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Abstract
We study generalization properties of the area under the ROCcurve (AUC), a quantity that has been
advocated as an evaluation criterion for the bipartite ranking problem. The AUC is a different term
than the error rate used for evaluation in classification problems; consequently, existing generaliza-
tion bounds for the classification error rate cannot be used to draw conclusions about the AUC. In
this paper, we define the expected accuracy of a ranking function (analogous to the expected error
rate of a classification function), and derive distribution-free probabilistic bounds on the deviation
of the empirical AUC of a ranking function (observed on a finite data sequence) from its expected
accuracy. We derive both a large deviation bound, which serves to bound the expected accuracy of
a ranking function in terms of its empirical AUC on a test sequence, and a uniform convergence
bound, which serves to bound the expected accuracy of a learned ranking function in terms of its
empirical AUC on a training sequence. Our uniform convergence bound is expressed in terms of a
new set of combinatorial parameters that we term the bipartite rank-shatter coefficients; these play
the same role in our result as do the standard VC-dimension related shatter coefficients (also known
as the growth function) in uniform convergence results for the classification error rate. A compar-
ison of our result with a recent uniform convergence result derived by Freund et al. (2003) for a
quantity closely related to the AUC shows that the bound provided by our result can be considerably
tighter.
Keywords: generalization bounds, area under the ROC curve, ranking, large deviations, uniform
convergence
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1. Introduction

In many learning problems, the goal is not simply to classify objects into one of afixed number
of classes; instead, aranking of objects is desired. This is the case, for example, in information
retrieval problems, where one is interested in retrieving documents from some database that are
‘relevant’ to a given query or topic. In such problems, one wants to return to the user a list of
documents that contains relevant documents at the top and irrelevant documents at the bottom; in
other words, one wants a ranking of the documents such that relevant documents are ranked higher
than irrelevant documents.

The problem of ranking has been studied from a learning perspective under a variety of settings
(Cohen et al., 1999; Herbrich et al., 2000; Crammer and Singer, 2002; Freund et al., 2003). Here we
consider the setting in which objects come from two categories, positive and negative; the learner is
given examples of objects labeled as positive or negative, and the goal isto learn a ranking in which
positive objects are ranked higher than negative ones. This captures,for example, the information
retrieval problem described above; in this case, the training examples given to the learner consist
of documents labeled as relevant (positive) or irrelevant (negative).This form of ranking problem
corresponds to the ‘bipartite feedback’ case of Freund et al. (2003); for this reason, we refer to it as
thebipartite ranking problem.

Formally, the setting of the bipartite ranking problem is similar to that of the binary classification
problem. In both problems, there is an instance spaceX from which instances are drawn, and a set
of two class labelsY which we take without loss of generality to beY = {−1,+1}. One is given a
finite sequence of labeled training examplesS= ((x1,y1), . . . ,(xM,yM))∈ (X ×Y )M, and the goal is
to learn a function based on this training sequence. However, the form ofthe function to be learned
in the two problems is different. In classification, one seeks a binary-valued functionh : X→Y that
predicts the class of a new instance inX . On the other hand, in ranking, one seeks areal-valued
function f : X → R that induces a ranking overX ; an instance that is assigned a higher value byf
is ranked higher than one that is assigned a lower value byf .

What is a good classification or ranking function? Intuitively, a good classification function
should classify most instances correctly, while a good ranking function should rank most instances
labeled as positive higher than most instances labeled as negative. At first thought, these intuitions
might suggest that one problem could be reduced to the other; that a goodsolution to one could be
used to obtain a good solution to the other. Indeed, several approachesto learning ranking functions
have involved using a standard classification algorithm that produces a classification functionh of
the formh(x) = θ( fh(x)) for some real-valued functionfh : X→R, where

θ(u) =

{

1 if u > 0
−1 otherwise

, (1)

and then takingfh to be the desired ranking function.1 However, despite the apparently close relation
between classification and ranking, on formalizing the above intuitions aboutevaluation criteria for
classification and ranking functions, it turns out that a good classificationfunction may not always
translate into a good ranking function.

1. In Herbrich et al. (2000) the problem of learning a ranking function isalso reduced to a classification problem, but
onpairsof instances.
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1.1 Evaluation of (Binary) Classification Functions

In classification, one generally assumes that examples (both training examples and future, unseen
examples) are drawn randomly and independently according to some (unknown) underlying distri-
butionD overX ×Y . The mathematical quantity typically used to evaluate a classification function
h : X→Y is then theexpected error rate(or simplyerror rate) of h, denoted byL(h) and defined as

L(h) = EXY∼D

{

I {h(X)6=Y}
}

, (2)

whereI {·} denotes the indicator variable whose value is one if its argument is true and zero other-
wise. The error rateL(h) is simply the probability that an example drawn randomly fromX ×Y
(according toD) will be misclassified byh; the quantity(1− L(h)) thus measures our intuitive
notion of ‘how often instances are classified correctly byh’. In practice, since the distributionD
is not known, the true error rate of a classification function cannot be computed exactly. Instead,
the error rate must be estimated using a finite data sample. A widely used estimate is the empirical
error rate: given a finite sequence of labeled examplesT = ((x1,y1), . . . ,(xN,yN)) ∈ (X ×Y )N, the
empirical error rate of a classification functionh with respect toT, which we denote bŷL(h;T), is
given by

L̂(h;T) =
1
N

N

∑
i=1

I {h(xi)6=yi} . (3)

When the examples inT are drawn randomly and independently fromX ×Y according toD, the
sequenceT constitutes a random sample. Much work in learning theory research has concentrated
on developing bounds on the probability that an error estimate obtained fromsuch a random sample
will have a large deviation from the true error rate. While the true error rateof a classification
function may not be exactly computable, such generalization bounds allow usto compute confidence
intervals within which the true value of the error rate is likely to be contained with high probability.

1.2 Evaluation of (Bipartite) Ranking Functions

Evaluating a ranking function has proved to be somewhat more difficult. Oneempirical quantity that
has been used for this purpose is the average precision, which relates torecall-precision curves. The
average precision is often used in applications that contain very few positive examples, such as infor-
mation retrieval. Another empirical quantity that has recently gained some attention as being well-
suited for evaluating ranking functions relates to receiver operating characteristic (ROC) curves.
ROC curves were originally developed in signal detection theory for analysis of radar images (Egan,
1975), and have been used extensively in various fields such as medical decision-making. Given a
ranking functionf : X→R and a finite data sequenceT = ((x1,y1), . . . ,(xN,yN)) ∈ (X ×Y )N, the
ROC curve off with respect toT is obtained as follows. First, a set ofN+1 classification functions
hi : X→Y , where 0≤ i ≤ N, is constructed fromf :

hi(x) = θ( f (x)−bi) ,

whereθ(·) is as defined by Eq. (1) and

bi =







f (xi) if 1 ≤ i ≤ N
(

min
1≤ j≤N

f (x j)

)

−1 if i = 0.
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The classification functionh0 classifies all instances inT as positive, while for 1≤ i≤N, hi classifies
all instances ranked higher thanxi as positive, and all others (includingxi) as negative. Next, for
each classification functionhi , one computes the (empirical) true positive and false positive rates on
T, denoted bytpri andfpri respectively:

tpri =
number of positive examples inT classified correctly byhi

total number of positive examples inT
,

fpri =
number of negative examples inT misclassified as positive byhi

total number of negative examples inT
.

Finally, the points(fpri , tpri) are plotted on a graph with the false positive rate on thex-axis and the
true positive rate on they-axis; the ROC curve is then obtained by connecting these points such that
the resulting curve is monotonically increasing. It is thearea under the ROC curve(AUC) that has
been used as an indicator of the quality of the ranking functionf (Cortes and Mohri, 2004; Rosset,
2004). An AUC value of one corresponds to a perfect ranking on the given data sequence (i.e., all
positive instances inT are ranked higher than all negative instances); a value of zero corresponds to
the opposite scenario (i.e., all negative instances inT are ranked higher than all positive instances).

The AUC can in fact be expressed in a simpler form: if the sampleT containsm positive and
n negative examples, then it is not difficult to see that the AUC off with respect toT, which we
denote byÂ( f ;T), is given simply by the following Wilcoxon-Mann-Whitney statistic (Cortes and
Mohri, 2004):

Â( f ;T) =
1

mn ∑
{i:yi=+1}

∑
{ j:y j=−1}

I { f (xi)> f (x j )}+
1
2

I { f (xi)= f (x j )} . (4)

In this simplified form, it becomes clear that the AUC off with respect toT is simply the fraction of
positive-negative pairs inT that are ranked correctly byf , assuming that ties are broken uniformly
at random.2

There are two important observations to be made about the AUC defined above. The first is
that the error rate of a classification function is not necessarily a good indicator of the AUC of a
ranking function derived from it; different classification functions with the same error rate may pro-
duce ranking functions with very different AUC values. For example, consider two classification
functionsh1,h2 given byhi(x) = θ( fi(x)), i = 1,2, where the values assigned byf1, f2 to the in-
stances in a sampleT ∈ (X ×Y )8 are as shown in Table 1. Clearly,L̂(h1;T) = L̂(h2;T) = 2/8, but
Â( f1;T) = 12/16 whileÂ( f2;T) = 8/16. The exact relationship between the (empirical) error rate
of a classification functionh of the formh(x) = θ( fh(x)) and the AUC value of the corresponding
ranking functionfh with respect to a given data sequence was studied in detail by Cortes and Mohri
(2004). In particular, they showed that when the number of positive examplesm in the given data
sequence is equal to the number of negative examplesn, the average AUC value over all possible
rankings corresponding to classification functions with a fixed (empirical) error rate` is given by
(1−`), but the standard deviation among the AUC values can be large for large`. As the proportion
of positive instancesm/(m+n) departs from 1/2, the average AUC value corresponding to an error
rate` departs from(1−`), and the standard deviation increases further. The AUC is thus a different
term than the error rate, and therefore requires separate analysis.

2. In (Cortes and Mohri, 2004), a slightly simpler form of the Wilcoxon-Mann-Whitney statistic is used, which does not
account for ties.
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xi x1 x2 x3 x4 x5 x6 x7 x8

yi -1 -1 -1 -1 +1 +1 +1 +1

f1(xi) -2 -1 3 4 1 2 5 6
f2(xi) -2 -1 5 6 1 2 3 4

Table 1: Values assigned by two functionsf1, f2 to eight instances in a hypothetical example. The
corresponding classification functions have the same (empirical) error rate, but the AUC
values of the ranking functions are different. See text for details.

The second important observation about the AUC is that, as defined above, it is an empirical
quantity that evaluates a ranking function with respect to a particular data sequence. What does the
empirical AUC tell us about the expected performance of a ranking function on future examples?
This is the question we address in this paper. The question has two parts, both of which are im-
portant for machine learning practice. First, what can be said about the expected performance of a
ranking function based on its empirical AUC on an independent test sequence? Second, what can
be said about the expected performance of a learned ranking function based on its empirical AUC
on the training sequence from which it is learned? The first part of the question concerns the large
deviation behaviour of the AUC; the second part concerns its uniform convergence behaviour. Both
are addressed in this paper.

We start by defining the expected ranking accuracy of a ranking function (analogous to the
expected error rate of a classification function) in Section 2. Section 3 contains our large deviation
result, which serves to bound the expected accuracy of a ranking function in terms of its empirical
AUC on an independent test sequence. Our conceptual approach in deriving the large deviation
result for the AUC is similar to that of (Hill et al., 2002), in which large deviationproperties of
the average precision were considered. Section 4 contains our uniformconvergence result, which
serves to bound the expected accuracy of a learned ranking function interms of its empirical AUC
on a training sequence. Our uniform convergence bound is expressed in terms of a new set of
combinatorial parameters that we term the bipartite rank-shatter coefficients; these play the same
role in our result as do the standard shatter coefficients (also known as the growth function) in
uniform convergence results for the classification error rate. A comparison of our result with a
recent uniform convergence result derived by Freund et al. (2003) for a quantity closely related to
the AUC shows that the bound provided by our result can be considerably tighter. We conclude with
a summary and some open questions in Section 5.

2. Expected Ranking Accuracy

We begin by introducing some additional notation. As in classification, we shallassume that all
examples are drawn randomly and independently according to some (unknown) underlying distri-
bution D over X ×Y . The notationD+1 and D−1 will be used to denote the class-conditional
distributionsDX|Y=+1 andDX|Y=−1, respectively. We use an underline to denote a sequence,e.g.,
y ∈ Y N to denote a sequence of elements inY . We shall find it convenient to decompose a data
sequenceT = ((x1,y1), . . . ,(xN,yN))∈ (X ×Y )N into two components,TX = (x1, . . . ,xN)∈X N and
TY = (y1, . . . ,yN) ∈ Y N. Several of our results will involve the conditional distributionDTX |TY=y for
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some label sequencey= (y1, . . . ,yN)∈Y N; this distribution is simplyDy1× . . .×DyN .3 If the distri-
bution is clear from the context it will be dropped in the notation of expectations and probabilities,
e.g., EXY ≡ EXY∼D . As a final note of convention, we useT ∈ (X ×Y )N to denote a general data
sequence (e.g., an independent test sequence), andS∈ (X ×Y )M to denote a training sequence.

We define below a quantity that we term the expected ranking accuracy; thepurpose of this
quantity will be to serve as an evaluation criterion for ranking functions (analogous to the use of the
expected error rate as an evaluation criterion for classification functions).

Definition 1 (Expected ranking accuracy) Let f : X→R be a ranking function onX . Define the
expected ranking accuracy(or simplyranking accuracy) of f , denoted by A( f ), as follows:

A( f ) = EX∼D+1,X′∼D−1

{

I { f (X)> f (X′)}+
1
2

I { f (X)= f (X′)}

}

. (5)

The ranking accuracyA( f ) defined above is simply the probability that an instance drawn ran-
domly according toD+1 will be ranked higher byf than an instance drawn randomly according to
D−1, assuming that ties are broken uniformly at random; the quantityA( f ) thus measures our intu-
itive notion of ‘how often instances labeled as positive are ranked higherby f than instances labeled
as negative’. As in the case of classification, the true ranking accuracydepends on the underlying
distribution of the data and cannot be observed directly. Our goal shall be to derive generalization
bounds that allow the true accuracy of a ranking function to be estimated from its empirical AUC
with respect to a finite data sample. The following simple lemma shows that this makes sense, for
given a fixed label sequence, the empirical AUC of a ranking functionf is an unbiased estimator of
the expected ranking accuracy off :

Lemma 2 Let f : X→R be a ranking function onX , and let y= (y1, . . . ,yN) ∈ Y N be a finite label
sequence. Then

ETX |TY=y
{

Â( f ;T)
}

= A( f ) .

Proof Let m be the number of positive labels iny, andn the number of negative labels iny. Then
from the definition of empirical AUC (Eq. (4)) and linearity of expectation, we have

ETX |TY=y
{

Â( f ;T)
}

=
1

mn ∑
{i:yi=+1}

∑
{ j:y j=−1}

EXi∼D+1,Xj∼D−1

{

I { f (Xi)> f (Xj )}+
1
2

I { f (Xi)= f (Xj )}

}

=
1

mn ∑
{i:yi=+1}

∑
{ j:y j=−1}

A( f )

= A( f ) .

3. Note that, since the AUC of a ranking functionf with respect to a data sequenceT ∈ (X ×Y )N is independent of the
actual ordering of examples in the sequence, our results involving the conditional distributionDTX |TY=y for some label

sequencey = (y1, . . . ,yN) ∈ Y N depend only on the numberm of positive labels iny and the numbern of negative
labels iny. We choose to state our results in terms of the distributionDTX |TY=y ≡Dy1× . . .×DyN only because this
is more general than stating them in terms ofDm

+1×Dn
−1.
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We are now ready to present the main results of this paper, namely, a large deviation bound in
Section 3 and a uniform convergence bound in Section 4. We note that ourresults are all distribution-
free, in the sense that they hold for any distributionD overX ×Y .

3. Large Deviation Bound for the AUC

In this section we are interested in bounding the probability that the empirical AUC of a ranking
function f with respect to a (random) test sequenceT will have a large deviation from its expected
ranking accuracy. In other words, we are interested in bounding probabilities of the form

P
{∣

∣Â( f ;T)−A( f )
∣

∣≥ ε
}

for given ε > 0. Our main tool in deriving such a large deviation bound will be the following
powerful concentration inequality of McDiarmid (1989), which bounds thedeviation of any function
of a sample for which a single change in the sample has limited effect:

Theorem 3 (McDiarmid, 1989) Let X1, . . . ,XN be independent random variables with Xk taking
values in a set Ak for each k. Letφ : (A1×·· ·×AN)→R be such that

sup
xi∈Ai ,x′k∈Ak

∣

∣φ(x1, . . . ,xN)−φ(x1, . . . ,xk−1,x
′
k,xk+1, . . . ,xN)

∣

∣ ≤ ck .

Then for anyε > 0,

P{|φ(X1, . . . ,XN)−E{φ(X1, . . . ,XN)}| ≥ ε} ≤ 2e−2ε2/∑N
k=1 c2

k .

Note that whenX1, . . . ,XN are independent bounded random variables withXk ∈ [ak,bk] with
probability one, andφ(X1, . . . ,XN) = ∑N

k=1Xk, McDiarmid’s inequality (withck = bk−ak) reduces
to Hoeffding’s inequality. Next we define the following quantity which appears in several of our
results:

Definition 4 (Positive skew) Let y= (y1, . . . ,yN) ∈ Y N be a finite label sequence of length N∈ N.
Define thepositive skewof y, denoted byρ(y), as follows:

ρ(y) =
1
N ∑
{i:yi=+1}

1. (6)

The following is the main result of this section:

Theorem 5 Let f : X→R be a fixed ranking function onX and let y= (y1, . . . ,yN) ∈ Y N be any
label sequence of length N∈ N. Let m be the number of positive labels in y, and n= N−m the
number of negative labels in y. Then for anyε > 0,

PTX |TY=y

{∣

∣Â( f ;T)−A( f )
∣

∣≥ ε
}

≤ 2e−2mnε2/(m+n)

= 2e−2ρ(y)(1−ρ(y))Nε2
.
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Proof Given the label sequencey, the random variablesX1, . . . ,XN are independent, with eachXk

taking values inX . Now, defineφ : X N→R as follows:

φ(x1, . . . ,xN) = Â( f ;((x1,y1), . . . ,(xN,yN))) .

Then, for eachk such thatyk = +1, we have the following for allxi ,x′k ∈ X :

∣

∣φ(x1, . . . ,xN)−φ(x1, . . . ,xk−1,x′k,xk+1 . . . ,xN)
∣

∣

=
1

mn

∣

∣

∣

∣

∣

∑
{ j:y j=−1}

(

(

I { f (xk)> f (x j )}+
1
2

I { f (xk)= f (x j )}

)

−

(

I { f (x′k)> f (x j )}+
1
2

I { f (x′k)= f (x j )}

)

)∣

∣

∣

∣

∣

≤ 1
mn

n

=
1
m

.

Similarly, for eachk such thatyk =−1, one can show for allxi ,x′k ∈ X :

∣

∣φ(x1, . . . ,xN)−φ(x1, . . . ,xk−1,x′k,xk+1 . . . ,xN)
∣

∣ ≤ 1
n

.

Thus, takingck = 1/m for k such thatyk = +1 andck = 1/n for k such thatyk =−1, and applying
McDiarmid’s theorem, we get for anyε > 0,

PTX |TY=y

{∣

∣

∣
Â( f ;T)−ETX |TY=y

{

Â( f ;T)
}

∣

∣

∣
≥ ε
}

≤ 2e−2ε2/(m( 1
m)2+n( 1

n)2)

= 2e−2mnε2/(m+n) .

The result follows from Lemma 2.

We note that the result of Theorem 5 can be strengthened so that the conditioning is only on
the numbersm andn of positive and negative labels, and not on the specific label vectory. From
Theorem 5, we can derive a confidence interval interpretation of the bound that gives, for any
0 < δ ≤ 1, a confidence interval based on the empirical AUC of a ranking function(on a random
test sequence) which is likely to contain the true ranking accuracy with probability at least 1− δ.
More specifically, we have:

Corollary 6 Let f : X→R be a fixed ranking function onX and let y= (y1, . . . ,yN) ∈ Y N be any
label sequence of length N∈ N. Then for any0 < δ≤ 1,

PTX |TY=y

{

∣

∣Â( f ;T)−A( f )
∣

∣≥
√

ln
(

2
δ
)

2ρ(y)(1−ρ(y))N

}

≤ δ .

Proof This follows directly from Theorem 5 by setting 2e−2ρ(y)(1−ρ(y))Nε2
= δ and solving forε.
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We note that a different approach for deriving confidence intervals for the AUC has recently
been taken by Cortes and Mohri (2005); in particular, their confidenceintervals for the AUC are
constructed from confidence intervals for the classification error rate.

Theorem 5 also allows us to obtain an expression for a test sample size that issufficient to
obtain, for given 0< ε,δ≤ 1, anε-accurate estimate of the ranking accuracy withδ-confidence:

Corollary 7 Let f : X→R be a fixed ranking function onX and let0< ε,δ≤1. Let y= (y1, . . . ,yN)∈
Y N be any label sequence of length N∈ N. If

N ≥
ln
(

2
δ
)

2ρ(y)(1−ρ(y))ε2 ,

then

PTX |TY=y

{∣

∣Â( f ;T)−A( f )
∣

∣≥ ε
}

≤ δ .

Proof This follows directly from Theorem 5 by setting 2e−2ρ(y)(1−ρ(y))Nε2 ≤ δ and solving forN.

The confidence interval of Corollary 6 can in fact be generalized to remove the conditioning on
the label vector completely:

Theorem 8 Let f : X→R be a fixed ranking function onX and let N∈ N. Then for any0 < δ≤ 1,

PT∼DN







∣

∣Â( f ;T)−A( f )
∣

∣≥

√

ln
(

2
δ
)

2ρ(TY)(1−ρ(TY))N







≤ δ .

Proof ForT ∈ (X ×Y )N and 0< δ≤ 1, define the proposition

Φ(T,δ) ≡







∣

∣Â( f ;T)−A( f )
∣

∣≥

√

ln
(

2
δ
)

2ρ(TY)(1−ρ(TY))N







.

Then for any 0< δ≤ 1, we have

PT {Φ(T,δ)} = ET
{

IΦ(T,δ)

}

= ETY

{

ETX |TY=y

{

IΦ(T,δ)

}

}

= ETY

{

PTX |TY=y{Φ(T,δ)}
}

≤ ETY {δ} (by Corollary 6)

= δ .

Note that the above ‘trick’ works only once we have gone to a confidenceinterval; an attempt
to generalize the bound of Theorem 5 in a similar way gives an expression inwhich the final ex-
pectation is not easy to evaluate. Interestingly, the above proof does noteven require a factorized
distributionDTY since it is built on a result for any fixed label sequencey. We note that the above
technique could also be applied to generalize the results of Hill et al. (2002)in a similar manner.
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3.1 Comparison with Bounds from Statistical Literature

The AUC, in the form of the Wilcoxon-Mann-Whitney statistic, has been studied extensively in
the statistical literature. In particular, Lehmann (1975) derives an exactexpression for the variance
of the Wilcoxon-Mann-Whitney statistic which can be used to obtain large deviation bounds for
the AUC. Below we compare the large deviation bound we have derived above with these bounds
obtainable from the statistical literature. We note that the expression derived by Lehmann (1975) is
for a simpler form of the Wilcoxon-Mann-Whitney statistic that does not account for ties; therefore,
in this section we assume the AUC and the expected ranking accuracy are defined without the terms
that account for ties (the large deviation result we have derived aboveapplies also in this setting).

Let f : X→R be a fixed ranking function onX and lety = (y1, . . . ,yN) ∈ Y N be any label
sequence of lengthN ∈ N. Let m be the number of positive labels iny, andn = N−m the number
of negative labels iny. Then the variance of the AUC off is given by the following expression
(Lehmann, 1975):

σ2
A = VarTX |TY=y

{

Â( f ;T)
}

=
A( f )(1−A( f ))+(m−1)(p1−A( f )2)+(n−1)(p2−A( f )2)

mn
, (7)

where

p1 = PX+
1 ,X+

2 ∼D+1,X
−
1 ∼D−1

{{

f (X+
1 ) > f (X−1 )

}

∩
{

f (X+
2 ) > f (X−1 )

}}

(8)

p2 = PX+
1 ∼D+1,X

−
1 ,X−2 ∼D−1

{{

f (X+
1 ) > f (X−1 )

}

∩
{

f (X+
1 ) > f (X−2 )

}}

. (9)

Next we recall the following classical inequality:

Theorem 9 (Chebyshev’s inequality)Let X be a random variable. Then for anyε > 0,

P{|X−E{X}| ≥ ε} ≤ Var{X}
ε2 .

The expression for the varianceσ2
A of the AUC can be used with Chebyshev’s inequality to give the

following bound: for anyε > 0,

PTX |TY=y
{∣

∣Â( f ;T)−A( f )
∣

∣≥ ε
}

≤ σ2
A

ε2 . (10)

This leads to the following confidence interval: for any 0< δ≤ 1,

PTX |TY=y

{

∣

∣Â( f ;T)−A( f )
∣

∣≥ σA√
δ

}

≤ δ . (11)

It has been established that the AUC follows an asymptotically normal distribution. Therefore,
for largeN, one can use a normal approximation to obtain a tighter bound:

PTX |TY=y

{∣

∣Â( f ;T)−A( f )
∣

∣≥ ε
}

≤ 2(1−Φ(ε/σA)) , (12)

whereΦ(·) denotes the standard normal cumulative distribution function given byΦ(u)=
R u

0 e−z2/2dz/
√

2π.
The resulting confidence interval is given by

PTX |TY=y

{∣

∣Â( f ;T)−A( f )
∣

∣≥ σAΦ−1(1−δ/2)
}

≤ δ . (13)
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The quantitiesp1 andp2 that appear in the expression forσ2
A in Eq. (7) depend on the underlying

distributionsD+1 andD−1; for example, Hanley and McNeil (1982) derive expressions forp1 and
p2 in the case when the scoresf (X+) assigned to positive instancesX+ and the scoresf (X−)
assigned to negative instancesX− both follow negative exponential distributions. Distribution-
independent bounds can be obtained by using the fact that the varianceσ2

A is at most (Cortes and
Mohri, 2005; Dantzig, 1915; Birnbaum and Klose, 1957)

σ2
max =

A( f )(1−A( f ))
min(m,n)

≤ 1
4min(m,n)

. (14)

A comparison of the resulting bounds with the large deviation bound we have derived above using
McDiarmid’s inequality is shown in Figure 1. The McDiarmid bound is tighter than the bound
obtained using Chebyshev’s inequality. It is looser than the bound obtained using the normal ap-
proximation; however, since the normal approximation is valid only for largeN, for smaller values
of N the McDiarmid bound is safer.

Of course, it should be noted that this comparison holds only in the distribution-free setting. In
practice, depending on the underlying distribution, the actual variance ofthe AUC may be much
smaller thanσ2

max; indeed, in the best case, the variance could be as small as

σ2
min =

A( f )(1−A( f ))
mn

≤ 1
4mn

. (15)

Therefore, one may be able to obtain tighter confidence intervals with Eqs. (11) and (13) by esti-
mating the actual variance of the AUC. For example, one may attempt to estimate the quantitiesp1,
p2 andA( f ) that appear in the expression in Eq. (7) directly from the data, or one may use resam-
pling methods such as the bootstrap (Efron and Tibshirani, 1993), in whichthe variance is estimated
from the sample variance observed over a number of bootstrap samples obtained from the data. The
confidence intervals obtained using such estimates are only approximate (i.e., the 1−δ confidence
is not guaranteed), but they can often be useful in practice.

3.2 Comparison with Large Deviation Bound for Classification Error Rate

Our use of McDiarmid’s inequality in deriving the large deviation bound for the AUC of a ranking
function is analogous to the use of Hoeffding’s inequality in deriving a similarlarge deviation bound
for the error rate of a classification function (see, for example, Devroye et al., 1996, Chapter 8).
The need for the more general inequality of McDiarmid in our derivation arises from the fact that
the empirical AUC, unlike the empirical error rate, cannot be expressed as a sum of independent
random variables. In the notation of Section 1, the large deviation bound for the classification error
rate obtained via Hoeffding’s inequality states that for a fixed classificationfunctionh : X→Y and
for anyN ∈ N and anyε > 0,

PT∼DN

{∣

∣L̂(h;T)−L(h)
∣

∣≥ ε
}

≤ 2e−2Nε2
. (16)

Comparing Eq. (16) to the bound of Theorem 5, we see that the AUC bounddiffers from the
error rate bound by a factor ofρ(y)(1− ρ(y)) in the exponent. This difference translates into a
1/(ρ(y)(1−ρ(y))) factor difference in the resulting sample size bounds; in other words, forgiven
0< ε,δ≤ 1, the test sample size sufficient to obtain anε-accurate estimate of the expected accuracy
of a ranking function withδ-confidence is 1/(ρ(y)(1−ρ(y))) times larger than the corresponding
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Figure 1: A comparison of our large deviation bound, derived using McDiarmid’s inequality, with
large deviation bounds obtainable from the statistical literature (see Section 3.1). The
plots are forδ = 0.01 and show how the confidence interval sizeε given by the different
bounds varies with the sample sizeN = m+n, for various values ofm/(m+n).

test sample size sufficient to obtain anε-accurate estimate of the expected error rate of a classifica-
tion function with the same confidence. Forρ(y) = 1/2, this means a sample size larger by a factor
of 4; as the positive skewρ(y) departs from 1/2, the factor grows larger (see Figure 2).

Again, it should be noted that the above conclusion holds only in the distribution-free setting.
Indeed, the varianceσ2

L of the error rate (which follows a binomial distribution) is given by

σ2
L = VarT∼DN

{

L̂(h;T)
}

=
L(h)(1−L(h))

N
≤ 1

4N
. (17)

Comparing to Eqs. (14) and (15), we see that although this is smaller than the worst-case variance of
the AUC, in the best case, the variance of the AUC can be considerably smaller, leading to a tighter
bound for the AUC and therefore a smaller sufficient test sample size.
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Figure 2: The test sample size bound for the AUC, for positive skewρ ≡ ρ(y) for some label se-
quencey, is larger than the corresponding test sample size bound for the error rate by a
factor of 1/(ρ(1−ρ)) (see text for discussion).

3.3 Bound for Learned Ranking Functions Chosen from Finite Function Classes

The large deviation result of Theorem 5 bounds the expected accuracyof a ranking function in
terms of its empirical AUC on an independent test sequence. A simple application of the union
bound allows the result to be extended to bound the expected accuracy ofa learned ranking function
in terms of its empirical AUC on the training sequence from which it is learned, inthe case when
the learned ranking function is chosen from a finite function class. More specifically, we have:

Theorem 10 LetF be a finite class of real-valued functions onX and let fS∈F denote the ranking
function chosen by a learning algorithm based on the training sequence S. Let y= (y1, . . . ,yM) ∈
Y M be any label sequence of length M∈ N. Then for anyε > 0,

PSX |SY=y
{∣

∣Â( fS;S)−A( fS)
∣

∣≥ ε
}

≤ 2|F |e−2ρ(y)(1−ρ(y))Mε2
.

Proof For anyε > 0, we have

PSX |SY=y
{∣

∣Â( fS;S)−A( fS)
∣

∣≥ ε
}

≤ PSX |SY=y

{

max
f∈F

∣

∣Â( f ;S)−A( f )
∣

∣≥ ε
}

≤ ∑
f∈F

PSX |SY=y
{∣

∣Â( f ;S)−A( f )
∣

∣≥ ε
}

(by the union bound)

≤ 2|F |e−2ρ(y)(1−ρ(y))Mε2
(by Theorem 5).

As before, we can derive from Theorem 10 expressions for confidence intervals and sufficient
training sample size; we give these below without proof:
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Corollary 11 LetF be a finite class of real-valued functions onX and let fS∈F denote the ranking
function chosen by a learning algorithm based on the training sequence S. Let y= (y1, . . . ,yM) ∈
Y M be any label sequence of length M∈ N. Then for any0 < δ≤ 1,

PSX |SY=y

{

∣

∣Â( fS;S)−A( fS)
∣

∣≥
√

ln |F |+ ln
(

2
δ
)

2ρ(y)(1−ρ(y))M

}

≤ δ .

Corollary 12 LetF be a finite class of real-valued functions onX and let fS∈F denote the ranking
function chosen by a learning algorithm based on the training sequence S. Let y= (y1, . . . ,yM) ∈
Y M be any label sequence of length M∈ N. Then for any0 < ε,δ≤ 1, if

M ≥ 1
2ρ(y)(1−ρ(y))ε2

(

ln |F |+ ln

(

2
δ

))

,

then

PSX |SY=y

{∣

∣Â( fS;S)−A( fS)
∣

∣≥ ε
}

≤ δ .

Theorem 13 LetF be a finite class of real-valued functions onX and let fS∈F denote the ranking
function chosen by a learning algorithm based on the training sequence S. Let M∈N. Then for any
0 < δ≤ 1,

PS∼DM







∣

∣Â( fS;S)−A( fS)
∣

∣≥

√

ln |F |+ ln
(

2
δ
)

2ρ(SY)(1−ρ(SY))M







≤ δ .

The above results apply only to ranking functions learned from finite function classes. The
general case, when the learned ranking function may be chosen from apossibly infinite function
class, is the subject of the next section.

4. Uniform Convergence Bound for the AUC

In this section we are interested in bounding the probability that the empirical AUC of a learned
ranking functionfS with respect to the (random) training sequenceS from which it is learned will
have a large deviation from its expected ranking accuracy, when the function fS is chosen from a
possibly infinite function classF . The standard approach for obtaining such bounds is via uniform
convergence results. In particular, we have for anyε > 0,

P
{∣

∣Â( fS;S)−A( fS)
∣

∣≥ ε
}

≤ P

{

sup
f∈F

∣

∣Â( f ;S)−A( f )
∣

∣≥ ε

}

.

Therefore, to bound probabilities of the form on the left hand side above, it is sufficient to derive a
uniform convergence result that bounds probabilities of the form on theright hand side. Our uniform
convergence result for the AUC is expressed in terms of a new set of combinatorial parameters,
termed thebipartite rank-shatter coefficients, that we define below.
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Table 2: Sub-matrices that cannot appear in a bipartite rank matrix.

4.1 Bipartite Rank-Shatter Coefficients

We define first the notion of a bipartite rank matrix; this is used in our definition of bipartite rank-
shatter coefficients.

Definition 14 (Bipartite rank matrix) Let f : X→R be a ranking function onX , let m,n∈N, and
let x = (x1, . . . ,xm) ∈ X m, x′ = (x′1, . . . ,x

′
n) ∈ X n. Define thebipartite rank matrixof f with respect

to x,x′, denoted byB f (x,x′), to be the matrix in{0, 1
2,1}m×n whose(i, j)-th element is given by

[

B f (x,x′)
]

i j = I { f (xi)> f (x′j )}+
1
2

I { f (xi)= f (x′j )} (18)

for all i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n}.

Definition 15 (Bipartite rank-shatter coefficient) LetF be a class of real-valued functions onX ,
and let m,n∈ N. Define the(m,n)-th bipartite rank-shatter coefficientof F , denoted by r(F ,m,n),
as follows:

r(F ,m,n) = max
x∈X m,x′∈X n

∣

∣

{

B f (x,x′) | f ∈ F
}∣

∣ . (19)

Clearly, for finiteF , we haver(F ,m,n) ≤ |F | for all m,n. In general,r(F ,m,n) ≤ 3mn for
all m,n. In fact, not all 3mn matrices in{0, 1

2,1}m×n can be realized as bipartite rank matrices.
Therefore, we have

r(F ,m,n)≤ ψ(m,n) ,

whereψ(m,n) is the number of matrices in{0, 1
2,1}m×n that can be realized as a bipartite rank

matrix. The numberψ(m,n) can be characterized in the following ways:

Theorem 16 Letψ(m,n) be the number of matrices in{0, 1
2,1}m×n that can be realized as a bipar-

tite rank matrixB f (x,x′) for some f: X→R, x ∈ X m, x′ ∈ X n. Then

1. ψ(m,n) is equal to the number of complete mixed acyclic(m,n)-bipartite graphs (where a
mixed graph is one which may contain both directed and undirected edges,and where we
define a cycle in such a graph as a cycle that contains at least one directed edge and in which
all directed edges have the same directionality along the cycle).

2. ψ(m,n) is equal to the number of matrices in{0, 1
2,1}m×n that do not contain a sub-matrix of

any of the forms shown in Table 4.1.

Proof
Part 1. Let G(m,n) denote the set of all complete mixed(m,n)-bipartite graphs. Clearly,|G(m,n)|=
3mn, since there aremn edges and three possibilities for each edge. LetV = {v1, . . . ,vm}, V ′ =
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{v′1, . . . ,v′n} be sets ofm andn vertices respectively, and for any matrixB = [bi j ] ∈ {0, 1
2,1}m×n,

let E(B) denote the set of edges betweenV andV ′ given by E(B) = {(vi ← v′j) | bi j = 1} ∪
{(vi → v′j) | bi j = 0} ∪ {(vi — v′j) | bi j = 1

2}. Define the mappingG : {0, 1
2,1}m×n → G(m,n)

as follows:
G(B) = (V ∪V ′,E(B)) .

Then clearly,G is a bijection that puts the sets{0, 1
2,1}m×n andG(m,n) into one-to-one correspon-

dence. We show that a matrixB ∈ {0, 1
2,1}m×n can be realized as a bipartite rank matrix if and only

if the corresponding bipartite graphG(B) ∈ G(m,n) is acyclic.
First supposeB = B f (x,x′) for somef : X→R, x∈X m, x′ ∈X n, and let if possibleG(B) contain

a cycle, say
(vi1 ← v′j1 — vi2 — v′j2 — . . . — vik — v′jk — vi1) .

Then, from the definition of a bipartite rank matrix, we get

f (xi1) < f (x′j1) = f (xi2) = f (x′j2) = . . . = f (xik) = f (x′jk) = f (xi1) ,

which is a contradiction.
To prove the other direction, letB ∈ {0, 1

2,1}m×n be such thatG(B) is acyclic. LetG′(B) denote
the directed graph obtained by collapsing together vertices inG(B) that are connected by an undi-
rected edge. Then it is easily verified thatG′(B) does not contain any directed cycles, and therefore
there exists a complete order on the vertices ofG′(B) that is consistent with the partial order defined
by the edges ofG′(B) (topological sorting; see, for example, Cormen et al., 2001, Section 22.4).
This implies a unique order on the vertices ofG(B) (in which vertices connected by undirected
edges are assigned the same position in the ordering). For anyx ∈ X m, x′ ∈ X n, identifying x,x′

with the vertex setsV,V ′ of G(B) therefore gives a unique order onx1, . . . ,xm,x′1, . . . ,x
′
n. It can be

verified that definingf : X→R such that it respects this order then givesB = B f (x,x′).

Part 2. Consider again the bijectionG : {0, 1
2,1}m×n→ G(m,n) defined in Part 1 above. We show

that a matrixB ∈ {0, 1
2,1}m×n does not contain a sub-matrix of any of the forms shown in Table 4.1

if and only if the corresponding bipartite graphG(B) ∈ G(m,n) is acyclic; the desired result then
follows by Part 1 of the theorem.

We first note that the condition thatB∈ {0, 1
2,1}m×n not contain a sub-matrix of any of the forms

shown in Table 4.1 is equivalent to the condition that the corresponding mixed(m,n)-bipartite graph
G(B) ∈ G(m,n) not contain any 4-cycles.

Now, to prove the first direction, letB ∈ {0, 1
2,1}m×n not contain a sub-matrix of any of the

forms shown in Table 4.1. As noted above, this meansG(B) does not contain any 4-cycles. Let, if
possible,G(B) contain a cycle of length 2k, say

(vi1 ← v′j1 — vi2 — v′j2 — . . . — vik — v′jk — vi1) .

Now considervi1,v
′
j2. SinceG(B) is a complete bipartite graph, there must be an edge between

these vertices. IfG(B) contained the edge(vi1 → v′j2), it would contain the 4-cycle

(vi1 ← v′j1 — vi2 — v′j2 ← vi1) ,

which would be a contradiction. Similarly, ifG(B) contained the edge(vi1 — v′j2), it would contain
the 4-cycle

(vi1 ← v′j1 — vi2 — v′j2 — vi1) ,
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which would again be a contradiction. Therefore,G(B) must contain the edge(vi1← v′j2). However,
this meansG(B) must contain a 2(k−1)-cycle, namely,

(vi1 ← v′j2 — vi3 — v′j3 — . . . — vik — v′jk — vi1) .

By a recursive argument, we eventually get thatG(B) must contain a 4-cycle, which is a contradic-
tion.

To prove the other direction, letB ∈ {0, 1
2,1}m×n be such thatG(B) is acyclic. Then it follows

trivially that G(B) does not contain a 4-cycle, and therefore, by the above observation,B does not
contain a sub-matrix of any of the forms shown in Table 4.1.

We discuss further properties of the bipartite rank-shatter coefficients inSection 4.3; we first
present below our uniform convergence result in terms of these coefficients.

4.2 Uniform Convergence Bound

The following is the main result of this section:

Theorem 17 Let F be a class of real-valued functions onX , and let y= (y1, . . . ,yM) ∈ Y M be any
label sequence of length M∈ N. Let m be the number of positive labels in y, and n= M−m the
number of negative labels in y. Then for anyε > 0,

PSX |SY=y

{

sup
f∈F

∣

∣Â( f ;S)−A( f )
∣

∣≥ ε

}

≤ 4· r(F ,2m,2n) ·e−mnε2/8(m+n)

= 4· r
(

F , 2ρ(y)M, 2(1−ρ(y))M
)

·e−ρ(y)(1−ρ(y))Mε2/8 ,

whereρ(y) denotes the positive skew of ydefined in Eq. (6).

The proof is adapted from proofs of uniform convergence for the classification error rate (see,
for example, Anthony and Bartlett, 1999; Devroye et al., 1996). The main difference is that since
the AUC cannot be expressed as a sum of independent random variables, more powerful inequalities
are required. In particular, a result of Devroye (1991) is required tobound the variance of the AUC
that appears after an application of Chebyshev’s inequality; the application of this result to the AUC
requires the same reasoning that was used to apply McDiarmid’s inequality in deriving the large
deviation result of Theorem 5. Similarly, McDiarmid’s inequality is required in the final step of the
proof where Hoeffding’s inequality sufficed in the case of classification. Complete details of the
proof are given in Appendix A.

As in the case of the large deviation bound of Section 3, we note that the result of Theorem 17
can be strengthened so that the conditioning is only on the numbersmandn of positive and negative
labels, and not on the specific label vectory. From Theorem 17, we can derive a confidence interval
interpretation of the bound as follows:

Corollary 18 LetF be a class of real-valued functions onX , and let y= (y1, . . . ,yM) ∈ Y M be any
label sequence of length M∈ N. Let m be the number of positive labels in y, and n= M−m the
number of negative labels in y. Then for any0 < δ≤ 1,

PSX |SY=y







sup
f∈F

∣

∣Â( f ;S)−A( f )
∣

∣≥

√

8(m+n)
(

ln r(F ,2m,2n)+ ln
(

4
δ
))

mn







≤ δ .
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Proof This follows directly from Theorem 17 by setting 4· r(F ,2m,2n) · e−mnε2/8(m+n) = δ and
solving forε.

Again, as in the case of the large deviation bound, the confidence intervalabove can be general-
ized to remove the conditioning on the label vector completely:

Theorem 19 LetF be a class of real-valued functions onX , and let M∈N. Then for any0< δ≤ 1,

PS∼DM







sup
f∈F

∣

∣Â( f ;S)−A( f )
∣

∣≥

√

8
(

ln r (F , 2ρ(SY)M, 2(1−ρ(SY))M)+ ln
(

4
δ
))

ρ(SY)(1−ρ(SY))M







≤ δ .

4.3 Properties of Bipartite Rank-Shatter Coefficients

As discussed in Section 4.1, we haver(F ,m,n)≤ψ(m,n), whereψ(m,n) is the number of matrices
in {0, 1

2,1}m×n that can be realized as a bipartite rank matrix. The numberψ(m,n) is strictly smaller
than 3mn; indeed,ψ(m,n) = O(e(m+n)(ln(m+n)+1)). (To see this, note that the number of distinct
bipartite rank matrices of sizem× n is bounded above by the total number of permutations of
(m+ n) objects, allowing for objects to be placed at the same position. This number is equal to
(m+ n)!2(m+n−1) = O(e(m+n)(ln(m+n)+1)).) Nevertheless,ψ(m,n) is still very large; in particular,
ψ(m,n)≥ 3max(m,n). (To see this, note that choosing any column vector in{0, 1

2,1}m and replicating
it along then columns or choosing any row vector in{0, 1

2,1}n and replicating it along them rows
results in a matrix that does not contain a sub-matrix of any of the forms shownin Table 4.1. The
conclusion then follows from Theorem 16 (Part 2).)

For the bound of Theorem 17 to be meaningful, one needs an upper bound onr(F ,m,n) that is
at least slightly smaller thanemn/8(m+n). Below we provide one method for deriving upper bounds on
r(F ,m,n); takingY ∗ = {−1,0,+1}, we extend slightly the standard VC-dimension related shatter
coefficients studied in binary classification toY ∗-valued function classes, and then derive an upper
bound on the bipartite rank-shatter coefficientsr(F ,m,n) of a class of ranking functionsF in terms
of the shatter coefficients of a class ofY ∗-valued functions derived fromF .

Definition 20 (Shatter coefficient) LetY ∗ = {−1,0,+1}, and letH be a class ofY ∗-valued func-
tions onX . Let N∈ N. Define the N-th shatter coefficientof H , denoted by s(H ,N), as follows:

s(H ,N) = max
x∈X N
|{(h(x1), . . . ,h(xN)) | h∈H }| .

Clearly,s(H ,N)≤ 3N for all N. Next we define a series ofY ∗-valued function classes derived
from a given ranking function class. Only the second function class is used in this section; the other
two are needed in Section 4.4. Note that we take

sign(u) =







+1 if u > 0
0 if u = 0
−1 if u < 0.
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Definition 21 (Function classes)Let F be a class of real-valued functions onX . Define the fol-
lowing classes ofY ∗-valued functions derived fromF :

1. F̄ = { f̄ : X→Y ∗ | f̄ (x) = sign( f (x)) for somef ∈ F } (20)

2. F̃ = { f̃ : X ×X→Y ∗ | f̃ (x,x′) = sign( f (x)− f (x′)) for somef ∈ F } (21)

3. F̌ = { f̌z : X→Y ∗ | f̌z(x) = sign( f (x)− f (z)) for somef ∈ F ,z∈ X } (22)

The following result gives an upper bound on the bipartite rank-shatter coefficients of a class of
ranking functionsF in terms of the standard shatter coefficients ofF̃ :

Theorem 22 Let F be a class of real-valued functions onX , and letF̃ be the class ofY ∗-valued
functions onX ×X defined by Eq. (21). Then for all m,n∈ N,

r(F ,m,n) ≤ s(F̃ ,mn) .

Proof For anym,n∈ N, we have4

r(F ,m,n) = max
x∈X m,x′∈X n

∣

∣

∣

∣

{[

I { f (xi)> f (x′j )}+
1
2

I { f (xi)= f (x′j )}

] ∣

∣

∣

∣

f ∈ F

}∣

∣

∣

∣

= max
x∈X m,x′∈X n

∣

∣

∣

∣

{[

I { f̃ (xi ,x′j )=+1}+
1
2

I { f̃ (xi ,x′j )=0}

]

∣

∣ f̃ ∈ F̃

}∣

∣

∣

∣

= max
x∈X m,x′∈X n

∣

∣

{[

f̃ (xi ,x′j)
] ∣

∣ f̃ ∈ F̃
}∣

∣

≤ max
X,X′∈X m×n

∣

∣

{[

f̃ (xi j ,x′i j )
] ∣

∣ f̃ ∈ F̃
}∣

∣

= max
x,x′∈X mn

∣

∣

{(

f̃ (x1,x′1), . . . , f̃ (xmn,x′mn)
) ∣

∣ f̃ ∈ F̃
}∣

∣

= s(F̃ ,mn) .

Below we make use of the above result to derive polynomial upper boundson the bipartite rank-
shatter coefficients for linear and higher-order polynomial ranking functions. We note that the same
method can be used to establish similar upper bounds for other algebraically well-behaved function
classes.

Lemma 23 For d ∈ N, let Flin(d) denote the class of linear ranking functions onR
d:

Flin(d) = { f : R
d→R | f (x) = w·x+b for somew ∈ R

d,b∈ R} .

Then for all N∈ N,

s(F̃lin(d),N) ≤
(

2eN
d

)d

.

4. We use the notation
[

ai j
]

to denote a matrix whose(i, j)th element isai j . The dimensions of such a matrix should be
clear from context.
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Proof We have,

F̃lin(d) = { f̃ : R
d×R

d→Y ∗ | f̃ (x,x′) = sign(w·(x−x′)) for somew ∈ R
d} .

Let (x1,x′1), . . . ,(xN,x′N) be anyN points inR
d×R

d, and consider the ‘dual’ weight space corre-
sponding tow ∈ R

d. Each point(xi ,x′i) defines a hyperplane(xi − x′i) in this space; theN points
thus give rise to an arrangement ofN hyperplanes inRd. It is easily seen that the number of sign
patterns( f̃ (x1,x′1), . . . , f̃ (xN,x′N)) that can be realized by functions̃f ∈ F̃lin(d) is equal to the total
number of faces of this arrangement (Matoušek, 2002), which is at most (Buck, 1943)

d

∑
k=0

d

∑
i=d−k

(

i
d−k

)(

N
i

)

=
d

∑
i=0

2i
(

N
i

)

≤
(

2eN
d

)d

.

Since theN points were arbitrary, the result follows.

Theorem 24 For d ∈ N, let Flin(d) denote the class of linear ranking functions onR
d (defined in

Lemma 23 above). Then for all m,n∈ N,

r(Flin(d),m,n) ≤
(

2emn
d

)d

.

Proof This follows immediately from Lemma 23 and Theorem 22.

Lemma 25 For d,q∈ N, let Fpoly(d,q) denote the class of polynomial ranking functions onR
d with

degree less than or equal to q. Then for all N∈ N,

s(F̃poly(d,q),N) ≤
(

2eN
C(d,q)

)C(d,q)

,

where

C(d,q) =
q

∑
i=1

((

d
i

) q

∑
j=1

(

j−1
i−1

))

. (23)

Proof We have,

F̃poly(d,q) = { f̃ : R
d×R

d→Y ∗ | f̃ (x,x′) = sign( f (x)− f (x′)) for somef ∈ Fpoly(d,q)} .

Let (x1,x′1), . . . ,(xN,x′N) be anyN points inR
d×R

d. For any f ∈ Fpoly(d,q), ( f (x)− f (x′)) is a
linear combination ofC(d,q) basis functions of the form(gk(x)− gk(x′)), 1≤ k≤C(d,q), each
gk(x) being a product of 1 toq components ofx. Denoteg(x) = (g1(x), . . . ,gC(d,q)(x)) ∈ R

C(d,q).
Then each point(xi ,x′i) defines a hyperplane(g(xi)−g(x′i)) in R

C(d,q); theN points thus give rise
to an arrangement ofN hyperplanes inRC(d,q). It is easily seen that the number of sign patterns
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( f̃ (x1,x′1), . . . , f̃ (xN,x′N)) that can be realized by functions̃f ∈ F̃poly(d,q) is equal to the total number
of faces of this arrangement (Matoušek, 2002), which is at most (Buck, 1943)

(

2eN
C(d,q)

)C(d,q)

.

Since theN points were arbitrary, the result follows.

Theorem 26 For d,q∈N, letFpoly(d,q) denote the class of polynomial ranking functions onR
d with

degree less than or equal to q. Then for all m,n∈ N,

r(Fpoly(d,q),m,n) ≤
(

2emn
C(d,q)

)C(d,q)

,

where C(d,q) is as defined in Eq. (23).

Proof This follows immediately from Lemma 25 and Theorem 22.

4.4 Comparison with Uniform Convergence Bound of Freund et al.

Freund et al. (2003) recently derived a uniform convergence bound for a quantity closely related
to the AUC, namely the ranking loss for the bipartite ranking problem. As pointedout by Cortes
and Mohri (2004), the bipartite ranking loss is equal to one minus the AUC; the uniform conver-
gence bound of Freund et al. (2003) therefore implies a uniform convergence bound for the AUC.5

Although the result in (Freund et al., 2003) is given only for function classes considered by their
RankBoost algorithm, their technique is generally applicable. We state their result below, using our
notation, for the general case (i.e., function classes not restricted to those considered by RankBoost),
and then offer a comparison of our bound with theirs. As in (Freund et al.,2003), the result is given
in the form of a confidence interval.6

Theorem 27 (Generalization of Freund et al. (2003), Theorem 3)LetF be a class of real-valued
functions onX , and let y= (y1, . . . ,yM) ∈ Y M be any label sequence of length M∈ N. Let m be
the number of positive labels in y, and n= M−m the number of negative labels in y. Then for any
0 < δ≤ 1,

PSX |SY=y

{

sup
f∈F

∣

∣Â( f ;S)−A( f )
∣

∣≥ 2

√

lns(F̌ ,2m)+ ln
(

12
δ
)

m
+2

√

lns(F̌ ,2n)+ ln
(

12
δ
)

n

}

≤ δ ,

whereF̌ is the class ofY ∗-valued functions onX defined by Eq. (22).

5. As in the AUC definition of (Cortes and Mohri, 2004), the ranking loss defined in (Freund et al., 2003) does not
account for ties; this is easily remedied.

6. The result in (Freund et al., 2003) was stated in terms of the VC dimension, but the basic result can be stated in
terms of shatter coefficients. Due to our AUC definition which accounts forties, the standard shatter coefficients are
replaced here with the extended shatter coefficients defined above forY ∗-valued function classes.
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The proof follows that of Freund et al. (2003); for completeness, we give details in Appendix B.
We now compare the uniform convergence bound derived in Section 4.2 with that of Freund et al.
for a simple function class for which the quantities involved in both bounds (namely, r(F ,2m,2n)
ands(F̌ ,2m),s(F̌ ,2n)) can be characterized exactly. Specifically, consider the function classFlin(1)

of linear ranking functions onR, given by

Flin(1) = { f : R→R | f (x) = wx+b for somew∈ R,b∈ R} .

AlthoughFlin(1) is an infinite function class, it is easy to verify thatr(Flin(1),m,n) = 3 for all m,n∈
N. (To see this, note that for any set ofm+ n distinct points inR, one can obtain exactly three
different ranking behaviours with functions inFlin(1): one by settingw > 0, another by setting
w < 0, and the third by settingw = 0.) On the other hand,s(F̌lin(1),N) = 4N + 1 for all N ≥ 2,
sinceF̌lin(1) = F̄lin(1) (see Eq. (20)) and, as is easily verified, the number of sign patterns onN ≥ 2
distinct points inR that can be realized by functions in̄Flin(1) is 4N+1. We thus get from our result
(Corollary 18) that

PSX |SY=y

{

sup
f∈Flin(1)

∣

∣Â( f ;S)−A( f )
∣

∣≥

√

8(m+n)
(

ln3+ ln
(

4
δ
))

mn

}

≤ δ ,

and from the result of Freund et al. (Theorem 27) that

PSX |SY=y

{

sup
f∈Flin(1)

∣

∣Â( f ;S)−A( f )
∣

∣≥

2

√

ln(8m+1)+ ln
(

12
δ
)

m
+2

√

ln(8n+1)+ ln
(

12
δ
)

n

}

≤ δ .

The above bounds are plotted in Figure 3 forδ = 0.01 and various values ofm/(m+n). As can be
seen, the bound provided by our result is considerably tighter.

4.5 Correctness of Functional Shape of Bound

Although our bound seems to be tighter than the previous bound of Freund etal. (2003), it is still,
in general, too loose to make quantitative predictions. Nevertheless, the bound can serve as a useful
analysis tool if it displays a correct functional dependence on the training sample size parametersm
andn. In this section we give an empirical assessment of the correctness of thefunctional shape of
our bound.

We generated data points ind = 16 dimensions (X = R
16) as follows. We tookD+1 andD−1 to

be mixtures of two 16-dimensional Gaussians each, where each of the elements of both the means
and the (diagonal) covariances of the Gaussians were chosen randomlyfrom a uniform distribution
on the interval(0,1). A test sequence was generated by drawing 2500 points fromD+1 and 2500
points fromD−1.7 Training sequences of varying sizes were then generated by drawingm points
from D+1 andn points fromD−1 for various values ofmandn. For each training sequence, a linear
ranking function inFlin(16) was learned using the RankBoost algorithm of Freund et al. (2003) (the

7. To sample points from Gaussian mixtures we made use of the NETLAB toolbox written by Ian Nabney and Christo-
pher Bishop, available fromhttp://www.ncrg.aston.ac.uk/netlab/.
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Figure 3: A comparison of our uniform convergence bound with that of Freund et al. (2003) for
the class of linear ranking functions onR. The plots are forδ = 0.01 and show how the
confidence interval sizeε given by the two bounds varies with the sample sizeM = m+n,
for various values ofm/(m+n). In all cases where the bounds are meaningful (ε < 0.5),
our bound is tighter.

algorithm was run forT = 20 rounds). The training AUC of the learned ranking function, its AUC
on the independent test sequence, and the lower bound on its expected ranking accuracy obtained
from our uniform convergence result (using Corollary 18, at a confidence levelδ = 0.01) were
then calculated. Since we do not have a means to characterizer(Flin(16),m,n) exactly, we used the
(loose) bound provided by Theorem 24 in calculating the lower bound on the expected accuracy.
The results, averaged over 10 trials (draws of the training sequence) for each pair of values ofmand
n, are shown in Figure 4. As can be seen, the shape of the bound is in correspondence with that of
the test AUC, suggesting that the bound does indeed display a correct functional dependence.
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Figure 4: The training AUC (top row), test AUC (middle row), and lower bound on expected rank-
ing accuracy (bottom row) of linear ranking functions learned from training sequences of
different sizesM = m+ n (see Section 4.5). The plots show mean values over 10 trials
for each pair of values ofmandn; the error bars show standard deviations (note that there
are also error bars on the values of the lower bound; these have the samesize as the error
bars on the training AUC, but are invisible due to the difference in scale of the plots).
Although the bound is quantitatively loose, its shape is in correspondence with that of the
test AUC (and therefore correct).
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5. Conclusion and Open Questions

We have derived geralization bounds for the area under the ROC curve(AUC), a quantity used as
an evaluation criterion for the bipartite ranking problem. We have derived both a large deviation
bound, which serves to bound the expected accuracy of a ranking function in terms of its empirical
AUC on a test sequence, and a uniform convergence bound, which serves to bound the expected
accuracy of a learned ranking function in terms of its empirical AUC on a training sequence. Both
our bounds are distribution-free.

Our large deviation result for the AUC parallels the classical large deviationresult for the clas-
sification error rate obtained via Hoeffding’s inequality. A comparison with the large deviation
result for the error rate suggests that, in the distribution-free setting, the test sample size required to
obtain anε-accurate estimate of the expected accuracy of a ranking function withδ-confidence is
larger than the test sample size required to obtain a similar estimate of the expectederror rate of a
classification function.

Our uniform convergence bound for the AUC is expressed in terms of a new set of combinatorial
parameters that we have termed the bipartite rank-shatter coefficients. These coefficients define a
new measure of complexity for real-valued function classes and play the same role in our result as
do the standard VC-dimension related shatter coefficients in uniform convergence results for the
classification error rate.

For the case of linear ranking functions onR, for which we could compute the bipartite rank-
shatter coefficients exactly, we have shown that our uniform convergence bound is considerably
tighter than a recent uniform convergence bound derived by Freundet al. (2003), which is expressed
directly in terms of standard shatter coefficients from results for classification. This suggests that the
bipartite rank-shatter coefficients we have introduced may be a more appropriate complexity mea-
sure for studying the bipartite ranking problem. However, in order to take advantage of our results,
one needs to be able to characterize these coefficients for the class of ranking functions of interest.
The biggest open question that arises from our study is, for what otherfunction classesF can the
bipartite rank-shatter coefficientsr(F ,m,n) be characterized? We have derived in Theorem 22 a
general upper bound on the bipartite rank-shatter coefficients of a function classF in terms of the
standard shatter coefficients of the function classF̃ (see Eq. (21)); this allows us to establish a poly-
nomial upper bound on the bipartite rank-shatter coefficients for linear and higher-order polynomial
ranking functions onRd and other algebraically well-behaved function classes. However, this upper
bound is inherently loose (see proof of Theorem 22). Is it possible to find tighter upper bounds on
r(F ,m,n) than that given by Theorem 22?

Our study also raises several other interesting questions. First, can we establish analogous
complexity measures and generalization bounds for other forms of rankingproblems (i.e., other
than bipartite)? Second, do there exist data-dependent bounds for ranking, analogous to existing
margin bounds for classification? Finally, it also remains an open question whether tighter (or
alternative) generalization bounds for the AUC can be derived using different proof techniques.
Possible routes for deriving alternative bounds for the AUC could include the theory of compression
bounds (Littlestone and Warmuth, 1986; Graepel et al., 2005).
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Appendix A. Proof of Theorem 17

We shall need the following result of Devroye (1991), which bounds thevariance of any fuction of
a sample for which a single change in the sample has limited effect:

Theorem 28 (Devroye, 1991; Devroye et al., 1996, Theorem 9.3)Let X1, . . . ,XN be independent
random variables with Xk taking values in a set Ak for each k. Letφ : (A1×·· ·×AN)→R be such
that

sup
xi∈Ai ,x′k∈Ak

∣

∣φ(x1, . . . ,xN)−φ(x1, . . . ,xk−1,x
′
k,xk+1, . . . ,xN)

∣

∣ ≤ ck .

Then

Var {φ(X1, . . . ,XN)} ≤ 1
4

N

∑
k=1

c2
k .

Proof [of Theorem 17]
The proof is adapted from proofs of uniform convergence for the classification error rate given in
(Anthony and Bartlett, 1999; Devroye et al., 1996). It consists of foursteps.

Step 1. Symmetrization by a ghost sample.
For eachk ∈ {1, . . . ,M}, define the random variablẽXk such thatXk, X̃k are independent and

identically distributed. Let̃SX = (X̃1, . . . , X̃M), and denote bỹS the joint sequence(S̃X,y). Then for
anyε > 0 satisfyingmnε2/(m+n)≥ 2, we have

PSX |SY=y

{

sup
f∈F

∣

∣Â( f ;S)−A( f )
∣

∣≥ ε

}

≤ 2PSXS̃X |SY=y

{

sup
f∈F

∣

∣Â( f ;S)− Â( f ; S̃)
∣

∣≥ ε
2

}

.

To see this, letf ∗S ∈ F be a function for which|Â( f ∗S;S)−A( f ∗S)| ≥ ε if such a function exists, and
let f ∗S be a fixed function inF otherwise. Then

PSXS̃X |SY=y

{

sup
f∈F

∣

∣Â( f ;S)− Â( f ; S̃)
∣

∣≥ ε
2

}

≥ PSXS̃X |SY=y

{

∣

∣Â( f ∗S;S)− Â( f ∗S; S̃)
∣

∣≥ ε
2

}

≥ PSXS̃X |SY=y

{

{∣

∣Â( f ∗S;S)−A( f ∗S)
∣

∣≥ ε
}

∩
{

∣

∣Â( f ∗S; S̃)−A( f ∗S)
∣

∣≤ ε
2

}}

= ESX |SY=y

{

I {|Â( f ∗S;S)−A( f ∗S)|≥ε}PS̃X |SX ,SY=y

{

∣

∣Â( f ∗S; S̃)−A( f ∗S)
∣

∣≤ ε
2

}}

. (24)

418



GENERALIZATION BOUNDS FOR THEAREA UNDER THE ROC CURVE

The conditional probability inside can be bounded using Chebyshev’s inequality (and Lemma 2):

PS̃X |SX ,SY=y

{

∣

∣Â( f ∗S; S̃)−A( f ∗S)
∣

∣≤ ε
2

}

≥ 1−
Var S̃X |SX ,SY=y

{

Â( f ∗S; S̃)
}

ε2/4
.

Now, by the same reasoning as in the proof of Theorem 5, a change in the value of a single random
variableX̃k can cause a change of at most 1/m in Â( f ∗S; S̃) for k : yk = +1, and a change of at most
1/n for k : yk =−1. Thus, by Theorem 28, we have

Var S̃X |SX ,SY=y

{

Â( f ∗S; S̃)
}

≤ 1
4

(

∑
{i:yi=+1}

(

1
m

)2

+ ∑
{ j:y j=−1}

(

1
n

)2
)

=
m+n
4mn

.

This gives

PS̃X |SX ,SY=y

{

∣

∣Â( f ∗S; S̃)−A( f ∗S)
∣

∣≤ ε
2

}

≥ 1−m+n
mnε2 ≥

1
2

,

whenevermnε2/(m+n)≥ 2. Thus, from Eq. (24) and the definition off ∗S, we have

PSXS̃X |SY=y

{

sup
f∈F

∣

∣Â( f ;S)− Â( f ; S̃)
∣

∣≥ ε
2

}

≥ 1
2

ESX |SY=y

{

I {|Â( f ∗S;S)−A( f ∗S)|≥ε}

}

=
1
2

PSX |SY=y
{∣

∣Â( f ∗S;S)−A( f ∗S)
∣

∣≥ ε
}

≥ 1
2

PSX |SY=y

{

sup
f∈F

∣

∣Â( f ;S)−A( f )
∣

∣≥ ε

}

.

Step 2. Permutations.
Let ΓM be the set of all permutations of{X1, . . . ,XM, X̃1, . . . , X̃M} that swapXk andX̃k, for all k

in some subset of{1, . . . ,M}. In other words, for allσ ∈ ΓM andk∈ {1, . . . ,M}, eitherσ(Xk) = Xk,
in which caseσ(X̃k) = X̃k, or σ(Xk) = X̃k, in which caseσ(X̃k) = Xk. Now, define

β f (X1, . . . ,XM, X̃1, . . . , X̃M) ≡ 1
mn ∑
{i:yi=+1}

∑
{ j:y j=−1}

(

(

I { f (Xi)> f (Xj )}+
1
2

I { f (Xi)= f (Xj )}
)

−
(

I { f (X̃i)> f (X̃j )}+
1
2

I { f (X̃i)= f (X̃j )}
)

)

.

Then clearly, sinceXk, X̃k are i.i.d. for eachk, for anyσ ∈ ΓM we have that the distribution of

sup
f∈F

∣

∣β f (X1, . . . ,XM, X̃1, . . . , X̃M)
∣

∣

is the same as the distribution of

sup
f∈F

∣

∣β f (σ(X1), . . . ,σ(XM),σ(X̃1), . . . ,σ(X̃M))
∣

∣ .
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Therefore, usingU(D) to denote the uniform distribution over a discrete setD, we have the follow-
ing:

PSXS̃X |SY=y

{

sup
f∈F

∣

∣Â( f ;S)− Â( f ; S̃)
∣

∣≥ ε
2

}

= PSXS̃X |SY=y

{

sup
f∈F

∣

∣β f (X1, . . . ,XM, X̃1, . . . , X̃M)
∣

∣≥ ε
2

}

=
1
|ΓM| ∑

σ∈ΓM

PSXS̃X |SY=y

{

sup
f∈F

∣

∣β f (σ(X1), . . . ,σ(XM),σ(X̃1), . . . ,σ(X̃M))
∣

∣≥ ε
2

}

=
1
|ΓM| ∑

σ∈ΓM

ESXS̃X |SY=y

{

I{supf∈F |β f (σ(X1),...,σ(XM),σ(X̃1),...,σ(X̃M))|≥ ε
2}
}

= ESXS̃X |SY=y

{

1
|ΓM| ∑

σ∈ΓM

I{supf∈F |β f (σ(X1),...,σ(XM),σ(X̃1),...,σ(X̃M))|≥ ε
2}

}

= ESXS̃X |SY=y

{

Pσ∼U(ΓM)

{

sup
f∈F

∣

∣β f (σ(X1), . . . ,σ(XM),σ(X̃1), . . . ,σ(X̃M))
∣

∣≥ ε
2

}}

≤ max
x,x̃∈X M

Pσ∼U(ΓM)

{

sup
f∈F

∣

∣

∣
β f (σ(x1), . . . ,σ(xM),σ(x̃1), . . . ,σ(x̃M))

∣

∣

∣
≥ ε

2

}

.

Step 3. Reduction to a finite class.
We wish to bound the quantity on the right hand side above. From the definitionof bipartite

rank matrices (Definition 14), it follows that for anyx, x̃ ∈ X M, as f ranges overF , the number of
different random variables

∣

∣

∣
β f (σ(x1), . . . ,σ(xM),σ(x̃1), . . . ,σ(x̃M))

∣

∣

∣

is at most the number of different bipartite rank matricesB f (z,z′) that can be realized by functions
in F , wherez ∈ X 2m containsxi , x̃i for i : yi = +1 andz′ ∈ X 2n containsx j , x̃ j for j : y j = −1.
This number, by definition, cannot exceedr(F ,2m,2n) (see the definition of bipartite rank-shatter
coefficients, Definition 15). Therefore, the supremum in the above probability is a maximum of at
mostr(F ,2m,2n) random variables. Thus, by the union bound, we get for anyx, x̃ ∈ X M,

Pσ∼U(ΓM)

{

sup
f∈F

∣

∣

∣
β f (σ(x1), . . . ,σ(xM),σ(x̃1), . . . ,σ(x̃M))

∣

∣

∣
≥ ε

2

}

≤ r(F ,2m,2n) · sup
f∈F

Pσ∼U(ΓM)

{∣

∣

∣
β f (σ(x1), . . . ,σ(xM),σ(x̃1), . . . ,σ(x̃M))

∣

∣

∣
≥ ε

2

}

.

Step 4. McDiarmid’s inequality.
Notice that for anyx, x̃ ∈ X M, we can write

Pσ∼U(ΓM)

{∣

∣

∣
β f (σ(x1), . . . ,σ(xM),σ(x̃1), . . . ,σ(x̃M))

∣

∣

∣
≥ ε

2

}

= PW∼U(∏M
k=1{xk,x̃k})

{

∣

∣β f (W1, . . . ,WM,W̃1, . . . ,W̃M)
∣

∣≥ ε
2

}

,
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whereW = (W1, . . . ,WM) andW̃k =

{

x̃k, if Wk = xk

xk, if Wk = x̃k
.

Now, for f : X→R andx,x′ ∈ X , let

α( f ;x,x′) ≡ I { f (x)> f (x′)}+
1
2

I { f (x)= f (x′)} .

Then for anyf ∈ F ,

EW∼U(∏M
k=1{xk,x̃k})

{

β f (W1, . . . ,WM,W̃1, . . . ,W̃M)
}

=
1

mn ∑
{i:yi=+1}

∑
{ j:y j=−1}

EWi∼U({xi ,x̃i}),Wj∼U({x j ,x̃ j})
{

α( f ;Wi ,Wj)−α( f ;W̃i ,W̃j)
}

=
1

mn ∑
{i:yi=+1}

∑
{ j:y j=−1}

1
4

[

(

α( f ;xi ,x j)−α( f ; x̃i , x̃ j)
)

+
(

α( f ; x̃i ,x j)−α( f ;xi , x̃ j)
)

+

(

α( f ;xi , x̃ j)−α( f ; x̃i ,x j)
)

+
(

α( f ; x̃i , x̃ j)−α( f ;xi ,x j)
)

]

= 0.

Also, it can be verified that for anyf ∈ F , a change in the value of a single random variableWk can
bring a change of at most 2/m in the value of

β f (W1, . . . ,WM,W̃1, . . . ,W̃M)

for k : yk = +1, and a change of at most 2/n for k : yk =−1. Therefore, by McDiarmid’s inequality
(Theorem 3), it follows that for anyf ∈ F ,

PW∼U(∏M
k=1{xk,x̃k})

{

∣

∣β f (W1, . . . ,WM,W̃1, . . . ,W̃M)
∣

∣≥ ε
2

}

≤ 2e−2ε2/4(m( 2
m)2+n( 2

n)2)

= 2e−mnε2/8(m+n) .

Putting everything together, we get that

PSX |SY=y

{

sup
f∈F

∣

∣Â( f ;S)−A( f )
∣

∣≥ ε

}

≤ 4· r(F ,2m,2n) ·e−mnε2/8(m+n) ,

for mnε2/(m+n) ≥ 2. In the other case,i.e., for mnε2/(m+n) < 2, the bound is greater than one
and therefore holds trivially.

Appendix B. Proof of Theorem 27

We shall need to extend the notion of error rate toY ∗-valued functions (recall thatY ∗= {−1,0,+1}).
Given a functionh : X→Y ∗ and a data sequenceT = ((x1,y1), . . . ,(xN,yN)) ∈ (X ×Y )N, let the
empirical error rate ofh with respect toT be denoted bŷL∗(h;T) and defined as

L̂∗(h;T) =
1
N

N

∑
i=1

{

I {h(xi)6=0}I {h(xi)6=yi}+
1
2

I {h(xi)=0}

}

. (25)
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Similarly, for an underlying distributionD overX ×Y , let the expected error rate ofh be denoted
by L∗(h) and defined as

L∗(h) = EXY∼D

{

I {h(X)6=0}I {h(X)6=Y}+
1
2

I {h(X)=0}

}

. (26)

Then, following the proof of a similar result given in (Vapnik, 1982) for binary-valued functions,
it can be shown that ifH is a class ofY ∗-valued functions onX andM ∈ N, then for anyε > 0,

PS∼DM

{

sup
h∈H

∣

∣L̂∗(h;S)−L∗(h)
∣

∣≥ ε

}

≤ 6s(H ,2M)e−Mε2/4 . (27)

Proof [of Theorem 27]
To keep notation concise, forf : X→R andx,x′ ∈ X , let

η( f ;x,x′) ≡ I { f (x)< f (x′)}+
1
2

I { f (x)= f (x′)} ,

and forh : X→Y ∗, x ∈ X , y∈ Y , let

ν(h;x,y) ≡ I {h(x)6=0}I {h(x)6=y}+
1
2

I {h(x)=0} .

Now, givenSY = y, we have for allf ∈ F

∣

∣Â( f ;S)−A( f )
∣

∣

=
∣

∣(1− Â( f ;S))− (1−A( f ))
∣

∣

=

∣

∣

∣

∣

∣

1
mn ∑
{i:yi=+1}

∑
{ j:y j=−1}

η( f ;Xi ,Xj)−EX∼D+1,X′∼D−1

{

η( f ;X,X′)
}

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1
mn ∑
{i:yi=+1}

∑
{ j:y j=−1}

η( f ;Xi ,Xj)−
1
m ∑
{i:yi=+1}

EX′∼D−1

{

η( f ;Xi ,X
′)
}

+
1
m ∑
{i:yi=+1}

EX′∼D−1

{

η( f ;Xi ,X
′)
}

−EX∼D+1,X′∼D−1

{

η( f ;X,X′)
}

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1
m ∑
{i:yi=+1}

(

1
n ∑
{ j:y j=−1}

η( f ;Xi ,Xj)−EX′∼D−1

{

η( f ;Xi ,X
′)
}

)

+ EX′∼D−1

{

1
m ∑
{i:yi=+1}

η( f ;Xi ,X
′)−EX∼D+1

{

η( f ;X,X′)
}

}∣

∣

∣

∣

∣

≤ 1
m ∑
{i:yi=+1}

∣

∣

∣

∣

∣

1
n ∑
{ j:y j=−1}

η( f ;Xi ,Xj)−EX′∼D−1

{

η( f ;Xi ,X
′)
}

∣

∣

∣

∣

∣

+EX′∼D−1

{∣

∣

∣

∣

∣

1
m ∑
{i:yi=+1}

η( f ;Xi ,X
′)−EX∼D+1

{

η( f ;X,X′)
}

}∣

∣

∣

∣

∣
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≤ sup
f ′∈F ,z∈X

∣

∣

∣

∣

∣

1
n ∑
{ j:y j=−1}

η( f ′;z,Xj)−EX′∼D−1

{

η( f ′;z,X′)
}

∣

∣

∣

∣

∣

+ sup
f ′∈F ,z∈X

∣

∣

∣

∣

∣

1
m ∑
{i:yi=+1}

η( f ′;Xi ,z)−EX∼D+1

{

η( f ′;X,z)
}

∣

∣

∣

∣

∣

= sup
f̌z∈F̌

∣

∣

∣

∣

∣

1
n ∑
{ j:y j=−1}

ν( f̌z;Xj ,−1)−EX′∼D−1

{

ν( f̌z;X
′,−1)

}

∣

∣

∣

∣

∣

+ sup
f̌z∈F̌

∣

∣

∣

∣

∣

1
m ∑
{i:yi=+1}

ν( f̌z;Xi ,+1)−EX∼D+1

{

ν( f̌z;X,+1)
}

∣

∣

∣

∣

∣

.

If we augment the notationL∗(h) used to denote the expected error rate with the distribution,e.g.,
L∗D(h), we thus get

sup
f∈F

∣

∣Â( f ;S)−A( f )
∣

∣ ≤ sup
f̌z∈F̌

∣

∣

∣
L̂∗( f̌z;S

(n)
−1)−L∗D−1

( f̌z)
∣

∣

∣
+ sup

f̌z∈F̌

∣

∣

∣
L̂∗( f̌z;S

(m)
+1 )−L∗D+1

( f̌z)
∣

∣

∣
, (28)

whereS(m)
+1 andS(n)

−1 denote the subsequences ofScontaining thempositive andn negative examples,
respectively. Now, from the confidence interval interpretation of the result given in Eq. (27), we have

P
S(m)

+1∼Dm
+1







sup
f̌z∈F̌

∣

∣

∣
L̂∗( f̌z;S

(m)
+1 )−L∗D+1

( f̌z)
∣

∣

∣
≥ 2

√

lns(F̌ ,2m)+ ln
(

12
δ
)

m







≤ δ
2

, (29)

P
S(n)
−1∼Dn

−1







sup
f̌z∈F̌

∣

∣

∣
L̂∗( f̌z;S

(n)
−1)−L∗D−1

( f̌z)
∣

∣

∣
≥ 2

√

lns(F̌ ,2n)+ ln
(

12
δ
)

n







≤ δ
2

. (30)

Combining Eqs. (28-30) gives the desired result.
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