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Abstract

The computational complexities arising in motor control can be ameliorated through the use of a
library of motor synergies. We present a new model, referred to as the Greedy Additive Regression
(GAR) model, for learning a library of torque sequences, and for learning the coefficients of a
linear combination of sequences minimizing a cost function. From the perspective of numerical
optimization, the GAR model is interesting because it creates a library of “local features”—each
sequence in the library is a solution to a single training task—and learns to combine these sequences
using a local optimization procedure, namely, additive regression. We speculate that learners with
local representational primitives and local optimization procedures will show good performance on
nonlinear tasks. The GAR model is also interesting from the perspective of motor control because
it outperforms several competing models. Results using a simulated two-joint arm suggest that the
GAR model consistently shows excellent performance in the sense that it rapidly learns to perform
novel, complex motor tasks. Moreover, its library is overcomplete and sparse, meaning that only a
small fraction of the stored torque sequences are used when learning a new movement. The library
is also robust in the sense that, after an initial training period, nearly all novel movements can be
learned as additive combinations of sequences in the library, and in the sense that it shows good
generalization when an arm’s dynamics are altered between training and test conditions, such as
when a payload is added to the arm. Lastly, the GAR model works well regardless of whether
motor tasks are specified in joint space or Cartesian space. We conclude that learning techniques
using local primitives and optimization procedures are viable and potentially important methods for
motor control and possibly other domains, and that these techniques deserve further examination
by the artificial intelligence and cognitive science communities.
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1. Introduction

To appreciate why motor control is difficult, it is useful to quantify its computational complexity.
Consider, for example, an agent whose goal is to apply torques to each joint of a two-joint arm so
that the endpoint of the arm moves from an initial location to a target location in 100 time steps.
Also suppose that torques are discretized to one of ten possible values. In this case, the agent needs
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to choose one sequence of torques from a set of 10200 possible sequences. Searching this set of
possible sequences is clearly a computationally intractable problem.

To ameliorate the computational challenges arising in motor control, it has been hypothesized
that biological organisms use “motor synergies” (Bernstein, 1967). A motor synergy is a depen-
dency among the dimensions or parameters of a motor system. For example, a coupling of the
torques applied at the shoulder and elbow joints would be a motor synergy. Motor synergies are
useful because they reduce the number of parameters that must be independently controlled, thereby
making motor control significantly easier (Bernstein, 1967). Moreover, synergies are often regarded
as “motor primitives”. For our current purposes, we focus here on frameworks in which an agent
with a library of motor synergies quickly learns to perform complex motor tasks by linearly com-
bining its synergies. This idea has motivated a great deal of neuroscientific research. For example,
Mussa-Ivaldi, Giszter, and Bizzi (1994) identified frogs’ motor synergies by stimulating sites in the
frogs’ spinal cords. Importantly, these authors verified that stimulation of two sites leads to the
vector summation of the forces generated by stimulating each site separately.

The idea of characterizing complex movements as linear combinations of motor synergies has
also been influential in the fields of artificial intelligence and cognitive science. In these fields, an
important research question is how to build an agent with a useful set of synergies or, alternatively,
how an agent can learn a useful set of synergies. Approaches to these issues are typically based
on techniques from the machine learning literature. Some researchers have developed theories mo-
tivated by kernel-based techniques. For example, Thoroughman and Shadmehr (2000) studied the
errors in people’s reaching movements and concluded that humans learn the dynamics of reaching
movements by combining primitives that have Gaussian-like tuning functions. Other researchers
have speculated that motor primitives can be learned using dimensionality-reduction techniques.
For example, Sanger (1995) analyzed people’s cursive handwriting using principal component anal-
ysis (PCA) to discover their motor synergies. He showed that linear combinations of these syner-
gies closely reconstructed human handwriting. Other examples using dimensionality-reduction to
learn motor primitives include Chhabra and Jacobs (2006), d’Avella, Saltiel, and Bizzi (2003), Fod,
Matarić, and Jenkins (2002), Jenkins and Matarić (2004), Safanova, Hodgins, and Pollard (2004),
Sanger (1994), and Todorov and Ghahramani (2003, 2004).1

The fact that novel motor tasks can often be performed by linearly combining motor synergies is
a surprising result. To see why this result is unexpected, consider the case in which an agent needs
to control a two-joint arm to perform a motor task. Suppose that a task is defined as a sequence
of desired joint angles (i.e., desired angles for the shoulder and elbow joints at each time step of
a movement), that a cost function is defined as the sum of squared error between the desired and
actual joint angles, and that the agent has a library of motor synergies where a synergy is a sequence
of torques (i.e., torques for the shoulder and elbow joints at each time step of a movement). The
agent attempts to perform the motor task by finding a set of coefficients for a linear combination
of synergies minimizing the cost function. (This optimization might be performed, for example,
using a gradient descent procedure, known as policy gradient, in which an agent uses the gradient
of the cost function with respect to the coefficients, Sutton, McAllester, Singh, and Mansour, 1999;

1. Our review focuses on frameworks in which complex movements are expressed as linear combinations of motor
primitives. There are, of course, frameworks that use motor primitives in other ways. A reader interested in this
topic may want to see Bentivegna (2004), Ijspeert, Nakanishi, and Schaal (2003), Lau and Kuffner (2005), Lee,
Chai, Reitsma, Hodgins, and Pollard (2002), Peters and Schaal (2006), and Stolle and Atkeson (2006), among other
articles.
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Williams, 1992.) Should we expect that a good set of linear coefficients—a set that leads to a near-
zero value of the cost function—will exist and, if so, be easy to find? We believe that the answer
is no. Recall that synergies are defined in terms of torques, the agent linearly combines synergies,
the cost function is defined in terms of joint angles, and there is a nonlinear relationship between
torques and joint angles. Finding a good set of linear coefficients should be a difficult optimization
problem because the nonlinear function relating coefficient values to values of the cost function
will contain many local minima. As a matter of terminology, we refer to this as the “Motor Basis
Optimization Problem”.

The Motor Basis Optimization Problem motivates the need to think about good ways of con-
structing a library of synergies, and good ways of learning to linearly combine the synergies to
perform novel motor tasks. In this paper, we propose a new learning model that learns a sparse
and overcomplete representation of the space of potentially useful motor commands, and learns to
linearly combine elements of this representation using a “greedy additive regression” procedure.
At a high level of abstraction, our procedure closely resembles the use of greedy additive schemes
for feature selection in recent machine learning systems (e.g., Perkins, Lacker, and Theiler, 2003;
Viola and Jones, 2004). For example, Viola and Jones (2004) used AdaBoost (Freund and Schapire,
1997; Schapire, 1990) to create a fast and robust classifier for detecting faces in visual images. They
started by creating a large library of image feature detectors. They then constructed a classifier in an
additive manner. At each iteration, a new classifier was created by adding a feature detector to the
old classifier. The feature detector that was added was the one whose use reduced the error of the
old classifier by the largest amount. The end result after several iterations was a successful classifier
with a sparse representation in the sense that it used relatively few feature detectors from the library.

This paper introduces a new learning model for motor control referred to as the Greedy Additive
Regression (GAR) model. The GAR model maintains a library of torque sequences (i.e., motor
synergies). If possible, the GAR model learns new movements by additively combining sequences
in this library. If not possible, new movements are learned by other means (e.g., via feedback error
learning). The torque sequences for these new movements are then added to the library. (Unlike
Viola and Jones, we do not construct a library of primitives by hand. Instead, we learn the primitives
in this library using the set of training tasks.)

We present results comparing the performances of the GAR model with those of another model,
referred to as the PCA model, that can be regarded as a generic example from a large class of ap-
proaches commonly used in the artificial intelligence and cognitive science literatures. The PCA
model learns a library of motor primitives using PCA, and finds coefficients for linearly combining
the primitives using gradient descent. Whereas the PCA model often yields poor results, the GAR
model consistently shows excellent performance. We find that the acquisition of new movements
by the GAR model is rapid when the library is used. Moreover, the library is overcomplete and also
sparse, meaning that only a small fraction of the stored torque sequences are used when learning
a novel movement. The library is also robust in at least two different ways. First, after an initial
training period, nearly all novel movements can be learned as additive combinations of sequences in
the library. Consequently, learning from scratch via, for example, feedback error learning becomes
rarer over time. Second, the library is also robust in the sense that it shows good generalization
when an arm’s dynamics are altered between training and testing conditions. If, for example, an
arm is suddenly required to carry a payload during testing, torque sequences in the library can still
be additively combined to rapidly learn new movements with this altered arm. We also demonstrate
that the model works well regardless of whether motor tasks are specified in joint space or Cartesian
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space. Based on these results, we believe that the GAR model contains several desirable properties,
including a library which maintains a sparse and overcomplete representation of the space of poten-
tially useful motor commands, and an additive regression optimization procedure which is fast and
robust.

This article is organized as follows. Section 2 describes the two-joint arm that we simulated,
and Section 3 describes the motor tasks that we used. Section 4 describes the Greedy Additive
Regression model. Section 5 reports the simulation results comparing the performances of the GAR
and PCA models under a variety of conditions. In Section 6, we briefly consider the performances
of these models when the system to be controlled is a linear system with redundancy. Section 7
states our conclusions and directions for future research.

2. Simulated Two-Joint Arm

We simulated a two-joint arm that coarsely resembles a human arm (Li and Todorov, 2004). The
arm can be written as a second-order nonlinear dynamical system (Hollerbach and Flash, 1982):

M (θ)θ̈+C (θ, θ̇)+B θ̇ = τ

where τ is a vector of torques, θ, θ̇, and θ̈ are vectors of joint angle positions, velocities, and accel-
erations, respectively, M (θ) is an inertial matrix, C (θ, θ̇) is a vector of Coriolis forces, and B is a
joint friction matrix. The mathematical forms of these variables are as follows:

M (θ) =

(

a1 +2a2 cosθ2 a3 +a2 cosθ2,
a3 +a2 cosθ2 a3

)

,

C (θ, θ̇) =

(

−θ̇2(2θ̇1 + θ̇2),

θ̇1
2

)

a2 sinθ2,

B(θ) =

(

b11 b12,
b21 b22

)

,

a1 = I1 + I2 +m2l2
1 ,

a2 = m2l1s2,

a3 = I2

where I1 and I2 are the moments of inertia of the two links, m1 and m2 are the masses of the two
links, and s1 and s2 are the distances from the joints to the links’ center of masses. We used the
same parameter values for the arm as Li and Todorov (2004). These values are given in Table 1.

3. Motor Tasks

A motor task is to apply torques to the arm so that it follows a desired trajectory defined in joint
space. A desired trajectory is specified by a sequence of joint angles written as a 2× 50 matrix of
2 joint angles over 50 time steps, where each time step corresponds to 7 ms of simulation. This
trajectory is created in several stages (see Figure 1). First, we generate a trajectory in Cartesian
space. To generate this trajectory, an initial position for the end-effector of the arm is chosen by
randomly sampling each joint angle from a uniform distribution between 0 and π/2. Then a final
position for the end-effector is chosen as the end point of a vector v of length d at an angle ψ starting
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Constant Value Constant Value
b11 0.05 kgm2s−1 b22 0.05 kgm2s−1

b21 0.025 kgm2s−1 b12 0.025 kgm2s−1

m1 1.4 kg m2 1.0 kg
l1 0.30 m l2 0.33 m
s1 0.11 m s2 0.16 m
I1 0.025 kgm2 I2 0.045 kgm2

Table 1: Values of constants used in the simulation of a two-joint arm.

Figure 1: Schematic drawing depicting how a motor task is generated.

at the end-effector’s initial position, where d and ψ are chosen uniformly at random between 10 cm
and 30 cm, and between 0 and 2π, respectively. Next, two via points are chosen at distances d1

and d2 perpendicularly away from the vector v at locations d/3 and 2d/3. Both d1 and d2 are
drawn uniformly at random between -10 cm and 10 cm. Finally, a trajectory is generated by fitting
a smooth cubic spline between the initial position, the two via points, and the final position. The
Cartesian-space trajectory is converted to a joint-space trajectory by solving the robot arm’s inverse-
kinematics using the MATLAB robotics toolbox (Corke, 1996). The duration of movement is set to
350 ms, and the resulting joint-space trajectory is sampled at 7 ms intervals to get the 2×50 matrix
defining a desired trajectory.

Given a desired joint-space trajectory, a motor task is to apply a time-varying torque to the arm
so that the arm follows the desired trajectory. Torques are sampled every 7 ms, meaning that torques
can be written as a 2×50 matrix. The cost function corresponding to the motor task is the sum of
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Figure 2: A schematic description of the Greedy Additive Regression(GAR) model. A desired
trajectory θ∗ is given as an input to the model. An additive regression algorithm is then
used to construct a torque sequence by linearly combining sequences from the library. If
this algorithm fails to find a linear combination yielding good performance, the model
acquires a new torque sequence by other means (e.g., via feedback error learning), and
then adds this new sequence to the library.

squared error between the desired and actual joint positions:

J =
50

∑
t=1

2

∑
i=1

(θ∗i (t)−θi(t))
2 (1)

where θ∗i (t) and θi(t) are the desired and actual angles of joint i at time t, respectively.
The motor tasks defined here are more complex than tasks often used in the literature in at least

two respects. First, the desired Cartesian-space trajectories used here are typically highly curved,
as opposed to straight-line reaching movements which are commonly used in experimental and
computational studies of motor control. Second, our tasks specify desired joint angles at every time
step. These tasks are more constrained than tasks that specify initial and final desired joint angles
but allow an arm to have any joint angles at intermediate time steps.

4. The Greedy Additive Regression Model

We propose a model of motor learning called the Greedy Additive Regression (GAR) model. This
model rapidly learns new motor tasks using a library of torque sequences. A schematic description
of the model is given in Figure 2.

When a new motor task arrives, the model first checks whether a linear combination of se-
quences from the library achieves good performance on this task. Good performance is defined as
a cost J less than ε (we set ε = 0.05 in our simulations). A potentially good linear combination is
found via the additive regression algorithm which is described below. If a linear combination with
good performance can be found, then this linear combination is used and nothing else needs to be
done. If, however, such a linear combination is not found, then the model needs to learn a new
torque sequence by other means. In the simulations reported in Section 5, we used feedback error
learning to learn this new torque sequence (Kawato, Furukawa and Suzuki, 1987; see also Atkeson
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and Reinkensmeyer, 1990, and Miller, Glanz, and Kraft, 1987).2 The new torque sequence is then
added to the library. Because a library has a fixed size of K, the addition of a new sequence may
require the removal of an old sequence. Intuitively, the model removes the torque sequence that has
been least used during the motor tasks that it has performed. Let n be an index over motor tasks, k
be an index over sequences in the library, and |ρk(n)| be the absolute value of the linear coefficient
ρk(n) assigned to sequence k on task n by the additive regression algorithm. The percent of the
model’s “total activation” that sequence j accounts for, denoted a j, is defined as:

a j =
∑n |ρ j(n)|

∑n ∑k |ρk(n)|
×100.

A sequence with large coefficients (based on magnitude, not sign) on many tasks would account for
a large percent of the model’s total activation, whereas a sequence with near-zero coefficients would
account for a small percent. The model removes the torque sequence that accounts for the smallest
percent of its total activation.

To complete the description of the GAR model, we need to describe the additive regression
algorithm for finding potentially good linear combinations of torque sequences from the library for
a motor task. As mentioned above, this algorithm is motivated by recent machine learning systems
that have used greedy additive procedures for feature selection (Perkins, Lacker, and Theiler, 2003;
Viola and Jones, 2004).

The additive regression algorithm is an iterative procedure. At iteration t, the algorithm main-
tains an aggregate torque sequence F (t) to perform a motor task such that:

F(t) =
t

∑
j=1

ρ j f j (2)

where f j is a sequence in the library and ρ j is its corresponding coefficient. Note that the aggre-
gate sequence F (t) is a weighted sum of t sequences from the library, but these sequences are not
necessarily distinct. It is possible that the same sequence appears more than once in the summation
in Equation 2. At each iteration of the algorithm, a sequence from the library is selected (with re-
placement), and a weighted version of this sequence is added to F (t) in order to create F (t+1). That
is,

F(t+1) = F(t) +ρt+1 ft+1 (3)

where ft+1 is the library sequence selected to be added and ρt+1 is its corresponding coefficient.
How does the algorithm choose ft+1 and ρt+1? Each torque sequence in the library is associated

with a trajectory of joint angles. For computational convenience, the algorithm sets this trajectory to

2. In brief, feedback error learning proceeds as follows. An adaptive feedforward controller is used in conjunction with
a fixed feedback controller. At each moment in time, the feedforward controller receives the desired joint positions,
velocities, and accelerations, and produces a feedforward torque vector. The feedback controller receives the current
and desired joint positions and velocities and produces a feedback torque vector. The sum of the feedforward and
feedback torque vectors is applied to the arm, and the resulting joint accelerations are observed. During the learning
portion of the time step, the inputs to the feedforward controller are set to the current joint positions, velocities, and
accelerations, and the target output is set to the torque vector that was applied to the arm. This controller’s parameters
are then adapted so that it better approximates the mapping from the inputs to the target output in the future. Early in
training, the outputs of the feedforward controller are near zero and most of the torques are supplied by the feedback
controller. As training progresses, the feedforward controller better approximates the arm’s inverse dynamics, and it
supplies most of the torques. Feedback error learning is an attractive learning procedure because it is unsupervised;
it does not require an external teacher but only a simple feedback controller.
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a “prototypical” trajectory in the following sense. The position of the arm is initialized so that each
joint angle is at its average initial value (i.e., each joint angle is initialized to π/4). The joint-angle
trajectory associated with a torque sequence is then found by applying the sequence to the arm. A
sequence is evaluated by correlating its joint-angle trajectory with ∂J/∂F (t), the gradient of the cost
function J with respect to the current aggregate torque sequence. This gradient indicates how the
aggregate sequence should be modified so as to reduce the cost. In our simulations, it was obtained
by numerically computing the partial derivative of the cost function with respect to each element
of the aggregate sequence F (t).3 The torque sequence whose trajectory is maximally correlated
with this gradient, denoted ft+1, is selected. To find the best coefficient ρt+1 corresponding to this
sequence, the algorithm performs a line search, meaning that the algorithm searches for the value of
ρt+1 that minimizes the cost J(F (t) + ρt+1 ft+1) (we implemented a golden section line search; see
Press, Teukolsky, Vetterling, and Flannery, 1992, for details). F (t+1) is then generated according to
Equation 3, and the optimization proceeds to the next iteration. This process is continued until the
value of the cost function converges (see Algorithm 1).

There are several possible perspectives on the additive regression algorithm. The idea of greed-
ily selecting the next primitive from a library has also been explored in the feature selection lit-
erature. For example, Perkins, Lacker, and Theiler (2003) used a gradient-based heuristic at each
iteration of their learning procedure to select the best feature from a set of features to add to a clas-
sifier. Our work differs from their work in many details because the domain of motor control forces
us to confront the complexities inherent in learning to control a dynamical system (see also Tassa,
Erez, and Smart, 2008). In addition, an appealing aspect of our work is that we use the solutions
from prior tasks to create a library of primitives. We find that this practice leads to an overcomplete
representation of the control space. Overcomplete representations have been shown to be useful in
a wide range of applications (e.g., Lewicki and Sejnowski, 2000; Smith and Lewicki, 2006). In
addition, the additive regression algorithm can be seen as performing gradient descent where the
direction of the gradient at each iteration is projected onto the library sequence whose trajectory is
maximally correlated with this gradient. The algorithm then minimizes the cost function by opti-
mizing the coefficient corresponding to this sequence. The algorithm can also be seen as performing
a type of “functional gradient descent” via boosting (readers interested in this perspective should
see Bühlmann, 2003, or Friedman, 2001). Lastly, the algorithm can be seen as using “matching
pursuit” to identify the next library sequence to add to the aggregate sequence at each iteration (see
Mallat and Zhang, 1993, for details).

5. Simulation Results

This section reports a number of results using the GAR model. We compare the performances of
the GAR model with those of another model, referred to as the PCA model, that can be regarded as
a generic example from a large class of approaches commonly used in the artificial intelligence and
cognitive science literatures. The PCA model performs dimensionality-reduction via PCA to learn
a library of motor primitives. When given a novel motor task, the PCA model learns to perform the

3. F(t) is a 2× 50 matrix. The partial derivative of the cost function with respect to element ( j,k) of F (t) was com-

puted by evaluating the cost of F (t)
+ and F(t)

− , where F(t)
+ is the same as F(t) except that its ( j,k)th element is set to

F(t)( j,k)+ δ (similarly, F (t)
− is set to F(t)( j,k)− δ; we set δ = 0.01.) The partial derivative was then approximated

by J(F (t)
+ )−J(F (t)

− )
2δ .
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input : A desired trajectory θ∗
assume : A library L = {( f k,θk)} of torque sequences and their corresponding trajectories
output : An aggregate torque sequence F that minimizes cost J
t← 0; F ← 0;
repeat

t← t +1
numerically compute5J = ∂J

∂F
From the library L , pick a sequence f k such that5J and θk are maximally correlated
ft+1← f k

do a line search to find ρt+1 that minimizes J(F +ρt+1 ft+1)
F ← F +ρt+1 ft+1

until J converges
output F

Algorithm 1: Additive regression algorithm for finding a linear combination of torque se-
quences from the library.

task using a policy gradient optimization procedure (Sutton, McAllester, Singh, and Mansour, 1999;
Williams 1992) to learn a set of coefficients for linearly combining the motor primitives. (We regard
the PCA model as generic because we regard PCA and gradient descent as generic dimensionality-
reduction and optimization procedures, respectively.)

5.1 GAR versus PCA

In the PCA model, the library of motor synergies was created as follows. We first generated 3000
motor tasks as described in Section 3, and then used feedback error learning to learn a torque
sequence for each task. This gave us 3000 sequences, each defined by a matrix of size 2×50. We
re-stacked the rows of each matrix to form a vector of size 1× 100. This gave us 3000 vectors
(or data points) lying in a 100-dimensional space. We then performed dimensionality reduction
via PCA. The 100 principal components accounted for all the variance in the data and, thus, these
components were used as the library for the PCA model. We refer to these components as PCA
sequences.

To learn to perform a novel motor task from a test set, the PCA model searched for good linear
combinations of the PCA sequences. This search was conducted using a policy gradient proce-
dure (Sutton, McAllester, Singh, and Mansour, 1999; Williams 1992). The linear coefficients were
initialized to random values. At each iteration of the procedure, the gradient of the cost function
with respect to the coefficients was numerically computed, and a line search in the direction of
the gradient was performed (a golden section search method was implemented; see Press, Teukol-
sky, Vetterling, and Flannery, 1992, for details). This process was repeated until the cost function
converged.

The GAR model was implemented as follows. Its library of torque sequences was created by
running the model on 3000 motor tasks. The model’s library size was set to 100. The sequences
in this library at the end of training are referred to as GAR sequences. To learn to perform a novel
motor task from a test set, the GAR model learned to linearly combine the GAR sequences using
the additive regression algorithm described above.

The PCA and GAR models are two possible combinations of ways of creating libraries—one can
create libraries of either PCA or GAR sequences—and ways of linearly combining sequences from
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Figure 3: Average root mean squared errors of four systems on a test set of 100 novel motor tasks
(the error bars show the standard errors of the means). The four systems use: (i) GAR
sequences with additive regression (GAR model); (ii) PCA sequences with policy gradi-
ent (PCA model); (iii) PCA sequences with additive regression; and (iv) GAR sequences
with policy gradient.

a library—one can learn linear coefficients through policy gradient or additive regression. The PCA
model combines PCA sequences with policy gradient, whereas the GAR model combines GAR
sequences with additive regression. For the sake of completeness, we also studied the remaining
two combinations, namely, the combination of PCA sequences with additive regression and the
combination of GAR sequences with policy gradient.

The results are shown in Figure 3. The horizontal axis gives a system’s combination of library
sequences and optimization technique. The vertical axis gives a system’s average root mean squared
error (RMSE where the error is between the desired and actual joint angles) on a test set of 100 novel
motor tasks. Clearly, the GAR model (leftmost bar in figure) performed better than the PCA model
(second bar from left). To further illustrate this point, the solid line in Figure 4 shows the Cartesian-
space desired trajectory for a sample test task. The dashed line shows the trajectory achieved by
the GAR model, and the dotted line shows the trajectory achieved by the PCA model. Whereas
the GAR model found a curved trajectory that closely approximated the desired trajectory, the PCA
model converged to a relatively straight-line movement which coarsely approximated the desired
trajectory. Our simulation results suggest that this is a common outcome for the PCA model. It
appears that the PCA model (and perhaps any system that uses policy gradient; see Figure 3) is
prone to finding poor local minima of the error surface.

In addition to showing that the GAR model outperformed the PCA model, Figure 3 also shows
that the GAR model outperformed the other systems considered here. Overall, the results are in-
teresting because they suggest that it is not enough to choose a good library—consider that the
system using GAR sequences with policy gradient performed poorly—and that it is also not enough
to use a good optimization procedure—the system using PCA sequences with additive regression
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Figure 4: The solid line shows the Cartesian-space desired trajectory for a sample test task. The
dashed line shows the trajectory achieved by the GAR model, and the dotted line shows
the trajectory achieved by the PCA model.

performed poorly too. Instead, to achieve good performance it is necessary to consider the rep-
resentational primitives and the optimization procedure as a pair. Representational primitives and
optimization procedures are effective if a given procedure is able to find good solutions when the
search space is based on these primitives.

Why does the GAR model work so well? Our results suggest that its due to its combination
of “local” representational primitives (the GAR sequences) and a “local” optimization procedure
(additive regression). To appreciate the coupling between representational primitives and optimiza-
tion procedures, its important to keep in mind the differences between GAR and PCA sequences,
and the differences between additive regression and gradient descent optimization procedures. Each
individual GAR sequence is a solution to some task in the training set, whereas an individual PCA
sequence is not necessarily a solution to a task but, rather, reflects properties of many tasks. In this
sense, a GAR sequence can be regarded as a “local feature,” and a PCA sequence can be regarded
as a “global feature.” Similarly, additive regression can be considered as a local optimization proce-
dure because it adds at most one new feature to its linear combination at each iteration and because,
at convergence, its linear combination tends to contain relatively few features. In contrast, gradi-
ent descent is a global optimization procedure because it finds linear combinations of all possible
features. Because some features can have opposite effects, global optimization procedures lead to
interference. Interference can be avoided by using a local optimization method. Local optimization
methods have been shown to be effective in motor control in previous research. For example, Atke-
son, Moore, and Schaal (1997) stored all previous experiences on control tasks in memory, and used
a relatively local regression scheme (where locality was specified in terms of both space and time)
to compute control signals for new tasks. They showed that their local learning method performed
well, and also ameliorated the problem of global interference from features with opposing effects.
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For linear systems and quadratic cost functions, we predict that the use of GAR versus PCA
sequences, or additive regression versus gradient descent optimization procedures, should not matter
much. Indeed, simulations on a linear system in Section 6 show that all four library/algorithm
combinations work equally well. This is because a linear combination of either GAR or PCA
sequences is, by linearity, a solution to some task. When searching for a good linear combination,
a learner is searching among a set of task solutions for the particular solution which yields good
performance on the current target task. This remains true regardless of whether a learner uses GAR
or PCA sequences, or additive regression or gradient descent optimization procedures.

For nonlinear systems, however, this is not necessarily the case. With nonlinear systems, our
results show that a learner using local primitives (which are task solutions) and local optimization
procedures is preferable. This is because, when searching for a good linear combination, the local
optimization procedure searches a set of combinations which are relatively close to solutions for
some task. In the context of the GAR model, for example, we conjecture that each iteration of the
additive regression procedure finds a linear combination of GAR sequences (again, each sequence is
a solution to a task in the training set) which is itself close to a solution for some task due to the local
nature of its search. In contrast, a global optimization procedure, such as gradient descent, would
search among linear combinations which are far from any task solution. Finally, our results are
consistent with empirical findings in the machine learning literature showing that additive schemes
outperform gradient descent when searching for good linear combinations of features for novel
classification tasks (Friedman, 2001; Perkins, Lacker, and Theiler, 2003; Viola and Jones, 2004).4

5.2 Visualizing Torque Sequences

The library of a GAR model is created on the basis of a wide variety of motor tasks. The torque
sequences in the library should, therefore, be “representative” of the tasks they encode. Our goal
here is to examine these sequences.

We trained a GAR model with 3000 training tasks using a library of size 100. We then ordered
the sequences in the library by the percent of the model’s total activation that a sequence accounted
for. Figure 5 shows the Cartesian-space trajectories generated by the top three sequences. To gen-
erate these trajectories, the shoulder and elbow joint angles of the arm were initialized to π/4 and
π/2 respectively. Each torque sequence was then applied to the arm, first with a coefficient of 1 and
then with a coefficient of -1. Note that the trajectories span a wide range of directions. Several of
the trajectories are highly curved, whereas others are closer to straight lines. This range is a result
of the diverse set of tasks used to create the sequences. This graph illustrates that, even though the
sequences are added to the library in an arbitrary order, the important sequences that remain in the
library are representative of the motor tasks.

5.3 The GAR Model with Libraries of Different Sizes

Above we set the size of the library used by the GAR model to 100. Here we compare the model’s
performances with libraries of different sizes. If the size, denoted K, is too small, then torque
sequences that are often useful for learning novel motor tasks might be removed. In contrast, if K
is too big, then the library will contain many sequences which are nearly never used. Consequently,
there ought to be an optimal value for K. We implemented the GAR model as described above

4. We thank an anonymous reviewer whose suggestions inspired these comments.
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Figure 5: Cartesian-space trajectories generated by the three torque sequences that accounted for
the largest percent of a GAR model’s total activation. These trajectories were generated
by initializing the shoulder and elbow joint angles of the arm to π/4 and π/2 respectively,
and then applying the sequences to the arm with coefficients of 1 and -1.

using 3000 motor tasks. Three versions of the GAR model were used where the versions differed in
the sizes of their libraries.

The results are shown in Figures 6 and 7. In Figure 6, the horizontal axis shows the number of
motor tasks, and the vertical axis shows the percent of tasks in which a version of the GAR model
needed to learn a torque sequence via feedback error learning. The latter value was obtained as
follows. The motor tasks were divided into 60 blocks of 50 trials each. The percents for the blocks
were then smoothed using a moving window of width 5. Results are reported for versions of the
GAR model with library sizes of 50, 100, and 200. Early in training, a library has relatively few
sequences, and feedback error learning must often be used. As training progresses, the library has
many more useful sequences, and most novel motor tasks can be performed by linearly combining
sequences from the library. In this case, feedback error learning is infrequently used. A comparison
of the versions with different library sizes shows that the version with a library size of 50 used
feedback error learning more often than versions with library sizes of 100 or 200. This suggests that
a library size of 50 is too small.

From top to bottom, the three graphs in Figure 7 correspond to versions of the GAR model with
library sizes of 50, 100, and 200. The sequences in a library are ordered according to the percent
of a model’s total activation that a sequence accounted for. The horizontal axis of each graph in
Figure 7 plots the sequence number, and the vertical axis plots the percent of total activation that
a sequence accounted for. The versions with libraries of size 100 and 200 show similar patterns of
activation. In both cases, approximately the top 50 sequences accounted for nearly all the activation.
The remaining sequences were rarely used. In contrast, the version with a library of size 50 had a
different pattern of activation. Roughly all of the sequences in this library contributed to the model’s
total activation. We measured the average task error for each model (based on Equation 1) using
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Figure 6: The horizontal axis shows the number of motor tasks, and the vertical axis shows the
percent of tasks in which a version of the GAR model needed to learn a torque sequence
via feedback error learning. The three curves in the figure correspond to versions of the
GAR model with library sizes of 50, 100, and 200.

the last 1000 motor tasks. When K = 50, the average task error was 0.0925; when K = 100, the
error was 0.0723; and when K = 200, the error was 0.0744. The corresponding standard error of
the means were 0.010, 0.012, and 0.009. It seems that K = 100 is most efficient in the sense that it
yielded good performance with a memory of moderate size. Furthermore, the version with K = 100
has the property that its use of sequences was relatively sparse. The top 10, 20, and 30 sequences
accounted for 60, 78, and 88 percent of the version’s total activation, respectively. Clearly, only a
small fraction of the stored sequences tended to be used when learning a novel task.

5.4 GAR versus PCA in the Presence of Altered Dynamics

People are robust to changes in their arms’ dynamics. For example, people can make accurate and
smooth arm movements regardless of whether they carry no payload, a light payload, or a heavy
payload. In this subsection, we compare the performances of the GAR and PCA models when they
were trained without a payload, but a payload was added to the simulated arm during test trials.

The libraries for the GAR model (with a library of size 100) and the PCA model were created
as described above with an arm that did not carry a payload. These models were then tested when
the arm did carry a payload. Test trials were conducted as described above; that is, for each test
task, a linear combination of torque sequences in a library was found via the additive regression
algorithm for the GAR model, and via policy gradient for the PCA model. A set of 100 novel test
tasks was generated. Models were evaluated on this set four times, once for each possible payload
(payloads of 0, 1, 3, and 5 kg were used). Payloads were added to an arm by increasing the mass of
the arm’s elbow-wrist link (m2 in Table 1). For the sake of completeness, we also tried the other two
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Figure 7: From top to bottom, the three graphs correspond to versions of the GAR model with
library sizes of 50, 100, and 200. The sequences in a library are ordered according to the
percent of a model’s total activation that a sequence accounted for. The horizontal axis
of each graph plots the sequence number, and the vertical axis plots the percent of total
activation.

combinations of libraries with optimization algorithms, namely, the GAR sequences with policy
gradient, and the PCA sequences with additive regression.

The results are shown in Figure 8. The vertical axis plots the average RMSE for each model for
each payload. (The results for a payload of 0 are identical to those in Figure 3). For each payload,
there are four bars corresponding to the four library/algorithm combinations. The performances of
the PCA model degraded rapidly as the payload increased (2nd bar in each set of bars). In contrast,
the performances of the GAR model were robust (1st bar in each set). We regard this successful
generalization as a highly surprising result. It clearly demonstrates that the GAR model develops
a useful library of torque sequences, and that the additive regression algorithm is a powerful opti-
mization procedure for finding good linear combinations, even under test conditions that are very
different from training conditions.

Why did the GAR model generalize so successfully? To address this question, we performed an
additional analysis. The idea behind this analysis is to evaluate whether the GAR model generates
similar libraries for different payloads. If this is the case, then additive regression should work well
for tasks with novel payloads, even when using a library of GAR sequences constructed from zero-
payload trials. We first generated a library of 100 GAR sequences using a training set of 3000 tasks
where the simulated arm did not contain a payload. We then generated libraries for each non-zero
payload using the same set of tasks. We compared each non-zero payload library to the zero-payload
library. For each GAR sequence in a non-zero payload library, we found the sequence in the zero-
payload library that was maximally correlated with this GAR sequence. For each non-zero payload,
the average value of this maximum correlation is reported in Table 2. The GAR model successfully
generalized from zero payloads to non-zero payloads because these correlations are large. The
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Figure 8: Average RMSEs of the GAR and PCA models on the test tasks when the arm carried
different payloads.

Payload (kg) Average maximum correlation Standard error
1 0.84 0.08
3 0.81 0.04
5 0.73 0.06

Table 2: Average maximum correlation of the zero-payload library with the libraries built using
non-zero payloads (see text for details).

other systems we evaluated were not able to take advantage of the similarities between solutions for
zero-payload and non-zero payload tasks.

5.5 Motor Tasks Specified in Cartesian Space

In this subsection, we consider learning sequences for motor tasks when the desired trajectories are
specified in Cartesian space instead of joint space. Using Cartesian trajectories adds an additional
level of complexity. In addition to modeling the arm’s inverse dynamics (a mapping from desired
joint coordinates to torques), a system also needs to model the arm’s inverse kinematics (a map-
ping from desired Cartesian coordinates to joint coordinates). An appealing feature of Cartesian
trajectories is that they can be easily planned based on visuospatial information.

The cost function for this simulation is the sum of squared error between desired and actual
positions of the arm’s end-effector in Cartesian space:

J =
50

∑
t=1

(r∗x(t)− rx(t))
2 +(r∗y(t)− ry(t))

2
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Figure 9: Results when motor tasks were specified in Cartesian space. The horizontal axis plots the
number of iterations used by the GAR model, and the vertical axis show the average task
error at each iteration.

where (r∗x(t),r
∗
y(t)) is the desired (x,y)-coordinates of the arm’s end-effector in Cartesian space at

time t, and (rx(t),ry(t)) is the actual coordinates. The GAR model was trained using 3000 motor
tasks with a library of size 100. The library was constructed in the same way as before. An error
threshold of ε = 0.02 was used to determine if a linear combination of torque sequences from the
library provided a “good” aggregate sequence for a task (note that this is different from a threshold
of ε = 0.05 used in previous simulations because the cost function is in different units now). We
then created a test set of 100 tasks, and used the additive regression algorithm to learn a set of linear
coefficients for each test task.

The results are shown in Figure 9. The horizontal axis plots the number of iterations used by
the additive regression algorithm, and the vertical axis shows the average task error (Equation 8) at
each iteration. Note that this error declined rapidly to a near-zero value. This outcome indicates that
the GAR model has wide applicability in the sense that it is effective regardless of whether motor
tasks are specified in joint space or Cartesian space.

6. GAR Model Applied to a Redundant and Unstable System

Until now, our simulations used a robotic arm. This section reports simulation results with a spring-
mass system. In contrast to the robotic arm, this system allows us to evaluate different learners
when the system to be controlled has linear dynamics, redundancy (three control signals move the
system in a two-dimensional space), and is inherently unstable (zero or random control signals lead
to divergent behavior). The system is schematically illustrated in Figure 10.

The spring-mass system has three elastic spring-like sticks that produce an opposing force when
stretched or compressed. Stick 1 has resting length of l and connects the ground to point mass m1.
Stick 2 also has a resting length of l and connects m1 to point mass m2. Stick 3 has a resting length
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Figure 10: Schematic description of the spring-mass system used for the simulations.

of 2l and connects the ground to point mass m2. All sticks have second-order linear dynamics. The
dynamics of this system are governed by the following set of equations:

f1 = (l− x1)k1 +b1ẋ1 +h1u1,

f2 = (l− x2)k2 +b2ẋ2 +h2u2,

f3 = (2l− x1)k3 +b3ẋ3 +h3u3,

x3 = x1 + x2,

ẍ1 = ( f1− f2−mg)/m,

ẍ2 = (2 f2 + f3− f1)/m

where x1, x2, and x3 are the current lengths of the sticks, f1, f2, and f3 are the forces applied by
the sticks due to elasticity, and the point masses m1 and m2 have the same weight m. Because the
damping coefficients b1, b2, and b3 were set to zero, the system exhibits a positive feedback effect
which causes its behavior to diverge (this can be seen by setting the control signals u1, u2, and u3 to
zero). The constraint x3 = x1 + x2 makes the system redundant as there are three inputs, u1, u2 and
u3, and only two free variables, x1 and x2. The parameter values are given in Table 3.

For this system, a task was defined by the desired trajectory for mass m2 over a course of T = 2.5
seconds. A desired trajectory was generated as follows. First, four sine waves were generated with
random frequencies ω1, ω2, ω3, and ω4, where ωi was picked uniformly at random from the interval
[0.03,0.3]. The desired trajectory x∗t was generated by x∗t = sin(ω1t)sin(ω2t) + sin(ω3t)sin(ω4t).
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Constant Value Constant Value Constant Value
k1 20 kgm2s−1 k2 20 kgm2s−1 k3 40 kgm2s−1

b1 0.0 kgm2s−1 b2 0.0 kgm2s−1 b3 0.0 kgm2s−1

h1 10 kgms−2 h2 10 kgms−2 h3 20 kgms−2

l 0.50 m m 0.5 kg g 10 ms−2

Table 3: Values of constants used in the simulations of the spring-mass system.

Performance errors were quantified using a quadratic cost function:

c(x3;x∗) =
Z T

0
(x∗t − x3,t)

2dt

where x3,t is the position of mass m2 at time t. Because this is a linear system with a quadratic cost
function, the sequence of optimal (feedforward) control signals for a task can be computed using
standard optimal control techniques. In our simulations, we discretized the system in time steps of
size 0.025 seconds and integrated the system using a first-order Runge-Kutta method.

We created libraries of sequences as follows. We first generated a training set of 1000 tasks.
For each task, we also computed the optimal sequence of control signals. Using these optimal
sequences as data items, we created a library of PCA sequences by extracting the top thirty principal
components based on these data items. We created a library of thirty GAR sequences using the
additive regression procedure described above, with the exception that an optimal sequence (as
opposed to a sequence found via feedback error learning) was added to the library when a good
linear combination of library sequences could not be found.

As above, we compare the performances of four learning systems comprising all four combina-
tions of representational primitives (PCA and GAR sequences) and optimization procedures (policy
gradient and additive regression). The results on 100 test tasks are shown in Figure 11 (the leftmost
bar in this figure gives the average RMSE using optimal control sequences). Note that all four learn-
ers performed nearly optimally. This is unsurprising as the quadratic error surface contains a single
(global) minimum, and any reasonable optimization procedure will find this minimum. Also note
that all four learners showed similar levels of performance (the differences in their performances
are not statistically significant). This result is consistent with our predictions for linear systems with
quadratic cost functions (see Section 5.1).

Although the learners showed similar levels of performance, a main point of this section is that
they are not equivalent in terms of processing time. To quantify processing time, we examined the
number of calls each learner made to the simulator of the spring-mass system. This simulator must
be called each time a gradient is computed. On average, the learner using GAR sequences and
additive regression made 49 calls, the learner using PCA sequences and policy gradient made 3879
calls, the learner using PCA sequences and additive regression made 62 calls, and the learner using
GAR sequences and policy gradient made 3422 calls. Clearly, the additive regression algorithm is
efficient in the sense that it made significantly fewer calls to the spring-mass simulator, irrespective
of the library used.
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Figure 11: Results with the spring-mass system. The vertical axis shows the average RMSE on
a test set with 100 tasks. The horizontal axis shows the learning system: (i) Optimal:
optimal control signals; (ii) GAR+AR: GAR sequences with additive regression; (iii)
PCA+PG: PCA sequences with policy gradient; (iv) PCA+AR: PCA sequences with
additive regression; and (v) GAR+PG: GAR sequences with policy gradient.
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7. Conclusions

In summary, the computational complexities arising in motor control can be ameliorated through
the use of a library of motor synergies. We presented a new model, referred to as the Greedy
Additive Regression (GAR) model, for learning a library of torque sequences, and for learning the
coefficients of a linear combination of library sequences minimizing a cost function. Results using
a simulated two-joint arm suggest that the GAR model consistently shows excellent performance
in the sense that it rapidly learns to perform novel, complex motor tasks. Moreover, its library
is overcomplete and sparse, meaning that only a small fraction of the stored torque sequences are
used when learning a new movement. The library is also robust in the sense that, after an initial
training period, nearly all novel movements can be learned as additive combinations of sequences
in the library, and in the sense that it shows good generalization when an arm’s dynamics are altered
between training and test conditions, such as when a payload is added to the arm. Additionally,
we showed that the GAR model works well regardless of whether motor tasks are specified in joint
space or Cartesian space.

The GAR model appears to consistently outperform the PCA model, as described above. A
comparison of these two models suggests why this is the case. The GAR model uses a library of
local features—each sequence in its library is a solution to a single task from the training set—and a
local optimization procedure, namely, additive regression. In contrast, the PCA model uses a library
of global features—each item in its library reflects properties of all tasks in the training set—and
policy gradient which is a global optimization procedure because it seeks good combinations of all
items in its library. We conjecture that the local versus global nature of the GAR versus PCA models
accounts for the performance advantages of the GAR model on nonlinear tasks. This account is
consistent with other empirical findings in the machine learning literature (Friedman, 2001; Perkins,
Lacker, and Theiler, 2003; Viola and Jones, 2004). Future work will need to provide a theoretical
underpinning for this intuitive conjecture. The GAR and PCA models represent two ends of a
local/global continuum. Future work should also study models that lie at intermediate points along
this continuum, such as models that form linear combinations by adding a small number of features
at each iteration, instead of the addition of a single feature as in the GAR model.

We have focused here on defining and evaluating the GAR model from a machine learning
perspective. Future research will need to focus on the implications of the model for our under-
standing of motor control in biological organisms, the theoretical foundations of the model, and
further empirical evaluations. In regard to our understanding of biological motor control, it would
be interesting to know whether sets of motor synergies used by biological organisms are sparse and
overcomplete as suggested by the GAR model, or are full-distributed and non-redundant as sug-
gested by the PCA model. If they are sparse and overcomplete, then the computational advantages
of the GAR model may help us understand why organisms have evolved or developed to use this
type of representation. In regard to theoretical foundations, the engineering community is often
reluctant to adopt new adaptive procedures for control unless these procedures have proven stability
and performance guarantees. At the moment, no such guarantees exist for the GAR model. Future
work will need to address these issues. In regard to empirical evaluations, future research will need
to evaluate the GAR model with larger and more complex motor systems and motor tasks.
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