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Abstract
External regret compares the performance of an online algorithm, selecting among N actions, to
the performance of the best of those actions in hindsight. Internal regret compares the loss of an
online algorithm to the loss of a modified online algorithm, which consistently replaces one action
by another.

In this paper we give a simple generic reduction that, given an algorithm for the external regret
problem, converts it to an efficient online algorithm for the internal regret problem. We provide
methods that work both in the full information model, in which the loss of every action is observed
at each time step, and the partial information (bandit) model, where at each time step only the loss
of the selected action is observed. The importance of internal regret in game theory is due to the fact
that in a general game, if each player has sublinear internal regret, then the empirical frequencies
converge to a correlated equilibrium.

For external regret we also derive a quantitative regret bound for a very general setting of regret,
which includes an arbitrary set of modification rules (that possibly modify the online algorithm) and
an arbitrary set of time selection functions (each giving different weight to each time step). The
regret for a given time selection and modification rule is the difference between the cost of the
online algorithm and the cost of the modified online algorithm, where the costs are weighted by the
time selection function. This can be viewed as a generalization of the previously-studied sleeping
experts setting.
Keywords: online learning, internal regret, external regret, multi-arm bandit, sleeping experts,
reductions

1. Introduction

The motivation behind regret analysis might be viewed as the following: we design a sophisticated
online algorithm that deals with various issues of uncertainty and decision making, and sell it to a
client. Our online algorithm runs for some time and incurs a certain loss. We would like to avoid

∗. This work was supported in part by NSF grants CCR-0105488 and IIS-0312814.
†. The work was done while the author was a fellow in the Institute of Advance studies, Hebrew University. This

work was supported in part by the IST Programme of the European Community, under the PASCAL Network of
Excellence, IST-2002-506778, by a grant no. 1079/04 from the Israel Science Foundation and an IBM faculty award.
This publication only reflects the authors’ views.

c©2007 Avrim Blum and Yishay Mansour.



BLUM AND MANSOUR

the embarrassment that our client will come back to us and claim that in retrospect we could have
incurred a much lower loss if we used his simple alternative policy π. The regret of our online
algorithm is the difference between the loss of our algorithm and the loss using π. Different notions
of regret quantify differently what is considered to be a “simple” alternative policy.

At a high level one can split alternative policies into two categories. The first consists of alterna-
tive policies that are independent from the online algorithm’s action selection, as is done in external
regret. External regret, also called the best expert problem, compares the online algorithm’s cost
to the best of N actions in retrospect (see Hannan, 1957; Foster and Vohra, 1993; Littlestone and
Warmuth, 1994; Freund and Schapire, 1997, 1999; Cesa-Bianchi et al., 1997). This implies that the
simple alternative policy performs the same action in all time steps, which indeed is quite simple.
Nonetheless, one important application of external regret is a general methodology for develop-
ing online algorithms whose performance matches that of an optimal static offline algorithm, by
modeling the possible static solutions as different actions.

The second category of alternative policies are those that consider the online sequence of actions
and suggest a simple modification to it, such as “every time you bought IBM, you should have
bought Microsoft instead.” This notion is captured by internal regret, introduced in Foster and
Vohra (1998). Specifically, internal regret allows one to modify the online action sequence by
changing every occurrence of a given action i to an alternative action j. Specific low internal regret
algorithms were derived by Hart and Mas-Colell (2000), Foster and Vohra (1997, 1998, 1999), and
Cesa-Bianchi and Lugosi (2003), where the use of the approachability theorem of Blackwell (1956)
has played an important role in some of the algorithms.

One of the main contributions of our work is to show a simple online way to efficiently convert
any low external regret algorithm into a low internal regret algorithm. Our guarantee is somewhat
stronger than internal regret and we call it swap regret, which allows one to simultaneously swap
multiple pairs of actions. (If there are N actions total, then swap-regret is bounded by N times
the internal regret.) Using known results for external regret we can derive a swap regret bound of
O(

√
T N logN), where T is the number of time steps, which is the best known bound on swap regret

for efficient algorithms. We also show an Ω(
√

T N) lower bound for the case of randomized online
algorithms against an adaptive adversary.

The importance of internal and swap regret is due to their tight connection to correlated equi-
libria, introduced by Aumann (1974). For a general-sum game of any finite number of players, a
distribution Q over the joint action space is a correlated equilibrium if every player would have zero
internal regret when playing it. In a repeated game scenario, if each player uses an action selection
algorithm whose regret of this form is sublinear in T , then the empirical distribution of the players
actions converges to a correlated equilibrium (see, e.g., Hart and Mas-Colell, 2000), and in fact,
the benefit of a deviation from a correlated equilibrium is bounded exactly by R/T , where R is the
largest swap regret of any of the players.

We also extend our results to the partial information model, also called the adversarial multi-
armed bandit (MAB) problem in Auer et al. (2002a). In this model, the online algorithm only gets to
observe the loss of the action actually selected, and does not see the losses of the actions not chosen.
For example, if you are driving to work and need to select which of several routes to take, you only
observe the travel time on the route actually taken. If we view this as an online problem, each day
selecting which route to take on that day, then this fits the MAB setting. Furthermore, the route-
choosing problem can be viewed as a general-sum game: your travel time depends on the choices of
the other drivers as well. Thus, if every driver uses a low internal-regret algorithm, then the uniform
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distribution over observed traffic patterns will converge to a correlated equilibrium. For the MAB
problem, our combining algorithm requires additional assumptions on the base external-regret MAB
algorithm: a smoothness in behavior when the actions played are taken from a somewhat different
distribution than the one proposed by the algorithm. Luckily, these conditions are satisfied by
existing external-regret MAB algorithms such as that of Auer et al. (2002a). For the multi-armed
bandit setting, we derive an O(N

√
NT logN) swap-regret bound. Thus, after T = O( 1

ε2 N3 logN)
rounds, the empirical distribution on the history is an ε-correlated equilibrium. In a recent work,
Stoltz (2005) gives an improved swap regret bound of O(N

√
T logN). (The work of Hart and Mas-

Colell (2001) also gives a multi-armed bandit algorithm whose swap regret is sublinear in T , but
does not derive explicit bounds.)

One can also envision broader classes of regret. Lehrer (2003) defines a notion of wide range
regret that allows for arbitrary action-modification rules, which might depend on history, and also
Boolean time selection functions (that determine which subset of times is relevant). Using the ap-
proachability theorem, he shows a scheme that in the limit achieves no regret (i.e., regret is sublinear
in T ). While Lehrer (2003) derives the regret bounds in the limit, we derive finite-time regret bounds
for this setting. We show that for any family of N actions, M time selection functions and K mod-
ification rules, the maximum regret with respect to any selection function and modification rule is
bounded by O(

√

T N log(MK)). Our model also handles the case where the time selection functions
are not Boolean, but rather real valued in [0,1].

This latter result can be viewed as a generalization of the sleeping experts setting of Freund
et al. (1997) and Blum (1997). In the sleeping experts problem, we again have a set of experts, but
on any given time step, each expert may be awake (making a prediction) or asleep (not predicting).
This is a natural model for combining a collection of if-then rules that only make predictions when
the “if” portion of the rule is satisfied, and this setting has had application in domains ranging from
managing a calendar (Blum, 1997) and text-categorization (Cohen and Singer, 1999) to learning
how to formulate web search-engine queries (Cohen and Singer, 1996). By converting each such
sleeping-expert into a pair 〈expert, time-selection function〉, we achieve the desired guarantee that
for each sleeping-expert, our loss during the time that expert was awake is not much more than
its loss in that period. Moreover, by using non-Boolean time-selection functions, we can naturally
handle prediction rules that have varying degrees of confidence in their predictions and achieve a
confidence-weighted notion of regret.

We also study the case of deterministic Boolean prediction in the setting of time selection func-
tions. We derive a deterministic online algorithm whose number of weighted errors, with respect to
any time selection function from our class of M selection functions, is at most 3OPT +2+2log2 M,
where OPT is the cumulative loss of the best constant prediction for that time selection function.

1.1 Related Work

A different conversion procedure from external to internal regret was given independently by Stoltz
and Lugosi (2005), yet the approach there is very different from the one developed here. Further
results regarding the relation between external and internal regret appear in Stoltz and Lugosi (2007)
and for the multi-armed bandit setting in Cesa-Bianchi et al. (2006). In comparison to Stoltz and Lu-
gosi (2007), we are able to achieve a better swap regret guarantee in polynomial time. (A straightfor-
ward application of Stoltz and Lugosi (2007) to swap regret would require time-complexity Ω(N N);
alternatively, they can achieve a good internal-regret bound in polynomial time, but then their swap
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regret bound becomes worse by a factor of
√

N.) On the other hand, their work is applicable to any
convex loss function while our work is restricted to linear loss functions. See also Stoltz (2005),
Section 1.3, for a discussion of the different procedures.

2. Model and Preliminaries

We assume an adversarial online model where there are N available actions {1, . . . ,N}. At each
time step t, an online algorithm H selects a distribution pt over the N actions. After that, the
adversary selects a loss vector `t ∈ [0,1]N , where `t

i ∈ [0,1] is the loss of the i-th action at time t. In
the full information model, the online algorithm receives the loss vector `t and experiences a loss
`t

H = ∑N
i=1 pt

i`
t
i . In the partial information model, the online algorithm receives (`t

kt ,kt), where kt is
distributed according to pt , and `t

H = `t
kt is its loss. The loss of the i-th action during the first T time

steps is LT
i = ∑T

t=1 `t
i , and the loss of H is LT

H = ∑T
t=1 `t

H . The aim for the external regret setting is to
design an online algorithm that will be able to approach the best action, namely, to have a loss close
to LT

min = mini LT
i . Formally we would like to minimize the external regret R = LT

H −LT
min.

We introduce a notion of a time selection function. A time selection function I is a function over
the time steps mapping each time step to [0,1]. That is, I : {1, . . . ,T} → [0,1]. The loss of action j
using time-selector I is LT

j,I = ∑t I(t)`t
j. Similarly we define LH,I , the loss of the online algorithm H

with respect to time selection function I, as LT
H,I = ∑t I(t)`t

H , where `t
H is the loss of H at time t.1

This notion of experts with time selection is very similar to the notion of “sleeping experts” studied
in Freund et al. (1997). Specifically, for each action j and time selection function I, one can view
the pair ( j, I) as an expert that is “awake” when I(t) = 1 and “asleep” when I(t) = 0 (and we could
view it as “partially awake” when I(t) ∈ (0,1)).

We also consider modification rules that modify the actions selected by the online algorithm,
producing an alternative strategy we will want to compete against. A modification rule F has as
input the history and an action choice and outputs a (possibly different) action. (We denote by F t

the function F at time t, including any dependency on the history.) Given a sequence of probability
distributions pt used by an online algorithm H, and a modification rule F , we define a new sequence
of probability distributions f t = F t(pt), where f t

i = ∑ j:F t( j)=i pt
j. The loss of the modified sequence

is LH,F = ∑t ∑i f t
i `

t
i . Similarly, given a time selection function I and a modification rule F we define

LH,I,F = ∑t ∑i I(t) f t
i `

t
i .

In our setting we assume a finite class of N actions, {1, . . . ,N}, a finite set F of K modification
rules, and a finite set I of M time selection function. Given a sequence of loss vectors, the regret
of an online algorithm H with respect to the N actions, the K modification rules, and the M time
selection functions, is

RI ,F
H = max

I∈I
max
F∈F

{LH,I −LH,I,F}.

Note that the external regret setting is equivalent to having a single time-selection function
(I(t) = 1 for all t) and a set F ex of N modification rules Fi, where Fi always outputs action i.
For internal regret, the set F in consists of N(N − 1) modification rules Fi, j, where Fi, j(i) = j and

1. We can let the time selector depend on the history up to time t, rather than the time t itself, and all the results presented
would be the same.
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Fi, j(i′) = i′ for i′ 6= i, plus the identity function. That is, the internal regret of H is

max
F∈F in

{LH −LH,F} = max
i, j

∑
t

pt
i(`

t
i − `t

j).

We also define an extension to internal regret that we call swap regret. This case has F sw include
all NN functions F : {1, . . . ,N}→ {1, . . . ,N}, where the function F swaps the current online action
i with F(i) (which can be the same or a different action).2

A few simple relationships between the different types of regret: since F ex ⊆ F sw and F in ⊆
F sw, both external and internal regret are upper-bounded by swap-regret. Also, swap-regret is at
most N times larger than internal regret. On the other hand, even with N = 3, there are simple
examples that separate internal and external regret (see, e.g., Stoltz and Lugosi, 2005).

2.1 Correlated Equilibria and Swap Regret

We briefly sketch the relationship between correlated equilibria and swap regret.

Definition 1 A game G = 〈M,(Ai),(si)〉 has a finite set M of m players. Player i has a set Ai of
N actions and a loss function si : Ai × (× j 6=iA j) → [0,1] that maps the action of player i and the
actions of the other players to a real number. (We have scaled losses to [0,1].)

The aim of each player is to minimize its loss. A correlated equilibrium is a distribution P over
the joint action space with the following property. Imagine a correlating device draws a vector of
actions~a using distribution P over ×Ai, and gives player i the action ai from~a. (Player i is not given
any other information regarding ~a.) The probability distribution P is a correlated equilibrium if, for
each player, it is its best response to play the suggested action (provided that the other players do
not deviate).

We now define an ε-correlated equilibrium.

Definition 2 A joint probability distribution P over ×Ai is an ε-correlated equilibrium if for every
player j and for any function F : A j → A j, we have Ea∼P[s j(a j,a− j)] ≤ Ea∼P[s j(F(a j),a− j)] +ε,
where a− j denotes the joint actions of the other players.

In other words, P is an ε-correlated equilibrium if the expected incentive to deviate is at most ε for
every player.

The following theorem relates the empirical distribution of the actions performed by each player,
their swap regret, and the distance from a correlated equilibrium (see also, Foster and Vohra 1997,
1998 and Hart and Mas-Colell 2000).

Theorem 3 Let G = 〈M,(Ai),(si)〉 be a game and assume that for T time steps each player follows
a strategy that has swap regret of at most R(T,N). The empirical distribution Q of the joint actions
played by the players is an (R(T,N)/T )-correlated equilibrium, and the loss of each player equals,
by definition, its expected loss on Q.

The above states that the payoff of each player is its payoff in some approximate correlated
equilibrium. In addition, it relates the swap regret to the distance from a correlated equilibrium.
Note that if the average swap regret vanishes then the procedure converges, in the limit, to the set of
correlated equilibria (see Hart and Mas-Colell 2000 and Foster and Vohra 1997, 1999).

2. Note that in swap and external regret, the modification functions do not depend on history. In Section 7 we consider
general modification functions.
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3. Generic Reduction from External to Swap Regret

We now give a black-box reduction showing how any algorithm A achieving good external regret
can be used as a subroutine to achieve good swap regret as well. The high-level idea is as follows.
We will instantiate N copies of the external-regret algorithm. At each time step, these algorithms
will each give us a probability vector, which we will combine in a particular way to produce our own
probability vector p. When we receive a loss vector `, we will partition it among the N algorithms,
giving algorithm Ai a fraction pi (pi is our probability mass on action i), so that Ai’s belief about the
loss of action j is ∑t pt

i`
t
j, and matches the cost we would incur putting i’s probability mass on j. In

the proof, algorithm Ai will in some sense be responsible for ensuring low regret of the Fi, j variety.
The key to making this work is that we will be able to define the p’s so that the sum of the losses of
the algorithms Ai on their own loss vectors matches our overall true loss.

To be specific, let us formalize what we mean by an external regret algorithm.

Definition 4 An algorithm A has external regret R(Lmin,T,N) if for any sequence of T losses `t

such that some action has total loss at most Lmin, for any action j ∈ {1, . . . ,N} we have

LT
A =

T

∑
t=1

`t
A ≤

T

∑
t=1

`t
j +R(Lmin,T,N) = LT

j +R(Lmin,T,N) .

We assume we have N algorithms Ai (which could all be identical or different) such that Ai has
external regret Ri(Lmin,T,N). We combine the N algorithms as follows. At each time step t, each
algorithm Ai outputs a distribution qt

i , where qt
i, j is the fraction it assigns action j. We compute a

vector p such that pt
j = ∑i pt

iq
t
i, j. That is, p = pQ, where p is the row-vector of our probabilities and

Q is the matrix of qi, j. (We can view p as a stationary distribution of the Markov Process defined
by Q, and it is well known such a p exists and is efficiently computable.) For intuition into this
choice of p, notice that it implies we can consider action selection in two equivalent ways. The
first is simply using the distribution p to select action j with probability p j. The second is to select
algorithm Ai with probability pi and then to use algorithm Ai to select the action (which produces
distribution pQ).

When the adversary returns `t , we return to each Ai the loss vector pt
i`

t . So, algorithm Ai

experiences loss (pt
i`

t) ·qt
i = pt

i(q
t
i · `t).

Now we consider the guarantee that we have for algorithm Ai, namely, for any action j,

T

∑
t=1

pt
i(q

t
i · `t) ≤

T

∑
t=1

pt
i`

t
j +Ri(Lmin,T,N) . (1)

If we sum the losses of the N algorithms at any time t, we get ∑i pt
i(q

t
i · `t) = ptQt`t , where pt is

the row-vector of our probabilities, Qt is the matrix of qt
i, j, and `t is viewed as a column-vector. By

design of pt , we have ptQt = pt . So, the sum of the perceived losses of the N algorithms is equal to
our actual loss pt`t .

Therefore, summing Equation (1) over all N algorithms, the left-hand-side sums to LT
H . Since

the right-hand-side of Equation (1) holds for any j, we have that for any function F : {1, . . . ,N} →
{1, . . . ,N},

LT
H ≤

N

∑
i=1

T

∑
t=1

pt
i`

t
F(i) +

N

∑
i=1

Ri(Lmin,T,N).

We have therefore proven the following theorem.
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Theorem 5 For any N algorithms Ai with regret Ri, for every function F : {1, . . . ,N}→ {1, . . . ,N},
for any sequence of T losses `t such that some action has total loss at most Lmin, the above algorithm
satisfies

LH ≤ LH,F +
N

∑
i=1

Ri(Lmin,T,N),

that is, the swap-regret of H is at most ∑N
i=1 Ri(Lmin,T,N).

A typical optimized experts algorithm, such as in Littlestone and Warmuth (1994), Freund and
Schapire (1997), Auer et al. (2002a), and Cesa-Bianchi et al. (1997), will have R(Lmin,T,N) =
O(

√
Lmin logN + logN). (Alternatively, Corollary 15 can be also used to deduce the above bound.)

We can immediately derive the following corollary.

Corollary 6 Using an optimized experts algorithm as the Ai, for every function F : {1, . . . ,N} →
{1, . . . ,N}, we have that

LH ≤ LH,F +O(N
√

T logN) .

We can perform a slightly more refined analysis of the bound by having Li
min be the minimum

loss for an action in Ai. Note that ∑N
i=1 Li

min ≤ T , since we scaled the losses given to algorithm Ai at

time t by pt
i . By convexity of the square-root function, this implies that ∑N

i=1

√

Li
min ≤

√
NT , which

implies the worst case regret is O(
√

T N logN).3

Corollary 7 Using optimized experts algorithms as the Ai, for every function F : {1, . . . ,N} →
{1, . . . ,N}, we have that

LH ≤ LH,F +O(
√

T N logN) .

One strength of the above general reduction is it ability to accommodate new regret minimiza-
tion algorithms. For example, using the algorithms of Cesa-Bianchi et al. (2005) one can get a more
refined regret bound, which depends on the second moment.

4. Lower Bounds on Swap Regret

Notice that while good algorithms for external regret achieve bounds of O(
√

T logN), our swap-
regret bounds are roughly O(

√
T N logN). Or, to put it another way, imagine we are interested in the

number of time steps T needed to achieve an average regret of ε per time step (a total regret of εT ).
Then, for external regret we have algorithms that can do this in T = O(ε−2 logN) steps, whereas
our bounds require T = O(ε−2N logN) steps for the case of swap-regret. From the point of view
of equilibrium, this means that while for two-player zero-sum games such algorithms will achieve
approximate minimax-optimality in O(logN) steps when played against each other, for general-sum
games we seem to need O(N logN) steps to achieve an ε-correlated equilibrium. A natural question
is whether this is best possible. In particular, is it possible to guarantee swap-regret at most εT in a
number of time steps that is sublinear in the size of the action space N?

3. We need to use here an external regret algorithm which does not need to have as an input the value of Li
min. An

example of such an algorithm is Corollary 2 in Cesa-Bianchi et al. (2005), which guarantees an external regret of at
most O(

√
Lmin logN + logN).
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We give here a partial answer: a lower bound of Ω(
√

T N) on swap-regret but in a more adver-
sarial model. Specifically, we have defined swap regret with respect to the distribution pt produced
by the player, rather than the actual action at selected from that distribution. In the case that the
adversary is oblivious (does not depend on the player’s action selection) then the two models have
the same expected regret. However we will consider an adaptive adversary, whose choices may
depend on the player’s action selection in previous rounds. In this setting (adaptive adversary and
regret defined with respect to the action selected from pt rather than pt itself) we derive an Ω(

√
T N)

lower bound.
Before presenting these bounds, we first mention one subtle issue. For a given stochastic adver-

sary, the optimal policy for minimizing loss may not be the optimal policy for minimizing swap-
regret. For example, consider a process in which {0,1} losses are generated by a fair coin, except
that in time steps t ∈ ((i−1)T/N, iT/N], action i has loss of 1 with probability only 1/2− 1/T .
In this case, the optimal policy for minimizing expected loss uses action i = 1 for the first T/N
steps, then action i = 2 for the next T/N steps, and so forth. However, because of the variance of
the coin flips, in retrospect each action played can be swapped with another for an expected gain of
Ω(
√

(T logN)/N) each (see, e.g., Feller, 1968, 1971), giving a total swap-regret of Ω(
√

T N logN)
for this policy. On the other hand, a policy that just picks a single fixed action would have swap-
regret only O(

√
T logN) even though its expected loss is slightly higher.

We now present our lower bound, first giving a somewhat weaker version whose proof is simpler
but contains the main ideas, and then giving the stronger version. Notice that even the weaker
version (Theorem 8) implies that Ω(N/ε) time steps are necessary in order to achieve an average
swap regret ε per time step, in the adaptive adversary model.

Theorem 8 There exists an adaptive adversary such that for any randomized online algorithm A,
its expected swap regret E[ max

F∈F sw
LA − LA,F ] (defined with respect to the actions selected from pt

rather than pt itself), is at least min((N −1)/16,T/8).

Proof The adversary behaves as follows. At each time step t, all actions i that have been previously
played by algorithm A receive a loss of 1. All other actions i receive either (a) a loss chosen
uniformly and independently at random from {0,1} if i ∈ {1, . . . ,N/2}, or (b) a loss of exactly 1/2
if i ∈ {N/2+1, . . . ,N}. The basic idea of the argument now is that so long as there are still actions
of type (a) remaining, algorithm A has no good choices: if it chooses to play a previously-played
action, then it will incur large loss, whereas if it chooses to play a new action, this will have a good
probability of substantially increasing swap regret. The presence of the actions of type (b) with loss
exactly 1/2 is not really necessary but helps to simplify the calculations. Formally, we argue as
follows.

Assume T < N/2. We will give a swap-regret lower bound of T/8, implying our desired result.
In particular, we will keep track of two quantities: EF , the expected regret of A with respect to
a specific modification rule F , and EL, the expected loss of A. Modification rule F is defined as
follows: the first time t that algorithm A plays some action i, we define F(i) to be whichever action
performed best at time t (breaking ties arbitrarily); for actions never played, the value of F does not
matter. Now, consider some specific time step t. If algorithm A plays some action i that was never
before played, then EF increases by at least 1/4 (since for T < N/2 there must be at least one other
unplayed action j ≤ N/2 and E[max(`t

i − `t
j,0)] = 1/4), and EL increases by 1/2. On the other

hand, if algorithm A plays a previously-played action, then EL increases by 1, and EF at least does
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not decrease. Notice that either way, 2EF +EL increases by at least 1. Therefore, by time T we have
2EF + EL ≥ T . Now, if algorithm A is such that EF ≥ T/8 then we are done (the expected regret
with respect to F is large). On the other hand, if EF < T/8, then this implies EL ≥ 3T/4. However,
this means that algorithm A has large expected external regret since there must exist some unplayed
action j > N/2 whose total loss is exactly T/2. Thus in this case the expected swap-regret of A is
at least T/4.

Theorem 9 There exists an adaptive adversary such that for any randomized online algorithm A,
its expected swap regret E[ max

F∈F sw
LA − LA,F ] (defined with respect to the actions selected from pt

rather than pt itself), is at least
√

T N/160−1, for N ≤ T ≤ 1√
N

eN/288.

Proof The adversary is the same as that used in the proof of Theorem 8, except now it waits
until an action is played 8T/N times before causing it to deterministically receive a loss of 1.
Specifically, all actions played by algorithm A at least 8T/N times receive a loss of 1, and all other
actions i receive either (a) a loss chosen uniformly and independently at random from {0,1} if
i ∈ {1, . . . ,N/2}, or (b) a loss of exactly 1/2 if i ∈ {N/2 + 1, . . . ,N}. Let us call an action that has
been played less than 8T/N times a “low-loss action” and those played at least 8T/N times a “1-
loss action”. Let T ` denote the number of times the algorithm plays low-loss actions (which could
be a random variable depending on the algorithm). Notice that the expected loss of the algorithm is
E[T `/2+(T −T `)] = T −E[T `/2].

We break the argument into two cases based on E[T `]. The simpler case is E[T `] ≤ 3T/4 (i.e.,
the algorithm plays many 1-loss actions). In that case, the expected loss of the algorithm is at least
5T/8. On the other hand, there must be some action of total loss at most T/2 because it is not
possible for the algorithm to have played all actions i ∈ {N/2+1, . . . ,N} for 8T/N times each. So,
the expected regret is at least T/8 ≥

√
T N/8.

We now analyze the case that E[T `] > 3T/4. Let Ti denote the time steps in which the algorithm
plays i, and let Ti = |Ti|. Define modification rule F such that F(i) is the action of least total loss in
time steps Ti. We will argue later that with probability 1−λ (where we will set λ = 1/T ), for all i
the action F(i) has loss at most Ti/2−√

Ti/5 during time steps Ti. So, letting R denote the swap-
regret of algorithm A, the expected swap-regret E[R] is at least the difference between its expected
loss and E[∑i Ti/2−√

Ti/5]+λT :

E[R] ≥ T −E
[

T `

2

]

−E

[

N

∑
i=1

Ti

2
−

√
Ti

5

]

−λT ≥ 1
5

E

[

N

∑
i=1

√
Ti

]

−λT,

where we use the fact that ∑i Ti = T and T ` ≤ T .
The number of actions i such that Ti ≥ T/(4N) is at least (T `−T/4)/(8T/N), since even if one

considers only the time steps in which low-loss actions are played, at most T/4 of them can involve
playing actions with Ti < T/(4N), and for the rest, any given action i can occur at most 8T/N times.
Since E[T `] ≥ 3T/4, the expected number of such actions is at least (T/2)/(8T/N) = N/16 and
therefore,

E[R] ≥ 1
5

E

[

N

∑
i=1

√
Ti

]

−λT ≥ N
80

√

T
4N

−λT =

√
T N

160
−λT.
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It remains to show that with high probability, all actions F(i) have loss at most Ti/2−√
Ti/5

during time steps Ti. First, note that in K coin tosses, with probability at least 1/3 we have at most
K/2−

√
K/5 heads. Fix an action i and any given value of Ti. So, by Hoeffding bounds, if N/2

coins (corresponding to actions 1, . . . ,N/2) are each tossed K = Ti times, with probability at least
e−N(1/3−1/4)2

we have over N/8 (i.e., 1/4 of them) with at most Ti/2−√
Ti/5 heads. Thus, even if

the algorithm could decide which (at most N/8) actions to turn into 1-loss actions after the fact, with
probability at least e−N(1/3−1/4)2

there will still be at least one with loss at most Ti/2−√
Ti/5. Sum-

ming over all i and all possible values of Ti yields a failure probability at most NTe−N(1/3−1/4)2
= λ.

For T ≤ 1√
N

eN/288, this is at most 1/T , completing the proof.

5. Reducing External to Swap Regret in the Partial Information Model

In the full information setting the learner gets, at the end of each time step, full information on
the costs of all the actions. In the partial information (multi-arm bandit) model, the learner gets
information only about the action that was selected. In some applications this is a more plausible
model regarding the information the learner can observe.

The reduction in the partial information model is similar to the one of the full information
model, but with a few additional complications. We are given N partial information algorithms
Ai. At each time step t, each algorithm Ai outputs a distribution qt

i . Our master online algorithm
combines them to some distribution pt which it uses. Given pt it receives a feedback, but now this
includes information only regarding one action, that is, it receives (`t

kt ,kt), where kt is distributed
according to pt . We take this feedback and distribute to each algorithm Ai a feedback (ct

i,k
t), such

that ∑i ct
i = `t

kt . The main technical difficulty is that now the action selected, kt , is distributed
according to pt and not qt

i . (For example, it might be that Ai has qt
i, j = 0 but it receives feedback

about action j. From Ai’s point of view this is impossible! Or, more generally, Ai might start
noticing it seems to have a very bad random-number generator.) For this reason, for the reduction
to work we need to make a stronger assumption about the guarantees of the algorithms Ai, which
luckily is implicit in the algorithms of Auer et al. (2002a). Since results of Auer et al. (2002a) are
stated in terms of maximizing gain rather then minimizing loss we will switch to this notation, for
example, define the benefit of action j at time t to be bt

j = 1− `t
j.

We start by describing our MAB algorithm SR MAB. Initially, we are given N partial informa-
tion algorithms Ai. At each time step t, each Ai gives a selection distribution qt

i over actions. Given
all the selection distributions we compute an action distribution pt . We would like to keep two sets
of gains: one is the real gain, denoted by bt

i , and the other is the gain that the MAB algorithm Ai

observes, gt
Ai

. Given the action distribution pt the adversary selects a vector of real gains bt
i . Our

MAB algorithm SR MAB receives a single feedback (bt
kt ,kt) where kt is a random variable that with

probability pt
j equals j. Algorithm SR MAB, given bt , returns to each Ai a pair (gt

Ai
,kt), where

the observed gain gt
Ai

is based on bt
kt

, pt and qt
i . Again, note that kt is distributed according to pt ,

which may not equal qt
i: it is for this reason we need to use an MAB algorithm that satisfies certain

properties (stated in Lemma 10).

In order to specify our MAB algorithm, SR MAB, we need to specify how it selects the action
distribution pt and the observed gains gt

Ai
. As in the full information case, we compute an action

distribution pt such that pt
j = ∑i pt

iq
t
i, j. That is, p = pQ, where p is the row-vector of our probabili-
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ties and Q is the matrix of qi, j. Given pt the adversary returns a real gain (bt
kt ,kt), namely, the real

gain is of our algorithm bt
kt . We return to each algorithm Ai an observed gain of gt

Ai
= pt

ib
t
kt qi,kt /pt

kt .
(In general, define gt

i, j = pt
ib

t
jq

t
i, j/pt

j, if j = kt and gt
i, j = 0 if j 6= kt .)

First, we will show that ∑N
i=1 gt

Ai
= bt

kt which implies that gt
Ai
∈ [0,1]. From the property of the

distribution pt we have that,

N

∑
i=1

gt
Ai

=
N

∑
i=1

pt
ib

t
kt qi,kt

pt
kt

=
pt

kt bt
kt

pt
kt

= bt
kt .

This shows that we distribute our real gain among the algorithms Ai; that is, that the sum of the
observed gains equals the real gain. In addition, it bounds the observed gain that each algorithm Ai

receives. Namely, 0 ≤ gt
Ai
≤ bt

kt ≤ 1.
In order to describe the guarantee that each external regret multi-arm bandit algorithm Ai is

required to have, we need the following additional definition. At time t let X t
i, j be a random variable

such that X t
i, j = gt

i, j/qt
i, j if j = kt and X t

i, j = 0 otherwise. The expectation of X t
i, j is,

Ekt∼pt [X t
i,kt ] = pt

kt

gt
i,kt

qt
i,kt

= pt
kt

pt
ib

t
kt

pt
kt

= pt
ib

t
kt .

Lemma 10 (Auer et al. 2002a) There exists a multi-arm bandit algorithm, Ai, such that for any
sequence of observed gains gt

i, j ∈ [0,1] it outputs actions distributions qt
i , and for any sequence of

selected actions kt , and for any action r and parameter γ ∈ (0,1], then,

GAi,gt ≡
T

∑
t=1

gt
Ai
≡

T

∑
t=1

gt
i,kt ≥ (1− γ)

T

∑
t=1

X t
i,r −

N lnN
γ

− γ
N

T

∑
t=1

N

∑
j=1

X t
i, j,

where X t
i, j is a random variable such that X t

i, j = gt
i, j/qt

i, j if j = kt and X t
i, j = 0 otherwise.

Note that in Auer et al. (2002a) the action distribution is identical to the selection distribution,
that is, pt ≡ qt , and the observed and real gain are identical, that is, gt ≡ bt . Auer et al. (2002a) derive
the external regret bound by taking the expectation with respect to the action distribution (which is
identical to the selection distribution). In our case we separate the real gain from the observed gain,
which adds another layer of complication. (Technically, the distribution pt is a random variable
that depends on the history H t−1 up to time t, that is, the observed actions k1, . . .kt−1 and well as
the observed gains b1

k1 , . . .b
t−1
kt−1 . For this reason we take the expectation with respect to H t−1 every

time we refer to pt . For simplicity we make this dependency implicitly in the expectations E[·].)
We define the expected benefit of SR MAB to be BSR MAB = E[∑T

t=1 bt
SR MAB] and for a function

F : {1, . . . ,N} → {1, . . . ,N} we define BSR MAB,F = E[∑T
t=1 ∑N

i=1 pt
ib

t
F(i)]. We now state our main

theorem regarding the partial information model.

Theorem 11 Given a multi-arm bandit algorithm satisfying Lemma 10 (such as the algorithm of
Auer et al., 2002a), it can be converted to a master online algorithm SR MAB, such that

BSR MAB ≥ max
F

BSR MAB,F −N ·RMAB(Bmax,T,N) ,

where the expectation is over the observed actions of SR MAB, Bmax bounds the maximum benefit
of any algorithm and RMAB(B,T,N) = O(

√
BN logN).
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Proof Let the total observed gain of algorithm Ai be GAi = ∑T
t=1 gt

Ai
= ∑T

t=1 gt
i,kt . Since we distribute

our gain between the Ai, that is, ∑N
i=1 gt

Ai
= bt

SR MAB, we have that BSR MAB = E[∑T
t=1 bt

SR MAB] =

∑N
i=1 E[GAi ]. Since gt

i, j ∈ [0,1], by Lemma 10, this implies that for any action r, after taking the
expectation, we have

E[GAi ] = E[
T

∑
t=1

Ept [gt
i,kt ]]

≥ (1− γ)E[
T

∑
t=1

Ept [X t
i,r]]−

N lnN
γ

− γ
N

E

[

T

∑
t=1

N

∑
j=1

Ept [X t
i, j]

]

= (1− γ)E[
T

∑
t=1

pt
ib

t
r]−

N lnN
γ

− γ
N

E

[

T

∑
t=1

N

∑
j=1

pt
ib

t
j

]

≥ (1− γ)Bi,r −
N lnN

γ
− γ

N

N

∑
j=1

Bi, j

≥ Bi,r −O(
√

BmaxN lnN) = Bi,r −RMAB(Bmax,N,T ) ,

where Bi,r = E[∑T
t=1 pt

ib
t
r], Bmax ≥ maxi, j Bi, j and γ = min{

√

(N lnN)/Bmax,1}.
For swap regret, we compare the expected benefit of SR MAB to that of ∑N

i=1 max j Bi, j. There-
fore,

BSR MAB =
N

∑
i=1

E[GAi ] ≥ max
F

N

∑
i=1

Bi,F(i) −N ·RMAB(Bmax,T,N)

which completes the proof of the theorem.

6. External Regret with Time-Selection Functions

We now present a simple online algorithm that achieves a good external regret bound in the presence
of time selection functions, generalizing the sleeping experts setting. Specifically, our goal is for
each action a, and each time-selection function I, that our total loss during the time-steps selected
by I should be not much more than the loss of a during those time steps. More generally, this should
be true for the losses weighted by I when I(t) ∈ [0,1]. The idea of the algorithm is as follows. Let
Ra,I be the regret of our algorithm with respect to action a and time selection function I. That is,
Ra,I = ∑t I(t)(`t

H − `t
a). Let R̃a,I be a less-strict notion of regret in which we multiply our loss by

some β ∈ (0,1), that is, R̃a,I = ∑t I(t)(β`t
H − `t

a). What we will do is give to each action a and
time selection function I a weight wa,I that is exponential in R̃a,I . We will prove that the sum of
our weights never increases, and thereby be able to easily conclude that none of the R̃a,I can be too
large.

Specifically, for each of the N actions and the M time selection functions we maintain a weight
wt

a,I . We update these weights using the rule wt+1
a,I = wt

a,IβI(t)(`t
a−β`t

H), where `t
H is the loss of our

online algorithm H at time t. (Initially, w0
a,I = 1.) Equivalently, wt

a,I = β−R̃t
a,I , where R̃t

a,I is the
“less-strict” regret mentioned above up to time t.

At time t we define wt
a = ∑I I(t)wt

a,I , W t = ∑a wt
a and pt

a = wt
a/W t . Our distribution over actions

at time t is pt . The following claim shows that the weights remain bounded.
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Claim 12 At any time t we have 0 ≤ ∑a,I wt
a,I ≤ NM.

Proof Initially, at time t = 0, the claim clearly holds. Observe that at time t we have the following
identity,

W t`t
H = W t ∑

a
pt

a`
t
a = ∑

a
wt

a`
t
a = ∑

a
∑

I

I(t)wt
a,I`

t
a. (2)

For the inductive step we show that the sum of the weights can only decrease. Note that for any
β ∈ [0,1] and x ∈ [0,1] we have βx ≤ 1− (1−β)x and β−x ≤ 1+(1−β)x/β. Therefore,

∑
a

∑
I

wt+1
a,I = ∑

a
∑

I

wt
a,Iβ

I(t)(`t
a−β`t

H)

= ∑
a

∑
I

wt
a,Iβ

I(t)`t
aβ−βI(t)`t

H)

≤ ∑
a

∑
I

wt
a,I(1− (1−β)I(t)`t

a)(1+(1−β)I(t)`t
H)

≤
(

∑
a

∑
I

wt
a,I

)

− (1−β)

(

∑
a,I

I(t)wt
a,I`

t
a

)

+(1−β)

(

∑
a,I

I(t)wt
a,I`

t
H

)

=

(

∑
a

∑
I

wt
a,I

)

− (1−β)W t`t
H +(1−β)W t`t

H (using Equation 2)

=

(

∑
a

∑
I

wt
a,I

)

,

which completes the proof of the claim.

We use the above claim to bound the weight of any action a and time-selection function I.

Corollary 13 For every action a and time selection I we have

wt
a,I = βLa,I−βLH,I ≤ MN,

where LH,I = ∑t I(t)`t
H is the loss of the online algorithm with respect to time-selection function I.

A simple algebraic manipulation of the above implies the following theorem

Theorem 14 For every action a and every time selection function I ∈ I we have

LH,I ≤
La,I + logNM

log 1
β

β
.

We can optimize for β in advance, or do it dynamically using Auer et al. (2002b), establishing:

Corollary 15 For every action a and every time selection function I ∈ I we have

LH,I ≤ La,I +O(
√

Lmin logNM + logMN),

where Lmin = maxI mina{La,I}.
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One can get a more refined regret bound of O(
√

Lmin,I logNM + logMN) with respect to each
time selection function I ∈ I , where Lmin,I = mina{La,I}. This is achieved by keeping a parame-

ter βI for each time selection function I ∈ I . As before we then set wt
a,I = β

−R̃t
a,I

I , where R̃t
a,I =

∑t ′≤t I(t ′)(βI`
t ′
H −`t ′

a). We then let wt
a = ∑I(1−βI)I(t)wt

a,I , W t = ∑a wt
a and pt

a = wt
a/W t . The proof

of Claim 12 holds in a similar way, and from that one can derive, analogously, the more refined
regret bound, as stated in the following theorem.

Theorem 16 For every action a and every time selection function I ∈ I we have

LH,I ≤ La,I +O(
√

Lmin,I logNM + logMN),

where Lmin,I = mina{La,I}.

7. Arbitrary Time Selection and Modification Rules

In this section we combine the techniques from Sections 3 and 6 to derive a regret bound for the
general case where we assume that there is a finite set I of M time selection functions, and a finite
set F of K modification rules. Our goal is to design an algorithm such that for any time selection
function I ∈ I and any F ∈ F , we have that LH,I is not much larger than LH,I,F . Essentially, our
results can be viewed as deriving explicit rates for the wide range regret of Lehrer (2003).

We maintain at time t a weight wt
j,I,F per action j, time selection I and modification rule F .

Initially w0
j,I,F = 1. We set

wt+1
j,I,F = wt

j,I,F βpt
jI(t)(`

t
F( j)−β`t

H, j),

and let W t
j,F = ∑I I(t)wt

j,I,F , W t
j = ∑F W t

j,F , and `t
H, j = ∑F W t

j,F`t
F( j)/W t

j .
We use the weights to define a distribution pt over actions as follows. We select a distribution

pt such that

pt
i =

N

∑
j=1

pt
j ∑

F :F( j)=i

W t
j,F

W t
j

. (3)

That is, p is the stationary distribution of the associated Markov chain. Notice that the definition of
p implies that the loss of H at time t can either be viewed as ∑i pt

i`
t
i or as ∑ j p j ∑F(W t

j,F/W t
j )`

t
F( j)

= ∑ j pt
j`

t
H, j. The following claim bounds the magnitude of the weights.

Claim 17 For every action j, at any time t we have 0 ≤ ∑I,F wt
j,I,F ≤ MK.

Proof This clearly holds initially at t = 0. For any t ≥ 0 we show that ∑I,F wt+1
j,I,F ≤ ∑I,F wt

j,I,F .
Recall that for β ∈ [0,1] and x ∈ [0,1] we have βx ≤ 1− (1−β)x and β−x ≤ 1+(1−β)x/β.

∑
I,F

wt+1
j,I,F = ∑

I,F

wt
j,I,F βpt

jI(t)(`
t
Ft ( j)

−β`t
H, j)

≤ ∑
I,F

wt
j,I,F(1− (1−β)pt

jI(t)`
t
Ft( j))(1+(1−β)pt

jI(t)`
t
H, j)

≤
(

∑
I,F

wt
j,I,F

)

− (1−β)pt
j ∑

F

`t
F t( j) ∑

I

I(t)wt
j,I,F +(1−β)pt

j`
t
H, j ∑

I,F

I(t)wt
j,I,F
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=

(

∑
I,F

wt
j,I,F

)

− (1−β)pt
j ∑

F

`t
F t( j)W

t
j,F +(1−β)pt

j`
t
H, jW

t
j

=

(

∑
I,F

wt
j,I,F

)

− (1−β)pt
jW

t
j `

t
H, j +(1−β)pt

jW
t
j `

t
H, j

= ∑
I,F

wt
j,I,F ,

where in the second to last equality we used the identity ∑F `t
F t( j)W

t
j,F = `t

H, jW
t
j .

The following theorem derives the general regret bound.

Theorem 18 For every time selection I ∈ I and modification rule F ∈ F , we have that

LH,I ≤ LH,I,F +O(
√

T N logMK) .

Proof Consider a time selection function I ∈ I and a modification function F ∈ F . By Claim 17
we have that,

wT
j,I,F = β(∑t pt

jI(t)`
t
Ft ( j)

)−β(∑t pt
jI(t)`

t
H, j) ≤ MK ,

which is equivalent to
(

∑
t

I(t)pt
j`

t
H, j

)

≤ 1
β

(

∑
t

I(t)pt
j`

t
F t( j)

)

+
logMK

β log 1
β

.

Notice that ∑ j,t I(t)pt
j`

t
H, j = ∑i,t I(t)pt

i`
t
i , by the definition of the pi’s in Equation (3). Summing

over all actions j this sum is LH,I . Therefore,

LH,I =
N

∑
j=1

(

∑
t

I(t)pt
j`

t
H, j

)

≤
N

∑
j=1

1
β

(

∑
t

I(t)pt
j`

t
F t( j)

)

+
N logMK

β log 1
β

=
1
β

LH,I,F +
N logMK

β log 1
β

,

where LH,I is the cost of the online algorithm at time selection I and LH,I,F is the cost of the modified
output sequence at time selection I. Optimizing for β we derive the theorem.

8. Boolean Prediction with Time Selection

In this section we consider the case that there are two actions {0,1}, and the loss function is such
that at every time step t one action has loss 1 and the other has loss 0. Namely, we assume that
the adversary returns at time t an action ot ∈ {0,1}, and the loss of action at is 1 if at 6= ot and 0 if
at = ot . Our objective here is to achieve good bounds with a deterministic algorithm.

For each time selection function I ∈ I , action a ∈ {0,1}, and time t, our online Boolean predic-
tion algorithm maintains a weight wt

a,I . Initially we set w0
a,I = 1 for every action a ∈ {0,1} and time

selection function I ∈ I . At time t, for each action a ∈ {0,1}, we compute wt
a = ∑I I(t)wt

a,I , and
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predict at = 1 if wt
1 ≥ wt

0, and otherwise predict at = 0. The weighted errors of our online Boolean
prediction algorithm, during the time selection function I ∈ I , is ∑t:ot 6=at I(t).

Following our prediction we observe the adversary action ot . If no error occurred (i.e., at = ot)
then all the weights at time t +1 equal the weights at time t. If an error occurred (i.e., at 6= ot) then
we update the weights as follows. For every time selection function I ∈ I we set the weight of action
b to wt+1

b,I = wt
b,I2

cI(t), where c =−1 if b 6= ot and c = 1/2 if b = ot . This can be viewed as a version
of the Balanced-Winnow algorithm of Littlestone (1988). We establish the following claim,

Claim 19 At any time t we have 0 ≤ ∑a,I wt
a,I ≤ 2M.

Proof Clearly this holds at time t = 0. When an error is performed, we have that wt
error ≥

wt
correct , where correct = ot and error = 1− ot . The additive change in the weights is at most

(
√

2−1)wt
correct −wt

error/2 < 0, which completes the proof.

For a time selection function I ∈ I , let va,I = ∑t:ot=a I(t). The preferred action for a time selec-
tion function I is 1 if v1,I ≥ v0,I and 0 otherwise. Let OPT (I) be the weighted errors of the preferred
action during time selection function I. W.l.o.g., assume that the preferred action for I is 1, which
implies that OPT (I) = v0,I . By Claim 19 we have that wt

1,I ≤ 2M. The total decrease in wt
1,I is

bounded by a factor of 2−v0,I . Since wT
1,I ≤ 2M this implies that 2x/2−v0,I ≤ 2M, where x is the total

increase, which implies that
x ≤ 2v0,I +2+2log2 M .

The weighted errors of our online Boolean prediction algorithm, during time selection function
I ∈ I , that is, ∑t:at 6=ot I(t), is at most x + v0,I , while the preferred action makes only v0,I weighted
errors. This implies that the weighted errors of our online Boolean prediction algorithm during time
selection function I is bounded by x + v0,I = 3v0,I + 2 + 2log2 M, which establishes the following
theorem.

Theorem 20 For every I ∈ I , our online algorithm makes at most 3OPT (I)+2+2log2 M weighted
errors.

9. Conclusion and Open Problems

In this paper we give general reductions by which algorithms achieving good external regret can be
converted to algorithms with good internal or swap regret, and in addition we develop algorithms for
a generalization of the sleeping experts scenario including both real-valued time-selection functions
and a finite set of modification rules.

A key problem left open by this work is whether it is possible to achieve swap-regret that has a
sublinear or even logarithmic dependence on N. Specifically, for external regret, existing algorithms
achieve regret εT in time T = O( 1

ε2 logN), but our algorithms for swap-regret achieve regret εT
only by time T = O( 1

ε2 N logN). We have shown that sublinear dependence is not possible against
an adaptive adversary with swap-regret defined with respect to the actions actually chosen from
the algorithm’s distribution, but we do not know whether there is a comparable lower bound in the
distributional setting (where swap-regret is defined with respect to the distributions pt themselves).
In particular, an algorithm with lower dependence on N would imply a more efficient (in terms
of number of rounds) procedure for achieving an approximate correlated equilibrium. Ideally,
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one would like to achieve approximate correlated equilibrium in a number of rounds that is only
logarithmic in N, much as can be done for approximate minimax optimality in 2-player zero-sum
games.
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