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Abstract
The statistical problem of estimating the effective dimension-reduction (EDR) subspace in the
multi-index regression model with deterministic design and additive noise is considered. A new
procedure for recovering the directions of the EDR subspace is proposed. Many methods for
estimating the EDR subspace perform principal component analysis on a family of vectors, say
β̂1, . . . , β̂L, nearly lying in the EDR subspace. This is in particular the case for the structure-adaptive
approach proposed by Hristache et al. (2001a). In the present work, we propose to estimate the pro-
jector onto the EDR subspace by the solution to the optimization problem

minimize max
`=1,...,L

β̂>
` (I −A)β̂` subject to A ∈ Am∗ ,

where Am∗ is the set of all symmetric matrices with eigenvalues in [0,1] and trace less than or equal
to m∗, with m∗ being the true structural dimension. Under mild assumptions,

√
n-consistency of the

proposed procedure is proved (up to a logarithmic factor) in the case when the structural dimension
is not larger than 4. Moreover, the stochastic error of the estimator of the projector onto the EDR
subspace is shown to depend on L logarithmically. This enables us to use a large number of vectors
β̂` for estimating the EDR subspace. The empirical behavior of the algorithm is studied through
numerical simulations.
Keywords: dimension-reduction, multi-index regression model, structure-adaptive approach, cen-
tral subspace

1. Introduction

One of the most challenging problems in modern statistics is to find efficient methods for treating
high-dimensional data sets. In various practical situations the problem of predicting or explaining a
scalar response variable Y by d scalar predictors X (1), . . . ,X (d) arises. For solving this problem one
should first specify an appropriate mathematical model and then find an algorithm for estimating
that model based on the observed data. In the absence of a priori information on the relationship
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between Y and X = (X (1), . . . ,X (d)), complex models are to be preferred. Unfortunately, the accu-
racy of estimation is in general a decreasing function of the model complexity. For example, in the
regression model with additive noise and two-times continuously differentiable regression function
f : R

d → R, the most accurate estimators of f based on a sample of size n have a quadratic risk
decreasing as n−4/(4+d) when n becomes large. This rate deteriorates very rapidly with increasing
d leading to unsatisfactory accuracy of estimation for moderate sample sizes. This phenomenon is
called “curse of dimensionality”, the latter term being coined by Bellman (1961).

To overcome the “curse of dimensionality”, additional restrictions on the candidates f for de-
scribing the relationship between Y and X are necessary. One popular approach is to consider the
multi-index model with m∗ indices: for some linearly independent vectors ϑ1, . . ., ϑm∗ and for some
function g : R

m∗ → R, the relation f (x) = g(ϑ>
1 x, . . . ,ϑ>

m∗x) holds for every x ∈ R
d . Here and in

the sequel the vectors are understood as one column matrices and M> denotes the transpose of the
matrix M. Of course, such a restriction is useful only if m∗ < d and the main argument in favor
of using the multi-index model is that for most data sets the underlying structural dimension m∗ is
substantially smaller than d. Therefore, if the vectors ϑ1, . . ., ϑm∗ are known, the estimation of f
reduces to the estimation of g, which can be performed much better because of lower dimensionality
of the function g compared to that of f .

Another advantage of the multi-index model is that it postulates that only few linear combina-
tions of the predictors may suffice for “explaining” the response Y . Considering these combinations
as new predictors leads to a much simpler model (due to its low dimensionality), which can be suc-
cessfully analyzed by graphical methods, see Cook and Weisberg (1999) and Cook (1998) for more
details.

Throughout this work we assume that we are given n observations (Y1,X1), . . . ,(Yn,Xn) from the
model

Yi = f (Xi)+ εi = g(ϑ>
1 Xi, . . . ,ϑ>

m∗Xi)+ εi, (1)

where ε1, . . . ,εn are unobserved errors assumed to be mutually independent zero mean random vari-
ables, independent of the design {Xi, i ≤ n}.

Since it is unrealistic to assume that ϑ1, . . . ,ϑm∗ are known, estimation of these vectors from the
data is of high practical interest. When the function g is unspecified, only the linear subspace Sϑ
spanned by these vectors may be identified from the sample. This subspace is usually called index
space or dimension-reduction (DR) subspace. Clearly, there are many DR subspaces for a fixed
model f . Even if f is observed without error, only the smallest DR subspace, henceforth denoted
by S , can be consistently identified. This smallest DR subspace, which is the intersection of all
DR subspaces, is called effective dimension-reduction (EDR) subspace (Li, 1991) or central mean
subspace (Cook and Li, 2002). We adopt in this paper the former term, in order to be consistent
with Hristache et al. (2001a) and Xia et al. (2002), which are the closest references to our work.

The present work is devoted to studying a new algorithm for estimating the EDR subspace. We
call it structural adaptation via maximum minimization (SAMM). It can be regarded as a branch
of the structure-adaptive (SA) approach introduced in Hristache et al. (2001b) and Hristache et al.
(2001a).

Note that a closely related problem is the estimation of the central subspace (CS), see Cook and
Weisberg (1999) for its definition. For model (1) with i.i.d. predictors, the CS coincides with the
EDR subspace. Hence, all the methods developed for estimating the CS can potentially be applied
in our set-up. We refer to Cook and Li (2002) for background on the difference between the CS and
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the central mean subspace and to Cook and Ni (2005) for a discussion of the relationship between
different algorithms estimating these subspaces.

There are a number of methods providing an estimator of the EDR subspace in our set-up.
These include ordinary least square (Li and Duan, 1989), sliced inverse regression (Li, 1991), sliced
inverse variance estimation (Cook and Weisberg, 1991), principal Hessian directions (Li, 1992),
graphical regression (Cook, 1998), parametric inverse regression (Bura and Cook, 2001a), SA ap-
proach (Hristache et al., 2001a), iterative Hessian transformation (Cook and Li, 2002), minimum
average variance estimation (MAVE) (Xia et al., 2002), nonparametric linear smoothing for inverse
regression (Bura, 2003), minimum discrepancy approach (Cook and Ni, 2005) marginal high mo-
ment regression (Yin and Cook, 2006) density based MAVE and outer product of gradient (Xia,
2007), as well as the refinements using contour-projection (Wang et al., 2008), intraslice covariance
estimation (Cook and Ni, 2006) and Lasso shrinkage (Ni et al., 2005; Li, 2007).

All these methods, except SA approach and MAVE, rely on the principle of inverse regression
(IR). Therefore they inherit its well known limitations. First, they require a hypothesis on the prob-
abilistic structure of the predictors usually called linearity condition. Second, there is no theoretical
justification guaranteeing that these methods estimate the whole EDR subspace and not just a part
thereof, see Cook and Li (2004, Section 3.1) and the comments on the third example in Hristache
et al. (2001a, Section 4). In the same time, they have the advantage of being simple for implemen-
tation and for inference.

The two other methods mentioned above—SA approach and MAVE—have much wider appli-
cability including even time series analysis. The inference for these methods is more involved than
that of IR based methods, but SA approach and MAVE need no strong requirements on the design
of covariates or on the response variable. Moreover, in many cases they provide more accurate
estimates of the EDR subspace (Hristache et al., 2001a; Xia et al., 2002; Xia, 2007).

These arguments, combined with empirical experience, indicate the complementarity of differ-
ent methods designed to estimate the EDR subspace. It turns out that there is no procedure among
those cited above that outperforms all the others in plausible settings. Therefore, a reasonable strat-
egy for estimating the EDR subspace is to execute different procedures and to take a decision after
comparing the obtained results. In the case of strong contradictions, collecting additional data is
recommended.

The algorithm SAMM we introduce here exploits the fact that the gradient ∇ f of the regression
function f evaluated at any point x ∈ R

d belongs to the EDR subspace. The estimation of the
gradient being an ill-posed inverse problem, it is better to estimate some linear combinations of
∇ f (X1), . . . ,∇ f (Xn), which still belong to the EDR subspace.

Let L be a positive integer. The main idea behind the algorithm proposed in Hristache et al.
(2001a) consists in iteratively estimating L linear combinations β1, . . . ,βL of vectors ∇ f (X1), . . . ,
∇ f (Xn) and then recovering the EDR subspace from the vectors β` by running a principal compo-
nent analysis (PCA). The resulting estimator is proved to be

√
n-consistent provided that L is cho-

sen independently of the sample size n. Unfortunately, if L is small with respect to n, the subspace
spanned by the vectors β1, . . . ,βL may cover only a part of the EDR subspace. Therefore, empirical
experience advocates for large values of L, even if the desirable feature of

√
n-consistency fails in

this case.
The estimator proposed in the present work is designed to provide a remedy for this dissension

between the theory and empirical experience. This goal is achieved by introducing a new method
of extracting the EDR subspace from the estimators of the vectors β1, . . . ,βL. If we think of PCA
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as the solution to a minimization problem involving a sum over L terms, see (5) in the next section,
then, to some extent, our proposal consists in replacing the sum by the maximum. This motivates
the term structural adaptation via maximum minimization. The main advantage of SAMM is that
it allows us to deal with the case when L increases polynomially in n and yields an estimator of
the EDR subspace which is consistent under a very weak identifiability assumption. In addition,
SAMM provides a

√
n-consistent estimator (up to a logarithmic factor) of the EDR subspace when

m∗ ≤ 4.
If m∗ = 1, the corresponding model is referred to as single-index regression. There are many

methods for estimating the EDR subspace in this case, see Yin and Cook (2005); Delecroix et al.
(2006) and the references therein. Note also that the methods for estimating the EDR subspace have
often their counterparts in the partially linear regression analysis, see for example Samarov et al.
(2005) and Chan et al. (2004).

An interesting problem in the context of dimensionality reduction is the estimation of the true
structural dimension m∗. Many approaches exist for constructing estimators of m∗, see (Li, 1991,
Section 5), (Xia et al., 2002, Section 2.2), and Bura and Cook (2001b), Bura and Cook (2001a),
Bura (2003) and Cook and Li (2004) and the references therein. Here we assume that the structural
dimension is known, leaving the development of an extension to the case of unknown m∗ for future
investigation.

The rest of the paper is organized as follows. We review the structure-adaptive approach and
introduce the SAMM procedure in Section 2. Theoretical features including

√
n-consistency of the

procedure are stated in Section 3. Section 4 contains an empirical study of the proposed procedure
through Monte Carlo simulations. The technical proofs are deferred to Section 5.

2. Structural Adaptation and SAMM

Introduced in Hristache et al. (2001b), the structure-adaptive approach is based on two observa-
tions. First, knowing the structural information helps better estimate the model function. Second,
improved model estimation contributes to recovering more accurate structural information about
the model. These advocate for the following iterative procedure. Start with the null structural infor-
mation, then iterate the above-mentioned two steps (estimation of the model and extraction of the
structure) several times improving the quality of model estimation and increasing the accuracy of
structural information during the iteration.

2.1 Purely Nonparametric Local Linear Estimation

When no structural information is available, one can only proceed in a fully nonparametric way. A
proper estimation method is based on local linear smoothing (cf. Fan and Gijbels, 1996, for more
details): estimators of the function f and its gradient ∇ f at a point Xi are given by

(
f̂ (Xi)

∇̂ f (Xi)

)
= argmin

(a,c)>

n

∑
j=1

(
Yj −a− c>Xi j

)2
K
(
|Xi j|2/b2)

=

{ n

∑
j=1

(
1

Xi j

)(
1

Xi j

)>
K

( |Xi j|2
b2

)}−1 n

∑
j=1

Yj

(
1

Xi j

)
K

( |Xi j|2
b2

)
,

where Xi j = X j −Xi, b is a bandwidth and K(·) is a univariate kernel supported on [0,1]. (For a
vector v, |v| stands for its Euclidean norm.) The bandwidth b should be selected so that the ball
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with radius b centered at the point of estimation Xi contains at least d + 1 design points. For large
value of d this leads to a large bandwidth and to a strong estimation bias. The goal of the structural
adaptation is to diminish this bias using an iterative procedure exploiting the available estimated
structural information.

In order to transform these general observations into a concrete procedure, let us describe in
the rest of this section how the knowledge of the structure can help to improve the quality of the
estimation and how the structural information can be obtained when the function or its estimator is
given.

2.2 Model Estimation When an Estimator of S is Available

Let us start with the case of known S . The function f has the same smoothness as g in the directions
of the EDR subspace S spanned by the vectors ϑ1, . . . ,ϑm∗ , whereas it is constant (and therefore,
infinitely smooth) in all the orthogonal directions. This suggests to apply an anisotropic bandwidth
for estimating the model function and its gradient. The corresponding local-linear estimator can be
defined by

(
f̂ (Xi)

∇̂ f (Xi)

)
=

{ n

∑
j=1

(
1

Xi j

)(
1

Xi j

)>
w∗

i j

}−1 n

∑
j=1

Yj

(
1

Xi j

)
w∗

i j , (2)

with the weights w∗
i j = K(|Π∗Xi j|2/h2), where h is some positive real number and Π∗ is the orthogo-

nal projector onto the EDR subspace S . This choice of weights amounts to using infinite bandwidth
in the directions lying in the orthogonal complement of the EDR subspace.

If only an estimator Â of the orthogonal projector Π∗ is available, a possible strategy is to
replace Π∗ by Â in the definitions of the weights w∗

i j. This strategy is however too stringent, since

it definitely discards the directions belonging to Ŝ⊥. Being not sure that our information about the
structure is exact, it is preferable to define the neighborhoods in a softer way. This is done by setting
wi j = K(X>

i j (I +ρ−2Â)Xi j/h2) and by redefining

(
f̂ (Xi)

∇̂ f (Xi)

)
=

{ n

∑
j=1

(
1

Xi j

)(
1

Xi j

)>
wi j

}−1 n

∑
j=1

Yj

(
1

Xi j

)
wi j . (3)

Here, ρ is a real number from the interval [0,1] measuring the importance attributed to the estimator
Â. If we are very confident in our estimator Â, we should choose ρ close to zero.

2.3 Recovering the EDR Subspace from an Estimator of ∇ f

Suppose first that the values of the function ∇ f at the points Xi are known. Then S is the linear
subspace of R

d spanned by the vectors ∇ f (Xi), i = 1, . . . ,n. For classifying the directions of R
d

according to the variability of f in each direction and, as a by-product, identifying S , the principal
component analysis (PCA) can be used.

Recall that the PCA method is based on the orthogonal decomposition of the matrix M =
n−1 ∑n

i=1 ∇ f (Xi)∇ f (Xi)
>: M = OΛOT with an orthogonal matrix O and a diagonal matrix Λ with

diagonal entries λ1 ≥ λ2 ≥ . . . ≥ λd . Clearly, for the multi-index model with m∗-indices, only the
first m∗ eigenvalues of M are positive. The first m∗ eigenvectors of M (or, equivalently, the first
m∗ columns of the matrix O) define an orthonormal basis in the EDR subspace.
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Let L be a positive integer. In Hristache et al. (2001a), a “truncated” matrix ML is considered,
which coincides with M if L equals n. Let {ψ`, ` = 1, . . . ,L} be a set of vectors of R

n satisfying
the conditions n−1 ∑n

i=1 ψ`,iψ`′,i = δ`,`′ for every `,`′ ∈ {1, . . . ,L}, with δ`,`′ being the Kronecker
symbol. Define

β` = n−1
n

∑
i=1

∇ f (Xi)ψ`,i (4)

and ML = ∑L
`=1 β`β>

` . By the Bessel inequality, it holds ML � M . Here and in the sequel, for
two symmetric matrices A and B, A � B means that B−A is positive-semidefinite. Moreover, since
MML = MLM , any eigenvector of M is an eigenvector of ML. Finally, by the Parseval equality,
ML = M if L = n.

The reason of considering the matrix ML instead of M is that ML can be estimated much better
than M . In fact, estimators of M have poor performance for samples of moderate size because
of the sparsity of high dimensional data, ill-posedness of the gradient estimation and the non-linear
dependence of M on ∇ f . On the other hand, estimation of ML reduces to the estimation of L linear
functionals of ∇ f and may be done with a better accuracy. The obvious limitation of this approach
is that it recovers the EDR subspace entirely only if the rank of ML coincides with the rank of M ,
which is equal to m∗. To enhance our chances of seeing the condition rank(ML) = m∗ fulfilled, we
have to choose L sufficiently large. In practice, L is chosen of the same order as n.

In the case when only an estimator of ∇ f is available, the above described method of recovering
the EDR directions from an estimator of ML has a risk of order

√
L/n (Hristache et al., 2001a,

Theorem 5.1). This fact advocates against using very large values of L. We desire nevertheless
to use many linear combinations in order to increase our chances of capturing the whole EDR
subspace. To this end, we modify the method of extracting the structural information from the
estimators β̂` of vectors β`.

Let m ≥ m∗ be an integer. Observe that the estimator Π̃m of the projector Π∗ based on the PCA
solves the following quadratic optimization problem:

minimize ∑̀ β̂>
` (I −Π)β̂` subject to Π2 = Π, trΠ ≤ m, (5)

where the minimization is carried over the set of all symmetric (d × d)-matrices. The value m∗

can be estimated by looking how many eigenvalues of Π̃m are significant. Let Am be the set of
(d ×d)-matrices defined as follows:

Am = {A : A = A>, 0 � A � I, trA ≤ m}.

Define Âm as a minimizer of the maximum of the β̂>
` (I −A)β̂`’s instead of their sum:

Âm ∈ argmin
A∈Am

max
`

β̂>
` (I −A)β̂`. (6)

This is a convex optimization problem that can be effectively solved even for a large d although a
closed form solution is not known. It is noteworthy that a solution to (6) is not necessarily a pro-
jection matrix. In fact, the matrices from Am are symmetric positive-semidefinite with eigenvalues
between 0 and 1 and not just 0 or 1. This enlargement of the search space guarantees its convexity,
which is needed for the algorithm to be tractable. Moreover, as we will show below, the incorpo-
ration of (6) in the structural adaptation yields an algorithm having good theoretical and empirical
performance.
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3. Theoretical Features of SAMM

Throughout this section the true dimension m∗ of the EDR subspace is assumed to be known. Thus,
we are given n observations (Y1,X1), . . . ,(Yn,Xn) from the model

Yi = f (Xi)+ εi = g(ϑ>
1 Xi, . . . ,ϑ>

m∗Xi)+ εi,

where ε1, . . . ,εn are independent centered random variables. The vectors ϑ j are assumed to form
an orthonormal basis of the EDR subspace entailing thus the representation Π∗ = ∑m∗

j=1 ϑ jϑ>
j . In

what follows, we mainly consider deterministic design. Nevertheless, the results hold in the case of
random design as well, provided that the errors are independent of X1, . . . ,Xn. Henceforth, without
loss of generality we assume that |Xi| ≤ 1 for any i = 1, . . . ,n.

3.1 Description of the Algorithm

The structure-adaptive algorithm with maximum minimization consists of following steps.

a) Specify positive real numbers aρ, ah, ρ1 and h1. Choose an integer L and select a set {ψ`, `≤
L} of vectors from R

n verifying |ψ`|2 = n.

b) Set k = 1 and Â0 = 0.

c) Define the estimators ∇̂ f k(Xi) for i = 1, . . . ,n by formula (3) with
wi j = K

(
X>

i j (I +ρ−2
k Âk−1)Xi j/h2

k

)
. Set

β̂`,k =
1
n

n

∑
i=1

∇̂ f k(Xi)ψ`,i, ` = 1, . . . ,L,

where ψ`,i is the ith coordinate of ψ`.

d) Define the new value Âk by Âk ∈ argminA∈Am∗ max` β̂>
`,k(I −A)β̂`,k.

e) Set ρk+1 = aρ ·ρk, hk+1 = ah ·hk and increase k by one.

f) Stop if ρk < ρmin or hk > hmax, otherwise continue with the step c).

Let k(n) be the total number of iterations. We denote by Π̂n the orthogonal projection onto the space
spanned by the eigenvectors of Âk(n) corresponding to the m∗ largest eigenvalues. The estimator of

the EDR subspace is then the image of Π̂n.
Both Âk(n) and Π̂n are estimators of the projector onto S . Our theoretical results are stated for

the estimator Π̂n, but similar results are valid for Âk(n), too. The numerical simulations we made
showed that these two estimators have comparable performances.

The described algorithm requires the specification of the parameters ρ1, h1, aρ and ah, as well
as the choice of the set of vectors {ψ`}. In what follows we use the values

ρ1 = 1, ρmin = n−1/(3∨m∗), aρ = e−1/2(3∨m∗),

h1 = C0n−1/(4∨d), hmax = 2
√

d, ah = e1/2(4∨d).

This choice of input parameters is up to some minor modifications the same as in Hristache et al.
(2001b), Hristache et al. (2001a) and Samarov et al. (2005), and is based on the trade-off between
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the bias and the variance of estimation. The constant C0 will be chosen in a design-dependent
manner taking into account the fact that the local neighborhoods used in (2) should contain enough
design points to entail the consistency of the estimator. The choice of L and that of vectors ψ` will
be discussed in Section 4.

3.2 Assumptions

Prior to stating rigorous theoretical results we need to introduce a set of assumptions. From now on,
we use the notation I for the identity matrix of dimension d, ‖A‖2 for the largest eigenvalue of A>A
and ‖A‖2 for the Frobenius norm of A (square root of the sum of squares of elements of A).

We start with the smoothness assumption ensuring the adequacy of the local linear approxima-
tion of the regression function.

(A1) There exists a positive real Cg such that |∇g(x)| ≤ Cg and |g(x)− g(x′)− (x− x′)>∇g(x)| ≤
Cg|x− x′|2 for every x,x′ ∈ R

m∗
.

Unlike the smoothness assumption, the assumptions on the identifiability of the model and the
regularity of design are more involved and specific to our algorithm. The formal statements read as
follows.

(A2) Let the vectors β` ∈ R
d be defined by (4) and let B∗ =

{
β̄ = ∑L

`=1 c`β` : ∑L
`=1 |c`| ≤ 1

}
. There

exist vectors β̄1, . . . , β̄m∗ ∈ B∗ and constants µ1, . . . ,µm∗ such that

Π∗ �
m∗

∑
k=1

µkβ̄kβ̄>
k . (7)

We denote µ∗ = µ1 + . . .+µm∗ .

Remark 1 Assumption (A2) implies that the subspace S = Im(Π∗) is the smallest DR subspace,
therefore it is the EDR subspace. Indeed, for any DR subspace S ′, the gradient ∇ f (Xi) belongs
to S ′ for every i. Therefore β` ∈ S ′ for every ` ≤ L and B∗ ⊂ S ′. Thus, for every β◦ from the
orthogonal complement S ′⊥, it holds |Π∗β◦|2 ≤ ∑k µk|β̄>

k β◦|2 = 0. Therefore S ′⊥ ⊂ S⊥ implying
thus the inclusion S ⊂ S ′.

Lemma 2 If the family {ψ`} spans R
n, then assumption (A2) is always satisfied with some µk (that

may depend on n).

Proof Set Ψ = (ψ1, . . . ,ψL)∈R
n×L, ∇ f = (∇ f (X1), . . . ,∇ f (Xn))∈R

d×n and write the d×L matrix
B = (β1, . . . ,βL) in the form ∇ f ·Ψ. Recall that if M1,M2 are two matrices such that M1 ·M2 is well
defined and the rank of M2 coincides with the number of lines in M2, then rank(M1 ·M2) = rank(M1).
This implies that rank(B) = m∗ provided that rank(Ψ) = n, which amounts to span({ψ`}) = R

n.
Let now β̃1, . . . , β̃m∗ be a linearly independent subfamily of {β`, ` ≤ L}. Then the m∗th largest

eigenvalue λm∗(M̃ ) of the matrix M̃ = ∑m∗
k=1 β̃kβ̃>

k is strictly positive. Moreover, if v1, . . . ,vm∗ are
the eigenvectors of M̃ corresponding to the eigenvalues λ1(M̃ ) ≥ . . . ≥ λm∗(M̃ ) > 0, then

Π∗ =
m∗

∑
k=1

vkv>k � 1

λm∗(M̃ )

m∗

∑
k=1

λk(M̃ )vkv>k = λm∗(M̃ )−1
M̃ = λm∗(M̃ )−1

m∗

∑
k=1

β̃kβ̃>
k .
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Hence, inequality (7) is fulfilled with µk = λm∗(M̃ )−1 for every k = 1, . . . ,m∗.

These arguments show that the identifiability assumption (A2) is fairly weak. In fact, since we
always choose {ψ`} so that span({ψ`}) = R

n, (A2) amounts to requiring that the value µ∗ remains
bounded when n increases. This assumption is much weaker than the coverage assumption under
which the consistency of the inverse regression based methods is proved.

Let us proceed with the assumption on the design regularity. Define P∗
1 = I and P∗

k = (I +

ρ−2
k Π∗)−1/2 for every k ≥ 2. Next, set Z(k)

i j = (hkP∗
k )−1Xi j and for any d×d matrix U put w(k)

i j (U) =

K
(
(Z(k)

i j )>UZ(k)
i j

)
, w̄(k)

i j (U) = K′((Z(k)
i j )>UZ(k)

i j

)
, N(k)

i (U) = ∑ j w(k)
i j (U) and

V (k)
i (U) =

n

∑
j=1

(
1

Z(k)
i j

)(
1

Z(k)
i j

)>
w(k)

i j (U).

(A3) For some positive constants CV ,CK ,CK′ ,Cw and for some α ∈]0,1/2], the inequalities

‖V (k)
i (U)−1‖N(k)

i (U) ≤CV , i = 1, . . . ,n,
n

∑
i=1

w(k)
i j (U)/N(k)

i (U) ≤CK , j = 1, . . . ,n,

n

∑
i=1

|w̄(k)
i j (U)|/N(k)

i (U) ≤CK′ , j = 1, . . . ,n,

n

∑
j=1

|w̄(k)
i j (U)|/N(k)

i (U) ≤Cw i = 1, . . . ,n,

hold for every k ≤ k(n) and for every d ×d matrix U verifying ‖U − I‖2 ≤ α.

Remark 3 Note that in (A3) we implicitly assumed that the matrices V (k)
i are invertible, which may

be true only if any neighborhood E (k)(Xi) = {x : |(I + ρ−2
k Π∗)−1/2(Xi − x)| ≤ hk} contains at least

d design points different from Xi. The parameters h1, ρ1, aρ and ah are chosen so that the volume
of ellipsoids E(k)(Xi) is a non-decreasing function of k and Vol(E (1)(Xi)) = C0/n. Therefore, from
theoretical point of view, if the design is random with positive density on [0,1]d , it is easy to check
that for a properly chosen constant C0, assumption (A3) is satisfied with a probability close to one.
In applications, we define h1 as the smallest real such that mini=1,...,n #E(1)(Xi) = d +1 and add to
the matrix

n

∑
j=1

(
1

Xi j

)(
1

Xi j

)>
wi j,

involved in the definition (3), a small full-rank matrix to be sure that the resulting matrix is invertible,
see Section 4. This observation also implies that the SAMM procedure can not be applied in the
case where the sample size n is smaller than or equal to the dimension d of predictors.

(A4) The errors {εi, i ≤ n} are centered Gaussian with variance σ2.
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3.3 Risk Bounds for the Projection Matrix Estimation

In this section, we present the main result of the paper assessing the quality of the estimator Π̂n

of the projection matrix Π∗ in the asymptotics of large samples. To this end, we assume that the
kernel K used in (3) is chosen to be continuous, positive and vanishing outside the interval [0,1].
The vectors ψ` are assumed to verify

max
`=1,...,L

max
i=1,...,n

|ψ`,i| < ψ̄, (8)

for some constant ψ̄ independent of n. In the sequel, we denote by C,C1, . . . some constants depend-
ing only on m∗,µ∗,Cg,CV ,CK ,CK′ ,Cw and ψ̄.

Theorem 4 Let assumptions (A1)-(A4) be fulfilled. There exists C > 0 such that for any z ∈
]0,2

√
log(nL)] and for sufficiently large values of n, it holds

P
(√

tr(I − Π̂n)Π∗ > Cn−
2

3∨m∗ t2
n +

2
√

µ∗zc0σ√
n(1−ζn)

)
≤ Lze−

z2−1
2 +

3k(n)−5
n

,

where c0 = ψ̄
√

dCKCV , tn = O(
√

log(Ln)) and ζn = O(tn n−
1

6∨m∗ ).

Corollary 5 Under the assumptions of Theorem 4, for sufficiently large n, it holds

P
(
‖Π̂n −Π∗‖2 > Cn−

2
3∨m∗ t2

n +
2
√

2µ∗zc0σ√
n(1−ζn)

)
≤ Lze−

z2−1
2 +

3k(n)−5
n

E(‖Π̂n −Π∗‖2) ≤C

(
n−

2
3∨m∗ t2

n +

√
lognL√

n

)
+

√
2m∗(3k(n)−5)

n
.

Proof Easy algebra yields

‖Π̂n −Π∗‖2
2 = tr(Π̂n −Π∗)2 = trΠ̂2

n −2trΠ̂nΠ∗ + trΠ∗

≤ trΠ̂n +m∗−2trΠ̂nΠ∗ ≤ 2m∗−2trΠ̂nΠ∗.

The equality trΠ∗ = m∗ and the linearity of the trace operator complete the proof of the first in-
equality. The second inequality can be derived from the first one by standard arguments in view of
the inequality ‖Π̂n −Π∗‖2

2 ≤ 2m∗.

According to these results, for m∗ ≤ 4, the estimator of the orthogonal projector onto S provided
by the SAMM procedure is

√
n-consistent up to a logarithmic factor. This rate of convergence is

known to be optimal for a broad class of semiparametric problems, see Bickel et al. (1998) for a
detailed account on the subject.

Remark 6 The inspection of the proof of Theorem 4 shows that the factor t2
n multiplying the “bias”

term n−2/(3∨m∗) disappears when m∗ > 3.

Remark 7 The same rate of convergence remains valid in the case when the errors are not neces-
sarily identically distributed Gaussian random variables, but have a bounded exponential moment
(uniformly in n). This can be proved along the lines of Proposition 14, see Section 5.
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3.4 Risk Bound for the Estimator of a Basis of the EDR Subspace

The main result of this paper stated in the preceding subsection provides a risk bound for the esti-
mator Π̂n of Π∗, the orthogonal projector onto S . As a by-product of this result, we show in this
section that a similar risk bound holds also for the estimator of an orthonormal basis of S . This
means that for an arbitrarily chosen orthonormal basis of the estimated EDR subspace Ŝ = Im(Π̂n),
there is an orthonormal basis of the true EDR subspace S such that the matrices built from these
bases are close in Frobenius norm with a probability tending to one.

Proposition 8 Let the assumptions of Theorem 4 be fulfilled. For any orthonormal basis ϑ̂1, . . . , ϑ̂m∗

of the estimated EDR subspace Ŝ = Im(Π̂n) there exists an orthonormal basis ϑ1, . . . ,ϑm∗ of the true
EDR subspace S = Im(Π∗) such that, for sufficiently large n, it holds

P
(
‖Θ̂n −Θ‖2 > Cn−

2
3∨m∗ t2

n +
2(
√

m∗ +1)
√

2µ∗zc0σ√
n(1−ζn)

)
≤ Lze−

z2−1
2 +

3k(n)−5
n

,

where Θ̂n (resp. Θ) is the d ×m∗ matrix whose jth column is ϑ̂ j (resp. ϑ j).

Proof Using the singular value decomposition, we write Π∗Θ̂n = UΛV>, where U and V are
orthogonal matrices and Λ is a diagonal matrix. Let us denote by λ j, u j, v j respectively the jth
diagonal entry of Λ, the jth column of U and the jth column of V . Since Π∗Θ̂nv j = λ ju j, we have
λ j = |λ ju j| = |Π∗Θ̂nv j| ≤ 1. On the other hand,

λ j = |Π∗Θ̂nv j| ≥ |Θ̂nv j|− |(Π̂n −Π∗)Θ̂nv j| ≥ 1−‖Π̂n −Π∗‖,

where we used the fact that |Θ̂nv j|2 = v>j Θ̂>
n Θ̂nv j = v>j v j = 1. Let us define the matrix Θ as follows:

Θ = UId×m∗V>, where Id×m∗ is the d ×m∗ diagonal matrix with all diagonal entries equal to one.
One easily checks that Θ is orthogonal, that is Θ>Θ = Im∗ . Moreover, we have Θ = Π∗Θ̂nV Λ−V>,
where Λ− is the m∗×m∗ diagonal matrix having λ−1

j as jth diagonal entry. Note that if the norm

of Π̂n −Π∗ is less than 1, the eigenvalues λ j are strictly positive. In this case, Λ− is well defined
and we obviously have Π∗Θ = Θ. Thus the columns of Θ form an orthonormal basis of Im(Π∗).
Furthermore, we have

‖Θ̂n −Θ‖2 ≤ ‖Θ−Π∗Θ̂n‖2 +‖(Π∗− Π̂n)Θ‖2

≤ ‖U(Id×m∗ −Λ)V>‖2 +‖Π∗− Π̂n‖2

≤ (
m∗

∑
j=1

(λ j −1)2)1/2 +‖Π∗− Π̂n‖2

≤ (
√

m∗ +1)‖Π∗− Π̂n‖2,

provided that ‖Π∗− Π̂n‖ < 1. This implies that for every d ∈ (0,1) the event {‖Π∗− Π̂n‖2 ≤ d} is
included in {‖Θ̂n−Θ‖2 ≤ (

√
m∗+1)d}. By virtue of this inclusion, the assertion of the proposition

follows from Corollary 5.
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4. Simulation Results

The aim of this section is to demonstrate on several examples how the performance of the algorithm
SAMM depends on the sample size n, the dimension d and the noise level σ. We also show that our
procedure can be successfully applied in autoregressive models. Many unreported results show that
in most situations the performance of SAMM is comparable to the performance of SA approach
based on PCA and to that of MAVE. A thorough comparison of the numerical virtues of these
methods being out of scope of this paper, we simply show on some examples that SAMM may
substantially outperform MAVE in the case of large “bias”. Our results also show that SAMM and
MAVE provide more accurate estimates of the EDR subspace than inverse regression based methods
: inverse regression based on Minimum Discrepancy Approach (MDA) introduced in Cook and
Ni (2005) and Sliced Average Variance Estimation (SAVE) of Cook and Weisberg (1991). In all
simulations for inverse regression based methods, the number of slices is chosen to minimise the
risk.

The computer code of the procedure SAMM is distributed freely, it can be downloaded from
http://code.google.com/p/samm07/. It requires the MATLAB packages SDPT3 and YALMIP.
We are grateful to Professor Yingcun Xia for making the computer code of MAVE available to us.

To obtain higher stability of the algorithm, we preliminarily standardize the response Y and the
predictors X ( j). More precisely, we deal with Ỹi = Yi/σY and X̃ = diag(ΣX)−1/2X , where σ2

Y is the
empirical variance of Y , ΣX is the empirical covariance matrix of X and diag(ΣX) is the d×d matrix
obtained from ΣX by replacing the off-diagonal elements by zero. To preserve consistency, we set
β̃`,k(n) = diag(ΣX)−1/2β̂`,k(n), where β̂`,k(n) is the last-step estimate of β`, and define Π̂k(n) as the

solution to (6) with β̂` replaced by β̃`,k(n). Furthermore, we add the small full-rank matrix Id+1/n to

∑n
j=1

( 1
Xi j

)( 1
Xi j

)>
wi j in (3).

In all examples presented below the number of replications is N = 250; for each replication,
a new sample of the design and the error vector (ε1, . . . ,εn) has been generated at random. The

mean loss erN = 1
N ∑ j er j and the standard deviation

√
1
N ∑ j(er j − erN)2 are reported, where er j =

‖Π̂( j)−Π∗‖ with Π̂( j) being the estimator of Π∗ for jth replication.

4.1 Choice of {ψ`, ` ≤ L}

The set {ψ`} plays an essential role in the algorithm. The optimal choice of this set is an important
issue that needs further investigation. We content ourselves with giving one particular choice which
agrees with theory and leads to nice empirical results.

Let S j, j ≤ d, be the permutation of the set {1, . . . ,n} satisfying X ( j)
S j(1) ≤ . . . ≤ X ( j)

S j(n). Let

S
−1
j be the inverse of S j, that is, S j(S

−1
j (k)) = k for every k = 1, . . . ,n. Define {ψ`} as the set of

vectors
{(

cos
( 2π(k−1)S−1

j (1)

n

)
, . . . ,cos

( 2π(k−1)S−1
j (n)

n

))>
(

sin
( 2πkS−1

j (1)

n

)
, . . . ,sin

( 2πkS−1
j (n)

n

))> ,k ≤ [n/2], j ≤ d

}

normalized to satisfy ∑n
i=1 ψ2

`,i = n for every `. It is easily seen that these vectors satisfy conditions
(8) and span({ψ`}) = R

n, so the conclusion of Lemma 2 holds. Above, [n/2] is the integer part of
n/2 and k and j are positive integers.
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The idea behind the above described choice of vectors ψ` is the following: if the design is
uniformly distributed in [0,1]d and H(x) is a function R

d → R depending only on one coordinate
of x, the projections of the vector g = (H(X1), . . . ,H(Xn))

> on some of directions ψ` are nearly
equal to the Fourier coefficients of H. Indeed, for n odd and for every fixed j, the vectors {ek, j =(
φk(S

−1
j (1)/n),φk(S

−1
j (2)/n), . . . ,φk(S

−1
j (n)/n)

)>
;1 ≤ k ≤ n} with {φk} being the trigonometric

basis (that is φ2p(x) =
√

2sin(2πpx) and φ2p+1(x) =
√

2cos(2πpx) for every p ∈ N) form an or-
thonormal basis of R

n. Therefore, for any function H from R
d to R, which depends exclusively on

the jth coordinate x( j) of x, one has g>ek j = ∑n
i=1 H0(X

( j)
i )φk(S

−1
j (i)/n) = ∑n

i=1 H0(X
( j)
S j(i)

)φk(i/n)

for some function H0 : R → R. Since for a sample X ( j)
1 , . . . ,X ( j)

n drawn from uniform distribu-
tion in [0,1] the order statistics are nearly equal to i/n, we get 1

n g>ek j ≈ 1
n ∑n

i=1 H0(i/n)φk(i/n) ≈
〈H0,φk〉L2[0,1]. Note that although this explanation is valid only for uniform design and a function
H depending only on one coordinate, empirical results show that this choice leads to satisfactory
results in more general situations.

4.2 Example 1 (Single-index)

We set d = 5 and f (x) = g(ϑ>x) with

g(t) = 4|t|1/2 sin2(πt), and ϑ = (1/
√

5,2/
√

5,0,0,0)> ∈ R
5.

We ran SAMM, MAVE, MDA and SAVE procedures on the data generated by the model

Yi = f (Xi)+0.5 · εi,

where the design X is such that the coordinates (X ( j)
i , j ≤ 5, i ≤ n) are i.i.d. uniform in [−1,1], and

the errors εi are i.i.d. standard Gaussian independent of the design.
Table 1 contains the average loss for different values of the sample size n for the first step

estimator by SAMM, the final estimator provided by SAMM and the estimators based on MAVE,
MDA and SAVE. The first observation is that inverse regression based methods are not consistent
in this case. We plot in Figure 1 the average loss normalized by the square root of the sample
size n versus n. It is clearly seen that the iterative procedure improves considerably the quality
of estimation and that the final estimator provided by SAMM is

√
n-consistent. In this example,

MAVE method often fails to recover the EDR subspace. However, the number of failures decreases
very rapidly with increasing n. This is the reason why the curve corresponding to MAVE in Figure 1
decreases with a strong slope.

4.3 Example 2 (Double-index)

For d ≥ 2 we set f (x) = g(ϑ>x) with

g(x) = (x1 − x3
2)(x

3
1 + x2);

and ϑ1 = (1,0, . . . ,0) ∈ R
d , ϑ2 = (0,1, . . . ,0) ∈ R

d . We ran SAMM, MAVE, MDA and SAVE
procedures on the data generated by the model

Yi = f (Xi)+0.1 · εi, i = 1, . . . ,300,
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Figure 1: Average loss multiplied by
√

n versus n for the first step (solid line) and the final (dotted
line) estimators provided by SAMM and for the estimator by MAVE (dashed line) in
Example 1.

n 200 300 400 600 800
SAMM, 1st 0.443 0.329 0.271 0.215 0.155

(.211) (.120) (.115) (.095) (.079)
SAMM, Fnl 0.337 0.170 0.116 0.076 0.053

(.273) (.147) (.104) (.054) (.031)
MAVE 0.626 0.455 0.249 0.154 0.061

(.363) (.408) (.342) (.290) (.161)
MDA 0.882 0.885 0.890 0.885 0.882

(.144) (.141) (.130) (.142) (.148)
SAVE 0.857 0.847 0.832 0.818 0.782

(.145) (.144) (.154) (.168) (.169)

Table 1: Average loss ‖Π̂−Π∗‖ of the estimators obtained by SAMM, MAVE, MDA and SAVE
procedures in Example 1. The standard deviation is given in parentheses.

where the design X is such that the coordinates (X ( j)
i , j ≤ d, i ≤ n) are i.i.d. uniform in [−40,40],

and the errors εi are i.i.d. standard Gaussian independent of the design. The results of simulations
for different values of d are reported in Table 2.

As expected, we found that (cf. Figure 2) the quality of SAMM, as well as the quality of SAVE,
deteriorated linearly in d as d increased. This agrees with our theoretical results. It should be noted
that in this case MAVE and MDA fail to find the EDR subspace.
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Figure 2: Average loss versus d for the estimators provided by SAMM (dotted line), by MAVE
(dashed line), by MDA (dash-dot line) and by SAVE (solid line) in Example 2.

d 4 6 8 10 12
SAMM 1st 0.154 0.242 0.296 0.365 0.421

(.063) (.081) (.071) (.087) (.095)
SAMM, Fnl 0.028 0.048 0.060 0.077 0.098

(.011) (.020) (.021) (.026) (.037)
MAVE 0.284 0.607 0.664 0.681 0.693

(.147) (.073) (.052) (.054) (.044)
MDA 0.768 0.894 0.938 0.964 0.973

(.232) (.142) (.095) (.062) (.049)
SAVE 0.129 0.179 0.222 0.259 0.299

(.048) (.047) (.050) (.058) (.071)

Table 2: Average loss ‖Π̂−Π∗‖ of the estimators obtained by SAMM, MAVE and MDA procedures
in Example 2. The standard deviation is given in parentheses.

4.4 Example 3

For d = 5 we set f (x) = g(ϑ>x) with

g(x) = (1+ x1)(1+ x2)(1+ x3)

and ϑ1 = (1,0,0,0,0), ϑ2 = (0,1,0,0,0), ϑ3 = (0,0,1,0,0). We ran SAMM, MAVE, MDA and
SAVE procedures on the data generated by the model

Yi = f (Xi)+σ · εi, i = 1, . . . ,250,
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σ 200 150 100 50 25 10
SAMM 1st 0.227 0.177 0.141 0.119 0.113 0.106

(.092) (.075) (.055) (.051) (.048) (.043)
SAMM, Fnl 0.125 0.084 0.057 0.039 0.034 0.030

(.076) (.037) (.026) (.019) (.021) (.018)
MAVE 0.103 0.087 0.073 0.062 0.063 0.059

(.041) (.035) (.027) (.023) (.024) (.023)
MDA 0.854 0.850 0.867 0.862 0.858 0.873

(.167) (.173) (.157) (.159) (.171) (.159)
SAVE 0.510 0.511 0.496 0.505 0.496 0.490

(.208) (.204) (.207) (.197) (.196) (.199)

Table 3: Average loss ‖Π̂−Π∗‖ of the estimators obtained by SAMM and MAVE procedures in
Example 3. The standard deviation is given in parentheses.

where the design X is such that the coordinates (X ( j)
i , j ≤ d, i ≤ n) are i.i.d. uniform in [0,20], and

the errors εi are i.i.d. standard Gaussian independent of the design.

Figure 3 shows that the qualities of both SAMM and MAVE deteriorate linearly in σ, when
σ increases. These results also demonstrate that, thanks to an efficient bias reduction, the SAMM
procedure outperforms MAVE when stochastic error is small, whereas MAVE works better than
SAMM in the case of dominating stochastic error (that is when σ is large).
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Figure 3: Average loss versus σ for the first step (solid line) and the final (dotted line) estimators
provided by SAMM and for the estimator based on MAVE (dashed line) in Example 3.
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4.5 Example 4 (Time Series)

Let now T1, . . . ,Tn+6 be generated by the autoregressive model

Ti+6 = f (Ti+5,Ti+4,Ti+3,Ti+2,Ti+1,Ti)+0.2 · εi, i = 1, . . . ,n,

with initial variables T1, . . . ,T6 being independent standard normal independent of the innovations
εi, which are i.i.d. standard normal as well. Let now f (x) = g(ϑ>x) with

g(x) = −1+0.6x1 − cos(0.5πx2)+ e−x2
3 ,

and

ϑ1 = (1,0,0,2,0,0)/
√

5,

ϑ2 = (0,0,1,0,0,2)/
√

5,

ϑ3 = (−2,2,−2,1,−1,1)/
√

15.

We ran SAMM and MAVE procedures on the data (Xi,Yi), i = 1, . . . ,250, where Yi = Ti+6 and
Xi = (Ti, . . . ,Ti+5)

>. The results of simulations reported in Table 4 show that the qualities of SAMM
and MAVE are comparable, with SAMM being slightly better. SAVE is better than MDA, but both
of them are far less accurate than SAMM and MAVE.

n 300 400 500 600
SAMM, 1st 0.391 0.351 0.334 0.293

(.172) (.161) (.137) (.132)
SAMM, Fnl 0.220 0.186 0.174 0.146

(.119) (.123) (.102) (.089)
MAVE 0.268 0.231 0.209 0.182

(.209) (.170) (.159) (.122)
MDA 0.914 0.915 0.913 0.912

(.115) (.107) (.119) (.119)
SAVE 0.617 0.515 0.428 0.369

(.200) (.184) (.151) (.138)

Table 4: Average loss ‖Π̂−Π∗‖ of the estimators obtained by SAMM, MAVE, MDA and SAVE
procedures in Example 4. The standard deviation is given in parentheses.

5. Proofs

Since the proof of the main result is carried out in several steps, we give a short road map for
guiding the reader throughout the proof. The main idea is to evaluate the accuracy of the first step
estimators of β` and, given the accuracy of the estimator at the step k, evaluate the accuracy of the
estimators at the step k + 1. This is done in Subsections 5.2 and 5.1. These results are based on a
maximal inequality proved in Subsection 5.4 and on some properties of the solution to (6) proved
in Subsection 5.5. The proof of Theorem 4 is presented in Subsection 5.3, while some technical
lemmas are postponed to Subsection 5.6.
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5.1 One Step Improvement

Let {δk} be a sequence of positive numbers to be chosen later and let Pk =
{

A∈Am∗ : tr(I−A)Π∗≤
δ2

k

}
. Recall that we use the following notation:

P∗
k = (I +ρ−2

k Π∗)−1/2, Z(k)
i j = (hkP∗

k )−1Xi j, w(k)
i j (U) = K

(
(Z(k)

i j )>UZ(k)
i j

)

N(k)
i (U) = ∑

j

w(k)
i j (U), V (k)

i (U) =
n

∑
j=1

(
1

Z(k)
i j

)(
1

Z(k)
i j

)>
w(k)

i j (U),

where U is a d×d symmetric positive-semidefinite matrix. Let us define Sk = (I +ρ−2
k Âk−1)

1/2 and
Uk = P∗

k S2
kP∗

k .

One easily checks that the estimator ∇̂ f k(Xi) is given by
(

f̂k(Xi)

∇̂ f k(Xi)

)
=
{ n

∑
j=1

(
1

Xi j

)(
1

Xi j

)>
w(k)

i j (Uk)
}−1 n

∑
j=1

Yj

(
1

Xi j

)
w(k)

i j (Uk),

Simple algebra yields
(

h−1
k f̂k(Xi)

P∗
k ∇̂ f k(Xi)

)
= h−1

k V (k)
i (Uk)

−1
n

∑
j=1

Yj

(
1

Z(k)
i j

)
w(k)

i j (Uk).

In order to study the behavior of ∇̂ f k, we will proceed in a first step as if Uk were deterministic. For
this reason, the notation

(
h−1

k f̄k(Xi)

P∗
k ∇ f k(Xi)

)
= h−1

k V (k)
i (Uk)

−1
n

∑
j=1

f (X j)

(
1

Z(k)
i j

)
w(k)

i j (Uk),

will be useful. In fact, ∇ f k(Xi) defined as above would be the expectation of ∇̂ f k(Xi) if Uk were
deterministic.

Proposition 9 Let assumptions (A1)-(A4) be fulfilled. If for some integer k ∈ [2,k(n)] the real
number αk = 2δ2

k−1ρ−2
k +2δk−1ρ−1

k is less than the constant α appearing in assumption (A3), then
there exist Gaussian vectors ξ∗1,k, . . . ,ξ

∗
L,k ∈ R

d such that max1≤`≤L E[|ξ∗`,k|2] ≤ c2
0σ2 and

P
(

max
1≤`≤L

∣∣∣P∗
k (β̂`,k −β`)−

ξ∗`,k√
nhk

∣∣∣≥ ϒk, Âk−1 ∈ Pk−1

)
≤ 2

n
,

where we used the notation ϒk =
√

CVCg(ρk +δk−1)
2hk +c1σαktn/(

√
nhk) with tn = 4+(3log(Ln)+

3
2 d2 logn)1/2, c0 = ψ̄(dCKCV )1/2 and c1 = 15ψ̄(C2

wC4
VC2

K +C2
VC2

K′)1/2.

Proof Let us start with evaluating the “bias” term |P∗
k (β̄`,k −β`)|, where the vectors β̄`,k are defined

as 1
n ∑n

i=1 ∇ f k(Xi)ψ`,i. According to the Cauchy-Schwarz inequality, it holds

∣∣P∗
k

(
β̄`,k −β`

)∣∣2 = n−2

∣∣∣∣
n

∑
i=1

P∗
k

(
∇ f k(Xi)−∇ f (Xi)

)
ψ`,i

∣∣∣∣
2

≤ n−2
n

∑
i=1

∣∣P∗
k

(
∇ f k(Xi)−∇ f (Xi)

)∣∣2
n

∑
i=1

ψ2
l,i

≤ max
i=1,...,n

∣∣P∗
k

(
∇ f k(Xi)−∇ f (Xi)

)∣∣2.
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Simple computations show that

∣∣P∗
k

(
∇ f k(Xi)−∇ f (Xi)

)∣∣≤
∣∣∣∣∣

(
h−1

k f̄k(Xi)

P∗
k ∇ f k(Xi)

)
−
(

h−1
k f (Xi)

P∗
k ∇ f (Xi)

)∣∣∣∣∣

=

∣∣∣∣∣h
−1
k V (k)

i (Uk)
−1

n

∑
j=1

f (X j)

(
1

Z(k)
i j

)
w(k)

i j (Uk)−
(

h−1
k f (Xi)

P∗
k ∇ f (Xi)

)∣∣∣∣∣

= h−1
k

∣∣∣V (k)
i (Uk)

−1
n

∑
j=1

ri j

(
1

Z(k)
i j

)
w(k)

i j (Uk)
∣∣∣ := b(Xi),

where ri j = f (X j) − f (Xi) − X>
i j ∇ f (Xi). Define v j = V (k)

i (Uk)
−1/2

(
1

Z(k)
i j

)√
w(k)

i j (Uk), λ j =

h−1
k ri j

√
w(k)

i j (Uk) and λ = (λ1, . . . ,λn)
>. Then ∑ j v jv>j = Id+1 and

b(Xi) =

∣∣∣∣V
(k)
i (Uk)

−1/2
n

∑
j=1

λ jv j

∣∣∣∣≤
∥∥V (k)

i (Uk)
−1/2

∥∥ · |λ|.

Note now that in view of Lemma 21, ‖Uk − I‖2 ≤ αk on the event {Âk−1 ∈ Pk−1}. Therefore,

b(Xi)
2 ≤ h−2

k

∥∥∥V (k)
i (Uk)

−1/2
∥∥∥

2
·

n

∑
j=1

r2
i jw

(k)
i j (Uk)

≤ h−2
k max

j:w(k)
i j (Uk)6=0

r2
i j

∥∥∥V (k)
i (Uk)

−1
∥∥∥ ·

n

∑
j=1

w(k)
i j (Uk) ≤CV h−2

k max
j:w(k)

i j (Uk)6=0
r2

i j .

Let us denote by Θ the (d×m∗) matrix having ϑl as lth column. Then Π∗ = ΘΘ> and therefore, in
view of (A1),

|ri j| = | f (X j)− f (Xi)−X>
i j ∇ f (Xi)|

= |g(Θ>X j)−g(Θ>Xi)− (Θ>Xi j)
>∇g(Θ>Xi)|

≤Cg|Θ>Xi j|2 = Cg|Π∗Xi j|2.

Since the weights w(k)
i j are defined via the kernel function K vanishing on the interval [1,∞[, we have

max
j:w(k)

i j (Uk)6=0
r2

i j = max{r2
i j : |SkXi j| ≤ hk}. By Corollary 19, the inequality |SkXi j| ≤ hk implies

|Π∗Xi j| ≤ (ρk + δk−1)hk. On the other hand, |Π∗Xi j| ≤ |Xi j| ≤ |SkXi j| ≤ hk. These estimates yield
|b(Xi)| ≤

√
CV Cg{(ρk +δk−1)∧1}2hk, and consequently,

max
`=1,...,L

∣∣P∗
k

(
β̄`,k −β`

)∣∣≤ max
i

b(Xi) ≤
√

CV Cg{(ρk +δk−1)∧1}2hk. (9)

Let us evaluate now the “stochastic” error P∗
k

(
β̂`,k − β̄`,k

)
. Define E1 as the d× (d +1) matrix (0 I),

where 0 stands for the vector all coordinates of which are zero and I is the d × d identity matrix.
Using this notation, we have P∗

k

(
β̂`,k − β̄`,k

)
= ∑n

j=1 c j,`(Uk)ε j, where

c j,`(Uk) =
1

nhk

n

∑
i=1

E1V (k)
i (Uk)

−1
(

1
Z(k)

i j

)
w(k)

i j (Uk)ψ`,i.
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Let us define ξ∗`,k =
√

nhk ∑n
j=1 c j,`(I)ε j. Clearly, the vectors ξ∗`,k are centered Gaussian and, in view

of Lemma 22, they satisfy E[|ξ∗`,k|2] ≤ nh2
kσ2 ∑ j |c j,`(I)|2 ≤ c2

0σ2.

By virtue of Lemma 21, on the event {Âk−1 ∈ Pk−1}, for any ` = 1, . . . ,L we have

∣∣∣P∗
k (β̂`,k − β̄`,k)−

ξ∗`,k√
nhk

∣∣∣≤ sup
‖U−I‖2≤αk

∣∣∣∣
n

∑
j=1

(
c j,`(U)− c j,`(I)

)
ε j

∣∣∣∣.

Set a j,`(U) = c j,`(U)− c j,`(I). Lemma 23 and inequality (12) imply that Proposition 14 can be
applied with κ0 = c1αk√

nhk
and κ1 = c1√

nhk
. Setting ε = 2αk/

√
n we get that the probability of the event

{
sup
U,`

∣∣∣∣
n

∑
j=1

(
c j,`(U)− c j,`(I)

)
ε j

∣∣∣∣≥
c1σαk(4+

√
3log(Ln)+3d2 log(

√
n))√

nhk

}

is less than 2/n. This completes the proof of the proposition.

Corollary 10 If nL ≥ 6 and the assumptions of Proposition 9 are fulfilled, then

P
(

max
`

∣∣P∗
k (β̂`,k −β`)

∣∣≥ ϒk +
σc0z√

nhk
, Âk−1 ∈ Pk−1

)
≤ Lze−

z2−1
2 .

In particular, if nL ≥ 6, the probability of the event
{

max
`

∣∣P∗
k (β̂`,k −β`)

∣∣≥ ϒk +
2σc0

√
log(Ln)√

nhk

}
∩{Âk−1 ∈ Pk−1}

does not exceed 3/n, where ϒk and c0 are defined in Proposition 9.

Proof In view of Lemma 7 in Hristache et al. (2001b), we have

P
(

max
`=1,...,L

∣∣ξ∗`,k
∣∣≥ zc0σ

)
≤

L

∑̀
=1

P
(∣∣ξ∗`,k

∣∣≥ zc0σ
)
≤ Lze−(z2−1)/2.

The choice z =
√

4log(nL) leads to the desired inequality provided that nL ≥ 6.

5.2 The Accuracy of the First-step Estimator

Since at the first step no information about the EDR subspace is available, we use the same band-
width in all directions, that is the local neighborhoods are balls (and not ellipsoids) of radius h.
Therefore the first step estimator β̂`,1 of the vector β` is the same as the one used in Hristache et al.
(2001a).

Proposition 11 Under assumptions (A1), (A3), (A4) and (8), for every ` ≤ L, there exists a d-
dimensional zero mean Gaussian vector ξ∗`,1 so that

∣∣∣β̂`,1 −β`−
ξ∗`,1√
nh1

∣∣∣≤ h1Cg

√
CV ,

and E|ξ∗`,1|2 ≤ dσ2CVCKψ̄2.
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Proof Since P∗
1 coincides by definition with the identity matrix, the arguments used in the proof

of Proposition 9 apply with S1 = I and therefore δ0 = α1 = 0. More precisely, in view of (9) and
ρ1 = 1, we have |β̄`,1 − β`| ≤ h1

√
CVCg for all `, while in view of the relation U1 = I, we have

β̂`,1 − β̄`,1 = 1√
nh1

ξ∗`,1. This yields the desired result.

Corollary 12 If nL ≥ 6 and the assertions of Proposition 11 hold, then

P
(

max
`

|β̂`,1 −β`| ≥ h1Cg

√
CV +

2
√

dCVCK log(nL)σψ̄
h1
√

n

)
≤ 1

n
.

Remark 13 In order that the kernel estimator of ∇ f (x) be consistent, the ball centered at x with
radius h1 should contain at least d points from {Xi, i = 1, . . . ,n}. If the design is regular, this means
that h1 is at least of order n−1/d . The optimization of the risk of β̂1,` with respect to h1 verifying
h1 ≥ n−1/d leads to h1 = Const.n−1/(4∨d). This motivates the choice of h1 presented in Section 3.

5.3 Proof of Theorem 4

Recall that at the first step we use the following values of parameters: Â0 = 0, ρ1 = 1 and h1 =
n−1/(d∨4). Let us denote

γ1 = h1Cg

√
CV +

2σψ̄
√

2dCVCK log(nL)

h1
√

n
, δ1 = 2γ1

√
µ∗,

and introduce the event Ω1 = {max` |β̂1,` − β`| ≤ γ1}. According to Corollary 12 the probability
of the event Ω1 is at least 1− n−1. In conjunction with Proposition 17, this implies that P(tr(I −
Â1)Π∗ ≤ δ2

1) ≥ 1−n−1.
Recall that for any integer k ∈ [2,k(n)]—where k(n) is the total number of iterations—we use the

notation ρk = aρρk−1, hk = ahhk−1 and αk = 2δ2
k−1ρ−2

k +2δk−1ρ−1
k . Let us introduce the additional

notation

γk =
1√
nhk

{√
nhkϒk +2σc0

√
log(nL), k < k(n),

√
nhkϒk +σc0z, k = k(n),

ζk = 2µ∗(γ2
kρ−2

k +
√

2γkρ−1
k Cg),

δk = 2γk

√
µ∗/
√

1−ζk,

Ωk = {max
`

|P∗
k (β̂`,k −β`)| ≤ γk}.

Combining Lemmas 24 and 25, we obtain P(tr(I− Âk−1)Π∗ > δ2
k−1)≤P(Ωc

k−1) and therefore, using
Corollary 10, we get

P
(
Ωc

k

)
≤ P

(
max

`
|P∗

k (β̂`,k −β`)| > γk, Âk−1 ∈ Pk−1

)
+P
(
Ωc

k−1

)

≤ 3
n

+P
(
Ωc

k−1

)
, ∀ k ≤ k(n)−1.
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Since P(Ωc
1) ≤ 1/n, it holds P(Ωc

k(n)−1) ≤ (3k(n)−5)/n and, by virtue of Corollary 10, P(Ωc
k(n)) ≤

Lze−(z2−1)/2 + 3k(n)−5
n . In conjunction with Lemma 25, this yields

P
(

tr(I − Âk(n))Π∗ > δ2
k(n)

)
≤ Lze−(z2−1)/2 +

3k(n)−5
n

. (10)

According to Lemma 24, we have δk(n)−2 ≤ ρk(n)−1, αk(n)−1 ≤ 4 and ζk(n)−1 ≤ 1/2. Consequently,
for n sufficiently large, we have

δk(n)−1 =
2
√

µ∗γk(n)−1√
1−ζk(n)−1

≤C

(
log(Ln)

n

)1/2

∨n−2/3∨m∗

and αk(n) ≤ 4δk(n)−1ρ−1
k(n) ≤C[(

√
log(Ln)(ρk(n)

√
n)−1)∨n−1/3∨m∗

]. Since hk(n) = 1 and (nρk(n))
−1 ≤

ρ2
k(n) = n−2/(3∨m∗), we infer that

γk(n) = Cg

√
CV (ρk(n) +δk(n)−1)

2 +
σ(zc0 + c1αk(n)tn)√

n

≤Ct2
n n−2/(3∨m∗) +

c0σz√
n

.

Therefore ζn := ζk(n) = O(γk(n)ρ−1
k(n)) tends to zero as n tends to infinity not slower than√

log(nL)n−1/(6∨m∗) and the assertion of the theorem follows from (10), the definition of δk(n) and
Lemma 20.

5.4 Maximal Inequality

The following result contains a well known maximal inequality for the maximum of a Gaussian
process. We include its proof for the completeness of exposition. Let Sd−1 denote the unit ball of
R

d .

Proposition 14 Let r be a positive number and let Γ be a finite set. Let functions a j,γ : R
p → R

d

obey the conditions

sup
γ∈Γ

sup
|u−u∗|≤r

n

∑
j=1

|a j,γ(u)|2 ≤ κ2
0,

sup
γ∈Γ

sup
|u−u∗|≤r

sup
e∈Sd−1

n

∑
j=1

∣∣∣∣
d
du

(e>a j,γ(u))

∣∣∣∣
2

≤ κ2
1

for some u∗ ∈ R
p. If the ε j’s are independent N (0,σ2)-distributed random variables, then

P
(

sup
γ∈Γ

sup
|u−u∗|≤r

∣∣∣∣
n

∑
j=1

a j,γ(u)ε j

∣∣∣∣> tσκ0 +2
√

nσκ1ε
)
≤ 2

n
,

where t =
√

3log(|Γ|(2r/ε)pn) and |Γ| is the cardinality of Γ.

1668



ESTIMATION OF THE DIMENSION-REDUCTION SUBSPACE

Proof Let Br be the ball {u : |u− u∗| ≤ r} ⊂ R
p and Σr,ε be an ε-net on Br such that for any

u ∈ Br there is an element ul ∈ Σr,ε such that |u− ul | ≤ ε. It is easy to see that such a net with
cardinality Nr,ε < (2r/ε)p can be constructed. For every u ∈ Br we denoteηγ(u) = ∑n

j=1 a j,γ(u)ε j.
Since E(|ηγ(u)|2) ≤ σ2κ2

0 for any γ and for any u, we have

P
(
|ηγ(ul)| > tσκ0

)
≤ P

(
|ηγ(ul)| > t

√
E(|ηγ(ul)|2)

)
≤ te−(t2−1)/2.

Thus we get

P
(

sup
γ∈Γ

sup
ul∈Σr,ε

∣∣ηγ(ul)
∣∣> tσκ0

)
≤ ∑

γ∈Γ

Nr,ε

∑
l=1

P
(∣∣ηγ(ul)

∣∣> tσκ0

)
≤ |Γ|Nr,εte

−(t2−1)/2.

Hence, if t =
√

3log(|Γ|Nr,εn), then P
(

supγ∈Γ supul∈Σr,ε

∣∣ηγ(ul)
∣∣> tσκ0

)
≤ 1/n. On the other hand,

for any u,u′ ∈ Br,

∣∣ηγ(u)−ηγ(u
′)
∣∣2 = sup

e∈Sd−1

∣∣e>
(
ηγ(u)−ηγ(u

′)
)∣∣2

≤ |u−u′|2 · sup
u∈Br

sup
e∈Sd−1

∣∣∣∣
d(e>ηγ)

du
(u)

∣∣∣∣
2

= |u−u′|2 · sup
u∈Br

sup
e∈Sd−1

∣∣∣∣
n

∑
j=1

d(e>a j,γ)

du
(u)ε j

∣∣∣∣
2

.

The Cauchy-Schwarz inequality yields

∣∣ηγ(u)−ηγ(u′)
∣∣2

|u−u′|2 ≤ sup
u∈Br

sup
e∈Sd−1

n

∑
j=1

∣∣∣∣
d(e>a j,γ)

du
(u)

∣∣∣∣
2 n

∑
j=1

ε2
j ≤ κ2

1

n

∑
j=1

ε2
j .

Since P
(

∑n
j=1 ε2

j > 4nσ2
)

is certainly less than n−1, we have

P
(

sup
γ∈Γ

sup
u∈Br

∣∣ηγ(u)
∣∣> tσκ0 +2

√
nσκ1ε

)

≤ P
(

sup
γ∈Γ

sup
ul∈Σr,ε

|ηγ(ul)|
tσκ0

> 1
)

+P
(

sup
γ∈Γ

sup
u∈Br

|ηγ(u)−ηγ(ul(u))|
2
√

nσκ1ε
> 1
)

≤ 1
n

+P
(

sup
u∈Br

κ2
1|u−ul(u)|2

n

∑
j=1

ε2
j > 4nσ2κ2

1ε2
)
≤ 2

n
,

and the assertion of proposition follows.

5.5 Properties of the Solution to (6)

We collect below some simple facts concerning the solution to the optimization problem (6). By
classical arguments, it is always possible to choose a measurable solution Â to (6). This measura-
bility will be assumed in the sequel.
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In Proposition 15, the case of general m (not necessarily equal to m∗) is considered. As we
explain below, this generality is useful for further developments of the method extending it to the
case of unknown structural dimension m∗.

The vectors β` are assumed to belong to a m∗-dimensional subspace S of R
d , but in this subsec-

tion we do not necessarily assume that β`s are defined by (4). In fact, we will apply the results of
this subsection to the vectors Π∗β̂`.

For every A ∈ Am∗ , let us define

R(A) = max
1≤`≤L

β̂>
` (I −A)β̂`, Âm = argmin

A∈Am

R(A),

R̂ (m) = min
A∈Am

√
R(A) =

√
R(Âm) = min

A∈Am

max
1≤`≤L

|(I −A)1/2β̂`|.

We also define

R ∗(m) = min
A∈Am

max
1≤`≤L

|(I −A)1/2β`|

and denote by A∗
m a minimizer of max` β>

` (I −A)β` over A ∈ Am. Note also that for every m ≥ m∗

the projector Π∗ belongs to Am. Therefore, we have A∗
m = Π∗ and R ∗(m) = 0 for every m ≥ m∗.

Proposition 15 Let B∗ =
{

β̄ = ∑` c`β` : ∑` |c`| ≤ 1
}

be the convex hull of vectors ±β`. If max` |β̂`−
β`| ≤ ε, then

R̂ (m) ≤ R ∗(m)+ ε,

max
β̄∈B∗

|(I − Âm)1/2β̄| ≤ R ∗(m)+2ε.

When m < m∗, we have also the lower bound R̂ (m) ≥ (R ∗(m)− ε)+.

Proof For every ` ∈ 1, . . . ,L, we have

|(I −A∗
m)1/2β̂`| ≤ |(I −A∗

m)1/2β`|+ |(I−A∗
m)1/2(β̂`−β`)|

≤ R ∗(m)+ |β̂`−β`| ≤ R ∗(m)+ ε.

Since Âm minimizes max` |(I −A)1/2β̂`| over A ∈ Am, we have

max
`

|(I − Âm)1/2β̂`| ≤ max
`

|(I −A∗
m)1/2β̂`| ≤ R ∗(m)+ ε.

Since Âm ∈ Am, we have 0 � (I − Âm)1/2 � I and consequently, for every `,

|(I − Âm)1/2β`| ≤ |(I− Âm)1/2β̂`|+ |(I− Âm)1/2(β`− β̂`)|
≤ |(I− Âm)1/2β̂`|+ |β`− β̂`| ≤ R ∗(m)+2ε.

The second inequality of the proposition follows now from |(I − Âm)1/2β̄| ≤ max` |(I − Âm)1/2β`|
for every β̄ ∈ B∗.

Let us prove the last assertion of the proposition. According to the definition of R ∗(m), for
every matrix A ∈ Am there exists an index `(A) such that |(I −A)1/2β`(A)| ≥ R ∗(m). In particular,

|(I− Âm)1/2β`(Âm)| ≥R ∗(m) and hence |(I− Âm)1/2β̂`(Âm)| ≥ |(I− Âm)1/2β`(Âm)|−|β̂`(Âm)−β`(Âm)| ≥
R ∗(m)− ε.
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Remark 16 Proposition 15 can be used for estimating the structural dimension m. Indeed, R̂ (m)≤
ε for m ≥ m∗ and R̂ (m) ≥ (R ∗(m)− ε)+ for m < m∗. Therefore, it is natural to search for the
smallest value m̂ of m such that the function R̂ (m) does not significantly decrease for m ≥ m̂. The
rigorous application of this heuristic argument is currently under investigation.

From now on, we assume that the structural dimension m∗ is known and we use the shortened
notation Â instead of Âm∗ .

Proposition 17 If the vectors β` satisfy (A2) and max` |β̂` −β`| ≤ ε, then tr(I − Â)Π∗ ≤ 4ε2µ∗ and
tr[(Â−Π∗)2] ≤ 8ε2µ∗.

Proof In view of the relations tr Â2 ≤ tr Â ≤ m∗ and tr(Π∗)2 = trΠ∗ = m∗, we have

tr(Â−Π∗)2 = tr(Â2 −Π∗)+2tr(I − Â)Π∗ ≤ 2| tr(I − Â)Π∗|.

Note also that the equality tr(I− Â)Π∗ = tr(I− Â)1/2Π∗(I− Â)1/2 implies that tr(I− Â)Π∗ ≥ 0. Now
condition (7) and Proposition 15 imply

tr(I − Â)Π∗ = tr(I − Â)1/2Π∗(I − Â)1/2

≤
m∗

∑
k=1

µk tr(I − Â)1/2β̄kβ̄>
k (I − Â)1/2

≤
m∗

∑
k=1

µkβ̄>
k (I − Â)β̄k ≤ (2ε)2

m∗

∑
k=1

µk

and the assertion follows.

Lemma 18 Let tr(I − Â)Π∗ ≤ δ2 for some δ > 0. Then for any x ∈ R
d

|Π∗x| ≤ |Â1/2x|+δ|x|.

Proof In view of the triangle inequality, |Π∗x| ≤ |Π∗Â1/2x|+ |Π∗(I − Â1/2)x|. On the other hand,

|Π∗(I − Â1/2)x|2 ≤ ‖Π∗(I − Â1/2)‖2
2 · |x|2 ≤ tr[Π∗(I − Â1/2)2Π∗] · |x|2.

For every A ∈ Am, it obviously holds (I −A1/2)2 = I − 2A1/2 + A � I −A, and hence, trΠ∗(I −
A1/2)2Π∗ ≤ trΠ∗(I −A)Π∗. Therefore,

trΠ∗(I − Â1/2)2Π∗ ≤ trΠ∗(I − Â)Π∗ = tr(I − Â)Π∗ ≤ δ2

yielding |Π∗x| ≤ |Π∗Â1/2x|+δ|x| ≤ |Â1/2x|+δ|x| as required.

Corollary 19 If for some ρ∈ (0,1) and for some x∈R
d , we have |(I+ρ−2Â)1/2x| ≤ h, then |Π∗x| ≤

(ρ+
√

tr(I − Â)Π∗)h.
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Proof The result follows from Lemma 18 and the inequalities |x| ≤ |(I + ρ−2Â)1/2x| ≤ h and
|Â1/2x| ≤ ρ|(I +ρ−2Â)1/2x| ≤ ρh.

Lemma 20 Let tr(I − Â)Π∗ ≤ δ2 for some δ ∈ [0,1) and let Π̂m∗ be the orthogonal projection
matrix in R

d onto the subspace spanned by the eigenvectors of Â corresponding to its largest m∗

eigenvalues. Then tr(I − Π̂m∗)Π∗ ≤ δ2/(1−δ2).

Proof Let λ̂ j and ϑ̂ j, j = 1, . . . ,d be respectively the eigenvalues and the eigenvectors of Â. Assume
that λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂d . Then Â = ∑d

j=1 λ̂ jϑ̂ jϑ̂>
j and Π̂m∗ = ∑m∗

j=1 ϑ̂ jϑ̂>
j . Moreover, ∑d

j=1 ϑ̂ jϑ̂>
j = I

since {ϑ̂1, . . . , ϑ̂d} is an orthonormal basis of R
d . This implies that

tr[ÂΠ∗] ≤ ∑
j≤m∗

λ̂ j tr[ϑ̂ jϑ̂>
j Π∗]+ λ̂m∗ ∑

j>m∗
tr[ϑ̂ jϑ̂>

j Π∗]

= ∑
j≤m∗

(λ̂ j − λ̂m∗) tr[ϑ̂ jϑ̂>
j Π∗]+ λ̂m∗ tr

[ d

∑
j=1

ϑ̂ jϑ̂>
j Π∗

]

= ∑
j≤m∗

(λ̂ j − λ̂m∗) tr[ϑ̂ jϑ̂>
j Π∗]+m∗λ̂m∗ .

Since tr[ϑ̂ jϑ̂>
j Π∗] = |Π∗ϑ̂ j|2 ≤ 1, we get tr[ÂΠ∗] ≤ ∑ j≤m∗ λ̂ j. Taking into account the relations

∑ j≤d λ̂ j ≤ m∗, trΠ∗ = m∗ and (1− λ̂m∗+1)(I − Π̂m∗) � I − Â, we get λ̂m∗+1 ≤ m∗ −∑ j≤m∗ λ̂ j ≤
tr[(I − Â)Π∗] ≤ δ2 and therefore I − Π̂m∗ � (1− δ2)−1(I − Â). Consequently, tr[(I − Π̂m∗)Π∗] ≤
(1−δ2)−1 tr[(I− Â)Π∗] ≤ δ2/(1−δ2).

5.6 Technical Lemmas

This subsection contains five technical results. The first three lemmas have been used in the proof
of Proposition 9, whereas the two last lemmas have been used in the proof of Theorem 4.

Lemma 21 For every ρ ∈ (0,1] and for every A ∈ Am∗ we have

‖P∗
ρ(I +ρ−2A)P∗

ρ − I‖2 ≤ 2δ2
Aρ−2 +2δAρ−1,

where P∗
ρ = (I +ρ−2Π∗)−1/2 and δ2

A = tr[(I −A)Π∗].

Proof The inequality P∗
ρ � (I −Π∗)+ρΠ∗ implies that

ρ2
∥∥P∗

ρ(I +ρ−2A)P∗
ρ − I

∥∥
2 =

∥∥P∗
ρ(A−Π∗)P∗

ρ
∥∥

2

≤ ρ2
∥∥Π∗(A−Π∗)Π∗∥∥

2 +
∥∥(I −Π∗)(A−Π∗)(I −Π∗)

∥∥
2

+2ρ
∥∥Π∗(A−Π∗)(I −Π∗)

∥∥
2.

Since ‖B‖2
2 = trBB> ≤ (tr(BB>)1/2)2 for any matrix B, it holds

∥∥Π∗(A−Π∗)Π∗∥∥
2 =

∥∥Π∗(I −A)Π∗∥∥
2

≤ tr Π∗(I −A)Π∗ = tr(I −A)Π∗ = δ2
A.
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By similar arguments one checks that

∥∥(I −Π∗)(A−Π∗)(I −Π∗)
∥∥

2 =
∥∥(I −Π∗)A(I −Π∗)

∥∥
2 ≤ tr(I −Π∗)A

= trA− trΠ∗ + trΠ∗(I −A) ≤ δ2
A,

and

∥∥Π∗(A−Π∗)(I −Π∗)
∥∥

2 ≤
∥∥Π∗(A−Π∗)

∥∥
2 =

∥∥Π∗(I −A)
∥∥

2

≤
∥∥Π∗(I −A)1/2

∥∥
2 = (trΠ∗(I −A)Π∗)1/2

= (tr(I −A)Π∗)1/2 = δA.

This leads to the inequality ‖P∗
ρ(I +ρ−2A)P∗

ρ − I‖2 ≤ δ2
A(1+ρ−2)+2δAρ−1, which, in view of the

condition ρ ≤ 1, yields the assertion of the lemma.

Lemma 22 If ψ`s and U satisfy (8) and (A3), then ∑n
j=1 |c j,`(U)|2 ≤ dCKCV ψ̄2/(nh2

k).

Proof Simple computations yield

n

∑
j=1

∣∣∣∣E1V (k)
i (U)−1

(
1

Z(k)
i j

)∣∣∣∣
2

w(k)
i j (U) = tr(E1V (k)

i (U)−1E1) ≤
dCV

N(k)
i (U)

. (11)

Hence, we have

n

∑
j=1

|c j,`|2 =
1

n2h2
k

n

∑
j=1

∣∣∣∣
n

∑
i=1

E1V (k)
i (Uk)

−1
(

1
Z(k)

i j

)
w(k)

i j (U)ψ`,i

∣∣∣∣
2

≤ ψ̄2

n2h2
k

n

∑
j=1

( n

∑
i=1

w(k)
i j (U)

N(k)
i (U)

)( n

∑
i=1

∣∣∣∣E1V (k)
i (U)−1

(
1

Z(k)
i j

)∣∣∣∣
2

N(k)
i (U)w(k)

i j (U)

)

≤ CKψ̄2

n2h2
k

n

∑
j=1

n

∑
i=1

∣∣∣∣E1V (k)
i (U)−1

(
1

Z(k)
i j

)∣∣∣∣
2

N(k)
i (U)w(k)

i j (U).

Interchanging the order of summation and using inequality (11) we get the desired result.

Lemma 23 If (A3) and (8) are fulfilled, then, for any e ∈ Sd−1, we have

sup
U :‖U−I‖2≤1/2

max
j=1,...,n

∥∥∥∥
d

dU
(e>c j,`)(U)

∥∥∥∥
2

2
≤ 24C2

wC4
VC2

Kψ̄2

n2h2
k

+
216C2

VC2
K′ψ̄2

n2h2
k

,

where d
dU (e>c j,`)(U) is the d ×d matrix with entries ∂e>c j,`(U)

∂Upq
.
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Proof In order to ease the notation, we will remove the superscripts (k) in this proof. Thus, we will

write Vi, wi j and Zi j instead of V (k)
i , w(k)

i j and Z(k)
i j . By definition of c j,` we have

∥∥∥∥
d

dU
(e>c j,`)(U)

∥∥∥∥
2

2
≤ 2

∥∥∥∥
1

nhk

n

∑
i=1

[
d

dU
ẽ>V−1

i (U)

(
1

Zi j

)]
wi j(U)ψ`,i

∥∥∥∥
2

2

+2

∥∥∥∥
1

nhk

n

∑
i=1

ẽ>V−1
i (U)

(
1

Zi j

)
dwi j(U)

dU
ψ`,i

∥∥∥∥
2

2

= ∆1 +∆2,

where ẽ = E>
1 e satisfies |ẽ| ≤ |e|= 1. One checks that d wi j(U)/dU = w̄i j(U)Zi jZ>

i j , where we used
the notation w̄i j(U) = K′(Z>

i jUZi j). On the one hand, |w̄i j(U)| · |Zi j|2 = 0 if Z>
i jUZi j > 1. On the

other hand, the inequality ‖I −U‖2 ≤ 1/2 implies that

|Zi j|2 ≤ Z>
i jUZi j + |Z>

i j (I −U)Zi j| ≤ Z>
i jUZi j + |Zi j|2‖I −U‖2 ≤ Z>

i jUZi j + |Zi j|2/2.

Therefore |Zi j|2 ≤ 2 for all Zi j verifying Z>
i jUZi j ≤ 1. Hence, ‖d wi j(U)/dU‖2 = |w̄i j(U)| · |Zi j|2 ≤

2|w̄i j(U)| and we get

∆2 ≤
8ψ̄2

n2h2
k

( n

∑
i=1

∣∣∣V−1
i (U)

(
1

Zi j

)
w̄i j(U)

∣∣∣
)2

≤ 24ψ̄2C2
VC2

K′

n2h2
k

.

In order to estimate the term ∆1, remark that the differentiation (with respect to Upq) of the identity
V−1

i (U)Vi(U) = Id+1 yields

∂V−1
i

∂Upq
(U) = −V−1

i (U)
∂Vi

∂Upq
(U)V−1

i (U).

Simple computations show that

∂Vi

∂Upq
(U) =

n

∑
j=1

(
1

Zi j

)(
1

Zi j

)> ∂
∂Upq

wi j(U)

=
n

∑
j=1

(
1

Zi j

)(
1

Zi j

)>
w̄i j(U)(Zi j)p(Zi j)q.

Hence, for any a1,a2 ∈ R
d+1,

da>1 V−1
i (U)a2

dU
=

n

∑
j=1

a>1 V−1
i (U)

(
1

Zi j

)(
1

Zi j

)>
V−1

i (U)a2 w̄i j(U)Zi jZ
>
i j .

This relation, combined with the estimate |Zi j|2 ≤ 2 for all i, j such that w̄i j 6= 0, implies the norm
estimate

∥∥∥∥
da>1 V−1

i (U)a2

dU

∥∥∥∥
2
≤ 2

n

∑
j=1

∣∣∣∣a>1 V−1
i (U)

(
1

Zi j

)(
1

Zi j

)>
V−1

i (U)a2 w̄i j(U)

∣∣∣∣

≤ 6|a1| |a2|
n

∑
j=1

∥∥V−1
i (U)

∥∥2|w̄i j(U)|

≤ 6CwC2
V |a1| |a2|Ni(U)−1.

1674



ESTIMATION OF THE DIMENSION-REDUCTION SUBSPACE

This yields ∆1 ≤ 216C2
wC4

VC2
Kψ̄2/(nhk)

2 and the assertion of the lemma follows.

Note that under the assumptions of Lemma 23, for some Ũ satisfying ‖Ũ − I‖2 ≤ ‖U − I‖2, it
holds

|c j,`(U)− c j,`(I)| = sup
e∈Sd−1

|e>(c j,`(U)− c j,`(I))|

= sup
e∈Sd−1

|vec
[d e>c j,`

dU
(Ũ)
]>

vec(U − I)|

≤ sup
e∈Sd−1

∥∥∥d e>c j,`

dU
(Ũ)
∥∥∥

2
‖U − I‖2

≤
√

216 ψ̄
nhk

(C2
wC4

VC2
K +C2

VC2
K′)1/2‖U − I‖2, (12)

where vec(·) is a matrix operator that stacks the matrix’s columns one by one. In other terms, for
every d ×d matrix M, vec(M) = (m>

•,1, . . . ,m
>
•,d)

> where m•, j stands for the jth column of M.

Lemma 24 There exists an integer n0 ≥ 0 such that, for every n ≥ n0 and for all k ∈ {2, . . . ,k(n)},
we have δk−1 ≤ ρk, αk ≤ 4 and ζk ≤ 1/2.

Proof In view of the relations C0n−1/(d∨4) = ρ1h1 and ρk(n)hk(n) ≥C2n−1/3, the sequence

sn = 4
√

CVCgh1 +
4σ(c0

√
log(Ln)+ c1tn)√

nρk(n)hk(n)

tends to zero as n → ∞.
We do now induction on k. Since sn → 0 as n → ∞ and γ1 ≤ sn, the inequality δ1 = 2γ1

√
µ∗ ≤

1/
√

2 = ρ1/
√

2 is true for sufficiently large values of n. Let us prove the implication

δk−1 ≤ ρk−1/
√

2 =⇒
{

ζk ≤ 1/2,

δk ≤ ρk/
√

2.

Since 1/
√

2 ≤ e−1/6, the inequality δk−1 ≤ ρk/
√

2 entails that δk−1 ≤ ρk and therefore αk ≤ 4. By
our choice of ah and aρ, we have ρ1h1 ≥ ρkhk ≥ ρk(n)hk(n). Therefore,

γk

ρk
≤ 4
√

CVCgρkhk +
4σ(c0

√
log(Ln)+ c1tn)√

nρkhk

≤ 4
√

CVCgh1 +
4σ(c0

√
log(Ln)+ c1tn)√

nρk(n)hk(n)
= sn.

Thus, for n large enough, ζk ≤ 1/2 and γk ≤ ρk/4. This implies that δk = 2γk(1−ζk)
−1/2 ≤ ρk/

√
2.

By induction we infer that δk−1 ≤ ρk−1/
√

2 ≤ ρk and ζk ≤ 1/2 for any k = 2, . . . ,k(n)−1. This
completes the proof of the lemma.
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Lemma 25 If k > 2 and ζk−1 < 1 then Ωk−1 ⊂ {tr(I − Âk−1)Π∗ ≤ δ2
k−1}.

Proof Let us denote by β̃` the vector Π∗β̂`,k−1, which clearly belongs to S . It holds

|P∗
k−1(β̂`,k−1 −β`)| ≤ γk−1 =⇒

{
|β̂`,k−1 − β̃`| ≤ γk−1,

|β̃`−β`| ≤
√

2γk−1/ρk−1.

Set B = ∑m∗
i=1 µiβ̄iβ̄>

i and B̃ = ∑m∗
i=1 µi

¯̃βi
¯̃β>

i , where ¯̃βi = ∑` c`β̃` if β̄i = ∑` c`β`, see assumption (A2).

Since ∑` |c`| ≤ 1, we have |β̄i| ≤ max` |β`| ≤ ‖∇ f‖∞ and |β̄i − ¯̃βi| ≤ max` |β`− β̃`|. Therefore

‖B− B̃‖ ≤
m∗

∑
i=1

µi‖β̄iβ̄>
i − ¯̃βi

¯̃β>
i ‖ ≤ µ∗ max

i
‖β̄iβ̄>

i − ¯̃βi
¯̃β>

i ‖

≤ µ∗ max
i

(
|β̄i − ¯̃βi|2 +2|β̄i| · |β̄i − ¯̃βi|

)

≤ µ∗
(
2γ2

k−1ρ−2
k−1 +2

√
2γk−1ρ−1

k−1 max
`

|β`|
)

= ζk−1

and hence, for every unit vector v ∈ S , v>B̃v ≥
(
v>Bv −

∣∣v>Bv − v>B̃v
∣∣) ≥ v>Bv −‖B − B̃‖ ≥

1−ζk−1. This inequality implies that Π∗ � (1−ζk−1)
−1B̃. Thus the vectors β̃` satisfy assumption

(A2) with µ∗ replaced by µ∗/(1− ζk−1). Applying Proposition 17 to these vectors we obtain the
assertion of the lemma.
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