
the tail shape of the marginal.

Complementary results, pertaining to a replica of the above-described experiment, wherein
the DEdH Estimator is utilized, can be found in Appendix I, Figure 16.

5.3 Model Performance Inference Improvements via Cross Tail Estimation,
Relative to POT

In what follows, we show that cross tail estimation can improve the estimation of the
shape of the tail in realistic settings. Furthermore, we observe that in these cases, the
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thickness of the tail is positively correlated with over-fitting, therefore inference regarding
the performance of the model is improved when using CTE instead of POT.

5.3.1 Gaussian Processes

In this experiment, our data is composed of a one-dimensional time series taken from the
UCR Time Series Anomaly Archive 2 (Wu and Keogh, 2020), which we reorganize in win-
dows of size 2, and use each window to fit a Gaussian process (GP) model in order to predict
the next value in the series. Our complete data set D is composed of n = 1e4 windows.
On each run we randomly select 340 points of D for training (denote Di), and then group

Figure 4: Experimental results in the case of testing Gaussian processes. Left: The Pickands
estimator is used. Right: The DEdH estimator is used. In both cases we notice
that CTE estimates larger shape parameters of the loss function distributions for
models which overfit. This is not the case when POT is applied directly. The first
black vertical line marks the first model with lower MSE than the model with
the smallest length scale parameter (the point where the models stop overfitting).
The second black vertical line marks the model in from which MSE starts growing
again (the point when models begin underfitting). The MSE is presented in log
scale and has been further linearly scaled to fit the plot. Shaded areas denote the
standard deviation of the measurements across 200 independent runs.

the predictions of the model on the 1e4 points of D into an array which we denote by Ŷi.
Then we split Ŷi into five equally sized subsets Ŷi,j . We proceed to estimate the shape
parameter of the tails of the prediction of the model, for given training set Di. This is done
by applying the Pickands/DEdH estimator to Ŷi,j , receiving ξ̂i,j and then as per Appendix

2. https://www.cs.ucr.edu/~eamonn/time_series_data_2018/UCR_TimeSeriesAnomalyDatasets2021.
zip
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E, we get the estimate ξ̂i =
1
5

󰁓5
j=1 ξ̂i,j which corresponds to Ŷi. We repeat this process

1000 times (for 1000 choices of the training set Di), and select as our estimation of the
shape parameter of the tail of the distribution of our loss function, the maximum individual
estimated parameter: ξ̂i = max{ξ̂i|i ∈ [1000]}. On the other hand, we also calculate the
MSE on the testing set D \Di after the model has been trained on Di.

To check the difference of performance of the direct POT of tail shape estimation and
cross tail estimation, we also calculate the shape parameter of the overall distribution of
prediction models, through the standard method, by applying Pickands/DEdH estimator

on Y =
1000󰁖
i=1

Ŷi.

These experiments are repeated for length scale parameters given in the x−axis of Fig-
ure 4 as well as in Appendix H. We repeat every experiment 200 times to account for
variability across different runs, we compute the mean and standard deviation of the results.

In Figure 4 , we notice that when the CTE approach is used, the shape parameter is
significantly larger for models which overfit. In Appendix H, we illustrate that the MSE
is large for small scale parameters due to overfitting (Figure 9). Furthermore, the shape
parameter only drops to (under) zero, when the model starts underfitting for length scale
parameters bigger than 2.5e7. In Appendix H (Figure 10), it is shown that for such large
values of the length scale parameter, the predictions become roughly constant.

On the other hand, if POT is applied directly, then the estimated shape parameters are not
significantly larger for models which overfit compared to those that do not. This is because
conditioning on the training set, the predicted values on the test set vary significantly with
regards to the their location. Hence, the tail that is estimated by the direct application
of the POT approach is sometimes simply the one translated the furthest from the origin.
Thus, if there is some inverse relationship between the magnitude of the location and the
size of the estimated shape parameter across different conditional, then we expect POT to
underestimate the true shape parameter of the marginal. This is shown in Appendix H, for
the model with the highest estimated shape parameter (290). The variability (sorted) of
the estimated shape parameters of the 1000 conditionals for each length scale parameter is
given in Figure 12 of Appendix H, together with the corresponding 97th percentile (thresh-
old) from each corresponding conditional distribution. We notice that indeed, quite often
the difference between locations is large, and that the largest threshold often corresponds
to conditional distributions with small, even negative shape parameters.

The outcomes presented herein are robust with regards to the choice of applying the method
explicated in Appendix E in conjunction with the direct Peaks Over Threshold (POT) ap-
proach. Furthermore, the findings presented in Figure 4 demonstrate near equivalence in
relation to the magnitude of the selected threshold (in this study, we evaluated 99.7 and
99.997 percentiles).
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5.3.2 Polynomial Kernels

This experiment is almost identical to the previous one, with the only differences being that
the models we test now are polynomial kernels, and the set of possible candidate models in
this case is defined by the degree of the polynomial kernel. We test polynomial kernels of
degree from 1 to 9. As before, we repeat this experiment 200 times. The results are shown
in Figure 5.

Figure 5: Experimental results in the case of testing polynomial kernels. Left: The Pickands
estimator is used. Right: The DEdH estimator is used. In both cases we notice
that CTE estimates larger shape parameters of the loss function distributions for
models which overfit. This is not the case when POT is applied directly. The
black vertical line marks the inflection point of the MSE. The MSE is presented
in log scale and has been further linearly scaled to fit the plot. Shaded areas
denote the standards deviation of the measurement across 200 independent runs.

5.4 Computational Simplifications

Another benefit to using cross tail estimation is the reduction of computational time, as
for a given number m of conditional distributions, with n samples for each, instead of
joining all testing samples together in an array of size m ∗ n, we perform calculations in
m arrays of size n in parallel. This becomes useful in practice during shape parameter
estimation, as using Pickands estimators requires sorted samples, where best algorithms
for sorting require n log(n) operations for a vector of size n. Hence our method which
requires n log(n) operations is much faster in practice than the standard POT approach
which requires mn log(mn), in a setting where m and n are of approximately of the same
order.
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6. Conclusion

We study the problem of estimating the tail shape of loss function distributions, and explain
the complications that arise in performing this task. We notice that such complications
arise in general during the estimation of the tail shape of marginal distributions. In order
to mitigate such shortcomings, we propose a new method of estimating the shape of the
right tails of marginal distributions and give theoretical guarantees that the tail of the
marginal distribution coincides with the thickest tail of the set of conditional distributions
composing the marginal. We give experimental evidence that our method works in practice,
and is necessary in applications with small sample sizes. Using the aforementioned method,
we show experimentally that the tails of distribution functions in many cases can have
non-exponential decay, as well as that it is possible that not even their first moment exists.
Furthermore, we discover an interesting phenomenon regarding the relationship between the
overfitting of a model, and the thickness of the tails of its prediction function distribution,
in the experiments we conducted.

Potential additional applications of the method we develop include improving classic
tail modelling, as well as the threshold selection for model comparison in anomaly detection
(Su et al., 2019). Furthermore, cross tail estimation could be used to estimate the existence
of the moments of loss function distributions, and thus can be considered as a potential
elimination criteria for models whose first moment does not exist.
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Appendix A. Proofs

Proof of Proposition 9

We notice that if L(x) converges the statement is trivial. However, if it does not then:

lim
x→∞

x−󰂃L(x) = lim
x→∞

L(x)

x󰂃
= lim

x→∞

ec(x)e
󰁕 x
xo

u(y)
y

dy

x󰂃
= lim

x→∞

ec(x)e
󰁕 x
xo

u(y)
y

dy

e󰂃 log(x)
=

= lim
x→∞

ec(x)e
󰁕 x
xo

u(y)
y

dy−󰂃 log(x)
= lim

x→∞
ec(x)e

log(x)(

󰁕 x
xo

u(y)
y dy

log(x)
−󰂃)

.

(33)

Using L’Hopital’s rule we get:

lim
x→∞

󰁕 x
xo

u(y)
y

log(x)
= lim

x→∞

u(x)
x
1
x

= lim
x→∞

u(x) = 0, (34)

therefore

lim
x→∞

e
log(x)(

󰁕 x
xo

u(y)
y dy

log(x)
−󰂃)

= 0. (35)

Proof of Lemma 11

From Theorem 10, we get that

F1 ∈ MDA(ξ1) ⇐⇒ F̄1(x) = x
− 1

ξ1 L1(x),

and
F2 ∈ MDA(ξ2) ⇐⇒ F̄2(x) = x

− 1
ξ2 L2(x),

where L1(x) and L2(x) are slowly varying functions.
Therefore

lim
x→∞

F̄2(x)

F̄1(x)
= lim

x→∞
x

1
ξ1

− 1
ξ2
L2(x)

L1(x)
= lim

x→∞
xα

L2(x)

L1(x)
, (36)

since

ξ1 > ξ2 =⇒ − 1

ξ1
> − 1

ξ2
=⇒ α :=

1

ξ1
− 1

ξ2
< 0.

On the other hand L(x) := L2(x)
L1(x)

is defined in a neighborhood of infinity as L1(x) ∕= 0, and
is also a slowly varying function as

lim
x→∞

L(ax)

L(x)
= lim

x→∞

L2(ax)
L1(ax)

L2(x)
L1(x)

= lim
x→∞

L2(ax)
L2(x)

L1(ax)
L1(x)

= 1,

and since the quotient of positive measurable functions, is positive and measurable. There-
fore, using Corollary 1, Equation (36) becomes

lim
x→∞

F̄2(x)

F̄1(x)
= lim

x→∞
xα

L2(x)

L1(x)
= lim

x→∞
xαL(x) = 0. (37)
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Proof of Lemma 12

1. If ξ1 > 0 and ξ2 = 0 then

lim
x→∞

F̄2(x)

F̄1(x)
= lim

x→∞

c(x)e
−

󰁕 x
w

g(t)
a(t)

dt

x
− 1

ξL(x)
= lim

x→∞

c(x)e
− log(x)(

󰁕 x
w

g(t)
a(t)

dt

log(x)
− 1

ξ
)

L(x)
, (38)

using L’Hopital’s rule:

lim
x→∞

󰁕 x
w

g(t)
a(t)dt

log(x)
= lim

x→∞

g(x)
a(x)

1
x

= lim
x→∞

x

a(x)
, (39)

we distinguish two cases:

if limx→∞ a(x) ∕= ∞ then limx→∞
x

a(x) = ∞,

while if limx→∞ a(x) = ∞ then using L’Hopital’s rule again, we obtain

lim
x→∞

x

a(x)
= lim

x→∞

1

a′(x)
= ∞. (40)

Thus, in both cases

= lim
x→∞

c(x)e
− log(x)(

󰁕 x
w

g(t)
a(t)

dt

log(x)
− 1

ξ
)

L(x)
= lim

x→∞

c(x)x
−(

󰁕 x
w

g(t)
a(t)

dt

log(x)
− 1

ξ
)

L(x)
= 0. (41)

Statements 2. 3. and 4. are trivial.

Proof of Lemma 13

Since L(x) is positive and measurable (linear combination of finite measurable functions),
the only part left to prove is that

lim
x→∞

L(ax)

L(x)
= 1, ∀a > 0.

First we prove that

lim
x→∞

L1(ax) + L2(ax)

L1(x) + L2(x)
= 1, ∀a > 0.

Indeed, for each 󰂃 > 0, there exist x1, x2 such that for x > x1 we have |L1(ax)
L1(x)

− 1| < 󰂃

and for x > x2 we have |L2(ax)
L2(x)

− 1| < 󰂃. Hence for x0 = max{x1, x2}, x > x0 implies

|L1(ax) − L1(x)| < L1(x)󰂃 and |L2(ax) − L2(x)| < L2(x)󰂃 therefore |L1(ax) + L2(ax) −
(L1(x)+L2(x))| = |L1(ax)−L1(x)+L2(ax)−L2(x)| ≤ |L1(ax)−L1(x)|+|L2(ax)−L2(x)| <
(L1(x) + L2(x))󰂃 hence |L1(ax)+L2(ax)

L1(x)+L2(x)
− 1| < 󰂃.

Now, we notice that for every ai > 0, we get limx→∞
aiLi(ax)
aiLi(x)

= 1, and aiLi(x) is positive
as well as measurable. This implies that a1L1 and a2L2 are slowly varying functions, and
therefore based of the previous result we get

lim
x→∞

a1L1(ax) + a2L2(ax)

a1L1(x) + a2L2(x)
= 1, ∀a > 0.

Using induction finishes the proof of the Lemma.
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Proof of Theorem 14

Since if ξzi < 0 then ∃x0 > 0, such that ∀x > x0 we have FZi(x) = 0, this means that
the tail of the distribution is not affected by FZi(x). In fact if ξmax < 0 then F will have
finite support hence ξF ≤ 0. Furthermore if ξmax = 0 from Lemma 12 we get that ξF ≤ 0.
Therefore for the case ξmax > 0 we only consider the setting where ξi ≥ 0.

F̄u(w) =
1− F (u+ w)

1− F (u)
=

n󰁓
i
pi(1− Fzi(u+ w))

n󰁓
i
pi(1− Fzi(u))

=

n󰁛

i

F̄zi(u+ w)
n󰁓
j

pj
pi
F̄zj (u)

(42)

=

n󰁛

i

F̄zi(u+ w)

F̄zi(u)

F̄zi(u)
n󰁓
j

pj
pi
F̄zj (u)

=

n󰁛

i

F̄zi(u+ w)

F̄zi(u)

1
n󰁓
j

pj
pi

F̄zj (u)

F̄zi (u)

. (43)

We denote with i(max) the index corresponding to ξmax and finish our proof using Pickand’s
theorem:

lim
u→∞

sup
w∈[0,∞]

|F̄u(y)− Ḡξmax,g(u)| = lim
u→∞

sup
w∈[0,∞]

|
n󰁛

i

F̄zi(u+ w)

F̄zi(u)

1
n󰁓
j

pj
pi

F̄zj (u)

F̄zi (u)

− Ḡξmax,g(u)|

(44)

= lim
u→∞

sup
w∈[0,∞]

|
n󰁛

i

F̄zi(u+ w)

F̄zi(u)

1

1 +
n󰁓

j ∕=i

pj
pi

F̄zj (u)

F̄zi (u)

− Ḡξmax,g(u)| (45)

≤ lim
u→∞

sup
w∈[0,∞]

|
F̄zi(max)

(u+ w)

F̄zi(max)
(u)

1

1 +
n󰁓

j ∕=i(max)

pj
pi(max)

F̄zj (u)

F̄zi(max)
(u)

− Ḡξmax,g(u)|

+ lim
u→∞

sup
w∈[0,∞]

|
n󰁛

i ∕=i(max)

F̄zi(u+ w)

F̄zi(u)

1

1 +
n󰁓

j ∕=i

pj
pi

F̄zj (u)

F̄zi (u)

|
(46)

≤ lim
u→∞

sup
w∈[0,∞]

|
F̄zi(max)

(u+ w)

F̄zi(max)
(u)

− Ḡξmax,g(u)|

+ lim
u→∞

sup
w∈[0,∞]

| 1

1 +
n󰁓

j ∕=i(max)

pj
pi(max)

F̄zj (u)

F̄zi(max)
(u)

− 1||
F̄zi(max)

(u+ w)

F̄zi(max)
(u)

|

+ lim
u→∞

sup
w∈[0,∞]

n󰁛

i ∕=i(max)

| F̄zi(u+ w)

F̄zi(u)
|| 1

1 +
n󰁓

j ∕=i

pj
pi

F̄zj (u)

F̄zi (u)

|

(47)
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≤ lim
u→∞

sup
w∈[0,∞]

|
F̄zi(max)

(u+ w)

F̄zi(max)
(u)

− Ḡξmax,g(u)|

+ lim
u→∞

| 1

1 +
n󰁓

j ∕=i(max)

pj
pi(max)

F̄zj (u)

F̄zi(max)
(u)

− 1|

+ lim
u→∞

n󰁛

i ∕=i(max)

| 1

1 +
n󰁓

j ∕=i

pj
pi

F̄zj (u)

F̄zi (u)

|.

(48)

The first expression,

lim
u→∞

sup
w∈[0,∞]

|
F̄zi(max)

(u+ w)

F̄zi(max)
(u)

− Ḡξmax,g(u)| (49)

goes to zero due to Pickands Theorem while the expression,

lim
u→∞

| 1

1 +
n󰁓

j ∕=i(max)

pj
pi(max)

F̄zj (u)

F̄zi(max)
(u)

− 1|
(50)

converges to 0 as well because from Lemma 11 we have limu→∞
F̄zj (u)

F̄zi(max)
(u)

= 0 for every j.

Finally the last expression,

lim
u→∞

n󰁛

i ∕=i(max)

| 1

1 +
n󰁓

j ∕=i

pj
pi

F̄zj (u)

F̄zi (u)

|
(51)

equals 0 since in each sum
n󰁓

j ∕=i

pj
pi

F̄zj (u)

F̄zi (u)
, there exists an index j such that F̄zj (u) = F̄zi(max)

(u),

implying that
n󰁓

j ∕=i

pj
pi

F̄zj (u)

F̄zi (u)
→ ∞.

In the derivation above we assumed that the Fzi(max)
which corresponds to ξmax is unique. In

the case that this is not true we notice that for F1 and F2 which share the same corresponding

parameter ξ > 0 we have p1F1(x)+p2F2(x) = x
− 1

ξ (p1L1(x)+p2L2(x)) = x
− 1

ξL(x), and since
L(x) > 0, from Lemma 13 we have that L(x) is slowly varying, therefore p1F1(x)+p2F2(x) ∈
MDA(ξ).

Proof of Proposition 16

First, we fix δ > 0. We can find a x(γ, δ) > 0, such that for x > x(γ, δ), we can bound
x−δLz(x) < γ for all z ∈ A simultaneously. This implies that fZ(z)x

−δLz(x) is bounded by
fz(z)γ. Since

󰁕
z fz(z)γdz = γ < ∞, by dominated convergence we get

lim
x→∞

x−δ

󰁝

A
fZ(z)Lz(x)dz = lim

x→∞

󰁝

A
fZ(z)x

−δLz(x)dz =

󰁝

A
lim
x→∞

fZ(z)x
−δLz(x)dz = 0.
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Proof of Theorem 17

We will first assume that ξF > 0.

Since F̄ (x) = x
− 1

ξF LF (x), for every 󰂃 > 0:

F̄ (x)

x
− 1

ξlo−󰂃

=
x
− 1

ξF LF (x)

x
− 1

ξlo−󰂃

=

󰁕
A fZ(z)x

− 1
ξz Lz(x)dz

x
− 1

ξlo−󰂃

=

󰁝

A
fZ(z)x

− 1
ξz

+ 1
ξlo−󰂃Lz(x)dz =

󰁝

A
fZ(z)x

α(z)Lz(x)dz.

(52)

We notice that ξz ≥ ξlo > ξlo − 󰂃 =⇒ − 1
ξz

≥ − 1
ξlo

> − 1
ξlo−󰂃 hence α(z) = − 1

ξz
+ 1

ξlo−󰂃 > 0.
Considering that

lim
x→∞

F̄ (x)

x
− 1

ξlo−󰂃

= lim
x→∞

󰁝

A
fZ(z)x

α(z)Lz(x)dz, (53)

by using Fatou’s lemma:

lim
x→∞

󰁝

A
fZ(z)x

α(z)Lz(x)dz ≥
󰁝

A
lim
x→∞

fZ(z)x
α(z)Lz(x)dz = ∞, (54)

we get

lim
x→∞

x
− 1

ξlo−󰂃

F̄ (x)
= 0, (55)

implying

lim
x→∞

x
− 1

ξlo−󰂃

x
− 1

ξF LF (x)
= lim

x→∞

x
− 1

ξlo−󰂃
+ 1

ξF

LF (x)
= 0, (56)

therefore
ξlo − 󰂃 < ξF , ∀󰂃 > 0 thus ξlo ≤ ξF . (57)

Now we turn to prove that ξF ≤ ξup. As before,

F̄ (x)

x
− 1

ξup+󰂃

=
x
− 1

ξF LF (x)

x
− 1

ξup+󰂃

=

󰁕
A fZ(z)x

− 1
ξz Lz(x)dz

x
− 1

ξup+󰂃

=

󰁝

A
fZ(z)x

− 1
ξz

+ 1
ξup+󰂃Lz(x)dz =

󰁝

A
fZ(z)x

β(z)Lz(x)dz.

(58)

We notice that ξz ≤ ξup < ξup + 󰂃 =⇒ − 1
ξz

≤ − 1
ξup

< − 1
ξup+󰂃 hence β(z) = − 1

ξz
+ 1

ξup+󰂃 <

−δ < 0. This last inequality, combined with the fact that the family {Lz(x)|x ∈ R} is
γ-uniformly sub-polynomial, implies that

fZ(z)x
β(z)Lz(x) ≤ fZ(z)x

−δLz(x) ≤ fZ(z)γ, (59)

for some γ > 0. Since
󰁕
z fZ(z)γdz = γ < ∞, by dominated convergence

lim
x→∞

F̄ (x)

x
− 1

ξup+󰂃

= lim
x→∞

󰁝

A
fZ(z)x

β(z)Lz(x)dz (60)
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lim
x→∞

󰁝

A
fZ(z)x

β(z)Lz(x)dz =

󰁝

A
lim
x→∞

fz(z)x
β(z)Lz(x)dz = 0, (61)

meaning

lim
x→∞

F̄ (x)

x
− 1

ξup+󰂃

= 0, (62)

which implies

lim
x→∞

x
− 1

ξF LF (x)

x
− 1

ξup+󰂃

= lim
x→∞

x
1

ξup+󰂃
− 1

ξF LF (x) = 0, (63)

therefore we get
ξup + 󰂃 > ξF , ∀󰂃 > 0 hence ξF ≤ ξup. (64)

Now we prove that indeed ξF > 0. It is simple to show that ξF cannot be negative. Indeed,
if ξF is negative, it means that F has finite support which is not possible as for each fixed
x, we have Fz(x) > 0, ∀z ∈ A, therefore ∀x ∈ R, F (x) > 0.
Proving that ξF ∕= 0 is slightly less trivial. For every distribution G0 ∈ MDA(0) and for
󰂃 < ξlo

F̄ (x)

Ḡ0(x)
=

F̄ (x)

x−
1
󰂃

x−
1
󰂃

Ḡ0(x)
=

󰁕
A fZ(z)x

− 1
ξz Lz(x)dz

x−
1
󰂃

x−
1
󰂃

Ḡ0(x)
. (65)

As before we can prove that the first fraction F̄ (x)

x− 1
󰂃
→ ∞. The expression x− 1

󰂃

Ḡ0(x)
goes to ∞

as well due to Lemma 12, thus

lim
x→∞

F̄ (x)

Ḡ0(x)
= ∞. (66)

If ξF was 0, then for some G0 ∈ MDA(0) we would have

lim
x→∞

F̄ (x)

Ḡ0(x)
= lim

x→∞
1 = 1, (67)

hence ξF ∕= 0.

Finally we prove that, if ξz is continuous in z and ξmax exists, then we have ξF = ξmax.
We will first separate A in two sets A1, A2, where A1 = {z|ξmax − λ ≤ ξz ≤ ξmax} and
A2 = {z|ξlo ≤ ξz < ξmax − λ}. Since ξz is continuous, then the pre-image of each of
the measurable sets [ξmax − λ, ξmax], [ξlo, ξmax − λ) will be measurable. In addition, since
[ξmax − λ, ξmax] and [ξlo, ξmax − λ) contain an open set, then so will A1 and A2, implying
that pi = P(Ai) > 0, where i ∈ {1, 2}. Thus,

F̄ (x) =

󰁝

A
fZ(z)F̄z(x)dz = p1

󰁝

A1

fZ(z)

p1
F̄z(x)dz + p2

󰁝

A2

fZ(z)

p2
F̄z(x)dz

= p1F̄1(x) + p2F̄2(x).

(68)

From the first part of the Theorem: ξ1 ∈ [ξmax − λ, ξmax], and ξ2 ∈ [ξlo, ξmax − λ], where
Fi ∈ MDA(ξi), i = 1, 2. On the other hand Theorem 14 implies that ξF = ξ1, therefore
ξF ∈ [ξmax − λ, ξmax] for all λ > 0. We conclude that ξF = ξmax.
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Proof of Lemma 19

We assume that ξF > 󰂃. Then as in the earlier derivations, due to dominated convergence
and Lemmas 11 and 12, for any δ > 0, we get:

lim
x→∞

x
− 1

ξF LF (x)

x−
1

󰂃+δ

= lim
x→∞

F̄ (x)

x−
1

󰂃+δ

= lim
x→∞

󰁝

A
fZ(z)

F̄z(x)

x−
1

󰂃+δ

dz

= lim
x→∞

󰁝

A+

fZ(z)
F̄z(x)

x−
1

󰂃+δ

dz + lim
x→∞

󰁝

A−
fZ(z)

F̄z(x)

x−
1

󰂃+δ

dz

=

󰁝

A+

lim
x→∞

fZ(z)
x
− 1

ξz

x−
1

󰂃+δ

Lz(x)dz +

󰁝

A−
lim
x→∞

fZ(z)
F̄z(x)

x−
1

󰂃+δ

dz = 0.

(69)

therefore ξF < 󰂃+ δ, ∀δ > 0, contradicting our assumption ξF > 󰂃.

Proof of Theorem 21

The proof is similar to that of the last statement in Theorem 17. We will first separate A in
two sets A1, A2, where A1 = {z|ξmax−λ ≤ ξz ≤ ξmax} and A2 = {z|ξz < ξmax−λ}. Since ξz
is continuous, then the pre-image of each of the measurable sets [ξmax−λ, ξmax], (−∞, ξmax−
λ), will be measurable. In addition, since [ξmax − λ, ξmax] and (−∞, ξmax − λ) contain an
open set, then so will A1 and A2, implying that pi = P(Ai) > 0, where i ∈ {1, 2}.

F̄ (x) =

󰁝

A
fZ(z)F̄z(x)dz = p1

󰁝

A1

fZ(z)

p1
F̄z(x)dz + p2

󰁝

A2

fZ(z)

p2
F̄z(x)dz

= p1F̄1(x) + p2F̄2(x).

(70)

Based on Theorem 17 and Lemma 19: ξ1 = ξmax, and ξ2 ∈ (−∞, ξmax − λ], where Fi ∈
MDA(ξi), i = 1, 2. From Theorem 14, we conclude that ξF = ξmax. The last statement in
the Theorem, that is, if ξmax ≤ 0 then ξF ≤ 0, is simply Corollary 20.

Proof of Proposition 23

In the case that ξX > 0, based on our assumptions there exists L(x) such that

P(X > x) = F̄X(x) = x
− 1

ξX L1(x). (71)

Therefore

F̄Y (x) = P(Y > x) = P(Xα > x) = P(X > x
1
α ) = (x

1
α )

− 1
ξX L1(x

1
α ) = x

− 1
αξX L2(x). (72)

We conclude that Y ∈ MDA(αξX). On the other hand if ξX ≤ 0 then ξY ≤ 0, because if
ξY > 0, then from the first part we would have ξX = 1

αξY > 0.

Proof of Proposition 24

We will first prove the case when p = 1. If we fix y and denote with ξh−y , ξh+y the shape

parameters of the left and right tail of p(f̂V (X)
󰀏󰀏y), then assuming that at least one of them
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is positive, from Proposition 21 we know that the tail shape parameter of p(|f̂V (X)|
󰀏󰀏y)

is ξhy = max{ξh−y , ξh+y }. We notice now that ξh−y , ξh+y are the right and left tail shape

parameters of p(−f̂V (X)
󰀏󰀏y), therefore they are the right and left tail shape parameters of

the distribution p(y− f̂V (X)
󰀏󰀏y). Due to this, if we denote with ξgy the tail shape parameter

of p(|y − f̂V (X)|
󰀏󰀏y), using Proposition 21 once again we have that ξgy = max{ξg+y , ξg−y } =

max{ξh−y , ξh+y } = ξhy , where ξg−y , ξg+y are the left and right shape parameters of p(y −
f̂V (X)|y). If both ξh−y , ξh+y are non-positive then from Proposition 21, ξhy is non-positive,
and furthermore ξgy is non-positive, otherwise we could go in the reverse direction and prove
that ξgy > 0 implies that either ξg−y = ξh+y is positive, or that ξg+y = ξh−y is positive.

Now, we denote by Gy(s) the distribution of |y− f̂V (X)| given y, and prove that the family
{Gy(s)|y ∈ S} has stable cross-tail variability. For each y we denote with t0(y) the smallest
value after which the sub-polynomial assumption is satisfied by Fy(t). Similarly we define
s0(y) for Gy(s). Since the family {Fy(t)|y ∈ S} has stable cross-tail variability, then each
such t0(y) exists, and furthermore the set {t0(y)|y ∈ S} is bounded from above. Since each
s0(y) is only displaced by a magnitude of |y| from t0(y), and since the set S is bounded,
then we can conclude that {s0(y)|y ∈ S} is bounded from above.
We denote ξg, ξh the tail shape parameters of |Y − f̂V (X)| and |f̂V (X)| respectively. Using
Theorem 21 twice we get that if there is at least one ξhy = ξgy > 0 then ξh = max{ξhy |y ∈
S} = max{ξgy |y ∈ S} = ξg > 0, otherwise ξh ≤ 0, ξg ≤ 0.
Finally we finish the proof by applying Proposition 22 on |Y − f̂V (X)| and |f̂V (X)|.

Appendix B. Examples where the regularity conditions do not hold

Below we give examples where the regularity conditions do not hold:

Example 1: Let fU (u) be a uniform distribution, and gu(w) an exponential distribu-
tion with parameter 1

u . Clearly, the expectation of gu(w) at each u ∈ (0, 1) exists. However
for

h(w) =

󰁝 1

0
fU (u)gu(w)du =

󰁝 1

0
ue−uwdu (73)

the expectation is

󰁝 ∞

0

󰁝 1

0
wfU (u)gu(w)dudw =

󰁝 1

0

󰁝 ∞

0
wue−uwdwdu =

󰁝 1

0

1

u
du (74)

In this example, we can see that even though all the distributions gu(w) have shape param-
eter 0, the shape parameter of h(w) is bigger or equal to one. This is because the beginning
of the exponential behaviour of the tail is delayed indefinitely across the elements of the
family, violating the γ-uniform sub-polynomial assumption.

Below we give an example of a family of slowly-varying functions {Lz(x)|z ∈ A}, where
A is compact and Lz(x) is continuous in x and z, but {Lz(x)|z ∈ A} is not γ-uniformly
sub-polynomial. In this case, the non slowly-varying behaviour (non sub-polinomiality) of
Lz(x), or in other words, the tail of Fz(x), is postponed indefinitely across the family of
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{Fz(x)|z ∈ A}

Example 2: Let Lz(x), for z ∈ [0, 1], be defined as below:

Lz(x) =

󰀫
1 + zx4−(z− 1

x
)2 for x ∈ (1, 1z )

1 + 1
z3

for x ∈ (1z ,∞)
(75)

when z ∕= 0 and L0 = 1 for x ∈ (1z ,∞). For x−1 we define Fz(x) = x−1Lz(x), that is:

Fz(x) =

󰀫
x−1 + zx3−(z− 1

x
)2 for x ∈ (1, 1z )

x−1 + 1
z3
x−1 for x ∈ (1z ,∞)

(76)

when z ∕= 0 and F0 = x−1 for x ∈ (1z ,∞). One can check that Fz(x) and Lz(x) are
continuous in z. On the other hand for a given z, Fz(

1
z ) = z + z−2, meaning that Fz(

1
z )

tends to infinity, when z tends to zero. Therefore {Lz(x)|z ∈ A} is not γ-uniformly sub-
polynomial.

Appendix C. Examples where the regularity conditions hold

Below we give examples where the regularity conditions do hold:

Example 3: Let F̄z(x) = x−z = x
− 1

1
z=ξz for z ∈ (1,∞), and let F̄ (x) = e

󰁕∞
1 e−zF̄z(x)dz.

Then F̄ (x) = x−1 1
1+lnx = x−1L(x), where L(x) = 1

lnx is slowly varying as both 1 and lnx
are slowly varying.

Example 4: Let F̄z(x) = x−z lnxz for z ∈ (1, 2), and let F̄ (x) =
󰁕 2
1 F̄z(x)dz. Then

F̄ (x) = x−1 − 2x−2 + x−1 1
lnx − x−2 1

lnx = x−1(1− 2x−1 + 1
lnx − x−1 1

lnx) = x−1L(x), where
L(x) = 1− 2x−1 + 1

lnx − x−1 1
lnx is slowly varying.

Appendix D. Moment based motivation

In Proposition 24, we showed that under certain conditions, we could estimate the shape of
the tail of the distribution of WV (U) without using test labels. This can also be motivated
from the moments of WV (U). Indeed, conditioning on the test label y we have

E[W p
V (U)|Y = y] = EV [(y − f̂V (x))p|y] (77)

=

p󰁛

k=0

󰀕
p

k

󰀖
yk(−1)p−kEV [f̂p−k

V (x)|y] (78)

We can see that for test label y, if the moment p of f̂V (x) given y exists then the moment
p of WV (u) given y exists. If each EV [f̂ j

V (x)|y], j ∈ {1, ..., p} changes continuously with y
then E[W p

V (U)|y] is continuous with respect to y. Further assuming that the support of Y
is compact, then moment p of WV (U), that is, E[W p

V (U)] = EyE[W p
V (U)|Y = y] will exist

as well.
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Under these conditions, if f̂V (x) is a non-negative function, then the existence of E[f̂p
V (x)] =

EyE[f̂p
V (x)|y] guarantees the existence of E[f̂p

V (x)|y] for almost all y, thus it ensures the
existence of E[W p

V (U)].

Appendix E. Reducing the variability of the estimated shape parameters

It is proven in (Dekkers and Haan, 1989), that under certain conditions on k (in partic-

ular that k(n)
n → 0 as n → ∞) the Pickands Estimator has an asymptotically Gaussian

distribution:
󰁳

k(n)(ξ̂
(P )
k,n − ξ)

d−→ N (0,σ2(ξ)). This implies that for large n, we roughly

have ξ̂
(P )
k,n ∼ N (ξ, σ

2(ξ)
k(n) ). Minding the size of n, we can split the n samples into m groups

such that n = m n
m , and such that we still have roughly ξ̂

(P )
k, n

m
∼ N (ξ, σ

2(ξ)
k( n

m
)). Since we

can estimate ξ̂
(P )
k, n

m
for each of the m groups we can define the average estimation as

ξ̂
(P ),avg
k, n

m
= 1

m

󰁓m
i=1 ξ̂

(P ),i
k, n

m
. Under the assumption that samples from such groups are in-

dependent, we get that ξ̂
(P ),avg
k, n

m
∼ N (ξ, σ2(ξ)

mk( n
m
)). Since k(n) = o(n), we can choose to reduce

the variance ’linearly’ by keeping n
m constant and increasing m, instead of increasing the

sub-linear k(n). This becomes quite apparent if we set k(n) = log n or k(n) =
√
n. Indeed,

for k(n) = log n, the ratio between the variances of the direct approach and our approach
is

m log n
m

log n
=

m log n
m

logm+ log n
m

=
mC

logm+ C
→ ∞ (79)

as m → ∞.
Similarly for k(n) =

√
n,

m
󰁳

n
m√
n

=
√
m → ∞ (80)

as m → ∞. Here we can see that even if we fix m and then allow each group with size n
m

to grow as n increases, the variance is still
√
m times smaller using our approach.

The asymptotically Gaussian distribution property holds in the case of the DEdH esti-
mator if one knows that ξ > 0 (Hill estimator, (Davis and Resnick, 1984)). Furthermore,

both estimators H
(1)
k,n and H

(2)
k,n in Definition 6 jointly possess this property, (Dekkers et al.,

1989).

Appendix F. The inadequacy of the direct POT usage on mixture
distributions

In this section, we illustrate two cases where cross tail estimation is necessary for proper
tail shape estimation.

Uniform Case

In our experimental procedure, we randomly select samples adhering to two distinct power
law distributions. Each of these distributions has a unique characteristic shape parameter
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Figure 6: Standard estimation of the shape parameter of the tails by simply applying the
Pickands’ Estimator, on average, gives poor results on fewer data (left). Cross
tail estimation (CTE) gives the correct estimation on average. (right).

- one has a shape parameter of 1, while the other possesses a shape parameter of 0.5. For
our random sampling process, we afford equal probability, precisely 50%, to both these
distributions. This means there is an identical chance of picking a sample from either of
these power law distributions, each with their respective shape parameters.

When we examine an experimental set of 103 sampled points from each of these distri-
butions, the resulting pattern becomes apparent as shown in Figure 6 (left). We find that
if we amalgamate all the sampled data points from both distributions into a unified array,
and subsequently apply Pickands Estimator on this consolidated data set, the process yields
a sub-optimal estimation of the distribution tail. The outcome is unsatisfactory as it fails
to reveal the accurate shape of the tail, thereby defeating the purpose of the estimation.

However, we discover that there is a noticeable enhancement in the quality of the esti-
mation when we bolster the sample size from the initial 103 to a considerably larger size of
2∗104. This increase in sample size permits us to retrieve the true shape of the distribution
tail.

Using CTE however, we find that a sample size of just 103 proves to be adequate
in obtaining a satisfactory estimation of the distribution tail. As illustrated in Figure 6
(right), this method leads to an accurate estimation with a substantially smaller sample
size. Therefore, our method introduces an efficient pathway towards achieving accurate
estimations with fewer resources, thereby demonstrating its potential superiority over the
traditional Pickands Estimator.
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Non-Uniform Case

Similarly, in the second experiment, we sample with 20% probability from a distribution
with power law tails with shape parameter 1, and with 80% probability probability from a
distribution with power law tails with shape parameter 0.5.

Figure 7: Standard estimation of the shape parameter of the tails by simply applying the
Pickands’ Estimator, on average, gives poor results on fewer data (left). Cross
tail estimation (CTE) gives the correct estimation on average. (right).

When sampling 5 ∗ 103 points from each distribution, Figure 7, we are not able to
properly estimate the tail if we join all the samples together in a common array and then
apply the Pickands’ Estimator. But, if we increase the sample size from 5 ∗ 103 to 5 ∗ 107,
we manage to retrieve the the true tail shape of the mixture. However, using our method,
5 ∗ 103 samples are already sufficient to get a proper estimation.

Appendix G. Additional details with regards to Section 5.1

Below we provide Figure 8 which illustrates how ξz evolves depending on the ξmax which
is given as input. The parameter ξmax takes the following 45 values {−4,−4 + 0.1,−4 +
0, 2, ..., 5}.
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Figure 8: The evolution of ξz depending on the value of ξmax.
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Appendix H. Additional details with regards to Section 5.3

Figure 9: The performance of Gaussian process on train and test data depending on the
length scale parameter. First half of the cases.
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Figure 10: The performance of Gaussian process on train and test data depending on the
length scale parameter. Second half of the cases.
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Figure 11: The performance of polynomial kernels on train and test data depending on the
degree.
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Figure 12: For each length scale parameter of the Gaussian Process, we present the vari-
ability (sorted) of the estimated shape parameters across 1000 conditional dis-
tributions (defined by the choice of training sets). Jointly, we also present the
97th percentile of the conditional distributions corresponding to each estimated
shape parameter.
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Figure 13: We run 32 times the Gaussian Process experiment for length scale parameter
value of 290. On each run, we calculate thresholds (sorted) of the 1000 condi-
tional distributions determined by the 1000 choices of the training set, as well
as their corresponding shape tail parameters. We see that higher thresholds
correspond to lower shape parameters
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Appendix I. Additional DEdH Tail Shape Estimator Experiments

Experimental validation of CTE using the DEdH estimator

A comprehensive set of experimental outcomes has been illustrated in Figure 14.

Figure 14: In cases where the maximum tail shape parameter in the mixture of conditional
distributions is positive, the estimated shape parameter of the marginal is also
positive and equal to this maximal value. However, if this maximum value is
negative, the estimated shape parameter is also negative. We utilize the DEdH
estimator as our estimator of choice.

Just as in Subsection 5.1.2, the parameter M , delineated in the Subsection 5.1.1, is assigned
values from the set {105, 106, 107, 108}. In the context of these experiments, p was set to 10
as a constant across all trials. The experiments were performed repetitively, encompassing
a total of 10 runs to capture potential variability and better reflect the stochastic nature of
the process.

Upon examining the obtained results, they again seem to align with our initial theoret-
ical expectations. This symmetry in the estimations provides a degree of confidence in
the validity of the conducted experiments and the consistency of the underlying theoretical
framework.
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Applying POT directly when the location of conditional distributions
exhibits substantial variability

In the scope of our investigation, we executed experiments akin to those detailed in Subsec-
tion 5.2.1, but in this case we utilized the DEdH estimator. Our observations reaffirm that
the tail shape of the marginal is subject to incorrect estimations, which can be attributed
to the substantial variability in the location of the conditional distributions constituting the
marginal.

Figure 15: Estimation of the shape parameter of the marginal by direct application of POT.
We utilize the DEdH estimator as our estimator of choice.

Enhancing parameter estimation accuracy through the CTE approach

Analogous to the approach taken in Section 5.2.2, we demonstrate here that the Cross Tail
Estimation (CTE) effectively alleviates the issue associated with pronounced variation in
the locations of conditional distributions that make up the marginal. It should be noted,
however, that in this instance, we employ the DEdH estimator.
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Figure 16: Estimation the shape parameter of the marginal using CTE. We utilize the
DEdH estimator as our estimator of choice.
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