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Abstract
Multimodal learning aims to learn from data of different modalities by fusing information
from heterogeneous sources. Although it is beneficial to learn from more modalities, it is
often infeasible to use all available modalities under limited computational resources. Mod-
eling with all available modalities can also be inefficient and unnecessary when information
across input modalities overlaps. In this paper, we study the modality selection problem,
which aims to select the most useful subset of modalities for learning under a cardinality
constraint. To that end, we propose a unified theoretical framework to quantify the learn-
ing utility of modalities, and we identify dependence assumptions to flexibly model the
heterogeneous nature of multimodal data, which also allows efficient algorithm design. Ac-
cordingly, we derive a greedy modality selection algorithm via submodular maximization,
which selects the most useful modalities with an optimality guarantee on learning perfor-
mance. We also connect marginal-contribution-based feature importance scores, such as
Shapley value, from the feature selection domain to the context of modality selection, to
efficiently compute the importance of individual modality. We demonstrate the efficacy of
our theoretical results and modality selection algorithms on 2 synthetic and 4 real-world
data sets on a diverse range of multimodal data.
Keywords: Multimodal Learning, Modality Selection, Submodular Optimization, Fea-
ture Importance

1. Introduction

Multimodal learning aims to learn from data of different modalities1 (e.g., images, texts,
speech, sensors, etc) by fusing complementary information from different sources, to improve
the generalizability and robustness of the underlying model. Compared with unimodal
learning, multimodal learning models have shown superior performance in many real-world

∗. Equal contribution.
1. In this paper, we use the terms “modality” and “view” interchangeably.
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applications (Bapna et al., 2022; Wu et al., 2021; Huang et al., 2023). The advantages of
multimodal learning have also been studied from a theoretical standpoint. For example, prior
work shows that learning with more modalities achieves a smaller population risk (Huang
et al., 2021). Utilizing cross-modal information can also provably improve prediction in
multiview learning (Zhang et al., 2019) and semi-supervised learning (Sun et al., 2020).

However, under the advent of large-scale multimodal deep learning (Huang et al., 2023;
OpenAI, 2023; Radford et al., 2021), a major challenge lies in efficient learning on multi-
modal data. From the modeling perspective, one might be tempted to use all the modalities
available, but this is often inefficient or infeasible under limited computational resources.
Multimodal data is dense and high-dimensional, and modeling complexity (e.g., model size)
can scale linearly or exponentially by the number of input modalities (Zadeh et al., 2017;
Liu et al., 2018), which could incur significant consumption in computational and energy
resources (e.g., GPUs, electricity). The marginal benefit from new modalities may also de-
crease as more modalities have been included. Oftentimes, fewer modalities may be sufficient
to achieve the desired learning performance. Furthermore, being able to proactively select
the most useful modalities can help improve computational efficiency, and reduce the cost of
collecting and maintaining inferior modalities. For instance, in sensor placement problem,
finding the optimal subset of sensors (modalities) for a learning objective (e.g. temperature
or traffic prediction) eliminates the cost of maintaining others (Krause et al., 2011).

To this end, we study the problem of modality selection in multimodal learning: Given
a set of input modalities and a size constraint on the selected set, how to select a subset
of modalities that yields the optimal learning performance? There are two main challenges
to this problem. First, there is no intuitive and generic way to understand the learning
utility of an arbitrary set of modalities. Second, this subset selection problem is NP-hard
in general, which is computationally intractable.

To address these challenges, we propose a unified theoretical framework that generically
quantifies the learning utility of any set of modalities, and identify proper assumptions that
can not only model the dependence relations between input modalities but also allow effi-
cient algorithm designs for modality selection. Under this framework, we can derive simple
and efficient modality selection algorithms based on submodular optimization, whose se-
lected subset theoretically possesses an optimality guarantee on the learning performance.
Our framework also conveniently connects to feature importance scores from the feature
selection domain. We specifically examine the Shapley value and Marginal Contribution
Feature Importance (MCI). We show that these feature importance scores, although origi-
nally intractable to compute, can be adapted to the context of modality selection as efficient
solutions for measuring the importance of individual modality.

We focus on two typical learning settings (classification and regression) to demonstrate
the expressiveness and generalizability of our framework. First, we propose a generic utility
function for multimodal learning. In classification with cross-entropy loss, a modality’s util-
ity is quantified as the Shannon mutual information between the modality and the target.
In regression with quadratic loss, a modality’s utility is quantified as the variance of the con-
ditional expectation of the target given the modality. We identify approximate conditional
and marginal dependence assumptions on the input modalities that can flexibly model the
heterogeneous nature of multimodal data. These assumptions parameterize the dependence
relations in multimodal data, and enable us to efficiently select a subset of modalities whose

2



Efficient Modality Selection in Multimodal Learning

utility has an optimality guarantee via a greedy submodular function maximization algo-
rithm. Specifically, the learning utility of a selected k-size subset will be at least 1 − 1

e of
the true optimal utility minus kε, where ε is a constant that parameterizes the conditional
dependence between input modalities. We also tackle modality selection as a modality im-
portance ranking problem, by bridging feature importance scores from the feature selection
domain to the context of modality selection. In particular, we adopt the Shapley value and
MCI scores by applying our utility function as their evaluation function. Under our newly
identified conditional and marginal dependence assumptions, the exact solutions to these
scores, which are originally intractable to compute for measuring feature importance, can
be computed efficiently for measuring the importance of individual modality.

Lastly, we evaluate our theoretical results on one synthetic and two real-world multimodal
data sets in each learning setting (6 data sets in total spanning diverse types of modalities).
Our evaluation outcome confirms the effectiveness of our framework and algorithms for
modality selection.

2. Preliminaries

In this section, we describe the notations, problem setup, and background on submodular
optimization and feature importance.

Notation and problem setup. We use X and Y to denote the random variables that
take values in input space X and output space Y, respectively. The instantiation of X and
Y is denoted by x and y. We use H to denote the hypothesis class of predictors from input
to output space, and Ŷ to denote the predicted outcome. In our settings, X is multimodal,
i.e., X = X1 × ... × Xk, where each Xi is the input from the i-th modality. We use Xi to
denote the random variable that takes value in Xi, and V to denote the set of all input
modalities, i.e., V = {X1, ..., Xk}. For ease of presentation, we often use S and S′ to denote
two subsets of V .

We study the modality selection problem in both classification and regression settings.
In both cases, under a fixed loss function, the predictor/model aims to minimize the loss be-
tween the target output and the predicted output. Under a modality cardinality constraint,
the goal of modality selection is then to select a subset of input modalities such that the
loss is minimized among the given class of predictors.

2.1 Submodular Optimization

Submodularity is a property of set functions with many applications in computer sci-
ence (Krause et al., 2008; Gomez-Rodriguez et al., 2012; Leskovec et al., 2007). A definition
of submodularity is as follows, where 2V denotes the power set of V , and a set function f
assigns each subset S ⊆ V to a value f(S) ∈ R.

Definition 2.1 (Nemhauser et al. (1978)). Given a finite set V , a set function f : 2V → R
is submodular if for any A ⊆ B ⊆ V , and e ∈ V \ B, we have f(A ∪ {e}) − f(A) ≥
f(B ∪ {e})− f(B).

Namely, adding a new element(s) to a larger set does not yield a larger marginal benefit
compared to adding new elements to its subset. One common scenario of optimization on
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Algorithm 1: Greedy Maximization of a Submodular Function f
Data: Full set V = {X1, ..., Xk}, constraint q ∈ Z+.
Input: f : 2V → R, and p ∈ Z+, where p ≤ q ≤ |V |
Output: Subset Sp
S0 = ∅
for i = 0, 1, ..., p− 1 do

Xi = arg maxXj∈V \Si
(f(Si ∪ {Xj})− f(Si))

Si+1 = Si ∪ {Xi}

the submodular function is submodular function maximization under cardinality constraint.
It asks to find a subset S ⊆ V that maximizes f(S) subject to |S| ≤ q, for some fixed
budget q that specifies the largest size of S. Finding the optimal solution to this problem is
NP-hard in general. However, Nemhauser et al. (1978) proved that a greedy maximization
algorithm (Algorithm 1) can output a subset whose value has an optimality guarantee in
polynomial time.

In Algorithm 1, p is the number of iterations the algorithm will run, and q is the cardi-
nality constraint. Algorithm 1 starts with an empty set S0, and subsequently adds to the
current set Si the new element Xi that maximizes the marginal gain f(Si ∪ {Xj})− f(Si)
at each iteration i. Note that Algorithm 1 runs in time O(p|V |). The following theorem
shows the optimality guarantee of its output under Algorithm 1.

Theorem 2.1 (Nemhauser et al. (1978)). Let q ∈ Z+, Sp be the selected subset from Algo-
rithm 1 at iteration p, and e is the Euler’s number, we have:

f(Sp) ≥ (1− e−
p
q ) max

S:|S|≤q
f(S) (1)

Namely, maxS:|S|≤q f(S) is the optimal value from the optimal subset whose cardinality
is at most q. Note that if f is monotone, arg maxS:|S|≤q f(S) has cardinality exactly q.
Then, the greedily-obtained value of the greedily-obtained set yielded from Algorithm 1
after q iterations is at least 1− 1

e (∼0.63) of the optimal value.

2.2 Feature Importance Score

Prior work on feature importance study scoring methods that measure how much each
feature contributes to learning. Each feature is treated as a participant in a coalitional
game, in which all of them contribute to the total gain. A feature scoring method assigns
each feature an importance score by measuring its individual contribution. Many notable
feature importance scores are adapted from the Shapley value, which is defined as follows:

Definition 2.2 (Shapley (1952)). Given a set of all players F in a coalitional game, where
v : 2F → R is a set function that evaluates the utility of a set of players, the Shapley value
of player i under v is:

φv,i =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
(v(S ∪ {i})− v(S)) (2)
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We can interpret the Shapley value of player i as the average marginal contribution of
i over all possible subsets to which i can be included. Computing the exact Shapley value
of a player is ]P-hard as it requires enumerating over all possible subsets of players, which
is exponential in the number of players, i.e., O(2|F |) unique subsets. (Roth, 1988; Winter,
2002). Although in certain settings, there are efficient approximations to Shapley value,
e.g., Monte Carlo simulation (Faigle and Kern, 1992; Fatima et al., 2008; Michalak et al.,
2013). In machine learning, the Shapley value has been used to model feature importance
by treating each input feature as a player. The Shapley value can emit different properties
under different evaluation functions.

Feature importance scores that are based on Shapley value can underestimate the impor-
tance of correlated features, such that all correlated features are assigned lower importance
values (Kumar et al., 2020). Thus, we examine an alternative—the Marginal Contribution
Feature Importance (MCI) from Catav et al. (2021). MCI of a feature i is the maximum
marginal contribution over all possible feature subsets. The complexity of computing the
exact MCI of a feature is also exponential in the number of features.

Definition 2.3 (Catav et al. (2021)). Given a set of all features F , and a non-decreasing
set function v : 2F → R, the MCI of feature i defined by v is:

φmci
v,i = max

S⊆F
(v(S ∪ {i})− v(S)) (3)

3. Theoretical Framework

We propose a utility function that can generically quantify the utility of a given set of
modalities in multimodal learning. We then showcase the benign properties of this utility
function in the context of modality selection in both classification and regression settings.
To ease the flow of reading, we defer all the proofs to the appendix.

Definition 3.1. Let c be some constant in the output space, and `(·, ·) be a loss function.
For a set of input modalities S ⊆ V , the utility of S given by the utility function fu : 2V → R
is defined to be:

fu(S) := inf
c∈Y

E[`(Y, c)]− inf
h∈H

E[`(Y, h(S))] (4)

Namely, the utility of a set of modalities fu(S) is defined to be the reduction of the
minimum expected loss in predicting Y by observing S compared to always predicting the
same constant value c, i.e., c is independent of X. The latter serves as a baseline for the bare
minimum performance that can be trivially achieved. This definition intuitively corresponds
to the well-known observation that multimodal input can reduce prediction loss in practice.
Definition 3.1 is easily interpretable, and generalizable under different loss functions and
learning settings. We have the implicit assumption that the infimum is achievable in the
function class.
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3.1 Classification

We mainly focus on binary classifications for ease of exposition, but our proofs, algorithms,
and results directly extend to multi-class classification.2 In this setting, a subset of input
modalities S ⊆ V and output Y ∈ {0, 1} are observed, and the predictor aims to minimize
the cross-entropy loss between target Y and prediction Ŷ ∈ [0, 1]. Furthermore, we identify
an approximate conditional independence assumption on the input multimodal data.

Assumption 3.1 (ε-Approximate Conditional Independence). There exists a positive con-
stant ε ≥ 0 such that, ∀S, S′ ⊆ V, S ∩ S′ = ∅, we have I(S;S′ | Y ) ≤ ε.

The strength of this conditional independence relationship is parameterized by ε, which is
the upper bound of the conditional mutual information between disjoint modalities given the
output. When ε = 0, this assumption reduces to strict conditional independence. Although
strict conditional independence is a commonly used assumption on multimodal data in prior
work (White et al., 2012; Wu and Goodman, 2018; Sun et al., 2020), it is difficult to be
satisfied in practice. On the other hand, our new assumption considers the heterogeneity
nature of multimodal data, and is able to generically model diverse real-world scenarios.
Monotonicity. Definition 3.1 manifests as the Shannon mutual information (I(S;Y ))
between the output Y and multimodal input S in this setting (Proposition 3.1). This result
is well-proven by Grünwald and Dawid (2004); Farnia and Tse (2016). We further show that
I(S;Y ) is monotonically non-decreasing on the set of input modalities (Proposition 3.2).

Proposition 3.1. Given Y ∈ {0, 1} and `(Y, Ŷ ) := 1(Y = 1) log Ŷ + 1(Y = 0) log(1− Ŷ ),
fu(S) = I(S;Y ).

Proposition 3.2. ∀M ⊆ N ⊆ V , I(N ;Y )− I(M ;Y ) = I(N \M ;Y |M) ≥ 0.

Definition 3.1 intrinsically characterizes the benefit of multimodal learning. Namely,
Proposition 3.1 and Proposition 3.2 show that learning from more input modalities results
in equivalent or better prediction performance from an information-theoretic perspective.
Under Definition 3.1, the extra benefit of using more modalities can also be quantitatively
described in closed-form, e.g., I(N \M ;Y |M).
Comparison to previous results. Amini et al. (2009); Huang et al. (2021) have dis-
covered similar conclusions that more modalities will not lead to worse optimal population
error in the context of multiview and multimodal learning, respectively. They obtained
this observation through the analysis of excess risks of learning from multiple and single
modalities, and show that the excess risk of learning from multiple modalities cannot be
larger than that of a single modality. Instead, our work adopts an information-theoretic
characterization, which leads to an easy-to-interpret measure of the benefits of additional
modalities. In practice, estimating these measures is relatively straightforward using well-
developed entropy estimators. But excess risks are hard to estimate in practice since they
depend on the Bayes optimal errors, which limits their uses in many applications.
Submodularity. The utility function, which manifests as the Shannon mutual informa-
tion, is approximately submodular under Assumption 3.1. Previously, Krause and Guestrin

2. We have only used the binary case to derive the conditional entropy in Proposition A.1, and to further
showcase a lower bound with zero-one loss in Corollary 4.1
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(2012, Corollary 4) has shown mutual information to be submodular under strict conditional
independence. There are also other generalizations of submodularity such as weak submod-
ularity (Khanna et al., 2017) or adaptive submodularity (Golovin and Krause, 2011). We
provide a relaxation of the strict conditional independence in Assumption 3.1, and show the
approximate submodularity under this assumption.

Proposition 3.3. Under Assumption 3.1, I(S;Y ) is ε-approximately submodular, i.e., ∀A ⊆
B ⊆ V , e ∈ V \B, I(A ∪ {e};Y )− I(A;Y ) + ε ≥ I(B ∪ {e};Y )− I(B;Y ).

If the conditional mutual information between the disjoint input modalities given output
is parameterized by a threshold ε > 0, then the mutual information between input modal-
ities and the output emits an approximate submodularity that is also parameterized by ε.
When conditional mutual information is zero, input modalities will be strictly conditionally
independent, and the mutual information will be strictly submodular.

3.2 Regression

In this setting, a subset of input modalities S ⊆ V and output Y ∈ R are observed, and
the predictor aims to minimize the quadratic loss between target Y and prediction Ŷ ∈ R.
In addition, let Φ be a set of feature transformations such that Φ(V ) = {Φi(Xi)}|V |i=1. In
this setting, we assume that the Bayes optimal predictor of Y (which is the conditional
expectation under squared loss) is linear in the feature representations of all modalities Φ(V )
(Assumption 3.2), and Φ(V ) follows a multivariate Gaussian distribution (Assumption 3.3).

The (kernelized) linear assumption is commonly used in the prior work on kernel methods
(Kanagawa et al., 2018; Domingos, 2020). Despite the linear form, the kernelized represen-
tation in Assumption 3.2 is capable of encoding non-linear relationships. The Gaussian
assumption can be satisfied by using representation learning methods that learn features
following a multivariate Gaussian, such as the variational autoencoder (VAE) in Kingma
and Welling (2013), where the latent representation is trained to be close to a standard
Gaussian. VAE for representation learning is also widely studied (Higgins et al., 2017; Zhu
et al., 2020; Zhang et al., 2022).

Assumption 3.2. The conditional expectation of Y given Φ(V ) is linear, i.e., E[Y |
Φ(V )] =

∑
Xi∈V βiΦi(Xi) + α.

Assumption 3.3. The marginal distribution of Φ(V ) admits a multivariate Gaussian dis-
tribution with mean µ and covariance matrix Σ, i.e., Φ(V ) ∼ N (µ,Σ).

Monotonicity. We show that Definition 3.1 manifests as the variance of the conditional
expectation of the output Y given a set of input modalities S (Proposition 3.4). It is also
monotonically non-decreasing (Proposition 3.5).

Proposition 3.4. Given S ⊆ V and `(Y, Ŷ ) := (Y − Ŷ )2, we have fu(S) = Var(E[Y | S]).

Proposition 3.5. ∀M ⊆ N ⊆ V , Var(E[Y | N ]) − Var(E[Y | M ]) = E[Var(E[Y | N ] |
M)] ≥ 0.
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Submodularity. The modality selection problem asks to select a size-q subset of Xis
from V . However, selecting from the original modalities V in the input space is difficult
because having Var(E[Y | · ]) to be submodular on V imposes strong independence among
the Xis (e.g., ∀Xi, Xj ∈ V, i 6= j, Xi ⊥ Xj). Our key observation here is that instead of
performing selection in the input space, we can perform modality selection in a transformed
feature space, i.e., on the feature representations of the modalities V ′, where V ′ is a linear
transformation of Φ(V ) obtained from Singular Value Decomposition (SVD):

max
S

Var(E[Y | S])

s.t. |S| ≤ q, S ⊆ V ′

where V ′ = QΦ(V ), Σ = Q>ΛQ

(5)

Specifically, since Σ in Assumption 3.3 is symmetric positive semi-definite, there exists a
unique SVD for Σ such that Σ = Q>ΛQ, where Q is an |V |×|V | orthogonal matrix. We can
then linearly transform Φ(V ) to V ′, in which V ′ = QΦ(V ). As a result, it readily follows
that V ′ ∼ N (Qµ,Λ). Furthermore, Φ(V ) can also be reconstructed via Φ(V ) = Q>V ′.
Proposition 3.4 and Proposition 3.5 still hold on V ′ as they do not rely on Assumption 3.2
or Assumption 3.3. The benefit of operating under V ′ rather than Φ(V ) is that we can show
that Var(E[Y | S]) is submodular on S ⊆ V ′, and use submodular optimization on V ′ for
modality selection.

To show that Var(E[Y | ·) is submodular, we first show that E[Y | S] is linear for
all subsets of V ′ (Proposition 3.6). Then we prove the diminishing gain property from
Definition 2.1 for Var(E[Y | ·) (Proposition 3.7).

Proposition 3.6. Under Assumption 3.2 and Assumption 3.3, E[Y | S] is linear in S for
any S ⊆ V ′.

Proposition 3.7. Under Assumption 3.2 and Assumption 3.3, Var(E[Y | S]) is a submod-
ular function of S for any S ⊆ V ′.

4. Modality Selection via Submodular Optimization

In this section, we present our theoretical results on modality selection via submodular
function maximization in both the classification and regression settings.

4.1 Classification

With Proposition 3.3, we can formulate the problem of modality selection as a submodular
function maximization problem under cardinality constraint, i.e., maxS⊆V I(S;Y ) subject
to |S| ≤ q where q is often smaller than |V |. The classic approximation guarantee in Theo-
rem 2.1 is applicable to I(·;Y ) only if it is strictly submodular. However, the approximation
guarantee will be different in our case because the strength of submodularity of I(·;Y ) is
parameterized by the upper bound of conditional mutual information (ε) under the approx-
imate conditional independence assumption (Assumption 3.1).
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Theorem 4.1. Under Assumption 3.1, let q ∈ Z+, and Sp be the selected subset from
Algorithm 1 at iteration p, we have:

I(Sp;Y ) ≥ (1− e−
p
q ) max

S:|S|≤q
I(S;Y )− qε. (6)

Since I(·;Y ) is monotonically non-decreasing (Proposition 3.2), the value of the selected
subset from Algorithm 1 after q iterations will be at least 1 − 1

e of the optimal value mi-
nus qε across all q-size subsets. The qε term characterizes the fact that: when I(·;Y ) is
approximately submodular, selecting a larger subset via Algorithm 1 will have a larger ap-
proximation error that is caused by the conditional mutual information between modalities.
When ε = 0, Theorem 4.1 reduces to Theorem 2.1.

Based on Theorem 4.1, we can further obtain a bound on the minimum of the expected
cross-entropy loss and expected zero-one loss achieved by the greedily-obtained set. Let us
denote the optimal set S∗ = arg maxS:|S|≤q I(S;Y ), cross-entropy loss `ce(Y, Ŷ ) := 1(Y =

1) log Ŷ + 1(Y = 0) log(1− Ŷ ), and zero-one loss `01(Y, Ŷ ) := 1(Y 6= Ŷ ).

Corollary 4.1. Assume conditions in Theorem 4.1 hold, there exists optimal predictor
h∗(Sp) = Pr(Y | Sp) such that:

E[`01(Y, h
∗(Sp))] ≤ E[`ce(Y, h

∗(Sp))] ≤ H(Y )− (1− e−
p
q )I(S∗;Y ) + qε (7)

Corollary 4.1 shows that the minimum of both losses achieved by Pr(Y | Sp) are no
more than the uncertainty of the target output minus the lower bound of our greedily-
obtained value from Theorem 4.1. We can also upper bound difference between the optimal
cross-entropy loss achieved by the greedily-obtained set and the optimal set.

Corollary 4.2. Assume conditions in Theorem 4.1 hold. There exists optimal predictors
h∗1(Sp) = Pr(Y | Sp), h∗2(S∗) = Pr(Y | S∗) such that:

E[`ce(Y, h
∗
1(Sp))]− E[`ce(Y, h

∗
2(S
∗))] ≤ e−

p
q I(S∗;Y ) + qε (8)

This result gives a guarantee on the maximum loss difference from the greedily-obtained
set versus the optimal set using the optimal predictors. Both bounds from Corollary 4.1
and Corollary 4.2 are parameterized by the running iteration p and set size constraint q of
Algorithm 1, as well as the approximation error induced by ε. As the algorithm attempts
to select a larger set of modalities, both bounds become tighter.

4.2 Regression

Recall that in the regression setting, we turned to solve modality selection on a feature
transformation of the original input modalities. We showed that the utility function in
this setting (i.e., Var(E[Y | S])) is submodular for any subset S ⊆ V ′, where V ′ is the
transformed feature representation QΦ(V ). Selecting modalities on V ′ allows us to utilize
the benign properties of submodularity that are otherwise difficult to satisfy on V .

Theorem 4.2. Under Assumption 3.2 and Assumption 3.3, let q ∈ Z+, and Sp ⊆ V ′ be the
solution from Algorithm 1 at iteration p, we have:

Var(E[Y | Sp]) ≥ (1− e−
p
q ) max

S:S⊆V ′, |S|≤q
Var(E[Y | S]) (9)
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Theorem 4.2 is directly extended from Theorem 2.1 because Var(E[Y | ·]) is submodular
on V ′. We also obtain the following upper bounds on inff E[(Y − f(Sp))

2], similar to
Corollary 4.1 and Corollary 4.2 in the classification setting. Let us denote optimal set
S∗ = maxS:S⊆V ′, |S|≤q Var(E[Y | S]).

Corollary 4.3. Assume conditions in Theorem 4.2 hold. There exists an optimal predictor
h∗(Sp) = E[Y | Sp] such that:

E[(Y − h∗(Sp))2] ≤ Var(Y )− (1− e−
p
q )Var(E[Y | S∗]) (10)

Corollary 4.4. Assume conditions in Theorem 4.2 hold. There exists optimal predictors
h∗1(Sp) = E[Y | Sp], h∗2(S∗) = E[Y | S∗] such that:

E[(Y − h∗1(Sp))2]− E[(Y − h∗2(S∗))2] ≤ e
− p

q Var(E[Y | S∗])

Remark. We show that in both classification and regression settings, we can leverage sub-
modular function maximization to tackle the problem of modality selection in multimodal
learning. By the benign property of approximate submodularity, we can obtain a selected
subset of modalities from a simple greedy selection algorithm (Algorithm 1) in polynomial
time, whose learning performance has an optimality guarantee to the true optimal solution.
Under our theoretical formulation, we can also directly extend the results of other submod-
ular optimization problems under different constraints and objectives into the context of
modality selection (Krause and Golovin, 2014).

5. Modality Selection via Modality Importance Ranking

We now present our theoretical results of connecting feature importance scores to modality
selection. In this section, we formulate modality selection as a ranking problem, where each
input modality is ranked based on its “modality importance” in descending order. Then, we
can select the top-k modalities (where k is the cardinality constraint) based on the ranked
importance scores. In particular, we will adopt the Shapley value and MCI to measure the
importance of a modality by using Definition 3.1 as the evaluation function (§2.2).

5.1 Classification

We first show that mutual information is sub-additive and super-additive under the ap-
proximate independence assumption of the input modalities. By leveraging sub- and super-
additivity, we can compute the Shapley value and MCI of a modality exactly and efficiently.

Proposition 5.1. Under Assumption 3.1, I(S;Y ) is ε-approximately sub-additive for any
S ⊆ V , i.e., I(S ∪ S′;Y ) ≤ I(S;Y ) + I(S′;Y ) + ε.

Next, we show the approximate super-additivity of the mutual information under an
approximate marginal independence assumption. For ease of presentation, we parameterize
approximate marginal and conditional independence assumptions by the same constant ε.

Assumption 5.1 (ε-Approximate Marginal Independence). There exists a positive constant
ε > 0 such that, ∀S, S′ ⊆ V, S ∩ S′ = ∅, we have I(S;S′) ≤ ε.
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Proposition 5.2. If Assumption 5.1 holds, I(S;Y ) is ε-approximately super-additive for
any S ⊆ V , i.e., ∀S, S′ ⊆ V, S ∩ S′ = ∅, I(S ∪ S′;Y ) ≥ I(S;Y ) + I(S′;Y )− ε.

In the classic definition of Shapley value, the complexity of computing the exact Shapley
value of a player for general evaluation functions is exponential. However, when the evalu-
ation function v of the Shapley value exhibits strict additivity, the exact Shapley value can
be computed in polynomial time.

We provide some intuition about why additivity can make computation efficient. Specif-
ically, we can leverage the sub-additivity to provide an upper bound of the Shapley value
φv,Xi via a summation of v(Xi) for all possible subsets. Analogously, the super-additivity
should provide a lower bound of φv,Xi again expressed by v(Xi). Putting two bounds to-
gether gives us an efficient approximation of φv,Xi . This solution of the exact Shapley value
for a modality is parameterized by ε. In this setting, mutual information is the evaluation
function v for the Shapley value.

Proposition 5.3. If I(S;Y ) is both ε-approximately sub- and super-additive for any S ⊆ V ,
we have I(Xi;Y )− ε ≤ φI,Xi ≤ I(Xi;Y ) + ε for any Xi ∈ V .

When strict independence applies, i.e., ε = 0, the Shapley value of a modality is exactly
its prediction utility. In addition, the efficiency property of the Shapley value states that
the sum of the Shapley values of all agents equals the value of the grand coalition. Thus,
we must have I(V ;Y ) =

∑
Xi∈V φI,Xi .

Next, we examine MCI (§2.2). By its definition, solving MCI of a feature requires
exponential time, i.e., O(2|F |) where |F | is the total number of features. But if the evaluation
function of MCI is submodular, we can efficiently compute the exact MCI in polynomial time.

Proposition 5.4. Under Assumption 3.1, we have I(Xi;Y ) ≤ φmci
I,Xi
≤ I(Xi;Y ) + ε for any

Xi ∈ V .

If ε = 0, the mutual information will be strictly submodular, and the MCI of a modality
is exactly its prediction utility, i.e., φmci

I,Xi
= I(Xi;Y ). In addition, if Proposition 5.1 holds

with ε = 0, I(·;Y ) will be sub-additive, and I(V ;Y ) ≤
∑

Xi∈V I(Xi;Y ) =
∑

Xi∈V φ
mci
I,Xi

. If
Proposition 5.2 also holds with ε = 0, then I(·;Y ) will be additive. Then we can obtain an
efficiency property for MCI, i.e., I(V ;Y ) =

∑
Xi∈V φ

mci
I,Xi

.

5.2 Regression

We continue our analysis in the regression setting on the transformed version of the orig-
inal modalities V (denoted as V ′). Recall that Definition 3.1 manifests as the variance of
conditional expectation in this setting. Next, we show that the variance of conditional ex-
pectation is additive. Hence, by using it as the evaluation function, we can compute the
exact importance of a modality via Shapley value and MCI in polynomial time.

Proposition 5.5. Under Assumption 3.2 and Assumption 3.3,

• Var(E[Y | S]) is additive for any S ⊆ V ′.

• φVar(E[Y |·]),Xi
= φmci

Var(E[Y |·]),Xi
= Var(E[Y | Xi]) for any Xi ∈ V ′.
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Since Var(E[Y | ·]) is additive on V ′, the marginal contribution of Xi ∈ V ′ from each
unique subset S ⊆ V ′ will be equal to the same quantity Var(E[Y | Xi]) that is inde-
pendent of S. Then by Definition 2.2, the Shapley value of a modality after linear trans-
formation Ψ(Φ(V )) := QΦ(V ) will be equal to the utility of that modality after trans-
formation (Proposition 5.5). Again, by the efficiency property of Shapley value, we have
Var(E[Y | V ′]) =

∑
Xi∈V ′ φVar(E[Y |·]),Xi

. As Var(E[Y | ·]) is submodular, the exact MCI of a
modality will also equal its prediction utility. We can also obtain an efficiency property of
the MCI, i.e., Var(E[Y | V ′]) =

∑
Xi∈V ′ φmci

Var(E[Y |·]),Xi
.

Remark. To provide guidance to practitioners on choosing the best modality selection
algorithm that fits their needs, we compare our proposed algorithms mainly by their selected
modality set, and time complexity. A key advantage of the greedy algorithm is that it tends
to select more complimentary modality sets with performance guarantee—while MCI only
considers the marginal utility of each modality, the greedy algorithm further accounts for
utility of the entire selected set. The claim is empirically validated in Section 6.1.2, in which
we also provided an illustrative example (Fig. 2). Conceptually, MCI is designed for proper
credit assignments to individual modalities, while the greedy algorithm focuses more on the
utility of a modality set. For instance, when there exist two identical modalities with very
high utilities, MCI ranking will likely select both whereas the greedy algorithm will not.

On the other hand, one advantage of MCI ranking is its time complexity. The time
complexity of ranking is O(|V | log |V |), while greedy submodular maximization is O(q|V |),
where |V | is the total number of input modalities, and q is the number of selected modalities.
Nevertheless, there are practices to speed up the greedy maximization algorithm with slight
relaxation on its theoretical guarantee. For example, Mirzasoleiman et al. (2013) proposes
Distributed Greedy, which distributes the set selection process on l machines, resulting in a
complexity of O(q|V |/l); Mirzasoleiman et al. (2015) proposes Stochastic-Greedy Algorithm,
which restricts the search space for the next elements in each iteration and achieves a
(1− 1/e− ε) guarantee in linear time O(|V |).

6. Experiments

In this section, we present our empirical evaluation of modality selection via greedy sub-
modular maximization (Algorithm 1), and modality importance ranking via MCI.

Algorithm implementation. For Algorithm 1, in each iteration i we execute the fol-
lowing: (1) for each candidate modality Xj , we train two models on Si and Si ∪ {Xj}
respectively until training losses converge, and take the difference between two losses; (2)
record test loss and accuracy/R-squared from the model trained on Si ∪ {Xi} before the
model over-fits; (3) add the selected modality to Si to construct Si+1 and go to next it-
eration. We use model parameters before over-fitting for prediction and parameters after
over-fitting for utility estimation. We make such design choices because, for prediction, we
want to generalize well for better test performance, while for utility estimation, we want to
record the fully converged loss. For importance ranking, we compute the MCI of each input
modality and then select the top-ranked modalities with the largest MCI values.
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6.1 Classification

We evaluate our results on one semi-synthetic data set and two real-world data sets.

Patch-MNIST. This is a semi-synthetic data set built upon MNIST (LeCun and Cortes,
1998). Specifically, we divide each image in the original MNIST into non-overlapping square
patches. Each patch location represents a single modality. We construct and experiment on
two Patch-MNIST variants, where one variant has 49 patches and each patch is of size 4× 4
square pixel, and another has 9 patches and each patch has a side length of 9 or 10 pixels.
Patch-MNIST has ten output classes, 50,000 training images, and 10,000 testing images.

PEMS-SF. This is a real-world time-series data set from the UCI machine learning repos-
itory (Dua and Graff, 2017). It represents the traffic occupancy rate of different freeways in
the San Francisco Bay Area. The task is to classify the day of the week. Data is obtained
from 963 sensors placed across the bay area. Each sensor represents modality, and has a
time series with 144 time steps. We down-sample 144 time steps to 36 via taking the regional
means of size-4 windows. Running Algorithm 1 requires O(q|V |) with |V | = 963, and each
step requires training a new model. To mitigate the extensive run-time, we experiment on
45 out of 963 sensors by filtering sensors in line for the same freeway. There are a total of
440 instances (days), with the train-val-test split being 200, 67, and 173 samples.

CMU-MOSI. This is a popular real-world benchmark in affective computing and multi-
modal learning (Zadeh et al., 2016). The task is 3-class sentiment classification (positive,
neutral, negative) from 20 visual and 5 acoustic modalities with temporal features. Specifi-
cally, CMU-MOSI collects time-series facial action units and phonetic units from short video
clips (10-second clip sampled at 5Hz rate). Each unit is a modality, and consists of a 50-
dimensional feature vector. Training and testing sample sizes are 1284 and 686 respectively.

We validate the independence conditions on all data sets by comparing the mean con-
ditional Mutual Information (MI) and the mean marginal MI of disjoint modalities (Gao
et al., 2017). As shown in Table 1, the conditional MI is smaller than the marginal MI for
MNIST and PEMS-SF. Both conditional and marginal MI are small for CMU-MOSI. This
implies that modalities should be approximately conditionally independent in these data
sets.

Table 1: Mean Marginal/Conditional Mutual Information
data set Mean Marg. MI Mean Cond. MI

Patch-MNIST 2.187 0.078
PEMS-SF 0.626 0.223

CMU-MOSI 0.064 0.069

6.1.1 Implementation

Utility estimation. From Proposition 3.1, utility fu(S) equals I(S;Y ), and I(S;Y ) =
H(Y ) −H(Y | S). Based on the variational formulation of the conditional entropy as the
minimum cross-entropy, we approximate H(Y | S) by using the converged training loss
on S to predict Y (Farnia and Tse, 2016). Accordingly, to estimate the marginal gain
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I(Xj ;Y | Si) from Algorithm 1 over high dimensional data, we compute the difference
H(Y | S)−H(Y | S ∪ {Xj}) (McAllester and Stratos, 2020). To compute the MCI of each
modality Xj , we just need to compute I(Xj ;Y ), according to Proposition 5.4.
Modeling. We now describe models for prediction and utility estimation. For Patch-
MNIST, we use a convolutional neural network with one convolutional layer, one max pooling
layer, and two fully-connected layers with ReLU for both estimation and prediction. The
network is trained with Adam optimizer on a learning rate of 1e− 3. For PEMS-SF, we use
a 3-layer neural network with ReLU activation and batch normalization for estimation. This
is trained with Adam optimizer on a learning rate of 5e− 4. For prediction, we use a recent
time-series classification pipeline (Dempster et al., 2020) for time-series data processing,
followed by a linear Ridge Classifier (Löning et al., 2019). For CMU-MOSI, we experiment
with two prediction model types: a linear classifier with Rocket Transformation for time-
series (same as the one for PEMS-SF); and a plain 3-layer fully-connected neural network
with ReLU activation. On each data set, the number of training epochs is the same for all
evaluated approaches across different modality subset sizes.
Experimental procedures. For PEMS-SF and CMU-MOSI, we record and show the
training loss before over-fitting instead of the test loss. This is because PEMS-SF and CMU-
MOSI have a much smaller sample size than Patch-MNIST with potentially noisier features,
the model likely will not generalize stably. We first examine Theorem 4.1 and MCI ranking
on a larger sample set which better represents the population and is not influenced by the
generalization gap. Then we analyze the test accuracy to account for the generalization.

For Patch-MNIST with 49 modalities, PEMS-SF and CMU-MOSI, we evaluate Algo-
rithm 1 and MCI ranking against a randomized baseline at each set size. The randomized
baseline randomly selects a modality iteratively. For Patch-MNIST with 9 modalities, we
further include optimal and average baselines. At each set size q, the optimal baseline is the
optimal value from all possible subsets of size q, and the average baseline is the average. We
only implement the optimal baseline for the 9 modalities case because evaluating all possible
subsets for a larger set is expensive.
Training cost. At each iteration of Algorithm 1, the marginal utility gain for each
candidate modality is evaluated. Since we estimate the conditional mutual information by
training a neural network, and we need to evaluate each modality subset at different set
sizes, each iteration involves model training. These experiments can be costly for large data
sets and models. The training cost at each iteration of Algorithm 1 depends on different
utility variants, or mutual information estimation methods in this setting.

6.1.2 Results and Empirical Analysis

Patch-MNIST. Fig. 1 shows the Patch-MNIST experiment results. In this figure, “Modal-
ity subset size” refers to the size of the selected modality set. “Utility” refers to the utility
of the selected set. The “Test CE Loss” and “Test Accuracy” refer to the cross-entropy loss
and prediction accuracy on test data from the model that is trained on the selected set.

Learning utility An immediate observation is the high correlation among the utility, test
cross-entropy loss and accuracy in both rows. The trend of test accuracy seems identical to
the utility, although they mildly differ when the set size exceeds 30. In addition, the utility
and test loss are negatively correlated, matching to Definition 3.1. The utility has a larger
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Figure 1: Results on Patch-MNIST with 49 (first row) and with 9 modalities (second row).
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Modality subset size
15

Figure 2: Modalities selected by Algorithm 1 (first row) and MCI ranking (second row) on
Patch-MNIST.

upper bound than test loss, potentially because the utility is estimated by converging training
loss, which is often reduced in greater magnitude than test loss. The utility has a trend of
non-decreasing and diminishing gain, which matches the monotonicity and (approximate)
submodularity shown in this setting. Adding more modalities is unnecessary if the subset
is already large: in the 49-modalities case, accuracy barely improves after 20 modalities are
selected; but in the 9-modalities case, this pattern is less obvious.

Greedy maximization Algorithm 1 beats random selection in both cases. In Fig. 1
(second row), it beats the average by selecting the modality with maximum utility from
the start, and overlaps its trajectory with the optimal. In Fig. 1 (first row), Algorithm 1
achieves near-maximum utility with only 7 modalities. These results validate the approx-
imate guarantee from Theorem 4.1. In fact, the guarantee of utility is empirically much
better than theoretically proven.

MCI ranking In the 9-modalities case, MCI ranking is as good as greedy maximization
and the optimal baseline when the full set has fewer modalities. When more modalities are
available for selection (e.g., 49 modalities), Algorithm 1 select a subset that minimizes the
loss slightly further than the highest ranked modalities when set size below 15.
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Figure 3: Experiment results for PEMS-SF.
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Figure 4: Experiment results for CMU-MOSI.

Modality selection path We plot the modality selection paths from Algorithm 1 and MCI
ranking in Fig. 2. We can see that MCI selects the modalities that each contain the most
information to output—the center regions. Whereas the modalities selected by Algorithm 1
are more diverse, covering different spatial locations of the original image, leading to an
advantage in gaining more information collectively.

PEMS-SF. Fig. 3 shows our experiment results on PEMS-SF. In Fig. 3, the two leftmost
plots show the utility and cross-entropy loss on the training data. The rightmost plot
of Fig. 3 shows the moving average of test accuracy instead, because the model was not
generalized stably under a small sample size.

Learning utility The difference in utility and loss among Algorithm 1, MCI ranking,
and random baseline are small, and all of them quickly converge to the minimum possible
value after selecting only a few modalities. This might be because almost every modality is
sufficient to make training loss small. However, greedily selected subsets still have slightly
more utility than subsets from MCI ranking and random baseline at every set size. Overall,
we still observe the utility is monotone and (approximate) submodular; and Algorithm 1’s
achieved utility matches Theorem 4.1.

Generalization From the test accuracy plot, we can see a clear advantage from the
greedily-obtained set over others when the subset size is small. Meanwhile, MCI ranking
is worse than the random baseline, which could imply that MCI ranking does not have
a robust performance guarantee as Algorithm 1. Other than that, the test accuracy of
Algorithm 1 gradually decreases as more modalities are added. This is in line with the
over-fitting artifact of greedy feature selection from Blanchet et al. (2008). However, in
the regime of good generalization, greedy maximization should preserve the performance
guarantee during testing.

CMU-MOSI. The results are alike for both prediction model types mentioned in Sec-
tion 6.1.1 for CMU-MOSI. Thus we only use Fig. 4 to show the CMU-MOSI evaluation
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results from the 3-layer fully-connected neural network. In Fig. 4, the two leftmost plots
show the utility and cross-entropy loss on the training data. The rightmost plot of Fig. 4
shows the moving average of test accuracy since the model lacks the capacity to generalize
well for this data set under a small sample size.

Overall, many previous observations from other data sets still hold for CMU-MOSI. For
example, the utility curve is approximately submodular and monotone as the number of se-
lected modalities increases. Modalities selected by Algorithm 1 and MCI ranking outperform
randomly selected modalities by having more utility, lower training loss, and higher testing
accuracy, especially when the number of modalities is still small. Meanwhile, potentially
due to the simplicity of the model and noisy features, we are unable to observe an increase
in testing accuracy as more modalities are included in Algorithm 1 and MCI ranking.

6.2 Regression

We evaluate our results on one semi-synthetic data set and two real-world data sets.

Synthetic. This data set contains 1000 samples with 10 modalities, each modality Xi con-
tains 3 attributes. Following Assumption 3.3, we sample the attributes from a multivariate
Gaussian with zero mean and a block-diagonal covariance matrix, i.e., the attributes within
the same modality can be correlated, while the attributes in different modalities are indepen-
dent. Following Assumption 3.2, the regression target is constructed by Y =

∑
i βiXi+α+ε,

where the coefficients βi and α are sampled from [−1, 1] uniformly at random, and the error
ε is sampled from a univariate Gaussian with zero mean and unit variance. Furthermore, to
make the data set more realistic, we also vary the off-diagonal values to make the modalities
dependent to different extents, and demonstrate how dependency affects the performance of
the algorithms. Details about the data-generating process can be found in Appendix C.

Appliances. This is a real-world data set aiming at predicting the energy consumption
of a household (Candanedo et al., 2017). The data set contains 10 temperature-humidity
pairs from 9 rooms in a house and a nearby weather station as well as other general weather
features, such as visibility, pressure and wind speed. The data is collected every 10 minutes
over a 4.5-month period. We treat each temperature-humidity pair as a modality and the
remaining weather features as another modality.

Communities and Crime. This is a real-world crime prediction data set from the
UCI machine learning repository (Redmond and Highley, 2010). The task is to predict the
number of murders per 100K population. The raw data contains 125 attributes, including
demographic composition, income levels, police force, etc. After dropping the non-predictive
and redundant attributes, we used 65 attributes (divided into 17 modalities) for our exper-
iment.

6.2.1 Implementation

Utility estimation. We directly apply the definition of utility function in Definition 3.1.
Specifically, for each model, we first record the converged MSE loss given a constant modality
`0, then take the difference between `0 and the converged MSE loss using the modality of
interest as its utility. Therefore, the utility is model-dependent.

17



He, Cheng, Balasubramaniam, Tsai and Zhao

2 4 6 8 10
0

2

4

6

8

10
Ut

ilit
y

2 4 6 8 10

2

4

6

8

10

M
SE

 L
os

s

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

Te
st

 R
-s

qu
ar

ed

2 4 6 8 10
Modality Subset Size

0

2

4

6

8

10

Ut
ilit

y

2 4 6 8 10
Modality Subset Size

2

4

6

8

10

M
SE

 L
os

s
2 4 6 8 10

Modality Subset Size
0.0

0.2

0.4

0.6

0.8

Te
st

 R
-s

qu
ar

ed

MCI
Greedy
Random

Figure 5: Experiment results on the synthetic data set with linear regressor (first row) and
neural network (second row).

Modeling. For neural networks, we use the structure of multiple modality-specific feature
extractors followed by a joint linear predictor. For the synthetic data set, the feature extrac-
tor is a single-layer fully connected network with 128 hidden units. For both the appliances
and the crimes data set, the feature extractor is a 3-layer fully connected network with 128
hidden units. For VAE, we use two 3-layer fully connected networks with 128 hidden units
as the encoder and the decoder respectively. The latent dimension is 16. The networks are
trained with the Adam optimizer with a learning rate of 1e− 3.

6.2.2 Results and Empirical Analysis

To illustrate the impact of different feature transformations in Assumption 3.2, we evaluate
the algorithms using linear regressors (identity feature mapping) and neural networks (both
VAE encoded features and end-to-end training). To eliminate the effect of inherent variance
in the data set, we report the test R-squared along with the raw MSE loss.
Synthetic. The performance of both the linear regressor and the neural network is shown
in Fig. 5. The comparison under different modality dependencies is shown in Fig. 6.

Learning utility The utility has a trend of non-decrease and diminishing gain, verifying
the monotonicity and submodularity. Since the ground-truth data-generating function is
linear, the performance under both models is similar.

Selection algorithms The performance of Algorithm 1 and MCI ranking is alike, both
outperforming the random baseline. Since we sample the attributes from a block-diagonal
covariance matrix, all the modalities are independent. Under such circumstances, the algo-
rithms have identical modality selection paths because picking the modality with the highest
utility is the optimal strategy in each step. However, when there exists redundant infor-
mation, i.e., the modalities are dependent, Algorithm 1 will outperform MCI ranking by
selecting more complementary modalities.

Modality dependency We now study how inter-modality dependency affects performance.
While we fix the block-diagonal in the covariance matrix to be between -1 and 1, we allow
different amounts of covariance in the off-diagonal with a scale ranging from 0.001 to 0.7
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Figure 6: Experiment results for the synthetic data set with different modality dependencies
using a linear regressor.

(larger value means higher inter-modality dependency). As shown in Fig. 6, when the
covariance gets larger, Algorithm 1 significantly outperforms MCI ranking. In the case
where covariance is between -0.7 to 0.7, MCI ranking plateaus at the beginning as it only
selects modalities with high individual utility, but omits information overlap between them.

Appliances. The experiment results are shown in Fig. 7.
Leaning utility The utility for the neural network shows a clear diminishing return

pattern, while it is less obvious in the case of linear regression. This indicates that if we
directly assume that the conditional expectation of the target given the input modalities
is linear, the utility function may not be submodular. However, if we relax the linearity
assumption to be in the feature representations of the input modalities, the utility function
will better satisfy submodularity and monotonicity. Also, as expected, the utility for each
modality subset is significantly higher under both the neural network model and the regressor
with VAE-encoded features due to their model complexity. As a result, both models achieve
higher R-squared than linear regressor at each subset size.

Selection algorithms Algorithm 1 clearly outperforms MCI ranking and random baseline
in all three models. For MCI ranking under the linear regressor model, the total utility
plateaus until it selects the sixth modality—the sixth modality is highly complementary
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Figure 7: Results for the appliances data set with linear regressor (first row), neural network
(second row), and regressor with VAE-encoded features (third row).
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Figure 8: Results for the communities and crime data set with linear regressor (first row),
neural network (second row) and regressor with VAE-encoded features (third row).

to the selected ones, but this information is not accounted by MCI ranking. Algorithm 1
accounts for this information, and selects a modality set with steadily increasing utility.

Communities and Crime. The experiment results are shown in Fig. 8.
Learning utility The utility under both models demonstrates approximate submodularity

and monotonicity. However, compared to previous data sets, the trend is less clear due to the
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small utility gap between using one modality and using all modalities—this often happens
when one or a few modalities already have sufficient information to solve the regression task.

Selection algorithms Algorithm 1 consistently outperforms MCI ranking and the random
baseline under both models. Under the neural network setting, Algorithm 1 reaches near-
optimal performance using only 6 modalities, while MCI ranking uses 14. In addition, the
utility of MCI ranking using the neural network shows a “plateau then increase” pattern
because multiple high-utility modalities share overlapping information. This indicates that
MCI ranking does not perform well at selecting complementary modalities, while Algorithm 1
does not have this shortcoming.

Feature extractors Comparing the last two rows, we can see that the regressor trained
on VAE-encoded features shows a clearer diminishing return for both Algorithm 1 and MCI
ranking. However, this pattern is achieved at the cost of lower performance, as shown by
the lower test R-squared for the VAE-encoded features. This may be due to the fact that
the features extracted by VAE are not dedicated to the regression task, as the regression
targets are not used during VAE training.

7. Related Work

Multimodal Learning. Multimodal learning is a vital research area with many applica-
tions (Liu et al., 2017; Pittermann et al., 2010; Frantzidis et al., 2010). Theoretically, Huang
et al. (2021) showed that learning with more modalities achieves a smaller population risk,
and this marginal benefit towards prediction could be upper bounded. But the existing mea-
sure of marginal benefit (Huang et al., 2021) is hard to understand or be easily estimated,
and it does not provide further insight on the emerging modality selection problem.
Submodular Optimization. Under the benign property of submodularity, many subset
selection problems, which are otherwise intractable, now admit efficient approximate solu-
tions (Fujishige, 2005; Iwata, 2008; Krause and Golovin, 2014). The first study of greedy
algorithms over submodular set function dates back to Nemhauser et al. (1978). Since then,
submodular optimization has been widely applied to diverse domains such as machine learn-
ing (Wei et al., 2015) , distributed computing, and social network analysis (Zhuang et al.,
2013). A typical type of problem is submodular maximization, which can be subject to a
variety of constraints such as cardinality, matroid, or knapsack constraints (Lee et al. (2010);
Iyer and Bilmes (2013)). In our case, we extended results from Nemhauser et al. (1978) to
the case of approximate submodularity of mutual information for multimodal learning.
Feature Selection. Following Chandrashekar and Sahin (2014), we categorize feature
selection methods into filter method, wrapper method and embedded method.

Filter methods rank features by certain criteria and select by ordering. The ranking can
be based on: correlation criteria (Weston et al., 2003) using Pearson correlation coefficient;
information theoretic criteria using mutual information between the feature and target (Du-
mais et al., 1998); importance criteria using permutation feature importance (Breiman,
2001); game theoretic criteria using Shapley value (Shapley, 1952) or computationally
tractable variants (Lundberg and Lee, 2017). However, criteria such as Pearson correla-
tion and variance in filter methods are specifically designed for univariate features—they
are not well-defined for a subset of features (i.e., a modality), which directly hinders their
applications in modality selection. Note that formulation in Dumais et al. (1998) is the same
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as our MCI ranking in the classification setting, except that Dumais et al. (1998) provides no
theoretical guarantee on the quality of the selected features. In comparison, we first prove
the submodularity of our utility function under a mild assumption of the data generative
process, then provide a provable guarantee on the quality of the selected modalities.

Wrapper methods evaluate feature subsets by prediction performance. Two of the most
representative algorithms are sequential feature selection (SFS) and sequential backward
selection (SBS) (Pudil et al., 1994). SFS starts with an empty set, then adds one feature at a
time which achieves the best predictor performance. SBS, also known as sequential backward
elimination, starts with the full set and removes one feature at a time whose removal gives
the lowest decrease in predictor performance. However, SBS is unfit for our context, because
modality selection aims to select the most useful subset under computational resource limit
(e.g., evaluating as few modalities as possible). Mutual information based feature selection
(MIFS) (Battiti, 1994) uses an objective to maximize the MI between features and class
output, while minimizing the MI between the selected feature and the subset of chosen
features, i.e., I(XM ;Y ) − I(XM ;XN ). In their case, XM is the selected feature and XN

corresponds to the subset of chosen features. In comparison, we maximize the conditional
MI, i.e., I(XM ;Y | XN ) = I(XM ∪XN ;Y )− I(XN ;Y ).

Embedded methods incorporate feature selection as part of training. LASSO (Tibshi-
rani, 1996) and Ridge (Hoerl and Kennard, 2000) regression use regularization to enforce
the model to only attend to important features. Similarly, weight-based methods (Mundra
and Rajapakse, 2009) determine the feature importance by classifier weights, where higher
weights indicate higher importance. Optimal brain damage (OBD) (LeCun et al., 1989) uses
the second-order derivative to determine the connection weights, then prunes the unimpor-
tant features. A key distinction between this line of work and our modality selection setting
is that embedded methods often do not provide an option to specify a cardinality constraint,
i.e., the number of features allowed to get selected, as their selection process is performed
implicitly during optimization. In addition, similar to SBS, embedded methods also require
training on the whole feature set, which violates the purpose of modality selection.

One key novelty of our work beyond existing standard feature selection methods lies in our
theoretical analysis based on submodularity. We identify suitable independence assumptions
for the modality selection problem that are essential for the applicability of efficient algorith-
mic design from the submodular optimization literature. On the contrary, we do not find any
feature selection approaches that directly employ submodularity on loss functions for both
classification and regression problems under realistic assumptions. The reason behind this
scarcity is the inherent difficulty in achieving submodularity in the feature selection context.
At the feature level, submodularity is in general unattainable due to its reliance on strong
independence assumptions, which is unrealistic and impractical in real-world scenarios.

For example, in our evaluated PEMS-SF data set, each feature represents the occupancy
of traffic lanes at a specific time step, whereas each modality captures the occupancy over
a time horizon. Conditioned on the label (day of the week), the features are clearly cor-
related since traffic occupancy cannot undergo sudden changes. Meanwhile, however, the
modalities are approximately independent (Table 1), as a modality represents the whole
time series within a single day. It also provides little value to quantify the utility of all
features individually, as each isolated feature has negligible predictive utility for the target.
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Feature Selection with Submodularity. The literature in feature selection with sub-
modularity primarily focused on linear regression problems. However, even in this con-
strained context, the applicability of submodularity is largely hindered by strong inde-
pendence assumptions. For instance, Das and Kempe (2008) identifies that metrics like
R-squared significantly deviate from submodularity, necessitating the imposition of strong
conditions, such as absence of conditional suppressors, to enforce submodularity. Das and
Kempe (2011) relaxes the condition and proposes submodularity ratio to measure the close-
ness of a function to submodularity. They also derive a relaxed performance guarantee for
the greedy algorithm depending on the deviation of the utility function from submodularity.
Khanna et al. (2017) further uses the submodularity ratio to derive performance bound for
variants of the greedy algorithm, including stochastic greedy and distributed greedy.

In addition, submodularity is rarely applied to classification problems. The closest work
to our knowledge is Kusner et al. (2014), where they propose a tree of classifier model
and apply approximate submodularity for each node of the tree. Notably, the application
is specific to optimizing test-time CPU cost, and does not address the broader context of
a general classification setting. The scarcity of literature in this domain further validates
our claim that at the feature level, submodularity is in general unattainable especially in
the classification setting. Note that although there exists works applying submodularity to
feature selection problems (Kawahara et al., 2009; Liu et al., 2013), they study submodularity
on surrogate utility functions instead of directly on loss functions.

In comparison, we provide the first unified theoretical framework based on submodularity
for tackling the modality selection problem in both the classification and regression settings.

8. Conclusion

We formulate a theoretical framework to study modality selection in multimodal learning.
Under our framework, we propose a generic function that quantifies the learning utility of
a modality, and identifies proper assumption(s) suitable for modeling heterogeneous mul-
timodal data in various scenarios. We demonstrate the expressiveness and effectiveness of
our framework in two classic learning settings. In classification setting with cross-entropy
loss, we show the utility function manifests as Shannon mutual information. In regression
setting with quadratic loss, the utility function manifests as the variance of the conditional
expectation. In both settings, the utility function emits approximate submodularity, which
allows us to derive efficient modality selection algorithms with an optimality guarantee. We
connect feature importance scores to the context of modality selection, in which we can
compute the Shapley value and MCI of a modality under tractable complexity. We evaluate
our results on 2 synthetic and 4 real-world data sets.
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Appendix A. Preliminary

Proposition A.1. Let X ∈ X , Y ∈ {0, 1} be random variables, H be the function class of
all valid binary classifiers, i.e., H = {h : X → [0, 1]}, and `(·, ·) be the cross-entropy loss.
We have:

inf
h∈H

E[`(Y, h(X))] = H(Y | X)

Proof Let x, ŷ be the instantiation of X, Ŷ respectively, where Ŷ := h(X). 1(·) denotes the
indicator function, and DKL(· ‖ ·) denotes the Kullback–Leibler divergence.

ED[`(Y, h(X))] = EX,Y [−1(Y = 1) log Ŷ − 1(Y = 0) log(1− Ŷ )]

= − EX [EY |x[1(Y = 1) log ŷ + 1(Y = 0) log(1− ŷ)]]

= − EX [Pr(Y = 1 | x) log ŷ + Pr(Y = 0 | x) log(1− ŷ)]

= EX [Pr(Y = 1 | x) log
1

ŷ
+ Pr(Y = 0 | x) log

1

1− ŷ
]

= EX [Pr(Y = 1 | x) log
Pr(Y = 1 | x)

ŷ
+ Pr(Y = 0 | x) log

Pr(Y = 0 | x)

1− ŷ
]

+ EX [−Pr(Y = 1 | x) log Pr(Y = 1 | x)− Pr(Y = 0 | x) log Pr(Y = 0 | x)]

= EX [DKL(Pr(Y | x) ‖ h(x))] + EX [H(Y | x)]

= DKL(Pr(Y | X) ‖ h(X)) +H(Y | X)

Since H(Y | X) ≥ 0 and is unrelated to h(X), ED[`(Y, h(X))] is minimum when h(X) =
Pr(Y | X).

Proposition A.2. Let X, Y be random variables, f(X) be any function of X, we have:

inf
f

E[(Y − f(X))2] = E[Var(Y | X)]

Proof By the law of total expectation,

E[(Y − f(X))2] = E[(Y − E[Y | X] + E[Y | X]− f(X))2]

= E[E[(Y − E[Y | X] + E[Y | X]− f(X))2 | X]]

= E[E[(Y − E[Y | X])2 | X]] + E[E[(E[Y | X]− f(X))2 | X]]

+ 2E[E[(Y − E[Y | X])(E[Y | X]− f(X)) | X]]

Because E[g(X)Y | X] = g(X)E[Y | X] for any function g(X), we can see that:

E[E[(Y − E[Y | X])(E[Y | X]− f(X)) | X]] = 0

Applying the definition of conditional variance, the equation above can be simplified as:

E[(Y − f(X))2] = E[E[(Y − E[Y | X])2 | X]] + E[E[(E[Y | X]− f(X))2 | X]]

= E[Var(Y | X)] + E[(E[Y | X]− f(X))2]

Since E[Var(Y | X)] ≥ 0 and unaffected by f(X), E[(Y − f(X))2] is minimum when
f(X) = E[Y | X].
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Appendix B. Proofs for Main Text

Proposition 3.1. Given Y ∈ {0, 1} and `(Y, Ŷ ) := 1(Y = 1) log Ŷ + 1(Y = 0) log(1− Ŷ ),
fu(S) = I(S;Y ).

Proof By Definition 3.1, we have:

fu(S) = inf
c∈Y

E[`(Y, c)]− inf
h∈H

E[`(Y, h(S))]. (11)

By Proposition A.1, we directly have

inf
h∈H

E[`(Y, h(S))] = H(Y | S).

Also, by the definition of log loss,

inf
c∈Y

E[`(Y, c)] = inf
c∈Y

Pr(Y = 1) log c+ Pr(Y = 0) log(1− c).

It is clear that c = Pr(Y = 1) is the minimizer, namely

inf
c∈Y

E[`(Y, c)] = H(Y ).

This result is intuitive because knowing the constant c does not help reduce any uncertainty
in the label Y . Plugging in the derivation back into Equation (11), we have

fu(S) = H(Y )−H(Y | S)

= I(S;Y ).

Proposition 3.2. ∀M ⊆ N ⊆ V , I(N ;Y )− I(M ;Y ) = I(N \M ;Y |M) ≥ 0.

Proof Let N := {X1, ..., Xn}, M := {X1, ..., Xm}, n ≥ m.

I(N ;Y )− I(M ;Y ) =
n∑

i=1

I(Xi;Y | Xi−1, ..., X1)−
m∑
i=1

I(Xi;Y | Xi−1, ..., X1)

=
n∑

i=m+1

I(Xi;Y | Xi−1, ..., X1)

= I(N \M ;Y |M)

≥ 0

Proposition 3.3. Under Assumption 3.1, I(S;Y ) is ε-approximately submodular, i.e., ∀A ⊆
B ⊆ V , e ∈ V \B, I(A ∪ {e};Y )− I(A;Y ) + ε ≥ I(B ∪ {e};Y )− I(B;Y ).
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Proof For A, we have:

I(A ∪ {e};Y )− I(A;Y ) = I({e};Y | A)

= I({e};Y,A)− I({e};A)

= I({e};Y ) + I({e};A | Y )− I({e};A)

Similarly, I(B ∪ {e};Y )− I(B;Y ) = I({e};Y ) + I({e};B | Y )− I({e};B). Given Assump-
tion 3.1 holds, we denote I({e};A | Y ) = εA and I({e};B | Y ) = εB where εA, εB ≤ ε. In the
worst case where εA = 0, strict submodularity is still satisfied if εB ≤ I({e};B)− I({e};A),
i.e.,

I(B ∪ {e};Y )− I(B;Y ) = I({e};Y ) + I({e};B | Y )− I({e};B)

= I({e};Y )− I({e};B) + εB

≤ I({e};Y )− I({e};B) + I({e};B)− I({e};A)

= I(A ∪ {e};Y )− I(A;Y )

But if εB > I({e};B)− I({e};A), strict submodularity will not hold. However, because
εB ≤ ε, we can define approximate submodularity characterized by the constant ε ≥ 0.
Specifically:

I(B ∪ {e};Y )− I(B;Y ) = I({e};Y ) + I({e};B | Y )− I({e};B)

= I({e};Y )− I({e};B) + εB

≤ I({e};Y )− I({e};B) + ε

≤ I({e};Y )− I({e};A) + ε

≤ I({e};Y )− I({e};A) + εA + ε

≤ I(A ∪ {e};Y )− I(A;Y ) + ε

Proposition 3.4. Given S ⊆ V and `(Y, Ŷ ) := (Y − Ŷ )2, we have fu(S) = Var(E[Y | S]).

Proof By Definition 3.1 and Proposition A.2, we have:

fu(S) = inf
c∈Y

E[(Y − c)2]− inf
h∈H

E[(Y − h(S))2]

= E[(Y − E[Y ])2]− E[(Y − E[Y | S])2]

= Var(Y )− E[Var(Y | S)]

= Var(E[Y | S])

Proposition 3.5. ∀M ⊆ N ⊆ V , Var(E[Y | N ]) − Var(E[Y | M ]) = E[Var(E[Y | N ] |
M)] ≥ 0.
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Proof Let K = E[Y | N ]. Then by the law of total variance,

Var(E[Y | N ]) = Var(E[K |M ]) + E[Var(K |M)]

Further, by the law of total expectation, we have:

Var(E[K |M ]) = Var(E[E[Y | N ] |M ]) = Var(E[Y |M ])

Therefore,

Var(E[Y | N ])−Var(E[Y |M ]) = Var(E[Y |M ]) + E[Var(E[Y | N ] |M)]−Var(E[Y |M ])

= E[Var(E[Y | N ] |M)]

≥0

Proposition 3.6. Under Assumption 3.2 and Assumption 3.3, E[Y | S] is linear in S for
any S ⊆ V ′.

Proof Recall that given Φ(V ) ∼ N (µ,Σ) (Assumption 3.3), we have Σ = QΛQ>, and V ′ =
Q−1Φ(V ) ∼ N (0,Λ). Because V ′ is a linear transformation of Φ(V ), under Assumption 3.2,
E[Y | V ′] = E[Y | Q−1Φ(V )] is also linear. Let E[Y | V ′] :=

∑
Xi∈V ′ αiXi + α, then we can

show the following for any S ⊆ V ′.
By the law of total expectation,

E[Y | S] = E[E[Y | V ′] | S]

= E[
∑

Xi∈V ′

αiXi + α | S]

=
∑
Xi∈S

αiE[Xi | S] +
∑

Xi∈V ′\S

αiE[Xi | S] + E[α | S]

Because V ′ ∼ N (0,Λ) and Λ is diagonal, each distinct pair of Xi, Xj from V ′ are
independent. Thus, ∀Xi ∈ S, E[Xi | S] = E[Xi | Xi] = Xi; and ∀Xi ∈ V ′ \ S, E[Xi | S] =
E[Xi]. Thus:∑

Xi∈S
αiE[Xi | S] +

∑
Xi∈V ′\S

αiE[Xi | S] + E[α | S] =
∑
Xi∈S

αiXi + c+ α

where c =
∑

Xi∈V ′\S αiE[Xi] and α are constants independent of S. This shows E[Y | S] is
linear for any S ⊆ V ′.

Proposition 3.7. Under Assumption 3.2 and Assumption 3.3, Var(E[Y | S]) is a submod-
ular function of S for any S ⊆ V ′.
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Proof
By Definition 2.1, it is equivalent to prove: ∀A ⊆ B ⊆ V ′, e ∈ V ′ \B,

Var(E[Y | A ∪ {e}])−Var(E[Y | A]) ≥ Var(E[Y | B ∪ {e}])−Var(E[Y | B])

By Proposition 3.5, we have Var(E[Y | A∪{e}])−Var(E[Y | A]) = E[Var(E[Y | A∪{e}] |
A)] for A. Similarly, apply Proposition 3.5 to B, Appendix B is simplified to:

E[Var(E[Y | A ∪ {e}] | A)] ≥ E[Var(E[Y | B ∪ {e}] | B)]

Then by Proposition 3.6, we can express E[Y | A ∪ {e}] as a linear function of A ∪ {e},
i.e.,

E[Var(E[Y | A ∪ {e}] | A)] = E[Var(
∑
Xi∈A

αiXi + αee+ c+ α | A)]

where c =
∑

Xi∈V \A∪{e} αiE[Xi] is a constant independent of A ∪ {e}.
Because each distinct pair of Xi, Xj from V ′ are independent by the construction of V ′,

we can simplify the Var(·) term from the last equation as the following:

Var(
∑
Xi∈A

αiXi + αee+ c+ α | A) = Var(
∑
Xi∈A

αiXi | A) + Var(αee | A) + Var(c | A) + Var(α | A)

= Var(
∑
Xi∈A

αiXi | Xi) + Var(αee | A)

= α2
eVar(e | A)

= α2
eVar(e)

Thus, because e /∈ B,

E[Var(E[Y | A ∪ {e}] | A)] = EA[α2
eVar(e)] = α2

eVar(e)

Similarly, E[Var(E[Y | B ∪ {e}] | B)] = α2
eVar(e). Therefore,

E[Var(E[Y | A ∪ {e}] | A)] = E[Var(E[Y | B ∪ {e}] | B)]

Theorem 4.1. Under Assumption 3.1, let q ∈ Z+, and Sp be the selected subset from
Algorithm 1 at iteration p, we have:

I(Sp;Y ) ≥ (1− e−
p
q ) max

S:|S|≤q
I(S;Y )− qε. (6)
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Proof Let S∗ := maxS:|S|≤q I(S;Y ) be the optimal subset with cardinality at most q. By
Proposition 3.2, |S∗| = q. We order S∗ as {X∗1 , ..., X∗q }. Then for all positive integer i ≤ p,

I(S∗;Y ) ≤ I(S∗ ∪ Si;Y ) (12)

= I(Si;Y ) +

q∑
j=1

I(X∗j ;Y | Si ∪ {X∗j−1, ..., X∗1}) (13)

= I(Si;Y ) +

q∑
j=1

(I({X∗j , ..., X∗1} ∪ Si;Y )− I({X∗j−1, ..., X∗1} ∪ Si;Y )) (14)

≤ I(Si;Y ) +

q∑
j=1

(I({X∗j } ∪ Si;Y )− I(Si;Y ) + ε) (15)

≤ I(Si;Y ) +

q∑
j=1

(I(Si+1;Y )− I(Si;Y ) + ε) (16)

≤ I(Si;Y ) + q(I(Si+1;Y )− I(Si;Y ) + ε) (17)

Eq. (12) is from Proposition 3.2, Eq. (13) and Eq. (14) are by the chain rule of mutual
information, Eq. (15) is from Proposition 3.3, Eq. (16) is by the definition of Algorithm 1
that I(Si+1;Y )− I(Si;Y ) is maximized in each iteration i. Let δi := I(S∗;Y )− I(Si;Y ), we
can rewrite Eq. (17) into δi ≤ q(δi−δi+1+ε), which can be rearranged into δi+1 ≤ (1− 1

q )δi+ε.
Let δ0 = I(S∗;Y ) − I(S0;Y ). Since S0 = ∅, we have δ0 = I(S∗;Y ). By the previous

results, we can upper bound the quantity δp = I(S∗;Y )− I(Sp;Y ) as follows:

δp ≤ (1− 1

q
)δp−1 + ε

≤ (1− 1

q
)((1− 1

q
)δp−2 + ε) + ε

≤ (1− 1

q
)pδ0 + (1 + (1− 1

q
) + ...+ (1− 1

q
)p−1)ε (18)

= (1− 1

q
)pδ0 + (

1− (1− 1
q )p−1+1

1− (1− 1
q )

)ε

= (1− 1

q
)pδ0 + (q − q(1− 1

q
)p)ε (19)

≤ (1− 1

q
)pδ0 + qε

≤ e−
p
q δ0 + qε (20)

Eq. (18) to Eq. (19) is through the summation of the geometric series 1 + (1− 1
q ) + ...+

(1− 1
q )p−1. Eq. (20) is by the inequality 1−x ≤ e−x for all x ∈ R. Substitute the definitions

of δp and δ0 into Eq. (20) completes the proof.
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Corollary 4.1. Assume conditions in Theorem 4.1 hold, there exists optimal predictor
h∗(Sp) = Pr(Y | Sp) such that:

E[`01(Y, h
∗(Sp))] ≤ E[`ce(Y, h

∗(Sp))] ≤ H(Y )− (1− e−
p
q )I(S∗;Y ) + qε (7)

Proof Denote the quantity (1 − e−
p
q ) maxS:|S|≤q I(S;Y ) − qε from Theorem 4.1 as letter

b. By the definition of mutual information, we have H(Y | Sp) ≤ H(Y ) − b. Following
Proposition A.1, infh:Sp→[0,1] E[`ce(Y, h(Sp))] ≤ H(Y ) − b. In other words, ∃h∗ = Pr(Y |
Sp) s.t. E[`ce(Y, h

∗(Sp))] ≤ H(Y )− b.
When the predictor is probabilistic (i.e., h(X) = 0 if and only if h(X) ≤ 0.5), `01(Y, Ŷ ) =

1(Y 6= Ŷ ) naturally extends to Y 1(Ŷ ≤ 0.5) + (1− Y )1(Ŷ > 0.5), which is upper bounded
by `ce(Y, Ŷ ) for all (Y, Ŷ ). Therefore, for the same h∗ as above, we have:

E[`01(Y, h
∗(Sp))] ≤ E[`ce(Y, h

∗(Sp))] ≤ H(Y )− b

Corollary 4.2. Assume conditions in Theorem 4.1 hold. There exists optimal predictors
h∗1(Sp) = Pr(Y | Sp), h∗2(S∗) = Pr(Y | S∗) such that:

E[`ce(Y, h
∗
1(Sp))]− E[`ce(Y, h

∗
2(S
∗))] ≤ e−

p
q I(S∗;Y ) + qε (8)

Proof Following Theorem 4.1, and denote arg maxS:|S|≤q I(S;Y ) as S∗, we have:

I(Sp;Y ) ≥ (1− e−
p
q ) max

S:|S|≤q
I(S;Y )− qε

=⇒ H(Y )−H(Y | Sp) ≥ (1− e−
p
q )(H(Y )−H(Y | S∗))− qε

=⇒ H(Y | Sp)−H(Y | S∗) ≤ e−
p
q (H(Y )−H(Y | S∗)) + qε

=⇒ H(Y | Sp)−H(Y | S∗) ≤ e−
p
q (I(S∗;Y )) + qε

Using Proposition A.1 completes the proof.

Corollary 4.3. Assume conditions in Theorem 4.2 hold. There exists an optimal predictor
h∗(Sp) = E[Y | Sp] such that:

E[(Y − h∗(Sp))2] ≤ Var(Y )− (1− e−
p
q )Var(E[Y | S∗]) (10)

Proof Apply the law of total variance and Proposition A.2 to Theorem 4.2,

Var(E[Y | Sp]) ≥ (1− e−
p
q )Var(E[Y | S∗])

=⇒ Var(Y )− E[Var(Y | Sq)] ≥ (1− e−
p
q )Var(E[Y | S∗])

=⇒ inf
h
E[(Y − h(X))2] ≤ Var(Y )− (1− e−

p
q )Var(E[Y | S∗])

=⇒ E[(Y − h∗(X))2] ≤ Var(Y )− (1− e−
p
q )Var(E[Y | S∗])
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Corollary 4.4. Assume conditions in Theorem 4.2 hold. There exists optimal predictors
h∗1(Sp) = E[Y | Sp], h∗2(S∗) = E[Y | S∗] such that:

E[(Y − h∗1(Sp))2]− E[(Y − h∗2(S∗))2] ≤ e
− p

q Var(E[Y | S∗])

Proof Apply the law of total variance and Proposition A.2 to Theorem 4.2,

Var(E[Y | Sp]) ≥ (1− e−
p
q )Var(E[Y | S∗])

=⇒ Var(Y )− E[Var(Y | Sq)] ≥ (1− e−
p
q )(Var(Y )− E[Var(Y | S∗)])

=⇒ E[Var(Y | S∗)]− E[Var(Y | Sq)] ≥ −e−
p
q (Var(Y )− E[Var(Y | S∗)])

=⇒ E[(Y − h∗1(Sp))2]− E[(Y − h∗2(S∗))2] ≤ e
− p

q Var(E[Y | S∗])

Proposition 5.1. Under Assumption 3.1, I(S;Y ) is ε-approximately sub-additive for any
S ⊆ V , i.e., I(S ∪ S′;Y ) ≤ I(S;Y ) + I(S′;Y ) + ε.

Proof

I(S ∪ S′;Y ) = I(S;Y ) + I(S′;Y | S)

= I(S;Y ) + I(S ∪ Y ;S′)− I(S;S′)

= I(S;Y ) + I(S′;Y ) + I(S;S′ | Y )− I(S;S′) (21)
≤ I(S;Y ) + I(S′;Y ) + ε (22)

Eq. (21) to Eq. (22) because I(S;S′ | Y ) ≤ ε by Assumption 3.1, and I(S;S′) is always
non-negative.

Proposition 5.2. If Assumption 5.1 holds, I(S;Y ) is ε-approximately super-additive for
any S ⊆ V , i.e., ∀S, S′ ⊆ V, S ∩ S′ = ∅, I(S ∪ S′;Y ) ≥ I(S;Y ) + I(S′;Y )− ε.

Proof Similarly to the proof of Proposition 5.1, we have:

I(S ∪ S′;Y ) = I(S;Y ) + I(S′;Y ) + I(S;S′ | Y )− I(S;S′) (23)
≥ I(S;Y ) + I(S′;Y )− ε (24)

Eq. (23) to Eq. (24) because I(S;S′) ≤ ε by Assumption 5.1, and I(S;S′ | Y ) is non-
negative.

Proposition 5.3. If I(S;Y ) is both ε-approximately sub- and super-additive for any S ⊆ V ,
we have I(Xi;Y )− ε ≤ φI,Xi ≤ I(Xi;Y ) + ε for any Xi ∈ V .
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Proof By Proposition 5.1 and Proposition 5.2, for any Xi ∈ V and S ⊆ V , we have:

I(Xi;Y )− ε ≤ I(S ∪ {Xi};Y )− I(S;Y ) ≤ I(Xi;Y ) + ε

Let’s first apply the right inequality in Appendix B to Definition 2.2. Because I(Xi;Y )+ε
is independent of S, we can simplify the calculation of the upper bound of φI,Xi as follows.

φI,Xi =
∑

S⊆V \{Xi}

|S|!(|V | − |S| − 1)!

|V |!
(I(S ∪ {i};Y )− I(S;Y ))

≤
∑

S⊆V \{i}

|S|!(|V | − |S| − 1)!

|V |!
(I(Xi;Y ) + ε)

=

|V |−1∑
|S|=0

(
|V | − 1

|S|

)
|S|!(|V | − |S| − 1)!

|V |!
(I(Xi;Y ) + ε)

=

|V |−1∑
|S|=0

(|V | − 1)!

|S|(|F | − 1− |S|)!
|S|!(|V | − |S| − 1)!

|V |!
(I(Xi;Y ) + ε)

=

|V |−1∑
|S|=0

1

|V |
(I(Xi;Y ) + ε)

= I(Xi;Y ) + ε

Applying the same procedure to the left inequality in Appendix B to Definition 2.2, we
have φI,Xi ≥ I(Xi;Y )− ε. Combining both results completes the proof.

Proposition 5.4. Under Assumption 3.1, we have I(Xi;Y ) ≤ φmci
I,Xi
≤ I(Xi;Y ) + ε for any

Xi ∈ V .

Proof By Proposition 3.3, I(·;Y ) would be approximately submodular under Assump-
tion 3.1, thus:

I(Xi;Y ) + ε = I(∅ ∪Xi;Y )− I(∅;Y ) + ε

≥ max
S⊆V

I(S ∪Xi;Y )− I(S;Y ) = φmci
I,Xi

On the other hand, if arg maxS⊆V I(S ∪ Xi;Y ) − I(S;Y ) = ∅, we have φmci
I,Xi

= I(∅ ∪
Xi;Y )− I(∅;Y ) = I(Xi;Y ). If arg maxS⊆V I(S ∪Xi;Y )− I(S;Y ) is some non-empty sub-
set A, we have φmci

I,Xi
= I(A ∪ Xi;Y ) − I(A;Y ) ≥ I(∅ ∪ Xi;Y ) − I(∅;Y ). In this case,

φmci
I,Xi
≥ I(Xi;Y ). Combining both inequalities completes the proof.

Proposition 5.5. Under Assumption 3.2 and Assumption 3.3,

• Var(E[Y | S]) is additive for any S ⊆ V ′.
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• φVar(E[Y |·]),Xi
= φmci

Var(E[Y |·]),Xi
= Var(E[Y | Xi]) for any Xi ∈ V ′.

Proof Additivity. It is equivalent to show: ∀S, S′ ⊆ V ′, S ∩ S′ = ∅,

Var(E[Y | S ∪ S′]) = Var(E[Y | S]) + Var(E[Y | S′])

First, by the law of total variance, Var(E[Y | S ∪ S′]) = Var(E[Y | S]) + ES [Var(E[Y |
S ∪ S′] | S)]. Thus we can show the following instead:

ES [Var(E[Y | S ∪ S′] | S)] = Var(E[Y | S′])

Since E[Y | V ′] is linear by Proposition 3.6, we can denote E[Y | V ′] :=
∑

Xi∈V ′ αiXi+α.
Accordingly,

E[Y | S ∪ S′] = E[E[Y | V ′] | S ∪ S′]

= E[
∑

Xi∈V ′

αiXi + α | S ∪ S′]

=
∑

Xi∈S∪S′

αiE[Xi | S ∪ S′] +
∑

Xi∈V ′\(S∪S′)

αiE[Xi | S ∪ S′] + E[α | S ∪ S′]

Each distinct pair of Xi, Xj ∈ V ′ are independent by the definition of V ′. Thus, for
any Xi ∈ S ∪ S′, E[Xi | S ∪ S′] = E[Xi | Xi] = Xi; and for any Xi ∈ V \ (S ∪ S′),
E[Xi | S ∪ S′] = E[Xi]. E[Y | S ∪ S′] can be further simplified accordingly:

E[Y | S ∪ S′] =
∑
Xi∈S

αiXi +
∑

Xi∈S′

αiXi +
∑

Xi∈V ′\(S∪S′)

αiE[Xi] + α

where α and each E[Xi], Xi ∈ V ′ \ (S ∪ S′) are constants.
By the independence of variables in V ′ again,

Var(E[Y | S ∪ S′] | S) = Var(
∑
Xi∈S

αiXi | S) + Var(
∑

Xi∈S′

αiXi | S)

+ Var(
∑

Xi∈V ′\(S∪S′)

αiE[Xi] | S) + Var(α | S)

= Var(
∑
Xi∈S

αiXi | Xi) + Var(
∑

Xi∈S′

αiXi | S)

=
∑

Xi∈S′

α2
i Var(Xi)

Since S∩S′ = ∅, we have ES [Var(E[Y | S∪S′] | S)] = ES [
∑

Xi∈S′ α2
i Var(Xi)] =

∑
Xi∈S′ α2

i Var(Xi).
Finally, we can also derive the following for Var(E[Y | S′]) by Assumption 3.2 and the

independence between any Xi, Xj ∈ V ′, i 6= j.

Var(E[Y | S′]) = Var(
∑

Xi∈S′

αiXi +
∑

Xi∈V ′\S′

αiE[Xi] + α)

=
∑

Xi∈S′

α2
i Var(Xi)
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Thus, ES [Var(E[Y | S ∪ S′] | S)] = Var(E[Y | S′]). And Var(E[Y | S]) is additive for any
S ⊆ V ′.
Shapley. By additivity, for any Xi ∈ V ′ and S ⊆ V ′, we have Var(E[Y | S ∪ {Xi}]) −
Var(E[Y | S]) = Var(E[Y | Xi]). Follow similar steps as the proof of Proposition 5.3, we can
derive that φVar(E[Y |·]),Xi

= Var(E[Y | Xi]) and thus complete the proof.
MCI. Denote v1(·) = Var(E[Y | ·]). By Definition 2.3 and additivity, for any Xi ∈ V ′ and
S ⊆ V ′,

φmci
v1,Xi

= max
S′⊆V ′

(v1(S ∪ {Xi})− v1(S)) = max
S′⊆V ′

v1(Xi) = v1(Xi)

Appendix C. Experimental Details

Regression Synthetic Data Set. To construct the synthetic data set, the key part is
to construct a covariance matrix with desired block-diagonal and off-diagonal values. We
control the block-diagonal values by the matrix A and the off-diagonal values by the matrix
B. For matrix B, we fill in each entry by uniformly sampling from [−1, 1], then multiply it
with its transpose to ensure B is positive semi-definite (PSD). Then, we normalize B by its
row sum to ensure that each entry is still between -1 and 1 after multiplication. Similarly,
for matrix A, we construct 10 PSD matrices with desired block sizes, and fill them in the
diagonal. If we want the block-diagonal values to range from [−1, 1] and the off-diagonal
values to range from [−ε, ε], the covariance matrix will be constructed as

cov = (1− ε)A+ εB

Due to the fact that the addition of two PSD matrices is still PSD, the matrix cov is a valid
covariance matrix.
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