
Journal of Machine Learning Research 25 (2024) 1-32 Submitted 3/23; Revised 12/23; Published 1/24

Sample-efficient Adversarial Imitation Learning

Dahuin Jung annajung0625@snu.ac.kr
Electrical and Computer Engineering
Seoul National University, Seoul 08826, Republic of Korea
Hyungyu Lee rucy74@snu.ac.kr
Electrical and Computer Engineering
Seoul National University, Seoul 08826, Republic of Korea
Sungroh Yoon∗ sryoon@snu.ac.kr
Electrical and Computer Engineering
Interdisciplinary Program in Artificial Intelligence
Seoul National University, Seoul 08826, Republic of Korea

Editor: Scott Niekum

Abstract
Imitation learning, in which learning is performed by demonstration, has been studied

and advanced for sequential decision-making tasks in which a reward function is not
predefined. However, imitation learning methods still require numerous expert demonstration
samples to successfully imitate an expert’s behavior. To improve sample efficiency, we utilize
self-supervised representation learning, which can generate vast training signals from the
given data. In this study, we propose a self-supervised representation-based adversarial
imitation learning method to learn state and action representations that are robust to
diverse distortions and temporally predictive, on non-image control tasks. In particular, in
comparison with existing self-supervised learning methods for tabular data, we propose a
different corruption method for state and action representations that is robust to diverse
distortions. We theoretically and empirically observe that making an informative feature
manifold with less sample complexity significantly improves the performance of imitation
learning. The proposed method shows a 39% relative improvement over existing adversarial
imitation learning methods on MuJoCo in a setting limited to 100 expert state-action
pairs. Moreover, we conduct comprehensive ablations and additional experiments using
demonstrations with varying optimality to provide insights into a range of factors.
Keywords: imitation learning, adversarial imitation learning, self-supervised learning,
data efficiency

1. Introduction

Imitation learning (IL) is widely used in sequential decision-making tasks, where the design
of a reward function is complicated or uncertain. When a reward is sparse (Reddy et al.,
2019) or an optimal reward function is unknown, IL finds an optimal policy that relies only
on expert demonstrations. Owing to recent development in deep neural networks, the range
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of behaviors, which can be imitated, has expanded. There are two main learning approaches
for IL. The first approach trains a policy by following actions from an expert in a supervised
manner called behavioral cloning (BC) (Sutton and Barto, 1998; Pomerleau, 1989). However,
error accumulation limits BC because it greedily imitates the demonstrated actions. For
behavior cloning, it talks about the problem of accumulating errors, but there are alternative
IL approaches like DAgger that deals with that. The second approach is inverse reinforcement
learning (IRL) (Arora and Doshi, 2021), inferring a cost function based on given expert
demonstrations. The IRL implements adversarial learning (Goodfellow et al., 2014) to infer
the cost function. Therefore, an agent learns the policy to imitate expert demonstrations,
whereas a discriminator learns to differentiate between the expert’s behavior and that of the
agent. The learned discriminator is used as the cost function in the reinforcement learning
(RL) phase. However, there are also several IRL methods that do not leverage adversarial
training, e.g., Max-Margin Planning (Ratliff et al., 2006) and Max-Ent IRL (Ziebart et al.,
2008b).

Although IRL has led an advance in IL, it has key challenges. First, adversarial learning
is known to be delicate in practice. The min-max computational formulation of adversarial
imitation learning (AIL) often involves brittle approximation techniques. Second, the IL
requires many demonstration trajectories to recover an expert policy. Although IRL requires
fewer demonstrations than BC, it still requires considerable trajectories. Recently, many
algorithms or techniques have been proposed to address the first challenge (Fu et al., 2018;
Peng et al., 2019; Reddy et al., 2019; Qureshi et al., 2018; Chen et al., 2019; Wang et al., 2022);
however, little work has been done to improve the sample efficiency of expert demonstrations
required (Zhang et al., 2020; Barde et al., 2020).

Self-supervised representation learning (SSL) has advanced sample efficiency in the image
and language domains (Chen et al., 2020b; Grill et al., 2020; Mikolov et al., 2013). It applies
various transformations to the data and uses the transformed data itself as supervision.
Thus, it increases the sample efficiency by obtaining training signals from auxiliary tasks or
objectives that do not rely on labels. Specifically, InfoNCE (Chen et al., 2020b; He et al.,
2020) and asymmetric twin-based (Grill et al., 2020; Chen and He, 2021) SSL approaches
are known to be effective for learning robust feature representations for different distortions
of identical inputs. Recently, SSL has been utilized in image-based RL algorithms (Srinivas
et al., 2020; Schwarzer et al., 2020; Li et al., 2022) and has shown significant improvement
in performance. However, transformation techniques applied to image-based RL are not
directly adaptable to non-image control benchmarks. This is because these approaches rely
upon the semantic/spatial properties of data that may generate either out-of-distribution
examples or examples that supply only the same view when directly applied to a continuous
control (tabular) domain.

In this study, we propose a sample-efficient AIL method for non-image control benchmarks.
The proposed method leverages auxiliary training signals for learning state and action
representations that are temporally predictive and robust to diverse distortions. Based on the
characteristics of each domain and benchmark, an auxiliary task that can learn informative
feature representations is different. For RL, to address sequential decision-making tasks, the
feature representation of a state and action should contain temporally predictive information.
To address this, we add an auxiliary task that predicts the next state representation from the
given current state and action representations. This marks the initial attempt to enhance

2



Sample-efficient Adversarial Imitation Learning

the sample efficiency of expert demonstrations in non-image imitation learning by employing
SSL.

Moreover, learning representations that discard information regarding nuisance variables
improves generalization and decreases required sample complexity. Previous transformation
techniques for tabular data (Yoon et al., 2020; Bahri et al., 2021) generate transformed samples
far from real samples. Therefore, we propose a simple, effective corruption method that
generates transformed samples showing diverse distortions that are possible in-distribution.
Empirically, we demonstrate that promoting temporally predictive feature representations
with robustness against diverse distortions significantly improves sample efficiency.

First, we theoretically observe that IL performs substantially better when an informative
feature manifold is created with less sample complexity. We evaluate the proposed method
on MuJoCo (Todorov et al., 2012) and Atari RAM of OpenAI Gym (Brockman et al., 2016),
where each benchmark is allowed less than 100 expert state-action pairs. The proposed
method outperforms the previous AIL methods by a significant margin in scenarios with a
small number of perfect or imperfect expert demonstrations. We discover that the proposed
corruption method generates various transformed samples that are not out-of-distribution.
We perform comprehensive ablation studies, detailing the intuitions and effects of various
design choices and factors. Through runs with various hyperparameters on non-image control
tasks, we demonstrate that the corruption rate and loss function should be carefully chosen.

2. Related Work

2.1 Data-efficient Reinforcement Learning

In deep RL, studies have been conducted to improve sample efficiency. For continuous control,
several studies have suggested the use of reconstruction loss (Lee et al., 2020; Hafner et al.,
2019). However, most of the suggested methods are RL benchmarks, which have a sparse
reward or image state. Methods using a self-supervised error as an intrinsic reward have been
proposed to improve the sample efficiency in a sparse reward scenario (Pathak et al., 2017;
Mohamed and Jimenez Rezende, 2015; Simmons-Edler et al., 2019; Wu et al., 2022). For
the image state, various image augmentation techniques and self-supervised objectives have
been applied to reduce environmental interactions (Srinivas et al., 2020; Schwarzer et al.,
2020; Kielak, 2020; Yarats et al., 2020; Laskin et al., 2020; Mazoure et al., 2020; Hansen
et al., 2020, 2021; Zadaianchuk et al., 2022). Additionally, there are some works that apply
self-supervised learning to train latent space or feature embedding for reward learning (Brown
et al., 2020; Bobu et al., 2023). Different from most existing approaches, we utilize SSL to
improve the sample efficiency of expert demonstrations for non-image imitation learning.

2.2 Self-supervised Representation Learning

Currently, SSL is divided into three approaches. The first is a pretext task (Noroozi and
Favaro, 2016), which creates a pre-task that can learn useful feature representations and use
the learned representations on downstream tasks. The second is UCL. Contrastive learning
works on a simple push-pull principle, and it can be a sample or cluster level (Caron et al.,
2020). The contrastive loss contrasts the neighboring instances with non-neighboring ones
(Chen et al., 2020b; He et al., 2020). The third is asymmetric twin-based SSL. Unlike UCL,
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these methods do not use negative samples during training. Asymmetric twin-based SSL
methods learn robust representations in such a way that differently transformed versions
of input have the same representation. As representative methods, BYOL (Grill et al.,
2020) and Simsiam (Chen and He, 2021) used Siamese networks with weight sharing and
stop-gradient techniques to avoid collapse. Barlow twins (Zbontar et al., 2021) utilized a
correlation matrix between the representations of a differently transformed same input to
maximize the similarity between them while minimizing redundancy. VICReg (Bardes et al.,
2021) is effective for making the two representations similar and reducing the embedding of
non-informative factors.

There are two SSL methods for tabular data, VIME (Yoon et al., 2020) and SCARF
(Bahri et al., 2021), which can be directly applied to non-image control benchmarks. VIME
uses a random corruption method and SCARF suggests a method that replaces each feature
dimension by a random draw from that feature dimension’s empirical marginal distribution.
The difference between our work is the corrupted data of swapping is a mixture of only two
state-action pairs because the replaced features are sampled from another single state-action
pair. Meanwhile, the corrupted data of SCARF is a mixture of varying state-action pairs,
resulting in possible out-of-distribution data. In the experiments, the proposed swapping
corruption method showed higher performance compared to the other two methods. We
measured the variance and outlier scores of the corrupted samples produced by VIME,
SCARF, and the proposed method, to confirm that the proposed method qualitatively
generates more realistic and still varied samples.

2.3 Inverse Reinforcement Learning

Although IRL (Abbeel and Ng, 2004; Ziebart et al., 2008a) has made significant advances in
IL, it encounters some challenges. First, there is an unstable training issue for adversarial
learning; improved algorithms have been proposed to overcome this problem. GAIL (Ho and
Ermon, 2016) is the first study drawing an analogy between IL and generative adversarial
networks (Goodfellow et al., 2014). AIRL (Fu et al., 2018) proposed an AIL method that is
robust to changes in dynamics. VAIL (Peng et al., 2019) improves the stability problem by
constraining the information flow in the discriminator. EAIRL (Qureshi et al., 2018) reduces
the overfitting problem using empowerment (the information gain on action entropies). These
algorithms have been suggested to improve the stability and scalability of AIL.

Second, studies on the sample efficiency of expert demonstrations have not been sufficiently
conducted. SAILfO (Torabi et al., 2019) covers the necessity of studying the sample efficiency
of expert demonstrations, and proposes a simple model-based algorithm. f-GAIL (Zhang
et al., 2020) showed that finding an appropriate discrepancy measure during training is better
than using a predetermined measure to improve sample efficiency. ASAF (Barde et al., 2020)
is an algorithm in which training the discriminator could perform the role of policy and
showed that it helps improve sample efficiency. However, these methods require at least five
full trajectories to recover the expert policy on continuous control benchmarks such as the
MuJoCo physics engine. Unlike those methods, the proposed method successfully imitates
the expert’s behavior with less than one full trajectory.

In practice, it is difficult to collect perfectly optimal demonstrations because demon-
strations are commonly collected by crowdsourcing (Hu et al., 2018) or multiple experts.
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The collected data from external sources are normally imperfect—a mixture of optimal and
non-optimal demonstrations. To address these problems, algorithms for IL from imperfect
demonstrations have been proposed (Wu et al., 2019; Zhang et al., 2021). We demon-
strate that combining the proposed method with other algorithms for IL from imperfect
demonstrations further improves them, thus, verifying the scalability of the proposed method.

3. Theoretical Motivation

This section aims to provide the theoretical intuition for designing our cost function and
feature space aimed at reducing the generalization gap.

In a general classification learning process, the data and label spaces are denoted by X
and Y , respectively, and P(x, y) is the joint distribution of the data and label. The primary
objective is to learn a classifier f : X → Y that minimizes the expected value of a loss term
` over the joint distribution P(x, y). The classifier f is composed of a feature extractor h
and a fully connected layer W. More formally, when P(x, y) is known, the expected risk can
be defined as follows:

R(f |P) =

∫
`(W>h(x), y)dP(x, y). (1)

However, in practice, the data distribution is unknown. Empirical risk minimization (ERM)
is commonly utilized to address this problem. Then, the minimization can be defined as
follows:

R̂(f |P) =
1

M

M∑
i=1

`(W>h(xi), yi), (2)

where M is the number of training data points. The generalization performance of a
practical classification learning process is highly dependent on the volume of training data.
However, in many real-world scenarios, acquiring sufficient training data is a challenging and
time-consuming task.

The generalization of ERM has been theoretically justified based on Vapnik-Chervonenkis
(VC) theory (Vapnik, 1999). The upper bound of the expected risk of the classifier f is
formulated by

R(f |P) 6 R̂(f |P) +O

((
|F|VC − log δ

M

)ξ)
, (3)

where 0 ≤ δ ≤ 1, 0.5 ≤ ξ ≤ 1, and |F|VC is the finite VC dimension of a classifier.
Let H ⊆ RD, where D represents latent dimension, be the feature space of h and

W ∈ RD×C , where C denotes the number of classes, be the last fully connected layer of f .

Assumption 1. Consider a perfectly trained fully connected layer W∗. We can then split
the features as class-relevant or class-irrelevant based on their mutual information with
a class label Y . Class-relevant features have high mutual information between hd(x) for
1 ≤ d ≤ D and Y , while class-irrelevant features have low mutual information between hd(x)
for 1 ≤ d ≤ D and Y .
Definition 1. (He et al., 2019) To minimize a change in classification results by vari-
ation of class-irrelevant features, wd,i and wd,j for 1 ≤ d ≤ D and 1 ≤ i, j ≤ C should
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be similar for class-irrelevant features in the empirical risk on original data R̂(f |P) =
1
M

∑M
i=1 `(W

>h(xi), yi).

Definition 1 from He et al. shows that in R̂(f |P), wd,i for all i for class-irrelevant features
are not forced to be 0, that is, f∗ preserves class-irrelevant features.

Eq. 3 highlights three key factors that can improve the generalization performance of
a classifier: 1) minimizing the empirical risk R̂(f |P), 2) increasing the size of the training
data, and 3) reducing the VC dimension of the classifier. To improve the generalization, we
propose an approach that leverages self-supervised learning. By utilizing transformed data as
its own supervision, self-supervised learning can learn feature representations that filter out
information about nuisance variables. This enables the model to capture more meaningful
and generalizable features that can improve the overall performance of the classifier.

To begin with, we aim to reduce the upper bound of the expected risk by minimizing the
discrepancy between the original and transformed samples in the feature space H. Formally,
we utilize the mean squared error (MSE), the most widely-used discrepancy loss, as follows:

L =
1

M ×G

M×G∑
i=1

∥∥h(xi)− h(x′i)
∥∥2

2
, (4)

where x′ represents the transformed version of x and M ×G is the number of training data
with a finite constant number of augmentations G.

By minimizing Eq. 4, we can effectively learn a feature space that does not encode the
distortions present in the input samples due to transformations. In other words, the resulting
feature representation is invariant to such distortions, leading to improved generalization
performance. Given the feature extractor with Eq. 4 as hMSE and the corresponding feature
space as HMSE, the classifier fhMSE consisting of hMSE holds the following empirical risk
equation:

R(fhMSE |P) 6 R̂(fhMSE |P) +O

((
|FhMSE |VC − log δ

M

)ξ)
, (5)

where |FhMSE |VC is the finite VC dimension of the classifier with the feature space HMSE
trained with Eq. 4 simultaneously.

Corollary 1. hMSE is effective in reducing the VC dimension, however, the problem is
that the upper bound of R(f |P) we seek to is based on R̂(f |P) instead of R̂(fhMSE |P). As
a result, fhMSE cannot capture all the properties preserved in R̂(f |P). Additionally, due to
the distribution gap between the feature spaces h and hMSE, the optimal function f∗hMSE

of
R̂(fhMSE |P) is not guaranteed to be a minimum of R̂(f |P).

Proof. The proof can be found in Appendix A.1.
The feature extractor fh typically preserves both class-relevant and class-irrelevant

features, whereas the embedding learned by fhMSE is more heavily regularized due to the
intensive transformation applied to the input samples. This regularization can be beneficial
for reducing the upper bound of the expected risk of the classifier, but it can also introduce
a distribution shift. To mitigate this issue, unsupervised contrastive learning can be utilized.

We assume that MSE and contrastive learning share the feature space.
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Figure 1: Overview of the proposed model. Our proposed model comprises six networks during
IRL training. 1) The policy generates actions a based on states s according to a specified
policy; 2) The value function evaluates the current policy πθ. It is trained using rewards
r derived from an estimated cost function (discriminator); 3) The state encoder extracts a
feature representation of raw states s, 4) The action encoder extracts a feature representation
of actions a, 5) The forward dynamics model predicts the feature representation of the
distorted version of next states ẑst+1 based on the feature representations of the current state
and action, zst and zat , along with Gaussian noises N , and 6) The discriminator discriminates
agent demonstrations from expert demonstrations. The input is zs ⊕ za. The discriminator
is also referred to as a cost function. More details of each component and loss in the figure
are described in Section 4.

Definition 2. (Wang and Isola, 2020) Consider a perfectly trained W∗ via contrastive
learning. The feature space HMSE becomes maximally informative.

Claim 1. Class-irrelevant yet informative features are preserved via contrastive learning. It
reduces the inconsistency between R̂(fhMSE |P) and R̂(f |P).

Proof. The proof with assumptions can be found in Appendix A.2.
By combining MSE (Eq. 4) with contrastive learning in the feature space, we anticipate a

notable enhancement in generalization, even when dealing with a modest amount of training
data. Our suggested algorithm expands this theoretical foundation rooted in classification
to AIL. Importantly, we capture temporally significant features crucial in RL by creating a
transformed version based on temporal features for contrastive learning.

4. Method

The core of RL is an agent and environment. An agent receives a reward from the environment
based on the actions determined by a policy. RL learns the optimal policy of a Markov
decision process. For IL, the agent learns the optimal policy where a pre-defined reward
function does not exist by relying only on given expert demonstrations. We define the IL
scenario from a small number of expert demonstrations. The expert demonstrations DE are
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sampled from a state-action density of an expert, ρO, defined as follows:

DE = {(sn, an)}NEn=1
i.i.d.∼ ρO(s, a), (6)

where NE is the number of state-action pairs from ρO. We assume a scenario in which NE

is less than the number of one full trajectory. We denote a state-action pair by x = (s, a)
where x ∈ X and X = S ×A.

This study comprises the following six networks, as illustrated in Figure 1.

• A policy πθ(·) parameterized by θ that generates actions a given states s based on a
policy.

• A value function V (·) that evaluates a current policy πθ. V is trained with rewards
r from an estimated cost function.

• A state encoder SE(·) that extracts a feature representation of raw states s. zs =
SE(s) ∈ Zs.

• An action encoder AE(·) that extracts a feature representation of actions a. za =
AE(a) ∈ Za.

• A forward dynamics model F (·) that predicts the feature representation of the
distorted version of next states ẑst+1 from the feature representations of the current
state and action, zst and zat , and Gaussian noises N . ẑst+1 = F (zst ⊕ zat ⊕N ) ∈ Ẑt+1,
where ⊕ is concatenation.

• A discriminator Dω(·) parameterized by ω that discriminates agent demonstrations
from expert demonstrations DE . The input of Dω is zs ⊕ za. Dω is also called a cost
function. In the RL phase, Dω is the estimated cost function (r = −log(Dω(zs⊕ za)) ∈
R).

As shown in Algorithm 1, the proposed method comprises three major parts. In Section 4.1,
we explain how to train the cost function Dω using expert demonstrations DE (GAIL in
Algorithm 1). In Section 4.2, we describe how to use SSL in a non-image environment (REPR
in Algorithm 1). We implement trust region policy optimization (Schulman et al., 2015) to
train the agent policy πθ by following the use in Ho and Ermon (2016) (TRPO in Algorithm
1).

4.1 Generative Adversarial Imitation Learning

Our method is based on generative adversarial imitation learning (GAIL) (Ho and Ermon,
2016). GAIL finds an optimal policy by matching an occupancy measure between expert
E and the agent. The optimization equation of GAIL can be derived in the form of the
Jensen-Shannon divergence, which is equal to the minimax equation of generative adversarial
networks (Goodfellow et al., 2014). The minimax optimization of GAIL is expressed as
follows:

min
θ

max
ω

E
x∼Dπ

[logDω(x)] + E
x∼DE

[log(1−Dω(x))] , (7)
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Algorithm 1 Sample-efficient Adversarial Imitation Learning

1: input: Expert demonstrations DE , {xi}NEi=1, # of batches B, Training epochs T.
2: for k ← 1 to T do . Section 4
3: Obtain trajectories Dk = {xk,i}Ni=1 using πθ
4: πθ ← TRPO(πθ, V,Dω,Dk) . Ho and Ermon (2016)
5: SE,AE ← Repr(SE,AE,F,Dk)
6: Dω ← Gail(Dω, SE,AE,Dk,DE)
7: end for
8: function Repr(SE,AE,F,Dk) . Section 4.2
9: for b← 1 to B do

10: Generate X ′b by Eq. 11 . Section 4.2.2 Corruption Method
11: Obtain Zb from Dk,b using (SE,AE)
12: Obtain Z ′b from X ′b using (SE,AE)
13: Update SE,AE, and F by Eq. 14
14: end for
15: return SE,AE . Learning state and action representations
16: end function
17: function Gail(Dω, SE,AE,Dk,DE) . Section 4.1
18: for b← 1 to B do
19: Obtain Zb from Dk,b using (SE,AE)
20: Update SE,AE, and Dω by Eq. 8
21: end for
22: return Dω . Learning cost function
23: end function

where Dπ and DE are the corresponding demonstrations from an agent policy πθ and expert
policy πE, respectively. In GAIL, the raw state and action are input to the discriminator.
For the proposed discriminator, state and action representations embedded by state and
action encoders, SE(·) and AE(·), are input. The discriminator is expressed as follows:

max
ω

E
x∼Dπ

[logDω(z)] + E
x∼DE

[log(1−Dω(z))] , (8)

where z = zs⊕ za. Here, zs is a state representation embedded by SE(s), and za is an action
representation embedded by AE(a).

4.2 State and Action Representations

4.2.1 Modeling forward Dynamics

Each domain requires different ways of generating self-supervision depending on the properties
of the data. For example, BERT (Devlin et al., 2018) leverages a training signal by predicting
future words from previous words. For RL, the prediction error of a forward dynamics model
has been used as an intrinsic reward (Pathak et al., 2017; Schwarzer et al., 2020). In tabular
data, in contrast to data from an image, it is difficult to create a distorted version of an
original input without losing semantic information. Therefore, we posit that maximizing the
agreement between the distorted and original ones is more suitable for learning meaningful
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features than maximizing the agreement between the two distorted versions of input in
tabular data. We propose a method that generates a distorted version of the input to learn
or discard the desired features and their corresponding loss function for RL.

The proposed method uses the forward dynamics model to predict the distorted version
of the next state representation from the given current state and action representations.
First, the forward dynamics model is mathematically expressed as follows:

ẑst+1 = F (zst ⊕ zat ⊕N ), (9)

where zst = SE(st), zat = AE(at) at a time step t, and N (0, 1) is the Gaussian noise.
The output ẑst+1 represents a distorted version of the observed future representations zt+1.
The choice of a transformation controls what the representation learns. Thus, we apply a
distortion by concatenating Gaussian noise rather than using a corrupted state-action pair
because corruption cannot guarantee consistency in information with respect to temporality.

We use a contrastive loss for training. InfoNCE-based unsupervised contrastive learn-
ing (UCL) methods learn a feature representation by maximizing the agreement between
differently transformed same input while minimizing that of the rest of the input (negative
samples). The learned representation from UCL is invariant in unnecessary details; however,
it contains maximal information by maximizing a lower bound on the mutual information
between the two views (Wang and Isola, 2020; Poole et al., 2019). We utilize the InfoNCE
loss to obtain as many temporally informative features as possible. The proposed forward
dynamics model is trained to maximize the agreement between the distorted and observed
next state representations while minimizing that of the rest of the state representations. This
is expressed as follows:

LF = −E

[
log

ecs(ẑ
s
i,t+1,z

s
i,t+1)/τ

ζ

]
, ζ =

BS∑
j=1

1j 6=ie
cs(ẑsi,t+1,z

s
j,t)/τ +

BS∑
j=1

1j 6=ie
cs(ẑsi,t+1,z

s
j,t+1)/τ ,

(10)
where (zst , z

s
t+1, ẑ

s
t+1) ∼ (Zst , Z

s
t+1, Ẑ

s
t+1) and cs(u, v) = u>v/||u|| ||v|| (j indexes the state

or next state representation in the batch, and BS is the batch size). Following SimCLR (Chen
et al., 2020b), we use the other 2(BS − 1) representations in the batch as negative samples.

4.2.2 Corruption Method

Learning representations that can discard nuisance features is preferable to reduce sample
complexity. To help with this, we propose a corruption method that creates a distorted
sample showing diverse views that are possible in-distribution. The proposed method swaps
the input features of each state-action pair with the input features of the same indices
of another state-action pair in a batch. For a batch of state-action pairs sampled from
the current policy, Xb, we generate a corrupted version x′i for each state-action pair xi.
The corrupted versions of state s and action a are generated, respectively. However, for
convenience of rationalization, we explain the method based on the state-action pair x.

First, we make a copy of Xb as Xc
b and permute Xc

b by changing the order of each
state-action pair in the batch at random, perm(Xc

b ). Second, we sample some indices of
the state-action pair without replacement, I ∈ {0, ..., dim(s⊕ a)− 1}q. q is the number of
features to corrupt (= bc · dim(s⊕ a)c), where c is a corruption rate (c = cs + ca). Third,
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we duplicate I as a shape of N(Xb)× q. Subsequently, we generate corrupted state-action
pairs X ′ of a given batch as follows:

Xc
b [I] = perm(Xc

b )[I],

X ′b = Xc
b ,

(11)

where X ′b = 〈S′b ×A′b〉. For convenience, we omit subscripts b hereafter. We refer to this
method as the swapping corruption method. Empirically, we observed superior performance
compared to existing methods on non-image control benchmarks.

Numerous discrepancy measures can quantify the similarity between corrupted and
original inputs. For the state, we maximize the similarity between the representation of the
distorted and observed versions by minimizing the mean squared error (MSE) as follows:

LSC = E
∥∥∥zs − zs′∥∥∥2

2
, (12)

where (zs, zs
′
) ∼ (Zs, Zs

′
) and Zs = SE(S) and Zs′ = SE(S′). For the state representation,

temporally predictive features should be embedded well to minimize LF simultaneously. Thus,
we observed the best performance with MSE compared to other indirect discrepancy measures,
as shown in Tab 7. For the action representation, because the gradients from the LF are
not sufficient to hinder collapse, we use the Barlow twins loss (Zbontar et al., 2021) that
is robust against the constant embedding problem. It has been proven through connection
with mutual information that the Barlow twins loss also learns the feature representation
which is invariant to the distortion of the sample (Zbontar et al., 2021), similar to the MSE.
The Barlow twins loss draws the cross-correlation matrix close to the identity matrix. This
is expressed as follows:

LAC =
∑
i

(1− Cii)2 −
∑
i

∑
j 6=i
C 2
ij , Cij =

Zai Z
a′
j√

(Zai )2
√

(Za
′
i )2

(13)

where Za = AE(A) and Za′ = AE(A′). i, j index the vector dimensions of the action
representations. Therefore, the Barlow twins loss prevents collapse by maximizing the
similarity between the representation of the distorted and observed versions of action and
reducing entanglement between the components of the representations. Ablations that can
give more intuitions about losses are given in Section 6. Consequently, the total loss for SSL
is computed as follows.

LSS = λFLF + λSLSC + λALAC , (14)

where λF , λS , and λA are hyperparameters for each loss.

5. Experiments

The efficacy of the proposed approach is assessed using MuJoCo (Todorov et al., 2012) and
Atari RAM of OpenAI Gym (Brockman et al., 2016), with each benchmark having fewer
than 100 expert state-action pairs. In scenarios with a limited number of perfect or imperfect
expert demonstrations, our method surpasses previous Adversarial Imitation Learning (AIL)
approaches by a significant margin. We assessed the performance of the proposed method on
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Table 1: Final performance using 100 expert state-action pairs on Ant-v2, HalfCheetah-v2,
and Walker2d-v2 of MuJoCo. Best results are in bold. The proposed method outperforms
existing IRL methods by a significant margin. It succeeds at imitating the expert’s behavior
on all three benchmarks using only 100 expert state-action pairs.

BC GAIL AIRL VAIL EAIRL SQIL ASAF Ours

Ant 932.2±171.7 4198.2±72.6 3922.9±210.7 4216.8±31.0 3137.5±424.8 -141.4±427.6 1015.6±107.0 4554.8±162.6
HalfCheetah 1875.2±1623.3 2034.6±2384.6 -214.1±45.2 -1012.8±497.1 6.6±15.0 -238.0±22.5 1187.6±1935.9 5416.0±203.8
Walker2d 535.5±134.4 3513.4±172.9 909.7±695.8 3466.7±109.0 2084.9±2499.7 283.3±26.5 192.9±58.5 3527.6±131.4

Average 1114.3±688.1 3248.8±876.7 1539.5±317.2 2223.6±212.4 1743.0±979.8 -32.0±158.9 798.7±700.4 4499.4±165.9

Table 2: Final performance when using the proposed corruption method (Swapping) and
existing methods (NE = 100), and variance and predicted local outliers (Breunig et al., 2000)
of corrupted states. For measuring the outlier factor of corrupted states, we make use of 10
neighbors from observed states.

Ant Random Mean Each dim Swapping

Cumulative rewards 4263.7±243.9 4482.0±127.4 4459.3±128.4 4554.8±162.6

Variance ↑ 0.765±0.05 0.756±0.03 0.843±0.02 0.843±0.02
Predicted local outliers (%) ↓ 90%±8% 6%±5% 26%±8% 11%±6%

five continuous control benchmarks simulated by MuJoCo (Ant-v2, HalfCheetah-v2, Hopper-
v2, Swimmer-v2, and Walker2d-v2) in four distinct settings: using expert demonstrations
of less than one full trajectory with the optimality of 25%, 50%, 75%, or 100%. We tested
the sample efficiency of the proposed method in a scenario where optimal demonstration
samples of less than one full trajectory are available (≤ 100). Expert demonstrations with
optimalities of 25%, 50%, and 75% represent imperfect demonstrations - a mixture of optimal
and non-optimal demonstrations. Imperfect demonstrations DI are sampled from a noisy
state-action density ρ, expressed as follows: DI = {(sn, an)}NIn=1

i.i.d.∼ ρ(s, a), where NI is the
number of state-action pairs from ρ. The noisy state-action density ρ can be expressed as
follows:

ρ(s, a) = ψρO(s, a) +

n∑
i=1

viρi(s, a)

= ψρO(s, a) + (1− ψ)ρN (s, a),

(15)

where ρO is the state-action density of an expert, ρi is the state-action density of a single
non-expert, and n is the number of non-experts. Furthermore, ψ, satisfying 0 < ψ < 1, is
an unknown mixing coefficient of the optimal and non-optimal state-action densities, and
ψ +

∑n
i=1 vi = 1; that is, an optimality of 25% indicates that ψ = 0.25. More details on the

experimental setting, definition, and hyperparameters can be found in Appendix B.
Optimality of 100% First, we evaluated the proposed method with a small number

of perfect expert demonstrations. We compared the method with seven existing IL methods:
BC, GAIL, AIRL, VAIL, EAIRL, SQIL, and ASAF. Table 1 shows that the proposed method
outperforms other IL methods on all three benchmarks. Particularly, the proposed method
succeeded in perfectly imitating the expert policy on HalfCheetah. Notably, GAIL and VAIL
show higher performance than the recently proposed ASAF in 100 state-action pairs. For
f-GAIL, we conducted experiments using the official GitHub; however, it failed to converge in
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less than one full trajectory. We surmise that this is because a reasonable number of expert
state-action pairs must be guaranteed to automatically learn an appropriate discrepancy
measure for the given pairs.

We also tested our method with varying expert data sizes. As provided in Table 12
in Appendix D, there is a relatively small decrease in the performance up to NE = 20 on
all three benchmarks. However, when NE = 10, the performance is decreased by a large
margin. To make the experimental results stronger, we tested the reliability of the reported
average using IQM (Agarwal et al., 2021). We obtained IQM 4555.8 on Ant, IQM 5420.3 on
HalfCheetah, and IQM 3527.9 on Walker2d, which are very close to the reported average.

In addition, we tested the proposed method (without LAC) on two discrete control
benchmarks of OpenAI Gym (Brockman et al., 2016; BeamRider-ram-v0, and SpaceInvaders-
ram-v0). We observed that the cumulative rewards of the proposed method are superior to
those of the GAIL. For the results on the two discrete control benchmarks, please refer to
Appendix F. Moreover, the average cumulative rewards of the expert policy that we obtained
can be found in Appendix B.1.

Corruption method We showed the performance of the swapping corruption method
by comparing it with the existing two corruption methods and additionally, a mean corruption
method, which replaces the features with the empirical marginal distribution’s mean, in
cumulative rewards, variance, and local outlier score. Table 2 shows that the proposed
method shows a higher performance compared with the three corruption methods. We
observed that the proposed method generated transformed samples that provide more
diverse views compared with random and mean methods and comparably diverse views
compared with the method, obtaining each replaced feature from varying state-action
pairs (Each dim). We measured its diversity on the corrupted states using variance σ2 :

1
1000

∑1000
i=1

(∑dim(s)
j=1 (s′i,j − s̄′i,j)2

)
where s̄′ denotes the average of {s′i}

1000
i=1 .

Also, one potential concern about using corruption as a transformation technique is that
the corrupted samples are out-of-distribution, resulting in performance degradation. To
evaluate this, we computed the local outlier factor (Breunig et al., 2000) of the corrupted
states. We computed the percentage of corrupted samples that are local outliers with respect
to the observed states. Table 2 shows that for the random method, the most corrupted states
are predicted as outliers, despite the low variance. For the mean method, the corrupted states
are mostly realistic; however, the diversity is lower compared with the swapping method,
which limits the effectiveness of data augmentation. Replacing each feature with a feature
from a different combination has diversity, but it also creates more out-of-distribution data.
The proposed swapping method showed high variance and a relatively low percentage of local
outliers. As a result, we empirically confirmed that for control tasks, it can be beneficial to
create meaningful in-distribution data in the corruption process.

Optimality of 25%, 50%, or 75% We tested the performance of the proposed method
in a more practical scenario with imperfect demonstrations. In this environment, we combined
the proposed method with 2IWIL (Wu et al., 2019). 2IWIL showed stable training compared
to other IL algorithms for imperfect demonstrations because they predict the confidence of
given demonstrations in a pre-stage. Please refer to Appendix B.2 for detailed explanations
about 2IWIL, other comparison methods, and the collected imperfect demonstrations. The
pseudo-code of the combined algorithm can be found in Appendix C.
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Figure 2: Final performance on five continuous control benchmarks with different optimality
rates ψ. Vertical axes denote cumulative rewards acquired during the last 1000 training
iterations. Shaded regions denote standard errors over three runs. Ours* = Ours + MM

Table 3: Final performance using 25 optimal and 75 non-optimal state-action pairs (ψ =
0.25) to test improvement in sample efficiency.

Ablation Cumulative Rewards

MM Ours Ant HalfCheetah Walker2d

478.4±159.7 4573.1±194.4 1981.8±989.7
X 776.3±1805.1 4728.3±172.8 3436.0±15.8

X 3764.6±241.2 5217.4±29.7 3039.6±295.6
X X 3966.0±26.2 5221.0±75.1 3403.0±52.5

Figure 2 shows the cumulative rewards on the five continuous control MuJoCo benchmarks
with different optimality rates. The proposed method combined with 2IWIL outperforms
the other six comparisons by a large margin in all optimality rates. Particularly, the relative
improvement over 2IWIL and CAIL (Zhang et al., 2021) on Ant is 288% and 208% on average,
respectively. However, we observed a decrease in the cumulative rewards when the noise rate
was 0.75 on Ant and Walker2d benchmarks. We surmise that this was caused by a deficiency
in the number of locomotion movements from the optimal policy. The degree of improvement
in performance is dependent on a number of given optimal demonstrations to some extent
because SSL methods create an auxiliary training signal by leveraging the given data.

Manifold mixup We applied a widely-used sample efficiency technique, manifold
mixup (MM) (Verma et al., 2019b), to the combined method. In previous studies (Mangla
et al., 2020; Lee et al., 2021), it is shown that MM in the feature space enriched by SSL is
further effective to improve performance. Many mixup-based augmentation studies have been
proposed to improve the generalization of image domains (Yun et al., 2019; Hendrycks et al.,
2019; Kim et al., 2020; Dabouei et al., 2021) and sequential domains (Chen et al., 2020a;
Guo et al., 2019). However, for RL, the application of Mixup is only applicable to image
environments (Wang et al., 2020; Singh et al., 2019). Through this experiment, we would like
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Table 4: Ablation studies using 100 expert state-action pairs to test the importance of LF
and (LSC , LAC). FD = Forward dynamics, and CR = Corruption.

Ablation Cumulative Rewards

LF LSC , LAC Ant HalfCheetah Walker2d

4198.2±72.5 2034.6±2384.6 3513.4±172.9
X 3329.6±513.0 2330.3 ±3741.3 3524.5±17.3

X 2244.0±208.6 591.9±549.9 1028.6±15.4
X X 4554.7±162.5 5415.9±203.8 3527.5±131.3

Table 5: Ablation studies using 50 optimal and 50 non-optimal state-action pairs to test
sensitivity to corruption rate of state and action.

ca 0.2 0.5 <= 0.5

cs 0.1 0.2 0.3 0.4 <= 0.5 <= 0.5 <= 0.5

Ant 4384.71±49.21 4282.89±170.53 4206.76±502.76 4127.30±451.87 3546.28±487.71 2425.96±65.69 560.64±326.97

to compare the efficiency of 1) MM, 2) the proposed method, and 3) using both as a sample
efficiency technique. MM increases the diversity of expert demonstrations by interpolating
the feature space output of the input data pair. We performed MM on the feature space
as follows: (z̄, ȳ) = (Mixλ(zi, zj),Mixλ(yi, yj)), where Mixλ(a, b) = λ · a+ (1− λ) · b. Here,
(zi, zj) are the feature representations of (xi, xj), and (yi, yj) are the estimated confidence
by 2IWIL. Table 3 shows that, when only MM was used, the performance on Walker2d
improves; however, the performance on Ant and HalfCheetah does not show a reasonable
improvement. This indicates that it is difficult to naturally learn representations that are
temporally predictive and robust to diverse distortions from training signals generated by
synthetic data from MM. Conversely, when only the proposed method was used, we observed a
relatively small increase on Walker2d due to a deficiency in the number of optimal locomotion
movements. Consequently, as shown in Figure 2 and Table 3, we observed near-optimal
performance on all the benchmarks with varying optimalities when both ours and MM were
used.

6. Building Intuitions with Ablations

We conducted ablations on the proposed factors to provide an intuition of each role.
Importance of both LF and (LSC , LAC) Table 4 shows that LF and (LSC , LAC)

are complementary to each other. When only LF is added to GAIL, we observed an increase
on HalfCheetah and Walker2d, not on Ant, and the gap in increase is small. Tian et al. (2020)
demonstrated that it is not always good to learn maximal information using contrastive
learning. Rather, it is important to minimize nuisance information as much as possible
using a strong transformation to maximize task-specific information. However, a strong
transformation without damaging semantic information is impossible in continuous control
data. Thus, LF mainly plays the role of maximally learning temporally predictive information
with a weak, reasonable transformation, and (LSC , LAC) helps to suppress the nuisance
factors using the corruption method so as to maximize task-relevant features in the proposed
method.
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Table 6: Ablation studies us-
ing 50 optimal and 50 non-
optimal state-action pairs
on Ant-v2 to test the role of
a loss function of LF .

LF

MSE 2793.48±98.59
BYOL 752.19±51.08

Barlow twins 3602.71±1164.86
SimCLR 4384.71±49.21

Table 7: Ablation studies using 50 optimal and 50 non-optimal
state-action pairs on Ant-v2 to test the role of a loss function
of LSC and LAC . BT = Barlow twins.

LSC

MSE BYOL SimSiam BT VICReg Avg.

LAC

MSE 3658.97 -627.01 1516.06 2891.03 701.55 1628.12
BYOL 2668.32 1240.80 1315.78 265.13 902.04 1278.41

SimSiam 2717.81 4017.71 3854.55 3656.74 2943.91 3438.14
BT 4384.71 2871.37 2590.40 3474.28 4269.20 3517.99

VICReg 1927.16 2363.05 4027.86 3768.11 3458.10 3108.86

Avg. 3071.40 1973.18 2660.93 2811.06 2454.96

Sensitivity to corruption rate Recently, studies on the importance of the degree of
transformation have been proposed in SSL. According to Tian et al. (2020), using previously
suggested transformation techniques without searching can lead to an increase in learning
nuisance information. Jing et al. (2021) showed that a strong transformation can cause
dimensional collapse. They showed that a greedy search for finding appropriate corruption
rates is important in applying SSL to RL benchmarks. Table 5 shows that the action is very
vulnerable to a high corruption rate. For the state, the performance is maintained to some
extent below 0.4. Additionally, we confirmed that fixing the corruption rate is better than
providing a range.

Loss function of LF For the discriminator Dω, temporally predictive features are
important information to distinguish the imitator (agent) from the expert. However, learning
maximal information can lead to learning nuisance information as well. Transformation
techniques should be used to suppress this. For LF , we tested the concatenation of Gaussian
noise and the corrupted state as transformation techniques to generate the distorted version.
The concatenation of Gaussian noise yields better results. Qualitatively, there was a 7.5%
relative improvement when using the concatenation of Gaussian noise. We surmise that
this is because corruption can unavoidably change important input features with respect
to temporality. Also, we confirmed that appending noise dimensions rather than no noise
concatenation increases the performance (Appendix E). For the loss function of LF , in
addition to the InfoNCE loss of SimCLR, we tested MSE, and MSE with the stop-gradient of
BYOL, and the Barlow twins loss. Table 6 presents that SimCLR’s performance is superior
to other methods by a significant margin.

Loss function of LSC and LAC As shown in Table 7, we tested various SSL loss
functions for both LSC and LAC . Notably, for LSC , the MSE loss that is exposed to the
collapsing problem shows the highest performance on average. This is because LF cannot
be minimized if the state representation is only the same constant. Rather, the MSE loss
that can flow the gradients to both the input pair shows a higher performance than the loss
functions using a stop-gradient or different discrepancy measures. For LAC , the Barlow twins
and SimSiam losses showed the first- and second-best performance on average, respectively.
Because the role of the state is greater than that of the action when predicting the next state,
the action representation za is not completely free from the collapsing problem. Therefore,
unlike the trend of LSC , clearly, the loss functions that have a certain technique to prevent
it showed stable performance.

16



Sample-efficient Adversarial Imitation Learning

7. Conclusion

Sample efficiency of expert demonstrations is desirable in imitation learning because obtaining
a large number of expert demonstrations is often costly. Motivated by successes in self-
supervised learning, we proposed a sample-efficient imitation learning method that promotes
learning feature representations that are temporally predictive and robust against diverse
distortions for continuous control. We evaluated our proposed method in various control tasks
with limited expert demonstration settings and showed superior performance compared to
existing methods. We analyzed the efficiency of the proposed method through both theoretical
motivation and extensive experiments on continuous and discrete-control benchmarks.

Despite the excellent performance with limited settings, the proposed method has some
limitations. There is an increase in model complexity and additional computational cost
during training since three additional networks and self-supervised losses are added.
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Appendix A. Proof for Section 3

A.1 Proof of Corollary 1

Using the first-order Taylor approximation, we can expand R̂(fhMSE |P).

Theorem 1. Based on Dao et al. (2019), picking up z0 = E
zi∼hMSE(Xi)

[zi], the first-order

approximation of R̂(fhMSE |P) is 1
M

∑M
i=1 `

(
W> E

zi∼hMSE(Xi)
[zi], yi

)
. Then, the first-order

effect is that it averages the distorted features that are not necessarily present in the original
dataset P.

Proof. For proof, we define a kernel classifier K to map a feature space. The kernel is
always positive definite, and its space is expressed through a dot product. The kernel defines
various functions, and its space of such functions is called the reproducing kernel Hilbert
space (RKHS).

When we define that T (x) is the probability density that x inherently contains a distortion
that is not necessarily present in the original dataset and a kernel K ′ represents a new feature
space via Eq. 4, we can have the following proof.

K ′(x, x̃) =
〈
Ex∼T (x)[hMSE(x)],Ex̃∼T (x̃)[hMSE(x̃)]

〉
=

∫
x∈Rn

∫
x̃∈Rn

〈hMSE(x), hMSE(x̃)〉T (x)T (x̃)dx̃dx

=

∫
x∈Rn

∫
x̃∈Rn

K(x, x̃)T (x)T (x̃)dx̃dx

= (TKT>)(x, x̃),

where x and x̃ are two inputs. It shows that the proposed approach can be interpreted as a
linear classifier W on the new kernel K ′. This proof is similar to how a support measure
machine (SMM) trains the model with a mean function in the RKHS (Muandet et al., 2012).
SMM is proved to be invariant on the distorted features that are not necessarily present
in the original dataset P. In the newly learned feature space through Eq. 4, the distorted
features, which are inherently contained in the original dataset, become non-informative.
As a result, the sample complexity required to learn the classifier fhMSE is reduced. More
formally, a support vector machine (SVM) (Hearst et al., 1998) is a special case of SMM.
SMM is effective at seeking a halfspace that separates a training set by a large margin. In
other words, our proposed approach similar to SMM is also effective in inducing the low VC
dimension.

Corollary 1. hMSE is effective in reducing the VC dimension, however, the major problem
is that the upper bound of R(f |P) we seek to is based on R̂(f |P) instead of R̂(fhMSE |P). As
a result, fhMSE cannot capture all the properties preserved in R̂(f |P). Additionally, due to
the distribution gap between the feature spaces h and hMSE, the optimal function f∗hMSE

of
R̂(fhMSE |P) is not guaranteed to be a minimum of R̂(f |P).
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He et al. (2019) showed that the optimal function f∗ of R̂(f |P) leverages both class-
relevant and -irrelevant features (wd,i ≈ wd,j for 1 ≤ d ≤ D and 1 ≤ i, j ≤ C) (Definition 3).
However, when finding f∗hMSE

, distorted, commonly class-irrelevant, features are restrained to
be encoded through Eq. 4. Thus, the optimal function f∗hMSE

of R̂(fhMSE |P) is not guaranteed
to be a minimum of R̂(f |P) due to a distribution shift.

A.2 Proof of Claim 1

Suppose that the MSE (Eq. 4) and contrastive learning share its feature space H.

Definition 1. (Wang and Isola, 2020) Consider a perfectly trained h∗MSE with unsupervised
contrastive learning. A positive pair has similar features on HMSE (Alignment), and the
feature space HMSE becomes maximally informative (Uniformity).

Definition 2. (Poole et al., 2019) Contrastive loss is defined using a critic function that
approximates density ratios (p(x|y)

p(x) = p(y|x)
p(y) ) of two random variables X and Y . It is proved

that contrastive loss is a lower bound on mutual information (MI), I(X;Y ). By minimizing
the loss, the lower bound on MI is maximized.

Unsupervised contrastive learning can be interpreted as an InfoMax principle, as shown
in Definitions 1 and 2. In our terms, minimizing contrastive loss is maximizing the lower
bound on I(hMSE(x);hMSE(x′)) for a positive pair (x, x′) ∼ Ppos. MI between hMSE(x) and
hMSE(x′) can be re-written as follows:

I(hMSE(x);hMSE(x′)) = H(hMSE(x))−H(hMSE(x)|hMSE(x′)).

The first term of the right-hand side (RHS) shows that uniformity in Definition 1 is mathe-
matically favored by entropy H(hMSE(x)). The second term of RHS shows that alignment in
Definition 1 is mathematically favored by conditional entropy H(hMSE(x)|hMSE(x′)). As a
result, to maximally increase the closeness between all positive pairs in the feature space,
all informative features should be semantically embedded and utilized. That is, mapping
more informative features induces that more similar inputs have more similar features in
H. Through that, informative yet class-irrelevant features are also preserved for contrastive
learning.

Theorem 2. Based on Dao et al. (2019), with ψ = E
z∼hMSE(X)

[z] and Var = E
[
(X − E[X])2

]
,

the second-order approximation of R̂(fhMSE |P) is the first-order approximation plus variance
regularization of weight vectors wd for 1 ≤ d ≤ D.

Proof. For cross entropy loss with softmax, `′′ is independent of y and positive semi-definite.
We can obtain a more exact expression for R̂(fhMSE |P) by the second-order approximation
of the Taylor expansion.

25



Jung, Lee, and Yoon

R̂(fhMSE |P) =
1

M

M∑
i=1

`
(
W>ψi, yi

)
+

1

2M

M∑
i=1

E
zi∼hMSE(Xi)

[(
W>(zi − ψi)

)2
`′′(W>zi, yi)

]
=

1

M

M∑
i=1

`
(
W>ψi, yi

)
+

W>

(
1

2M

M∑
i=1

E
zi∼hMSE(Xi)

[
∆i∆

>
i `
′′(W>zi, yi)

])
W (∵ ∆i = zi − ψi)

=
1

M

M∑
i=1

`
(
W>ψi, yi

)
+

1

2M

M∑
i=1

W> E
zi∼hMSE(Xi)

[
∆i∆

>
i

]
`′′(W>ψi)W (∵ `′′ is independent of y)

The second-order approximation of R̂(fhMSE |P) can be interpreted as the first-order
approximation plus variance regularization of weight vectors wd for 1 ≤ d ≤ D because ∆∆>

is equal to the variance of z. It represents that the weights of features having large variances
are forced to 0 restricted by regularization. We do not utilize data augmentation in the
classification loss because it further induces the generalization gap. When the feature space
is learned through only Eq. 4 and the classification loss, most class-irrelevant features cannot
be encoded in the feature manifold. We tackle this problem by mapping class-irrelevant yet
informative features learned from contrastive learning to the feature manifold. For contrastive
learning, the positive pair, which is created by two differently augmented same images, should
have very similar feature representation. It means informative features mapped through this
loss are robust to the variance via augmentation.

Claim 1. Class-irrelevant yet informative features are preserved via unsupervised contrastive
learning. It reduces the inconsistency between R̂(fhMSE |P) and R̂(f |P).

Class-irrelevant yet informative features are preserved via unsupervised contrastive
learning. In other words, the feature manifold is enriched by unsupervised contrastive learning,
that is, both class-relevant and class-irrelevant yet informative features can be leveraged when
finding the optimal function f∗hMSE

of R̂(fhMSE |P). As a result, the inconsistency between
R̂(fhMSE |P) and R̂(f |P) can be reduced.

Appendix B. Additional Implementation and Experimental Details

We use 5 continuous control benchmarks on Mujoco (Todorov et al., 2012) (Ant-v2, Hopper-
v2, HalfCheetah-v2, Swimmer-v2, and Walker2d-v2), and 2 discrete control benchmarks on
Atari RAM (BeamRider-ram-v0, and SpaceInvaders-ram-v0) of OpenAI Gym (Brockman
et al., 2016).

Overall, we reported the mean and standard error of the performance over 3 trials.
For experimental settings, we used GTX 1080 Ti for GPUs, Intel i7-6850K for CPUs, and
Ubuntu 18.04 for OS. The usage of GPU memory is approximately 3000MB for training,
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and training time for tested benchmarks was approximately 20 hours. Our code is based on
Pytorch (Paszke et al., 2019) and python libraries.

We make use of the same neural net architecture and hyperparameters for all benchmarks.
For the policy network, value network, discriminator, and state encoder, we use 3 hidden
layers with size 100 and Tanh as activation functions. For the action encoder, we use 6 1D
convolutional layers with sizes (64, 64, 64, 128, 256, and 256), 1 hidden layer with size 8 as
the output, and LeakyReLU as activation functions. For the forward dynamics model, we
use 1 hidden layer with size 114 and ReLU as activation functions.

For hyperparameters in all runs, the total epoch for Swimmer, and Hopper is 3,000,
for BeamRider, SpaceInvaders, HalfCheetah, and Walker2d is 5,000, and for Ant is 8,000.
Please refer to Table 8 for other hyperparameters. We set λF = 1, λS = 100, and λA = 1 for
matching loss scale.

Table 8: Base hyperparameters used for all benchmarks.

Hyperparameters Value

γ 0.995
Generalized advantage estimation 0.97

N 5,000
Learning rate (all networks except for value network) 1e-3

Learning rate (value network) 3e-4
Batch size (RERP) 256
Batch size (TRPO) 128
Batch size (GAIL) 5,000

Optimizer (all networks) Adam
τ 0.1
λF 1
λS 100
λA 1

For the random corruption method (Yoon et al., 2020), we sampled an imputing value from
N (0, 1) by considering the range of state values. The mean value used for imputation (Bahri
et al., 2021) is the mean vector of each Dk where k is the training iteration. We imputed
with a mean value of the corresponding dimension of the calculated mean vector.

B.1 Optimality of 100% (Expert Demonstrations)

To train experts, we used a reinforcement learning algorithm, proximal policy optimization
(Schulman et al., 2017), uploaded in the official Github by the authors of CAIL (Zhang et al.,
2021). We selected the converged policy as the expert policy. The performance of the utilized
expert policy and other specifications related to the experiments on the main manuscript are
given in Table 9.

B.2 Optimality of 25%, 50%, or 75% (A Mixture of Optimal and Non-optimal
Demonstrations)

We also tested the effectiveness of the proposed method with imperfect demonstrations.
We combined the proposed method with the existing method for imperfect demonstrations
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Table 9: Specification and the number of used demonstrations of each continuous control
benchmark in the scenario of perfect expert demonstrations.

Benchmarks dim(S) dim(A) NE Expert’s Performance

HalfCheetah-v2 R17 R6 100 5455.49±74.26
Walker-v2 R17 R6 100 3685.27±57.99
Ant-v2 R111 R8 100 4787.23±115.72

and checked improvement in performance. We compared our combined method against the
following baselines: BC (Pomerleau, 1989), GAIL (Ho and Ermon, 2016), IC-GAIL (Wu
et al., 2019), 2IWIL (Wu et al., 2019), RIL-CO (Tangkaratt et al., 2021), and CAIL (Zhang
et al., 2021).

IL methods, especially variants of BC, require a large volume of expert demonstration
data for training (Ross et al., 2011). These methods struggle with a generalization problem
when using a small number of demonstrations. Empirically, we observed that BC almost
fails to converge on Ant, Walker2d, and Hopper with a small number of demonstrations. For
RIL-CO, they measure and optimize a classification risk with the symmetric loss. Basically,
they only assumed a scenario that the majority of demonstrations are obtained using an
optimal policy. IC-GAIL and 2IWIL were proposed in the same paper. Both methods are
confidence-based. In the case of 2IWIL, the confidence of each state-action pair is estimated
using the classification risk before training, and in the case of IC-GAIL, they implicitly utilize
the confidence score in a way of matching the occupancy measure of the imitator with the
expert. CAIL is the state-of-the-art work in IL algorithms for imperfect demonstrations.
They jointly learn the confidence score and policy using an outer loss. Because they update
two factors jointly, the training is unstable. Experimentally, there was no benchmark that
CAIL, which is most recently suggested, is superior to 2IWIL or RIL-CO with a small number
of imperfect demonstrations. We surmise that this is because CAIL is the method using a
full trajectory rather than each state-action pair when estimating the confidence score of
each pair. Consequently, we decided to combine our method with 2IWIL instead of CAIL.

Table 10: Specification and the number of used demonstrations of each continuous control
benchmark in the scenario of imperfect expert demonstrations.

Benchmarks dim(S) dim(A) NE Suboptimal 1 Suboptimal 2 Suboptimal 3 Suboptimal 4 Expert’s Performance

HalfCheetah-v2 R17 R6 100 1051.91±50.17 2280.87±651.92 3533.07±79.47 4682.89±54.33 5455.49±74.26
Walker-v2 R17 R6 100 691.14±96.12 1617.02±721.00 2579.41±512.19 2819.63±609.49 3685.27±57.99
Ant-v2 R111 R8 100 789.13±170.45 2115.17±328.20 2947.49±191.72 3739.91±96.56 4787.23±115.72

Swimmer-v2 R8 R2 20 65.56±18.93 148.20±8.09 181.27±4.23 228.29±5.95 280.5±1.24
Hopper-v2 R11 R3 20 1262.34±296.32 1774.65±462.52 2185.33±996.92 2802.18±489.85 3531.03±23.51

For the experiments on the main manuscript, we collected a mixture of optimal and
non-optimal demonstrations with different optimalities. For collecting the imperfect demon-
strations, we used the official Github by the authors of CAIL. Following CAIL, We selected
four intermediate policies as sub-optimal policies and the converged policy as the optimal
policy. The performance of sub-optimal and optimal policies and other specifications for the
benchmarks are given in Table 10. Empirically, as shown in Table 10, because the dimension
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of the action space of Swimmer-v2 and Hopper-v2 is very small almost like discrete control,
we did not apply LAC .

The pseudo-code of the combined methods is given in Algorithms 2 and 3. To run the
combined methods, we need additional hyperparameters and their values are summarized in
Table 11.

Table 11: Additional hyperparameters for the combined methods.

Hyperparameters Value

α for Mixup 4.0
Threshold for GMM 0.5

The number of non-experts 4
Ratio of labeled demonstrations 0.4

Appendix C. Pseudo-code of Combined Method

C.1 Combined Case #1: Ours + 2IWIL

Because labeling all state-action pairs from ρO or ρN can be expensive, following previous IL
works for imperfect demonstrations, we assumed that only a few demonstrations are labeled.
Then, the imperfect demonstrations are split into two demonstrations: a set of labeled
demonstrations DL = {(xl,i, yl,i)}NLi=1 and a set of unlabeled demonstrations DU = {xu,i}NUi=1,
where NL and NU are the number of labeled demonstrations and unlabeled demonstrations,
respectively.

As shown in Algorithm 2, before training, 2IWIL (Wu et al., 2019) estimates pseudo labels
ŷu,i of DU to utilize the set of unlabeled demonstrations DU with DL using the classification
risk proposed in their work as follows:

R`(g) = Ex, y ∼Dl [y(`(g(x))− `(−g(x))) + (1− β)`(−g(x))] + Ex∼Du [β`(−g(x))] , (16)

where β = NU
NL+NU

, g(·) is a neural network classifier, and ` is a strictly proper composite loss.
Then, the predicted confidence score ŷu represents the probability that a given state-action
pair is optimal. The estimated confidence of each state-action pair is utilized as a sample
weight in their discriminator loss. As a result, the combined discriminator loss with our state
and action encoders is defined as follows:

max
ω

E
x∼Dπ

[logDω(z)] + E
(x,y)∼ (D̃O∪D̃N )

[y
ε
log(1−Dω(z))

]
, (17)

where ε = 1
NL

∑NL
i=1 yi, z = zs ⊕ za. zs is a state representation embedded by SE(s), and za

is an action representation embedded by AE(a).

C.2 Combined Case #2: Ours + 2IWIL + Manifold Mixup

For utilizing Manifold mixup (MM), we modeled the per-sample confidence score distribution
of (yl, ŷu) with a two-component Gaussian mixture model to divide the imperfect demonstra-
tions DI into optimal demonstrations and non-optimal demonstrations, D̃O and D̃N . The

29



Jung, Lee, and Yoon

Algorithm 2 Pseudo-code of Ours + 2IWIL (Wu et al., 2019)

1: input: Imperfect expert demonstrations DI = {DL ∪ DU}, Labeled demonstrations
DL , {(xl,i, yl,i)}NLi=1, Unlabeled demonstrationsDU , {xu,i}NUi=1, # of batches B, Training
epochs T.

2: Train a probabilistic classifier by minimizing Eq. 16
3: Predict confidence scores {ŷu,i}Nui=1 for {xu,i}Nui=1
4: for k ← 1 to T do
5: Obtain trajectories Dk = {xk,i}Ni=1 using πθ
6: πθ ← TRPO(πθ, V,Dω,Dk)
7: SE,AE ← Repr(SE,AE,F,Dk)
8: Dω ← Gail(Dω, SE,AE,Dk,DI)
9: end for

10: function Repr(SE,AE,F,Dk)
11: for b← 1 to B do
12: Generate X ′b by Eq. 8
13: Obtain Zb from Dk,b using (SE,AE)
14: Obtain Z ′b from X ′b using (SE,AE)
15: Update SE,AE, and F by Eq. 14
16: end for
17: return SE,AE
18: end function
19: function Gail(Dω, SE,AE,Dk,DI)
20: for b← 1 to B do
21: Obtain Zb from Dk,b using (SE,AE)
22: Update SE,AE, and Dω by Eq. 17
23: end for
24: return Dω

25: end function

feature representation zo ∼ D̃O is interpolated with the feature representation zn ∼ D̃N .
More formally, for a batch of features (zo, zn) and corresponding confidence scores (yo, yn),
the mixed (z̄, ȳ) can be computed by:

λ ∼ Beta(α, α), λ′ = max(λ, 1− λ),

z̄ = λ′ · zo + (1− λ′) · zn,
ȳ = λ′ · yo + (1− λ′) · yn,

(18)

where z = zs ⊕ za. zs is a state representation embedded by SE(s), za is an action represen-
tation embedded by AE(a). Eq. 18 can ensure that z̄ are closer to optimal demonstrations
than non-optimal demonstrations.
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Algorithm 3 Pseudo-code of Ours + 2IWIL + Manifold Mixup (Verma et al., 2019a)

1: input: Imperfect expert demonstrations DI = {DL ∪ DU}, Labeled demonstrations
DL , {(xl,i, yl,i)}NLi=1, Unlabeled demonstrationsDU , {xu,i}NUi=1, # of batches B, Training
epochs T.

2: Train a probabilistic classifier by minimizing Eq. 16
3: Predict confidence scores {ŷu,i}NUi=1 for {xu,i}NUi=1

4: D̃O, D̃N ← GMM (DL, (DU , {ŷu,i}NUi=1))
5: for k ← 1 to T do
6: Obtain trajectories Dk = {xk,i}Ni=1 using πθ
7: πθ ← TRPO(πθ, V,Dω,Dk)
8: SE,AE ← Repr(SE,AE,F,Dk)
9: Dω ← Gail(Dω, SE,AE,Dk, D̃O, D̃N )

10: end for
11: function Repr(SE,AE,F,Dk)
12: for b← 1 to B do
13: Generate X ′b by Eq. 8
14: Obtain Zb from Dk,b using (SE,AE)
15: Obtain Z ′b from X ′b using (SE,AE)
16: Update SE,AE, and F by Eq. 14
17: end for
18: return SE,AE
19: end function
20: function Gail(Dω, SE,AE,Dk, D̃O, D̃N )
21: for b← 1 to B do
22: Obtain Zb from Dk,b using (SE,AE)
23: Obtain (Zo, Zn) from (D̃O, D̃N ) using (SE,AE)
24: Compute (Z̄, Ȳ ) by Eq. 18
25: Update SE,AE, and Dω by Eq. 19
26: end for
27: return Dω

28: end function

As shown in Algorithm 3, by additionally including synthetic data through MM, the
discriminator loss is expressed as follows:

max
ω

E
x∼Dπ

[logDω(z)] + E
(x,y)∼ (D̃O∪D̃N )

[y
ε
log(1−Dω(z))

]
+

E
(z̄,ȳ)∼ (D̃O∪D̃N )

[log((1− ȳ) ·Dω(z̄) + ȳ · (1−Dω(z̄)))].
(19)

Appendix D. Expert Data Size

We assessed our method with varying expert data sizes. As shown in the table, there is a
relatively small or no decrease in the performance up to NE = 20. When NE is reduced
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to 20 for Ant and Walker2d and 10 for HalfCheetah, the performance is comparable to the
baseline AIL.

Table 12: Additional studies using 10, 20, or 50 expert state-action pairs on Ant-v2,
HalfCheetah-v2, and Walker2d-v2 of MuJoCo.

GAIL Ours

NE = 100 NE = 10 NE = 20 NE = 50 NE = 100

Ant 4198.2±72.6 2855.9±1139.7 4286.4±125.6 4432.4±41.1 4554.8±162.6
HalfCheetah 2034.6±2384.6 2787.6±3454.4 5381.6±81.3 5410.6±44.2 5416.0±203.8
Walker2d 3513.4±172.9 3023.1±439.6 3412.6±195.6 3520.9±108.5 3527.6±131.4

Appendix E. Role of Gaussian Noise

Appending noise dimensions increases the performance on all three tasks as shown in Table 13.
-71.09, -81.29, and –87.90 represent the decrease without appending the noise dimensions.

Table 13: Ablation studies on appending Gaussian noise using 100 expert state-action pairs
on Ant-v2, HalfCheetah-v2, and Walker2d-v2 of MuJoCo.

Ours Ant HalfCheetah Walker2d

w/o noise 4483.7±159.6 (-71.09) 5334.7±43.0 (-81.29) 3439.7±122.2 (-87.90)
w noise 4554.8±162.6 5416.0±203.8 3527.6±131.4

Appendix F. Discrete control Benchmarks

To test the scalability of the proposed method, we evaluated the performance of the proposed
method on 2 discrete control benchmarks: BeamRider-ram-v0, and SpaceInvaders-ram-v0 of
OpenAI Gym.

Table 14: Final performance using 20 expert state-action pairs on BeamRider-ram-v0, and
SpaceInvaders-ram-v0 of OpenAI Gym. Best results are in bold.

BeamRider SpaceInvaders

GAIL Ours GAIL Ours

399.43±55.63 433.04±76.15 166.39±107.88 289.87±5.37

For comparison, we chose GAIL, which showed the second-best performance in the
experiments of continuous control benchmarks. To apply the proposed method on discrete
control benchmarks, we ignored the action encoder AE and its corresponding loss LAC of
the proposed model. Nevertheless, as shown in Table 14, the proposed method still showed
better performance compared to GAIL on discrete control benchmarks.
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