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Abstract
When applying aggregating strategies to Prediction with Expert Advice (PEA), the learning rate
must be adaptively tuned. The natural choice of

√
complexity/current loss renders the analysis of

Weighted Majority (WM) derivatives quite complicated. In particular, for arbitrary weights there
have been no results proven so far. The analysis of the alternative Follow the Perturbed Leader
(FPL) algorithm from Kalai and Vempala (2003) based on Hannan’s algorithm is easier. We derive
loss bounds for adaptive learning rate and both finite expertclasses with uniform weights and
countable expert classes with arbitrary weights. For the former setup, our loss bounds match the
best known results so far, while for the latter our results are new.

Keywords: prediction with expert advice, follow the perturbed leader, general weights, adap-
tive learning rate, adaptive adversary, hierarchy of experts, expected and high probability bounds,
general alphabet and loss, online sequential prediction

1. Introduction

In Prediction with Expert Advice (PEA) one considers an ensemble of sequential predictors (ex-
perts). A master algorithm is constructed based on the historical performance of the predictors.
The goal of the master algorithm is to perform nearly as well as the best expert in the class, on
any sequence of outcomes. This is achieved by making (randomized) predictions close to the better
experts.

PEA theory has rapidly developed in the recent past. Starting with the Weighted Majority (WM)
algorithm of Littlestone and Warmuth (1989, 1994) and the aggregating strategy of Vovk (1990), a
vast variety of different algorithms and variants have been published. Akey parameter in all these
algorithms is thelearning rate. While this parameter had to be fixed in the early algorithms such
as WM, Cesa-Bianchi et al. (1997) established the so-called doubling trick to make the learning
rate coarsely adaptive. A little later, incrementally adaptive algorithms were developed by Auer
and Gentile (2000); Auer et al. (2002); Yaroshinsky et al. (2004); Gentile (2003), and others. In
Section 10, we will compare our results with these works more in detail. Unfortunately, the loss
bound proofs for the incrementally adaptive WM variants are quite complex and technical, despite
the typically simple and elegant proofs for a static learning rate.

The complex growing proof techniques also had another consequence.While for the original
WM algorithm, assertions are proven for countable classes of experts witharbitrary weights, the
modern variants usually restrict to finite classes with uniform weights (an exception being Gentile
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(2003); see the discussion section therein.) This might be sufficient for many practical purposes
but it prevents the application to more general classes of predictors. Examples are extrapolating
(=predicting) data points with the help of a polynomial (=expert) of degreed = 1,2,3, ... –or– the
(from a computational point of view largest) class of all computable predictors. Furthermore, most
authors have concentrated on predictingbinary sequences, often with the 0/1 loss for{0,1}-valued
and the absolute loss for[0,1]-valued predictions. Arbitrary losses are less common. Nevertheless,
it is easy to abstract completely from the predictions and consider the resulting losses only. Instead
of predicting according to a “weighted majority” in each time step, one choosesonesingleexpert
with a probability depending on his past cumulated loss. This is done e.g. by Freund and Schapire
(1997), where an elegant WM variant, the Hedge algorithm, is analyzed.

A different, general approach to achieve similar results is Follow the Perturbed Leader (FPL).
The principle dates back to as early as 1957, now called Hannan’s algorithm (Hannan, 1957). In
2003, Kalai and Vempala published a simpler proof of the main result of Hannan and also succeeded
to improve the bound by modifying the distribution of the perturbation. The resulting algorithm
(which they call FPL*) has the same performance guarantees as the WM-type algorithms for fixed
learning rate, save for a factor of

√
2. A major advantage we will discover in this work is that its

analysis remains easy for an adaptive learning rate, in contrast to the WM derivatives. Moreover, it
generalizes to online decision problems other than PEA.

In this work,1 we study the FPL algorithm for PEA. The problems of WM algorithms men-
tioned above are addressed. Bounds on the cumulative regret of the standard form

√
kL (wherek

is the complexity andL is the cumulative loss of the best expert in hindsight) are shown for count-
able expert classes with arbitrary weights, adaptive learning rate, and arbitrary losses. Regarding
the adaptive learning rate, we obtain proofs that are simpler and more elegant than for the corre-
sponding WM algorithms. (In particular, the proof for a self-confident choice of the learning rate,
Theorem 7, is less than half a page.) Further, we prove the first loss bounds forarbitrary weights
and adaptive learning rate. In order to obtain the optimal

√
kL bound in this case, we will need

to introduce a hierarchical version of FPL, while without hierarchy we show a worse boundk
√

L.
(For self-confident learning rate together with uniform weights and arbitrary losses, one can prove
corresponding results for a variant of WM by adapting an argument by Auer et al. 2002.)

PEA usually refers to anonline worst casesetting:n experts that deliver sequential predictions
over a time ranget = 1, . . . ,T are given. At each timet, we know the actual predictions and the
past losses. The goal is to give a prediction such that the overall loss afterT steps is “not much
worse” than the best expert’s losson any sequence of outcomes. If the prediction is deterministic,
then an adversary could choose a sequence which provokes maximal loss. So we have torandomize
our predictions. Consequently, we ask for a prediction strategy such that theexpectedloss on any
sequence is small.

This paper is structured as follows. In Section 2 we give the basic definitions. While Kalai
and Vempala consider general online decision problems in finite-dimensionalspaces, we focus on
online prediction tasks based on a countable number of experts. Like Kalaiand Vempala (2003) we
exploit the infeasible FPL predictor (IFPL) in our analysis. Sections 3 and4 derive the main analysis
tools. In Section 3 we generalize (and marginally improve) the upper bound (Kalai and Vempala,
2003, Lem.3) on IFPL to arbitrary weights. The main difficulty we faced was toappropriately
distribute the weights to the various terms. For the corresponding lower bound (Section 7) this

1. A shorter version appeared in the proceedings of the ALT 2004 conference (Hutter and Poland, 2004).
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is an open problem. In Section 4 we exploit our restricted setup to significantlyimprove (Kalai
and Vempala, 2003, Eq.(3)) allowing for bounds logarithmic rather than linear in the number of
experts. The upper and lower bounds on IFPL are combined to derive various regret bounds on
FPL in Section 5. Bounds for static and dynamic learning rate in terms of the sequence length
follow straight-forwardly. The proof of our main bound in terms of the loss ismuch more elegant
than the analysis of previous comparable results. Section 6 proposes a novel hierarchical procedure
to improve the bounds for non-uniform weights. In Section 7, a lower bound is established. In
Section 8, we consider the case of independent randomization more seriously. In particular, we
show that the derived bounds also hold for an adaptive adversary. Section 9 treats some additional
issues, including bounds with high probability, computational aspects, deterministic predictors, and
the absolute loss. Finally, in Section 10 we discuss our results, compare themto references, and
state some open problems.

2. Setup and Notation

Setup. Prediction with expert advice proceeds as follows. We are asked to perform sequential
predictionsyt ∈ Y at timest = 1,2, . . .. At each time stept, we have access to the predictions
(yi

t)1≤i≤n of n experts{e1, ...,en}, where the size of the expert pool isn∈ IN ∪{∞}. It is convenient
to use the same notation for finite (n∈ IN) and countably infinite (n = ∞) expert pool. After having
made a prediction, we make some observationxt ∈ X , and a Loss is revealed for our and each
expert’s prediction. (E.g. the loss might be 1 if the expert made an erroneous prediction and 0
otherwise. This is the 0/1 loss.) Our goal is to achieve a total loss “not much worse” than the best
expert, aftert time steps.

We admitn∈ IN∪{∞} experts, each of which is assigned a known complexityki ≥ 0. Usually we
require∑i e

−ki ≤ 1, which implies that theki are valid lengths of prefix code words, for instanceki =
lnn if n < ∞ or ki = 1

2 +2lni if n = ∞. Each complexity defines a weight by means of e−ki
and vice

versa. In the following we will talk of complexities rather than of weights. Ifn is finite, then usually
one setski = lnn for all i; this is the case ofuniform complexities/weights. If the set of experts is
countably infinite (n = ∞), uniform complexities are not possible. The vector of all complexities
is denoted byk = (ki)1≤i≤n. At each timet, each experti suffers a loss2 si

t =Loss(xt ,yi
t) ∈ [0,1],

andst = (si
t)1≤i≤n is the vector of all losses at timet. Let s<t = s1 + . . .+ st−1 (respectivelys1:t =

s1 + . . .+st) be the total past loss vector (including current lossst) andsmin
1:t = mini{si

1:t} be the loss
of thebest expert in hindsight (BEH). Usually we do not know in advance the timet ≥ 0 at which
the performance of our predictions are evaluated.

General decision spaces.The setup can be generalized as follows. LetS ⊂ IRn be thestate space
andD ⊂ IRn thedecision space. At time t the state isst ∈ S , and a decisiondt ∈ D (which is made
before the state is revealed) incurs a lossdt◦st , where “◦” denotes the inner product. This implies
that the loss function islinear in the states. Conversely, each linear loss function can be represented
in this way. The decision which minimizes the loss in states∈ S is

M(s) := arg min
d∈D

{d ◦s} (1)

if the minimum exists. The application of this general framework to PEA is straightforward: D is
identified with the space of all unit vectorsE ={ei :1≤ i≤n}, since a decision consists of selecting

2. The setup, analysis and results easily scale tosi
t ∈ [0,S] for S> 0 other than 1.
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a single expert, andst ∈ [0,1]n, so states are identified with losses. Only Theorems 2 and 10 will be
stated in terms of general decision space. Our main focus isD = E . (Even for this special case,
the scalar product notation is not too heavy, but will turn out to be convenient.) All our results
generalize to the simplexD =∆={v∈ [0,1]n :∑iv

i =1}, since the minimum of a linear function on
∆ is always attained onE .

Follow the Perturbed Leader. Givens<t at timet, an immediate idea to solve the expert problem
is to “Follow the Leader” (FL), i.e. selecting the expertei which performed best in the past (min-
imizessi

<t), that is predict according to expertM(s<t). This approach fails for two reasons. First,
for n = ∞ the minimum in (1) may not exist. Second, forn = 2 ands=

( 0 1 0 1 0 1...
1
20 1 0 1 0...

)
, FL always

chooses the wrong prediction (Kalai and Vempala, 2003). We solve the first problem by penalizing
each expert by its complexity, i.e. predicting according to expertM(s<t +k). TheFPL (Follow the
Perturbed Leader)approach solves the second problem by adding to each expert’s losssi

<t a random
perturbation. We choose this perturbation to be negativeexponentially distributed, either indepen-
dent in each time step or once and for all at the very beginning at timet = 0. The former choice
is preferable in order to protect against an adaptive adversary who generates thest , and in order
to get bounds with high probability (Section 9). For the main analysis however, the latter choice
is more convenient. Due to linearity of expectations, these two possibilities are equivalent when
dealing withexpected losses(this is straightforward for oblivious adversary, for adaptive adversary
see Section 8), so we can henceforth assume without loss of generality one initial perturbationq.

The FPL algorithm is defined as follows:
Choose random vectorq

d.∼exp, i.e.P[q1...qn]=e−q1 ·...·e−qn
for q≥0.

For t =1,...,T
- Choose learning rateηt .
- Output prediction of experti which minimizessi

<t +(ki−qi)/ηt .
- Receive losssi

t for all expertsi.

Other thans<t , k and q, FPL depends on thelearning rateηt . We will give choices forηt in
Section 5, after having established the main tools for the analysis. The expected loss at timet of
FPL is `t := E[M(s<t +

k−q
ηt

) ◦st ]. The key idea in the FPL analysis is the use of an intermediate
predictor IFPL (for Implicit or Infeasible FPL). IFPL predicts according toM(s1:t +

k−q
ηt

), thus
under the knowledge ofst (which is of course not available in reality). Byrt :=E[M(s1:t +

k−q
ηt

) ◦st ]
we denote the expected loss of IFPL at timet. The losses of IFPL will be upper-bounded by BEH
in Section 3 and lower-bounded by FPL in Section 4. Note that our definition of the FPL algorithm
deviates from that of Kalai and Vempala. It uses an exponentially distributed perturbation similar to
their FPL∗ but one-sided and a non-stationary learning rate like Hannan’s algorithm.

Notes.Observe that we have stated the FPL algorithm regardless of the actualpredictionsof the ex-
perts and possibleobservations, only thelossesare relevant. Note also that an expert can implement
a highly complicated strategy depending on past outcomes, despite its trivializing identification with
a constant unit vector. The complex expert’s (and environment’s) behavior is summarized and hid-
den in the state vectorst =Loss(xt ,yi

t)1≤i≤n. Our results therefore apply toarbitrary prediction and
observation spacesY andX and arbitrary bounded loss functions. This is in contrast to the major
part of PEA work developed for binary alphabet and 0/1 or absolute loss only. Finally note that
the setup allows for losses generated by an adversary who tries to maximize the regret of FPL and
knows the FPL algorithm and all experts’ past predictions/losses. If the adversary also has access
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Symbol Definition / Explanation
n ∈ IN∪{∞} (n=∞ means countably infiniteE ). Number of experts.
xi = ith component of vectorx∈ IRn.
E :={ei :1≤ i≤n}= set of unit vectors (ej

i =δi j ).
∆ :={v∈ [0,1]n :∑iv

i =1}= simplex.
st ∈ [0,1]n = environmental state/loss vector at timet.
s1:t :=s1+...+st= state/loss (similar for̀t andrt).
smin
1:T =mini{si

1:T}= loss of Best Expert in Hindsight (BEH).
s<t :=s1+...+st−1= state/loss summary (s<0=0).
M(s) :=argmind∈D{d ◦s}= best decision ons.
T∈ IN0 = total time=step,t∈ IN= current time=step.
ki ≥0 = penalization = complexity of experti.
q∈ IRn = random vector with independent exponentially distributed components.

It :=argmini∈E{si
<t +

ki−qi

ηt
}= randomized prediction of FPL.

`t :=E[M(s<t +
k−q
ηt

) ◦st ]= expected loss at timet of FPL (=E[sIt
t ] for D =E ).

rt :=E[M(s1:t +
k−q
ηt

) ◦st ]= expected loss at timet of IFPL.

ut :=M(s<t +
k−q
ηt

) ◦st= actual loss at timet of FPL (=sIt
t for D =E ).

Table 1: List of notation.

to FPL’s past decisions, then FPL must use independent randomization ateach time step in order to
achieve good regret bounds. Table 1 summarizes notation.

Motivation of FPL. Let d(s<t) be any predictor with decision based ons<t . The following identity
is easy to show:

T

∑
t=1

d(s<t) ◦st

︸ ︷︷ ︸
“FPL”

≡ d(s1:T) ◦s1:T

︸ ︷︷ ︸
“BEH”

+

≤ 0 if d ≈ M︷ ︸︸ ︷
T

∑
t=1

[d(s<t)−d(s1:t)] ◦s<t

︸ ︷︷ ︸
“IFPL−BEH”

+

small if d(·) is continuous︷ ︸︸ ︷
T

∑
t=1

[d(s<t)−d(s1:t)] ◦st

︸ ︷︷ ︸
“FPL−IFPL”

. (2)

For a good bound of FPL in terms of BEH we need the first term on the r.h.s. tobe close to BEH and
the last two terms to be small. The first term is close to BEH ifd≈M. The second to last term is
even negative ifd=M, hence small ifd≈M. The last term is small ifd(s<t)≈d(s1:t), which is the
case ifd(·) is a sufficiently smooth function. Randomization smoothes the discontinuous function
M: The functiond(s) := E[M(s−q)], whereq∈ IRn is some random perturbation, is a continuous
function ins. If the mean and variance ofq are small, thend≈M, if the variance ofq is large, then
d(s<t) ≈ d(s1:t). An intermediate variance makes the last two terms of (2) simultaneously small
enough, leading to excellent bounds for FPL.

3. IFPL bounded by Best Expert in Hindsight

In this section we provide tools for comparing the loss of IFPL to the loss of thebest expert in
hindsight. The first result bounds the expected error induced by the exponentially distributed per-
turbation.
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Lemma 1 (Maximum of Shifted Exponential Distributions) Let q1,...,qn be (not necessarily in-
dependent) exponentially distributed random variables, i.e. P[qi ]=e−qi

for qi ≥0 and1≤ i≤n≤∞,
and ki ∈ IR be real numbers with u:=∑n

i=1e−ki
. Then

P[max
i
{qi − ki} ≥ a] = 1−

n

∏
i=1

max{0, 1−e−a−ki} if q1, ..., qn are independent,

P[max
i
{qi − ki} ≥ a] ≤ min{1, ue−a},

E[max
i
{qi − ki}] ≤ 1 + ln u.

Proof. Using

P[qi < a] = max{0, 1−e−a} ≥ 1− e−a and P[qi ≥ a] = min{1, e−a} ≤ e−a,

valid for anya∈ IR, the exact expression forP[max] in Lemma 1 follows from

P[max
i
{qi − ki} < a] = P[qi − ki < a ∀i] =

n

∏
i=1

P[qi < a + ki ] =
n

∏
i=1

max{0, e−a−ki},

where the second equality follows from the independence of theqi . The bound onP[max] for any
a∈ IR (including negativea) follows from

P[max
i
{qi − ki} ≥ a] = P[∃i : qi − ki ≥ a] ≤

n

∑
i=1

P[qi − ki ≥ a] ≤
n

∑
i=1

e−a−ki
= u·e−a

where the first inequality is the union bound. UsingE[z]≤E[max{0,z}]= R ∞
0 P[max{0,z}≥y]dy=

R ∞
0 P[z≥y]dy (valid for any real-valued random variablez) for z=maxi{qi−ki}−lnu, this implies

E[max
i
{qi − ki} − ln u] ≤

Z ∞

0
P[ max

i
{qi − ki} ≥ y + ln u]dy≤

Z ∞

0
e−ydy = 1,

which proves the bound onE[max]. 2

If n is finite, a lower boundE[maxiqi ]≥ 0.57721+ lnn can be derived, showing that the upper
bound onE[max] is quite tight (at least) forki = 0 ∀i. The following bound generalizes (Kalai
and Vempala, 2003, Lem.3) to arbitrary weights, establishing a relation between IFPL and the best
expert in hindsight.

Theorem 2 (IFPL bounded by BEH) Let D ⊆ IRn, st ∈ IRn for 1≤ t ≤T (bothD and s may even
have negative components, but we assume that all required extrema are attained), and q,k∈ IRn.
If ηt > 0 is decreasing in t, then the loss of the infeasible FPL knowing st at time t in advance
(l.h.s.) can be bounded in terms of the best predictor in hindsight (first term on r.h.s.) plus additive
corrections:

T

∑
t=1

M(s1:t +
k−q
ηt

) ◦st ≤ min
d∈D

{d ◦(s1:T +
k

ηT
)} +

1
ηT

max
d∈D

{d ◦(q− k)} − 1
ηT

M(s1:T +
k

ηT
) ◦q.
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Note that ifD = E (or D = ∆) andst ≥ 0, then all extrema in the theorem are attained almost
surely. The same holds for all subsequent extrema in the proof and throughout the paper.

Proof. For notational convenience, letη0=∞ ands̃1:t =s1:t +
k−q
ηt

. Consider the losses ˜st =st +(k−
q)( 1

ηt
− 1

ηt−1
) for the moment. We first show by induction onT that the infeasible predictorM(s̃1:t)

has zero regret for any loss ˜s, i.e.

T

∑
t=1

M(s̃1:t) ◦s̃t ≤ M(s̃1:T) ◦s̃1:T . (3)

ForT =1 this is obvious. For the induction step fromT−1 toT we need to show

M(s̃1:T) ◦s̃T ≤ M(s̃1:T) ◦s̃1:T − M(s̃<T) ◦s̃<T . (4)

This follows froms̃1:T = s̃<T+s̃T andM(s̃1:T) ◦s̃<T ≥M(s̃<T) ◦s̃<T by minimality ofM. Rearranging
terms in (3), we obtain

T

∑
t=1

M(s̃1:t) ◦st ≤ M(s̃1:T) ◦s̃1:T −
T

∑
t=1

M(s̃1:t) ◦(k− q)
( 1

ηt
− 1

ηt−1

)
(5)

Moreover, by minimality ofM,

M(s̃1:T) ◦s̃1:T ≤ M
(

s1:T +
k

ηT

)
◦
(

s1:T +
k− q

ηT

)
(6)

= min
d∈D

{
d ◦(s1:T +

k
ηT

)

}
− M

(
s1:T +

k
ηT

)
◦

q
ηT

holds. Using1
ηt
− 1

ηt−1
≥0 and again minimality ofM, we have

T

∑
t=1

(
1
ηt

− 1
ηt−1

)M(s̃1:t) ◦(q− k) ≤
T

∑
t=1

(
1
ηt

− 1
ηt−1

)M(k− q) ◦(q− k) (7)

=
1

ηT
M(k− q) ◦(q− k) =

1
ηT

max
d∈D

{d ◦(q− k)}.

Inserting (6) and (7) back into (5) we obtain the assertion. 2

Assumingq random withE[qi ] = 1 and taking the expectation in Theorem 2, the last term
reduces to− 1

ηT
∑n

i=1M(s1:T + k
ηT

)i . If D ≥ 0, the term is negative and may be dropped. In case of
D = E or ∆, the last term is identical to− 1

ηT
(since∑id

i = 1) and keeping it improves the bound.
Furthermore, we need to evaluate the expectation of the second to last term inTheorem 2, namely
E[maxd∈D{d ◦(q−k)}]. For D = E and q being exponentially distributed, using Lemma 1, the
expectation is bounded by 1+lnu. We hence get the following bound:

Corollary 3 (IFPL bounded by BEH) For D = E and ∑ie
−ki ≤ 1 and P[qi ] = e−qi

for q≥ 0 and
decreasingηt > 0, the expected loss of the infeasible FPL exceeds the loss of expert i by atmost
ki/ηT :

r1:T ≤ si
1:T +

1
ηT

ki ∀i.
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Theorem 2 can be generalized to expert dependent factorizableηt ;ηi
t =ηt ·ηi by scalingki

;

ki/ηi andqi
;qi/ηi . UsingE[maxi{qi−ki

ηi }]≤E[maxi{qi−ki}]/mini{ηi}, Corollary 3, generalizes
to

E[
T

∑
t=1

M(s1:t +
k− q

ηi
t

) ◦st ] ≤ si
1:T +

1

ηi
T

ki +
1

ηmin
T

∀i,

whereηmin
T :=mini{ηi

T}. For example, forηi
t =

√
ki/t we get the desired boundsi

1:T +
√

T ·(ki +4).
Unfortunately we were not able to generalize Theorem 4 to expert-dependentη, necessary for the
final bound on FPL. In Section 6 we solve this problem by a hierarchy of experts.

4. Feasible FPL bounded by Infeasible FPL

This section establishes the relation between the FPL and IFPL losses. Recall that `t =E[M(s<t +
k−q
ηt

) ◦st ] is the expected loss of FPL at timet and rt = E[M(s1:t +
k−q
ηt

) ◦st ] is the expected loss of
IFPL at timet.

Theorem 4 (FPL bounded by IFPL) For D = E and 0≤ si
t ≤ 1 ∀i and arbitrary s<t and P[q] =

e−∑iq
i
for q≥0, the expected loss of the feasible FPL is at most a factoreηt >1 larger than for the

infeasible FPL:

`t ≤ eηt rt , which implies `1:T − r1:T ≤
T

∑
t=1

ηt`t .

Furthermore, ifηt ≤1, then alsò t ≤(1+ηt +η2
t )rt ≤(1+2ηt)rt .

Proof. Let s=s<t +
1
ηk be the past cumulative penalized state vector,q be a vector of independent

exponential distributions, i.e.P[qi ]=e−qi
, andη=ηt . Then

P[q j ≥ η(sj − m+ 1)]

P[q j ≥ η(sj − m)]
=





e−η if sj ≥ m
e−η(sj−m+1) if m− 1 ≤ sj ≤ m

1 if sj ≤ m− 1



 ≥ e−η

We now define the random variablesI := argmini{si− 1
ηqi} andJ := argmini{si +si

t− 1
ηqi}, where

0≤ si
t ≤ 1 ∀i. Furthermore, for fixed vectorx∈ IRn and fixed j we definem:= mini 6= j{si− 1

ηxi}≤
mini 6= j{si +si

t− 1
ηxi}=:m′. With this notation and using the independence ofq j from qi for all i 6= j,

we get

P[I = j|qi = xi ∀i 6= j] = P[sj − 1
ηq j ≤ m|qi = xi ∀i 6= j] = P[q j ≥ η(sj − m)]

≤ eηP[q j ≥ η(sj − m+ 1)] ≤ eηP[q j ≥ η(sj + sj
t − m′)]

= eηP[sj + sj
t − 1

ηq j ≤ m′|qi = xi ∀i 6= j] = eηP[J = j|qi = xi ∀i 6= j].

Since this bound holds under any conditionx, it also holds unconditionally, i.e.P[I = j]≤eηP[J= j].
For D =E we havesI

t =M(s<t +
k−q

η ) ◦st andsJ
t =M(s1:t +

k−q
η ) ◦st , which implies

`t = E[sI
t ] =

n

∑
j=1

sj
t ·P[I = j] ≤ eη

n

∑
j=1

sj
t ·P[J = j] = eηE[sJ

t ] = eηrt .
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Finally, `t−rt ≤ηt`t follows from rt ≥e−ηt `t ≥(1−ηt)`t , and`t ≤eηt rt ≤(1+ηt+η2
t )rt ≤(1+2ηt)rt

for ηt ≤1 is elementary. 2

Remark. As done by Kalai and Vempala (2003), one can prove a similar statement forgeneral
decision spaceD as long as∑i |si

t |≤A is guaranteed for someA>0: In this case, we havèt ≤eηtArt .
If n is finite, then the bound holds forA= n. For n= ∞, the assertion holds under the somewhat
unnatural assumption thatS is l1-bounded.

5. Combination of Bounds and Choices forηt

Throughout this section, we assume

D = E , st ∈ [0, 1]n ∀t, P[q] = e−∑i qi
for q ≥ 0, and ∑

i

e−ki ≤ 1. (8)

We distinguishstaticanddynamicbounds. Static bounds refer to a constantηt ≡η. Since this value
has to be chosen in advance, a static choice ofηt requires certain prior information and therefore is
not practical in many cases. However, the static bounds are very easy toderive, and they provide
a good means to compare different PEA algorithms. If on the other hand the algorithm shall be
applied without appropriate prior knowledge, a dynamic choice ofηt depending only ont and/or
past observations, is necessary.

Theorem 5 (FPL bound for staticηt =η∝1/
√

L) Assume (8) holds, then the expected loss`t of
feasible FPL, which employs the prediction of the expert i minimizing si

<t +
ki−qi

ηt
, is bounded by the

loss of the best expert in hindsight in the following way:

i) For ηt = η = 1/
√

L with L ≥ `1:T we have

`1:T ≤ si
1:T +

√
L(ki + 1) ∀i.

ii) For ηt =
√

K/L with L ≥ `1:T and ki ≤ K ∀i we have

`1:T ≤ si
1:T + 2

√
LK ∀i.

iii ) For ηt =
√

ki/L with L ≥ max{si
1:T , ki} we have

`1:T ≤ si
1:T + 2

√
Lki + 3ki .

Note that according to assertion(iii ), knowledge of only theratio of the complexity and the
loss of the best expert is sufficient in order to obtain good static bounds, even for non-uniform
complexities.

Proof. (i,ii) For ηt =
√

K/L andL≥`1:T , from Theorem 4 and Corollary 3, we get

`1:T − r1:T ≤
T

∑
t=1

ηt`t = `1:T

√
K/L ≤

√
LK and r1:T − si

1:T ≤ ki/ηT = ki
√

L/K.

Combining both, we get̀1:T−si
1:T ≤

√
L(
√

K+ki/
√

K). (i) follows fromK=1 and(ii) from ki≤K.
(iii ) For η=

√
ki/L≤1 we get

`1:T ≤ eηr1:T ≤ (1 + η + η2)r1:T ≤ (1 +

√
ki

L
+

ki

L
)(si

1:T +

√
L
ki k

i)

≤ si
1:T +

√
Lki + (

√
ki

L
+

ki

L
)(L +

√
Lki) = si

1:T + 2
√

Lki + (2 +

√
ki

L
)ki .
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2

The static bounds require knowledge of an upper boundL on the loss (or the ratio of the com-
plexity of the best expert and its loss). Since the instantaneous loss is bounded by 1, one may set
L = T if T is known in advance. For finiten andki = K = lnn, bound(ii) gives the classic regret
∝
√

T lnn. If neitherT norL is known, a dynamic choice ofηt is necessary. We first present bounds

with regret∝
√

T, thereafter with regret∝
√

si
1:T .

Theorem 6 (FPL bound for dynamicηt ∝1/
√

t) Assume (8) holds.

i) For ηt = 1/
√

t we have `1:T ≤ si
1:T +

√
T(ki + 2) ∀i.

ii) For ηt =
√

K/2t and ki ≤ K ∀i we have `1:T ≤ si
1:T + 2

√
2TK ∀i.

Proof. For ηt =
√

K/2t, using∑T
t=1

1√
t
≤R T

0
dt√

t
=2

√
T and`t ≤1 we get

`1:T − r1:T ≤
T

∑
t=1

ηt ≤
√

2TK and r1:T − si
1:T ≤ ki/ηT = ki

√
2T
K

.

Combining both, we get̀1:T −si
1:T ≤

√
2T(

√
K+ki/

√
K). (i) follows from K = 2 and(ii) from

ki ≤K. 2

In Theorem 5 we assumed knowledge of an upper boundL on `1:T . In an adaptive form,Lt :=
`<t+1, known at the beginning of timet, could be used as an upper bound on`1:t with corresponding
adaptiveηt ∝1/

√
Lt . Such choice ofηt is also calledself-confident(Auer et al., 2002).

Theorem 7 (FPL bound for self-confidentηt ∝1/
√

`<t) Assume (8) holds.

i) For ηt = 1/
√

2(`<t + 1) we have

`1:T ≤ si
1:T + (ki +1)

√
2(si

1:T +1) + 2(ki +1)2 ∀i.

ii) For ηt =
√

K/2(`<t + 1) and ki ≤ K ∀i we have

`1:T ≤ si
1:T + 2

√
2(si

1:T +1)K + 8K ∀i.

Proof. Using ηt =
√

K/2(`<t +1)≤
√

K/2`1:t and b−a√
b

= (
√

b−√
a)(

√
b+

√
a) 1√

b
≤ 2(

√
b−√

a)

for a≤b andt0 :=min{t :`1:t >0} we get

`1:T−r1:T ≤
T

∑
t=t0

ηt`t ≤
√

K
2

T

∑
t=t0

`1:t−`<t√
`1:t

≤
√

2K
T

∑
t=t0

[
√

`1:t −
√

`<t ] =
√

2K
√

`1:T .

Adding r1:T−si
1:T ≤ ki

ηT
≤ki

√
2(`1:T +1)/K we get

`1:T − si
1:T ≤

√
2κ̄i(`1:T +1), where

√
κ̄i :=

√
K + ki/

√
K.

Taking the square and solving the resulting quadratic inequality w.r.t.`1:T we get

`1:T ≤ si
1:T + κ̄i +

√
2(si

1:T +1)κ̄i + (κ̄i)2 ≤ si
1:T +

√
2(si

1:T +1)κ̄i + 2κ̄i .

648



ADAPTIVE ONLINE PREDICTION BY FOLLOWING THE PERTURBEDLEADER

ForK =1 we get
√

κ̄i =ki +1 which yields(i). Forki ≤K we getκ̄i ≤4K which yields(ii). 2

The proofs of results similar to(ii) for WM for 0/1 loss all fill several pages (Auer et al., 2002;
Yaroshinsky et al., 2004). The next result establishes a similar bound, but instead of using the
expectedvalue`<t , thebest loss so far smin

<t is used. This may have computational advantages, since
smin
<t is immediately available, whilè<t needs to be evaluated (see discussion in Section 9).

Theorem 8 (FPL bound for adaptiveηt ∝1/
√

smin
<t ) Assume (8) holds.

i) For ηt = 1/ min
i
{ki +

√
(ki)2 + 2si

<t + 2} we have

`1:T ≤ si
1:T + (ki + 2)

√
2si

1:T + 2(ki + 2)2 ∀i.

ii) For ηt =
√

1
2 ·min{1,

√
K/smin

<t } and ki ≤ K ∀i we have

`1:T ≤ si
1:T + 2

√
2Ksi

1:T + 5K ln(si
1:T) + 3K + 6 ∀i.

We briefly motivate the strange looking choice forηt in (i). The first naive candidate,ηt ∝1/
√

smin
<t ,

turns out too large. The next natural trial is requestingηt = 1/
√

2min{si
<t +

ki

ηt
}. Solving this

equation results inηt =1/(ki +
√

(ki)2+2si
<t), wherei be the index for whichsi

<t +
ki

ηt
is minimal.

Proof. Define the minimum of a vector as its minimum component, e.g. min(k)= kmin. For nota-
tional convenience, letη0 = ∞ and s̃1:t = s1:t +

k−q
ηt

. Like in the proof of Theorem 2, we consider
one exponentially distributed perturbationq. SinceM(s̃1:t) ◦s̃t ≤M(s̃1:t) ◦s̃1:t−M(s̃<t) ◦s̃<t by (4), we
have

M(s̃1:t) ◦st ≤ M(s̃1:t) ◦s̃1:t − M(s̃<t) ◦s̃<t − M(s̃1:t) ◦

(
k− q

ηt
− k− q

ηt−1

)

Sinceηt ≤
√

1/2, Theorem 4 asserts̀t ≤E[(1+ηt +η2
t )M(s̃1:t) ◦st ], thus`1:T ≤A+B, where

A =
T

∑
t=1

E
[
(1 + ηt + η2

t )(M(s̃1:t) ◦s̃1:t − M(s̃<t) ◦s̃<t)
]

= E[(1 + ηT + η2
T)M(s̃1:T) ◦s̃1:T ] − E[(1 + η1 + η2

1) min(
k− q

η1
)]

+
T−1

∑
t=1

E
[
(ηt − ηt+1 + η2

t − η2
t+1)M(s̃1:t) ◦s̃1:t

]
and

B =
T

∑
t=1

E

[
(1 + ηt + η2

t )M(s̃1:t) ◦

(
q− k

ηt
− q− k

ηt−1

)]

≤
T

∑
t=1

(1 + ηt + η2
t )

(
1
ηt

− 1
ηt−1

)
=

1 + ηT + η2
T

ηT
+

T−1

∑
t=1

ηt − ηt+1 + η2
t − η2

t+1

ηt
.

Here, the estimate forB follows from 1
ηt
− 1

ηt−1
≥0 andE[M(ηts1:t +k−q) ◦(q−k)]≤E[maxi{qi−

ki}]≤1, which in turn holds by minimality ofM, ∑ie
−ki ≤1 and Lemma 1. In order to estimateA, we

sets̄1:t =s1:t+
k
ηt

and observeM(s̃1:t) ◦s̃1:t ≤M(s̄1:t) ◦(s̄1:t− q
ηt

) by minimality ofM. The expectations
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of q can then be evaluated toE[M(s̄1:t) ◦q]=1, and as before we haveE[−min(k−q)]≤1. Hence

`1:T ≤ A + B ≤ (1 + ηT + η2
T)

(
M(s̄1:T) ◦s̄1:T − 1

ηT

)
+

1 + η1 + η2
1

η1

+
T−1

∑
t=1

(ηt − ηt+1 + η2
t − η2

t+1)

(
M(s̄1:t) ◦s̄1:t −

1
ηt

)
+ B (9)

≤ (1 + ηT + η2
T) min(s̄1:T) +

T−1

∑
t=1

(ηt − ηt+1 + η2
t − η2

t+1) min(s̄1:t) +
1

η1
+ 2.

We now proceed by considering the two parts of the theorem separately.
(i) Here, ηt = 1/min(k+

√
k2+2s<t +2). Fix t ≤ T and choosem such that km +√

(km)2+2sm
<t +2 is minimal. Then

min(s1:t +
k
ηt

) ≤ sm
<t + 1 +

km

ηt
= 1

2(km +
√

(km)2 + 2sm
<t + 2)2 =

1

2η2
t
≤ 1

2ηtηt+1
.

We may overestimate the quadratic termsη2
t in (9) by ηt – the easiest justification is that we could

have started with the cruder estimate`t ≤(1+2ηt)rt from Theorem 4. Then

`1:T ≤ (1 + 2ηT) min(s1:T +
k

ηT
) + 2

T−1

∑
t=1

(ηt − ηt+1) min(s1:t +
k
ηt

) +
1

η1
+ 2

≤ (1 + 2ηT)
1

2η2
T

+ 2
T−1

∑
t=1

(ηt − ηt+1)
1

2η2
t

+
1

η1
+ 2

≤ 1

2η2
T

+
1

ηT
+

T−1

∑
t=1

(
1

ηt+1
− 1

ηt

)
+

1
η1

+ 2

≤ 1
2 min(k +

√
k2 + 2s<T + 2)2 + 2 min(k +

√
k2 + 2s<T + 2) + 2

≤ si
1:T + (ki + 2)

√
2si

1:T + 2(ki)2 + 6ki + 6 for all i.

This proves the first part of the theorem.
(ii) Here we haveK≥ki for all i. Abbreviateat =max{K,smin

1:t } for 1≤ t≤T, thenηt =
√

K
2at−1

,

at ≥ K, andat −at−1 ≤ 1 for all t. ObserveM(s̄1:t) = M(s1:t), ηt −ηt+1 =
√

K(at−at−1)√
2
√

at
√

at−1(
√

at+
√

at−1)
,

η2
t −η2

t+1= K(at−at−1)
2atat−1

, andat−at−1
2at−1

≤ ln(1+ at−at−1
at−1

)= ln(at)−ln(at−1) which is true forat−at−1
at−1

≤ 1
K ≤

1
ln2. This implies

(ηt − ηt+1)K
ηt

≤ K(at − at−1)

2at−1
≤ K ln

(
1 +

at − at−1

at−1

)
= K( ln(at) − ln(at−1)),

(ηt − ηt+1)s
min
1:t ≤

√
K(at − at−1)(

√
at−1 +

√
at −

√
at−1)√

2
√

at−1(
√

at +
√

at−1)

=

√
K
2

(
√

at −
√

at−1) +

√
K(at − at−1)

2
√

2at−1(
√

at +
√

at−1)2

useat−at−1≤1
andat−1≥K

≤
√

K
2

(
√

at −
√

at−1) +
1

2
√

2
( ln(at) − ln(at−1)),
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(η2
t − η2

t+1)K

ηt
=

K
√

K(at − at−1)√
2at

√
at−1

at−1≥K

≤
√

2K( ln(at) − ln(at−1)), and

(η2
t − η2

t+1)s
min
1:t ≤ K(at − at−1)

2at−1
≤ K( ln(at) − ln(at−1)).

The logarithmic estimate in the second and third bound is unnecessarily rough and for convenience
only. Therefore, the coefficient of the log-term in the final bound of thetheorem can be reduced to
2K without much effort. Plugging the above estimates back into (9) yields

`1:T ≤ smin
1:T +

√
K
2

smin
1:T +

√
2Ksmin

1:T + 3K + 2 +

√
K
2

smin
1:T + (7

2K + 1
2
√

2
) ln(smin

1:T )

+
1

η1
+ 2 ≤ smin

1:T + 2
√

2Ksmin
1:T + 5K ln(smin

1:T ) + 3K + 6.

This completes the proof. 2

Theorem 7 and Theorem 8(i) immediately imply the following bounds on the
√

Loss-regrets:√
`1:T ≤

√
si
1:T +1+

√
8K,

√
`1:T ≤

√
si
1:T +1+

√
2(ki +1), and

√
`1:T ≤

√
si
1:T +

√
2(ki +2), respec-

tively.

Remark. The same analysis as for Theorems [5–8](ii) applies to generalD, using`t≤eηtnrt instead
of `t ≤eηt rt , and leading to an additional factor

√
n in the regret. Compare the remark at the end of

Section 4.

6. Hierarchy of Experts

We derived bounds which do not need prior knowledge ofL with regret∝
√

TK and∝
√

si
1:TK

for a finite number of experts with equal penaltyK = ki = lnn. For an infinite number of experts,
unbounded expert-dependent complexity penaltieski are necessary (due to constraint∑ie

−ki ≤ 1).

Bounds for this case (without prior knowledge ofT) with regret∝ ki
√

T and∝ ki
√

si
1:T have been

derived. In this case, the complexityki is no longer under the square root. Although this already
implies Hannan consistency, i.e. the average per round regret tends to zero ast→∞, improved regret

bounds∝
√

Tki and∝
√

si
1:Tki are desirable and likely to hold. We were not able to derive such

improved bounds for FPL, but for a (slight) modification. We consider a two-level hierarchy of
experts. First consider an FPL for the subclass of experts of complexityK, for eachK∈ IN. Regard
these FPLK as (meta) experts and use them to form a (meta) FPL. The class of meta experts now
contains for each complexity only one (meta) expert, which allows us to derive good bounds. In the
following, quantities referring to complexity classK are superscripted byK, and meta quantities are
superscripted bỹ.

Consider the class of expertsEK :={i :K−1<ki ≤K} of complexityK, for eachK∈ IN. FPLK

makes randomized predictionIK
t := argmini∈EK{si

<t +
ki−qi

ηK
t
} with ηK

t :=
√

K/2t and suffers loss

uK
t :=sIK

t
t at timet. Sinceki ≤K ∀i∈Ek we can apply Theorem 6(ii) to FPLK :

E[uK
1:T ] = `K

1:T ≤ si
1:T + 2

√
2TK ∀i ∈ EK ∀K ∈ IN. (10)

We now define a meta state ˜sK
t =uK

t and regard FPLK for K ∈ IN as meta experts, so meta expertK
suffers loss ˜sK

t . (Assigning expected loss ˜sK
t = E[uK

t ] = `K
t to FPLK would also work.) Hence the
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setting is again an expert setting and we define the metaF̃PL to predict̃It :=argminK∈IN{s̃K
<t+

k̃K−q̃K

η̃t
}

with η̃t =1/
√

t andk̃K = 1
2+2lnK (implying ∑∞

K=1e−k̃K ≤1). Note that ˜sK
1:t =s̃K

1 +...+s̃K
t =s

IK
1

1 +...+sIK
t

t

sums over the same meta state componentsK, but over different componentsIK
t in normal state

representation.
By Theorem 6(i) the q̃-expected loss of̃FPL is bounded by ˜sK

1:T +
√

T(k̃K +2). As this bound
holds for allq it also holds inq-expectation. So if we definè̃1:T to be theq andq̃ expected loss of
F̃PL, and chain this bound with (10) fori∈EK we get:

˜̀1:T ≤ E[s̃K
1:T +

√
T(k̃K + 2)] = `K

1:T +
√

T(k̃K + 2)

≤ si
1:T +

√
T[2

√
2(ki + 1) + 1

2 + 2 ln(ki + 1) + 2],

where we have usedK ≤ ki +1. This bound is valid for alli and has the desired regret∝
√

Tki .

Similarly we can derive regret bounds∝
√

si
1:Tki by exploiting that the bounds in Theorems 7 and 8

are concave insi
1:T and using Jensen’s inequality.

Theorem 9 (Hierarchical FPL bound for dynamic ηt) The hierarchicalF̃PL employs at time t
the prediction of expert it := I Ĩt

t , where

IK
t := arg min

i:dkie=K

{
si
<t + ki−qi

ηK
t

}
and Ĩt := arg min

K∈IN

{
s
IK
1

1 + ... + s
IK
t−1

t−1 +
1
2+2 lnK−q̃K

η̃t

}

Under assumptions (8) and independent P[q̃K ]=e−q̃K ∀K∈IN, the expected loss̀̃1:T =E[si1
1 +...+siT

T ]

of F̃PL is bounded as follows:

a) For ηK
t =

√
K/2t and η̃t = 1/

√
t we have

˜̀1:T ≤ si
1:T + 2

√
2Tki ·(1 + O( ln ki√

ki
)) ∀i.

b) For η̃t as in(i) andηK
t as in(ii) of Theorem{7

8} we have

˜̀1:T ≤ si
1:T + 2

√
2si

1:Tki ·(1 + O( ln ki√
ki

)) + { O(ki)

O(ki ln si
1:T )

} ∀i.

The hierarchical̃FPL differs from a direct FPL over all expertsE . One potential way to prove a
bound on direct FPL may be to show (if it holds) that FPL performs better than F̃PL, i.e.`1:T ≤ ˜̀1:T .
Another way may be to suitably generalize Theorem 4 to expert dependentη.

7. Lower Bound on FPL

A lower bound on FPL similar to the upper bound in Theorem 2 can also be proven.

Theorem 10 (FPL lower-bounded by BEH) Let n be finite. AssumeD⊆IRn and st∈IRn are chosen
such that the required extrema exist (possibly negative), q∈ IRn, andηt >0 is a decreasing sequence.
Then the loss of FPL for uniform complexities (l.h.s.) can be lower-bounded interms of the best
predictor in hindsight (first term on r.h.s.) plus/minus additive corrections:

T

∑
t=1

M(s<t −
q
ηt

) ◦st ≥ min
d∈D

{d ◦s1:T} −
1

ηT
max
d∈D

{d ◦q} +
T

∑
t=1

(
1
ηt

− 1
ηt−1

)M(s<t) ◦q
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Proof. For notational convenience, letη0=∞ ands̃1:t =s1:t− q
ηt

. Consider the losses ˜st =st−q( 1
ηt
−

1
ηt−1

) for the moment. We first show by induction onT that the predictorM(s̃<t) has nonnegative
regret, i.e.

T

∑
t=1

M(s̃<t) ◦s̃t ≥ M(s̃1:T) ◦s̃1:T . (11)

For T = 1 this follows immediately from minimality ofM (s̃<1 := 0). For the induction step from
T−1 toT we need to show

M(s̃<T) ◦s̃T ≥ M(s̃1:T) ◦s̃1:T − M(s̃<T) ◦s̃<T .

Due tos̃1:T = s̃<T +s̃T , this is equivalent toM(s̃<T) ◦s̃1:T ≥M(s̃1:T) ◦s̃1:T , which holds by minimality
of M. Rearranging terms in (11) we obtain

T

∑
t=1

M(s̃<t) ◦st ≥ M(s̃1:T) ◦s̃1:T +
T

∑
t=1

M(s̃<t) ◦q
( 1

ηt
− 1

ηt−1

)
, with (12)

M(s̃1:T) ◦s̃1:T = M(s1:T − q
ηT

) ◦s1:T − M(s1:T − q
ηT

) ◦
q

ηT
≥ min

d∈D
{d ◦s1:T} −

1
ηT

max
d∈D

{d ◦q}

and
T

∑
t=1

M(s̃<t) ◦q
( 1

ηt
− 1

ηt−1

)
≥

T

∑
t=1

( 1
ηt

− 1
ηt−1

)
M(s<t) ◦q.

Again, the last bound follows from the minimality ofM, which asserts that[M(s−q)−M(s)] ◦s≥
0≥ [M(s−q)−M(s)] ◦(s−q) and thus implies thatM(s−q) ◦q≥M(s) ◦q. So Theorem 10 follows
from (12). 2

Assumingq random withE[qi ] = 1 and taking the expectation in Theorem 10, the last term
reduces to∑t(

1
ηt
− 1

ηt−1
)∑iM(s<t)

i . If D ≥ 0, the term is positive and may be dropped. In case of
D = E or ∆, the last term is identical to1

ηT
(since∑id

i = 1) and keeping it improves the bound.
Furthermore, we need to evaluate the expectation of the second to last term inTheorem 10, namely
E[maxd∈D{d ◦q}]. ForD =E andq being exponentially distributed, using Lemma 1 withki =0 ∀i,
the expectation is bounded by 1+lnn. We hence get the following lower bound:

Corollary 11 (FPL lower-bounded by BEH) For D = E and anyS and all ki equal and P[qi ] =
e−qi

for q≥0 and decreasingηt >0, the expected loss of FPL is at mostlnn/ηT lower than the loss
of the best expert in hindsight:

`1:T ≥ smin
1:T − ln n

ηT

The upper and lower bounds on`1:T (Theorem 4 and Corollaries 3 and 11) together show that

`1:t

smin
1:t

→ 1 if ηt → 0 and ηt ·smin
1:t → ∞ and ki = K ∀i. (13)

For instance,ηt =
√

K/2smin
<t . For ηt =

√
K/2(`<t +1) we proved the bound in Theorem 7(ii).

Knowing that
√

K/2(`<t +1) converges to
√

K/2smin
<t due to (13), we can derive a bound similar

to Theorem 7(ii) for ηt =
√

K/2smin
<t . This choice forηt has the advantage that we do not have to

computè <t (cf. Section 9), as also achieved by Theorem 8(ii).
We do not know whether Theorem 10 can be generalized to expert dependent complexitieski .
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8. Adaptive Adversary

In this section we show that bounds that hold against an oblivious adversary automatically also hold
against an adaptive one.

Initial versus independent randomization.So far we assumed that the perturbationsq are sampled
only once at timet =0. As already indicated, under the expectation this is equivalent to generating
a new perturbationqt at each time stept, i.e. Theorems 4–9 remain valid for this case. While the
former choice was favorable for the analysis, the latter has two advantages. First, repeated sampling
of the perturbations guarantees better bounds with high probability (see next section). Second, if
the losses are generated by an adaptive adversary (not to be confused with an adaptive learning rate)
which has access to FPL’s past decisions, then he may after some time figure out the initial random
perturbation and use it to force FPL to have a large loss. We now show thatthe bounds for FPL
remain valid, even in case of an adaptive adversary, if independent randomizationq;qt is used.

Oblivious versus adaptive adversary. Recall the protocol for FPL: After each experti made
its predictionyi

t , and FPL combined them to form its own predictionyFPL
t , we observext , and

Loss(xt ,y···t ) is revealed for FPL’s and each expert’s prediction. For independent randomization, we
haveyFPL

t = yFPL
t (x<t ,y1:t ,qt). For an oblivious (non-adaptive) adversary,xt = xt(x<t ,y<t). Recur-

sively inserting and eliminating the expertsyi
t =yi

t(x<t ,y<t) andyFPL
t , we get the dependencies

ut := Loss(xt , yFPL
t ) = ut(x1:t , qt) and si

t := Loss(xt , yi
t) = si

t(x1:t), (14)

wherex1:t is a “fixed” sequence. With this notation, Theorems 5–8 read`1:T ≡E[∑T
t=1ut(x1:t ,qt)]≤

f (x1:T) for all x1:T ∈ X T , where f (x1:T) is one of the r.h.s. in Theorems 5–8. Noting thatf is
independent ofq1:T , we can write this as

A1 ≤ 0, where At(x<t , q<t) := max
xt:T

Eqt:T

[ T

∑
τ=1

uτ(x1:τ, qτ) − f (x1:T)
]
, (15)

whereEqt:T is the expectation w.r.t.qt ...qT (keepingq<t fixed).
For an adaptive adversary,xt = xt(x<t ,y<t ,yFPL

<t ) can additionally depend onyFPL
<t . Eliminat-

ing yi
t andyFPL

t we get, again, (14), butxt = xt(x<t ,q<t) is no longer fixed, but an (arbitrary) ran-
dom function. So we have to replacext by xt(x<t ,q<t) in (15) for t = 1..T. The maximization is
now a functional maximization over all functionsxt(·,·)...xT(·,·). Using “maxx(·)Eq[g(x(q),q)] =
Eqmaxx[g(x,q)],” we can write this as

B1
?
≤ 0, where Bt(x<t , q<t) := max

xt
Eqt ... max

xT
EqT

[ T

∑
τ=1

uτ(x1:τ, qτ) − f (x1:T)
]
. (16)

So, establishingB1≤0 would show that all bounds also hold in the adaptive case.

Lemma 12 (Adaptive=Oblivious) Let q1...qT ∈ IRT be independent random variables, Eqt be the
expectation w.r.t. qt , f any function of x1:T ∈ X T , and ut arbitrary functions of x1:t and qt . Then,
At(x<t ,q<t)=Bt(x<t ,q<t) for all 1≤t≤T, where At and Bt are defined in (15) and (16). In particular,
A1≤0 implies B1≤0.
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Proof. We proveBt = At by induction ont, which establishes the theorem.BT = AT is obvious.
AssumeBt =At . Then

Bt−1 = max
xt−1

Eqt−1Bt = max
xt−1

Eqt−1At

= max
xt−1

Eqt−1

[
max
xt:T

Eqt:T

[ T

∑
τ=1

uτ(x1:τ, qτ) − f (x1:T)
]]

= max
xt−1

Eqt−1

[ t−1

∑
τ=1

uτ(x1:τ, qτ)

︸ ︷︷ ︸
independentxt:T andqt:T

+ max
xt:T

Eqt:T

[ T

∑
τ=t

uτ(x1:τ, qτ) − f (x1:T)
]

︸ ︷︷ ︸
independentqt−1, since theqt are i.d.

]

= max
xt−1

[ ︷ ︸︸ ︷

Eqt−1

[ t−1

∑
τ=1

uτ(x1:τ, qτ)
]
+

︷ ︸︸ ︷

max
xt:T

Eqt:T

[ T

∑
τ=t

uτ(x1:τ, qτ) − f (x1:T)
]]

= max
xt−1

max
xt:T

Eqt:T

[
Eqt−1

t−1

∑
τ=1

uτ(x1:τ, qτ) +
T

∑
τ=t

uτ(x1:τ, qτ) − f (x1:T)

]
= At−1.

2

Corollary 13 (FPL Bounds for adaptive adversary) Theorems 5–8 also hold for an adaptive ad-
versary in case of independent randomization q;qt .

Lemma 12 shows that every bound of the formA1≤0 proven for an oblivious adversary, implies
an analogous boundB1 ≤ 0 for an adaptive adversary. Note that this strong statement holds only
for the full observation game, i.e. if after each time step we learn all losses. In partial observation
games such as the Bandit case (Auer et al., 1995), our actual action may depend on our past action
by means of our past observation, and the assertion no longer holds. Inthis case, FPL with an
adaptive adversary can be analyzed as shown by McMahan and Blum (2004); Poland and Hutter
(2005). Finally,yIFPL

t can additionally depend onxt , but the “reduced” dependencies (14) are the
same as for FPL, hence, IFPL bounds also hold for adaptive adversary.

9. Miscellaneous

Bounds with high probability. We have derived several bounds for the expected loss`1:T of FPL.
Theactual loss at timet is ut = M(s<t +

k−q
ηt

) ◦st . A simple Markov inequality shows that the total
actual lossu1:T exceeds the total expected loss`1:T =E[u1:T ] by a factor ofc>1 with probability at
most 1/c:

P[u1:T ≥ c·`1:T ] ≤ 1/c.

Randomizing independently for eacht as described in the previous Section, the actual loss isut =
M(s<t+

k−qt
ηt

) ◦st with the same expected loss`1:T =E[u1:T ] as before. The advantage of independent
randomization is that we can get a much better high-probability bound. We canexploit a Chernoff-
Hoeffding bound (McDiarmid, 1989, Cor.5.2b), valid for arbitrary independent random variables
0≤ut ≤1 for t =1,...,T:

P
[
|u1:T − E[u1:T ]| ≥ δE[u1:T ]

]
≤ 2 exp(−1

3δ2E[u1:T ]), 0 ≤ δ ≤ 1.

655



HUTTER AND POLAND

For δ=
√

3c/`1:T we get

P[|u1:T − `1:T | ≥
√

3c`1:T ] ≤ 2e−c as soon as `1:T ≥ 3c. (17)

Using (17), the bounds for̀1:T of Theorems 5–8 can be rewritten to yield similar bounds with high

probability (1−2e−c) for u1:T with small extra regret∝
√

c·L or ∝
√

c·si
1:T . Furthermore, (17)

shows that with probability 1,u1:T/`1:T converges rapidly to 1 for̀1:T →∞. Hence we may use the
easier to computeηt =

√
K/2u<t instead ofηt =

√
K/2(`<t +1), likely with similar bounds on the

regret.

Computational Aspects. It is easy to generate the randomized decision of FPL. Indeed, only a
single initial exponentially distributed vectorq∈ IRn is needed. Only for self-confidentηt ∝1/

√
`<t

(see Theorem 7) we need to compute expectations explicitly. Givenηt , from t ; t+1 we need to
computè t in order to updateηt . Note that̀ t =wt◦st , wherewi

t =P[It = i] andIt :=argmini∈E{si
<t +

ki−qi

ηt
} is the actual (randomized) prediction of FPL. Withs:=s<t +k/ηt , P[It = i] has the following

representation:

P[It = i] = P[s− qi

ηt
≤ s− q j

ηt
∀ j 6= i]

=
Z

P[s− qi

ηt
= m ∧ s− q j

ηt
≥ m ∀ j 6= i]dm

=
Z

P[qi = ηt(s
i − m)] · ∏

j 6=i

P[q j ≤ ηt(s
j − m)]dm

=
Z smin

−∞
ηte

−ηt(si−m) ∏
j 6=i

(1− e−ηt(sj−m))dm

= ∑
M :{i}⊆M ⊆N

(−)|M |−1

|M | e−ηt ∑ j∈M (sj−smin).

In the last equality we expanded the product and performed the resulting exponential integrals.
For finiten, the second to last one-dimensional integral should be numerically feasible. Once the
product∏n

j=1(1−e−ηt(sj−m)) has been computed in timeO(n), the argument of the integral can be
computed for eachi in time O(1), hence the overall time to compute`t is O(c·n), wherec is the
time to numerically compute one integral. For infiniten, the last sum may be approximated by the
dominant contributions. Alternatively, one can modify the algorithm by considering only a finite
pool of experts in each time step; see next paragraph. The expectation may also be approximated
by (Monte Carlo) samplingIt several times.

Recall that approximating̀<t can be avoided by usingsmin
<t (Theorem 8) oru<t (bounds with

high probability) instead.

Finitized expert pool. In the case of an infinite expert class, FPL has to compute a minimum over
an infinite set in each time step, which is not directly feasible. One possibility to address this is to
choose the experts from afinite poolin each time step. This is the case in the algorithm of Gentile
(2003), and also discussed by Littlestone and Warmuth (1994). For FPL,we can obtain this behavior
by introducing anentering timeτi ≥ 1 for each expert. Then experti is not considered fori < τi .
In the bounds, this leads to an additional1

ηT
in Theorem 2 and Corollary 3 and a further additional

τi in the final bounds (Theorems 5–8), since we must add the regret of the best expert in hindsight
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which has already entered the game and the best expert in hindsight at all.Selectingτi =ki implies
bounds for FPL with entering times similar to the ones we derived here. The details and proofs for
this construction can be found in (Poland and Hutter, 2005).

Deterministic prediction and absolute loss.Another use ofwt from the second last paragraph is
the following: If the decision space isD =∆, then FPL may make a deterministic decisiond=wt∈∆
at timet with bounds now holding for sure, instead of selectingei with probabilitywi

t . For example
for the absolute losssi

t = |xt −yi
t | with observationxt ∈ [0,1] and predictionsyi

t ∈ [0,1], a master
algorithm predicting deterministicallywt◦yt∈[0,1] suffers absolute loss|xt−wt◦yt |≤∑iw

i
t |xt−yi

t |=`t ,
and hence has the same (or better) performance guarantees as FPL. Ingeneral, masters can be chosen
deterministic if prediction spaceY and loss-function Loss(x,y) are convex. Forxt ,yi

t ∈ {0,1}, the
absolute loss|xt−pt | of a master deterministically predictingpt ∈ [0,1] actually coincides with the
pt-expected 0/1 loss of a master predicting 1 with probabilitypt . Hence a regret bound for the
absolute loss also implies the same regret for the 0/1 loss.

10. Discussion and Open Problems

How does FPL compare with other expert advice algorithms? We briefly discuss four issues, sum-
marized in Table 2.

Static bounds. Here the coefficient of the regret term
√

KL, referred to as theleading constantin
the sequel, is 2 for FPL (Theorem 5). It is thus a factor of

√
2 worse than the Hedge bound for

arbitrary loss by Freund and Schapire (1997), which is sharp in some sense (Vovk, 1995). This
is the price one pays for the elegance of FPL. There is evidence that this (worst-case) difference
really exists and is not only a proof artifact. For special loss functions, the bounds can sometimes
be improved, e.g. to a leading constant of 1 in the static (randomized) WM casewith 0/1 loss (Cesa-
Bianchi et al., 1997)3. Because of the structure of the FPL algorithm however, it is questionableif
corresponding bounds hold there.

Dynamic bounds. Not knowing the right learning rate in advance usually costs a factor of
√

2.
This is true for Hannan’s algorithm (Kalai and Vempala, 2003) as well as inall our cases. Also for
binary prediction with uniform complexities and 0/1 loss, this result has been established recently –
Yaroshinsky et al. (2004) show a dynamic regret bound with leading constant

√
2(1+ε). Remark-

ably, the best dynamic bound for a WM variant proven by Auer et al. (2002) has a leading constant
2
√

2, which matches ours. Considering the difference in the static case, we therefore conjecture that
a bound with leading constant of 2 holds for a dynamic Hedge algorithm.

General weights.While there are several dynamic bounds for uniform weights, the only previous
result for non-uniform weights we know of is (Gentile, 2003, Cor.16), which gives the dynamic

bound`Gentile
1:T ≤si

1:T+i+O
[√

(si
1:T +i)ln(si

1:T +i)
]

for a p-norm algorithm for the absolute loss. This

is comparable to our bound for rapidly decaying weightswi =exp(−i), i.e.ki = i. Our hierarchical
FPL bound in Theorem 9(b) generalizes this to arbitrary weights and losses and strengthens it,
since both, asymptotic order and leading constant, are smaller.

It seems that the analysis of all experts algorithms, including Weighted Majorityvariants and
FPL, gets more complicated for general weights together with adaptive learning rate, because the

3. While FPL and Hedge and WMR (Littlestone and Warmuth, 1994) can sample an expert without knowing its pre-
diction, Cesa-Bianchi et al. (1997) need to know the experts’ predictions. Note also that for many (smooth) loss-
functions like the quadratic loss, finite regret can be achieved (Vovk, 1990).
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η Loss conjecture Lower Bound Upper Bound
static 0/1 1 1? 1 (Cesa-Bianchi et al., 1997)
static any

√
2 !

√
2 (Vovk, 1995)

√
2 (Hedge), 2 (FPL)

dynamic 0/1
√

2 1? (Hutter, 2003b)
√

2 (Yaroshinsky) , 2
√

2 (Auer 2002)
dynamic any 2

√
2 (Vovk, 1995) 2

√
2 (FPL), 2 (Hutter, 2003b, Bayes)

Table 2: Comparison of the constantsc in regretsc
√

Loss×lnn for various settings and algorithms.

choice of the learning rate must account for both the weight of the best expert (in hindsight) and
its loss. Both quantities are not known in advance, but may have a different impact on the learning
rate: While increasing the current loss estimate always decreasesηt , the optimal learning rate for an
expert with higher complexity would be larger. On the other hand, all analyses known so far require

decreasingηt . Nevertheless we conjecture that the bounds∝
√

Tki and∝
√

si
1:Tki also hold without

the hierarchy trick, probably by using expert dependent learning rateηi
t .

Comparison to Bayesian sequence prediction.We can also compare theworst-casebounds for
FPL obtained in this work to similar bounds forBayesian sequence prediction. Let{νi} be a class of
probability distributions over sequences and assume that the true sequence is sampled fromµ∈{νi}
with complexitykµ (∑ie

−kνi ≤ 1). Then it is known that the Bayes optimal predictor based on the
e−kνi -weighted mixture ofνi ’s has an expected total loss of at mostLµ+2

√
Lµkµ+2kµ, whereLµ is

the expected total loss of the Bayes optimal predictor based onµ (Hutter, 2003a, Thm.2), (Hutter,
2004b, Thm.3.48). Using FPL, we obtained the same bound except for the leading order constant,
but for any sequence independently of the assumption that it is generatedby µ. This is another
indication that a PEA bound with leading constant 2 could hold. See Hutter (2004a), Hutter (2003b,
Sec.6.3) and Hutter (2004b, Sec.3.7.4) for a more detailed comparison of Bayes bounds with PEA
bounds.
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