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Abstract
Statistical models on full and partial rankings of n items are often of limited practical use for
large n due to computational consideration. We explore the use of non-parametric models for
partially ranked data and derive computationally efficient procedures for their use for large n. The
derivations are largely possible through combinatorial and algebraic manipulations based on the
lattice of partial rankings. A bias-variance analysis and an experimental study demonstrate the
applicability of the proposed method.
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1. Introduction

Rankers such as people, search engines, and classifiers, output full or partial rankings representing
preference relations over n items or alternatives. For example in the case of m = 6 rankers issuing
full or partial preferences over n = 3 items a possible data set is

3 ≺ 1 ≺ 2, 3 ≺ 2 ≺ 1, 1 ≺ 3 ≺ 2, 1 ≺ {2,3}, 3 ≺ {1,2}, {2,3} ≺ 1. (1)

The first three expressions in (1) correspond to full rankings while the last three expressions cor-
respond to partial rankings (the numbers correspond to items and the ≺ symbol corresponds to a
preference relation). While it is likely that some rankings will contradict others, it is natural to as-
sume that the data in (1) was sampled iid from some distribution p over rankings. The goal of this
paper is to study non-parametric methods for the estimation of p based on data sets such as (1) in
the case of large n.

Often, ranked data is not inherently associated with numeric score information. In other cases,
numeric scores are available but are un-calibrated and cannot be compared to each other. For ex-
ample, the assignment of numeric scores by people to items or alternatives is un-calibrated as each
person has his or her own notion of what constitutes a certain numeric score. On the other hand, a
preference of one item or alternative over another reflects a binary choice that is directly comparable
across rankers. Thus, even in cases where numeric scores exist, modeling the scoreless preferences
may achieve higher modeling accuracy.
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Despite this motivating observation, modeling ranked data is less popular than modeling the
existing numeric scores, or even made-up numeric scores in case the true scores are unavailable
(such is the case with the frequently used Borda count). The main reason for this is that rankings
over a large number of items n reside in an extremely large discrete space whose modeling often
requires intractable computation.

Previous attempts at modeling ranked data have been mostly parametric and often designed to
work with fully ranked data (Marden, 1996). Non-parametric modeling of fully ranked data has
been recently addressed in the context of multi-object tracking (Kondor et al., 2007; Huang et al.,
2008). They focus on maintaining and updating a distribution over permutations by a low frequency
approximation of the distribution. Such an approximation results from a spectral decomposition of
functions on the symmetric group on n items (Diaconis, 1988) and is essential for efficient proba-
bilistic inference.

Most of aforementioned approaches are unsuitable for modeling partial rankings for medium
and large n due to the computational difficulties of handling a probability space of size n!. The few
possible exceptions (Critchlow, 1985; Marden, 1996) are usually more ad-hoc and do not correspond
to an underlying permutation model making them ill suited to handle partial rankings of different
types. In fact, most of the ranked data analyzed in the literature are limited to n ≤ 15 and usually
even n ≤ 5 such as the popular APA election data set.

On the other hand, there has been a recent increase in data sets containing partial or full rankings
for large n. Examples include (i) web-search data such as TREC1 where n may be thought of as
corresponding to the number of web-pages or approaching +∞, (ii) movie review data sets such as
the Netflix data set2 where n ≈ 18000 and MovieLens3 where n = 1682, and (iii) multi-label text
document data sets such as OHSUMED4 where n = 4904 and Reuters RCV15 where n = 103. More
details on how these data sets correspond to partial rankings may be found in Section 2.

These data sets and others lead to a growing number of somewhat ad-hoc but computationally
efficient rank aggregation techniques. The techniques, developed primarily within the computer
science community, are often non-probabilistic and output a single ranking summarizing the data.
Unfortunately, such a summary ranking, while being useful, does not provide the data analysis
capabilities offered by a full probabilistic model.

The main contribution of this paper is in proposing and studying a non-parametric estimator
based on kernel smoothing for the estimation of the population distribution p. Some properties of
the estimator are listed below. We are not aware of any other non-trivial estimator of p that satisfies
these requirements, in particular for the case of large n.

(1) Estimate p based on full as well as partial rankings.

(2) The resulting estimate p̂ should assign probabilities to full and partial rankings in a coherent
and contradiction-free manner (described in Section 4).

(3) Estimate p based on partial rankings of different types (defined in Section 2).

1. TREC can be found at http://trec.nist.gov/.
2. Netflix can be found at http://www.netflixprize.com/.
3. MovieLens can be found at http://www.grouplens.org/node/12/.
4. OHSUMED can be found at http://trec.nist.gov/data/t9 filtering/.
5. RCV1 can be found at http://trec.nist.gov/data/reuters/reuters.html/.
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(4) Statistical consistency p̂
p→ p as both the number of samples m and the number of items n grow

to infinity.

(5) Statistical accuracy of p̂ can be slow for fully ranked data but should be accelerated when
restricted to simpler partial rankings.

(6) Obtaining the estimate p̂ and using it to compute probabilities p̂(A) of partial rankings should
be computationally feasible, even for large n.

All 6 properties above are crucial in the large n scenario: it is often impossible for rankers
to specify full rankings over a very large number of items making the use of partial rankings a
necessity. Different rankers may choose to output partial rankings of different types, for example,
one ranker can output 3 ≺ {1,2} (3 is preferred to both 1 and 2) and another ranker can output
{1,3} ≺ 2 (both 1 and 3 are preferred to 2). By considering the asymptotics n → ∞ in addition
to m → ∞ (m being the number of samples) we provide a more realistic analysis for a large (and
potentially growing) number of items. Computational feasibility is a major concern since most
ranking models are incapable of modeling the data sets mentioned above due to their large n.

We continue next by reviewing basic concepts concerning partially ranked data and the Mallows
model, and then proceed to define our non-parametric estimator. We conclude by demonstrating
computational efficiency, statistical properties, and some experiments.

2. Permutations and Cosets

We begin by reviewing some basic concepts concerning permutations, with some of the notations
and definitions borrowed from Critchlow (1985).

A permutation π is a bijective function π : {1, . . . ,n} → {1, . . . ,n} associating with each item
i ∈ {1, . . . ,n} a rank π(i) ∈ {1, . . . ,n}. In other words, π(i) denotes the rank given to item i and
π−1(i) denotes the item assigned to rank i. We denote a permutation π using the following vertical
bar notation π−1(1)|π−1(2)| · · · |π−1(n). For example, the permutation π(1) = 2,π(2) = 3,π(3) = 1
would be denoted as 3|1|2. In this notation the numbers correspond to items and the locations
of the items in their corresponding compartments correspond to their ranks. The collection of all
permutations of n items forms the non-Abelian symmetric group of order n, denoted by Sn, using
function composition as the group operation πσ = π◦σ. We denote the identity permutation by e.

The concept of inversions and the result below will be of great use later on.

Definition 1 The inversion set of a permutation π is the set of pairs

U(π)
def
= {(i, j) : i < j, π(i) > π( j)} ⊂ {1, . . . ,n}×{1, . . . ,n}

whose cardinality is denoted by i(π)
def
= |U(π)|.

For example, i(e) = | /0| = 0, and i(3|2|1|4) = |{(1,2),(1,3),(2,3)}| = 3.

Proposition 1 (for example, Stanley, 2000) The map π 7→U(π) is a bijection.

When n is large, the enormous number of permutations raises difficulties in using the symmetric
group for modeling rankings. A reasonable solution is achieved by considering partial rankings
which correspond to cosets of the symmetric group. For example, the subgroup of Sn consisting of
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PSfrag replacements

S1,1,2π = {σ1π,σ2π} = 3|1|2,4

σ1π
π

σ2π

Figure 1: A partial ranking corresponds to a coset or a set or permutations

all permutations that fix the top k positions is denoted S1,...,1,n−k = {π ∈Sn : π(i) = i, i = 1, . . . ,k}.
The right coset S1,...,1,n−kπ = {σπ : σ ∈ S1,...,1,n−k} is the set of permutations consistent with the
ordering of π on the k top-ranked items. It may thus be interpreted as a partial ranking of the
top k items, that does not contain any information concerning the relative ranking of the bottom
n− k items. The set of all such partial rankings forms the quotient space Sn/S1,...,1,n−k. Figure 1
illustrates the identification of a coset as a partial ranking of the top 2 out of 4 items.

We generalize the above relationship between partial rankings and cosets through the following
definition of a composition.

Definition 2 A composition of n is a sequence γ = (γ1, . . . ,γr) of positive integers whose sum is n.

Note that in contrast to a partition, in a composition the order of the integers matters. A composition
γ = (γ1, . . . ,γr) corresponds to a partial ranking with γ1 items in the first position, γ2 items in the
second position and so on. For such a partial ranking it is known that the first set of γ1 items are to
be ranked before the second set of γ2 items etc., but no further information is conveyed about the
orderings within each set. The partial ranking introduced earlier S1,...,1,n−kπ of the top k items is a
special case corresponding to γ = (1, . . . ,1,n− k).

More formally, let N1 = {1, . . . ,γ1},N2 = {γ1+1, . . . ,γ1+γ2}, · · · ,Nr = {γ1+· · ·+γr−1 +1, . . . ,n}.
The subgroup Sγ is defined as the set of all permutations π ∈ Sn for which the following set equal-
ities hold (the two sets on the left hand side and right hand side of the equality contain the same
elements)

π(Ni) = Ni i = 1, . . . ,r.

In other words, the subgroup Sγ contains permutations that only permute within each set Ni. It
can be shown that the subgroup Sγ is isomorphic to the product of subgroups Sγ1 ×·· ·×Sγr and
is sometimes described by that product for notational purposes. A partial ranking of type γ is
equivalent to a coset Sγπ = {σπ : σ ∈ Sγ} and the set of such partial rankings forms the quotient
space Sn/Sγ.
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The vertical bar notation described above for permutations is particularly convenient for denot-
ing partial rankings. We list items 1, . . . ,n separated by vertical bars, indicating that items on the
left side of each vertical bar are preferred to (ranked higher than) items on the right side of the bar.
On the other hand, there is no knowledge concerning the preference of items that are not separated
by one or more vertical bars. For example, the partial ranking displayed in Figure 1 is denoted by
3|1|2,4. The ordering of items not separated by a vertical line is meaningless, and for consistency
we use the conventional ordering, for example, 1|2,3|4 rather than the equivalent 1|3,2|4.

The set of all partial rankings

Wn
def
= {Sγπ : π ∈ Sn, ∀γ} (2)

which includes the set of full rankings Sn, is a subset of all possible partial orders on {1, . . . ,n}.
While the formalism of partial rankings in Wn cannot realize all partial orderings, it is sufficiently
powerful to include many useful and naturally occurring orderings as special cases. Furthermore,
as demonstrated in later sections, it enables simplification of the otherwise overwhelming computa-
tional difficulty. Special cases of particular interest are the following partial rankings

• π ∈ Sn corresponds to a permutation or a full ordering, for example, 3|2|4|1.

• S1,n−1π, for example, 3|1,2,4, corresponds to selection of the top alternative. An example
for such a ranking is a classification of x by a response variable y ∈ Y = {1, . . . ,n}.

• S1,...,1,n−kπ, for example, 1|3|2,4, corresponds to full ordering of the top k items. An example
for such a ranking is a ranked list of the top k webpages output by search engines in response
to a query.

• Sk,n−kπ, for example, 1,2,4|3,5, corresponds to a more preferred and a less preferred di-
chotomy. Alternatively the dichotomy can be interpreted as right and wrong or relevant and
irrelevant. An example for such a ranking is classification of alternatives into desirable and
undesirable.

• S1,...,1,n−k−t,1,...,1π, for example, 5|1|2,4,7|6|3|8, corresponds to full ordering of the top k
and the bottom t items. An example for such a ranking is a list of the safest and the most
dangerous U.S. cities.6

• Sk,n−k−t,tπ, for example, 1,5|2,4,7|3,6,8, corresponds to a trichotomy of items. An example
for such a ranking is selection of preferred and non-preferred items from a list.

Traditionally, data from each one of the special cases above was modeled using different tools
and was considered fundamentally different. That problem was aggravated as different special cases
were usually handled by different communities (statistics, computer science, information retrieval).
As a first step towards presenting a unified framework for modeling partially ranked data, Lebanon
and Lafferty (2003) demonstrated equivalence between several popular conditional models. We
continue along this line and present in this paper a non-parametric framework capable of efficiently
modeling a large variety of partially ranked data.

In constructing a statistical model on permutations or cosets, it is essential to relate one per-
mutation to another. We do this using a distance function on permutations d : Sn ×Sn → R that

6. List can be found at http://www.infoplease.com/ipa/A0921299.html.

2405



LEBANON AND MAO

satisfies the usual metric function properties, and in addition is invariant under right action of the
symmetric group (Critchlow, 1985)

d(π,σ) = d(πτ,στ) ∀ π,σ,τ ∈ Sn. (3)

The invariance requirement (3) ensures that the distance does not change if the labeling of the items
{1, . . . ,n} (which is assumed to be arbitrary) is permuted.

There have been many propositions for such right-invariant distance functions, the most popular
of them being Kendall’s tau (Kendall, 1938)

d(π,σ) =
n−1

∑
i=1

∑
l>i

I(πσ−1(i)−πσ−1(l)) (4)

where I(x) = 1 for x > 0 and I(x) = 0 otherwise. Kendall’s tau d(π,σ) (4) measures the number
of pairs of items for which π and σ have opposing orderings (also called disconcordant pairs). An
equivalent definition for Kendall’s tau is the minimum number of adjacent transpositions needed to
bring π−1 to σ−1 (adjacent transposition flips a pair of items having adjacent ranks). By right invari-
ance, d(π,σ) = d(πσ−1,e) which, for Kendall’s tau equals the number of inversions i(πσ−1). This
is an important observation that will allow us to simplify many expressions concerning Kendall’s
tau using the combinatorial properties of inversions.

Kendall’s tau d(π,σ),π,σ∈Sn takes values between 0 for π = σ and n(n−1)/2. It is sometimes
desirable to consider the normalized Kendall’s tau

dn(π,σ) =
2

n(n−1)

n−1

∑
i=1

∑
l>i

I(πσ−1(i)−πσ−1(l)) (5)

whose range is [0,1] and consequentially may be compared across different values of n.

3. The Mallows Model and its Extension to Partial Rankings

The Mallows model (Mallows, 1957) is a location-scale model on permutations based on Kendall’s
tau distance

pκ(π) = exp(−cd(π,κ)− logψ(c)) π,κ ∈ Sn c ∈ R+.

The normalization term ψ(c) = ∑π∈Sn
exp(−cd(π,κ)) does not depend on the location parameter

κ and has the closed form

ψ(c) = ∑
π∈Sn

e−cd(π,κ)

= (1+ e−c)(1+ e−c + e−2c) · · ·(1+ e−c + · · ·+ e−(n−1)c)

=
n

∏
j=1

1− e− jc

1− e−c (6)

as shown by the fact that d(π,κ) = i(πκ−1) and the following proposition.

Proposition 2 (for example, Stanley, 2000) For q > 0, ∑π∈Sn
qi(π) = ∏n−1

j=1 ∑ j
k=0 qk.
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Proof Due to the bijection between permutations and sets of inversions expressed in Proposition 1

∑
π∈Sn

qi(π) =
n−1

∑
a1=0

n−2

∑
a2=0

· · ·
0

∑
an=0

qa1+...+an =

(

n−1

∑
a1=0

qa1

)(

n−2

∑
a2=0

qa2

)

· · ·
(

0

∑
an=0

qan

)

= (1+q+ · · ·+qn−1) · · ·(1+q+q2)(1+q)1.

The Mallows model has been motivated on axiomatic grounds by Mallows and has been a major
focus of statistical modeling on permutations. Various extensions of the Mallows model may be
found in Fligner and Verducci (1986, 1988, 1993). One particular extension to partial rankings is to
consider a partial ranking as censored data equivalent to the set of permutations in its related coset.
In other words, we define the probability the model assigns to the partial ranking Sγπ by

∑
τ∈Sγπ

pκ(τ) = ψ−1(c) ∑
τ∈Sγπ

exp(−cd(τ,κ)) . (7)

Fligner and Verducci (1986) showed that in the case of γ = (1, . . . ,1,n− k) the summation in (7)
has a simple closed form. However, the apparent absence of a closed form formula for more gen-
eral partial rankings prevented the widespread use of Equation 7 for large n and encouraged more
ad-hoc and heuristic models (Critchlow, 1985; Marden, 1996). Section 7 describes an efficient
computational procedure for computing (7) for more general partial ranking types γ.

4. The Ranking Lattice

Partial rankings Sγπ relate to each other in a natural way by expressing more general, more specific
or inconsistent ordering. We define below the concepts of partially ordered sets and lattices and
then relate them to partial rankings by considering the set of partial rankings Wn as a lattice. Some
of the definitions below are taken from Stanley (2000), where a thorough introduction to posets can
be found.

Definition 3 A partially ordered set or poset (Q,�), is a set Q endowed with a binary relation �
satisfying ∀x,y,z ∈ Q (i) reflexibility: x � x, (ii) anti-symmetry: x � y and y � x ⇒ x = y, and (iii)
transitivity: x � y and y � z ⇒ x � z.

We write x ≺ y when x � y and x 6= y. We say that y covers x when x ≺ y and there is no z ∈ Q such
that x ≺ z ≺ y. A finite poset is completely described by its covering relation. The planar Hasse
diagram of (Q,�) is the graph connecting the elements of Q as nodes using edges that correspond
to the covering relation. An additional requirement is that if y covers x then y is drawn higher than x.
Two elements x,y are comparable if x� y or y� x and otherwise are incomparable. The set of partial
rankings Wn defined in (2) is naturally endowed with the partial order of ranking refinement, that
is, π ≺ σ if π refines σ or alternatively if we can get from π to σ by dropping vertical lines (Lebanon
and Lafferty, 2003). Figure 2 shows the Hasse diagram of W3 and a partial Hasse diagram of W4.

An interesting visualization of Kendall’s tau distance d(π,σ),π,σ ∈ Sn in terms of the Hasse
diagram is that it is the minimum number of up and down moves needed to get from π to σ on the
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PSfrag replacements

1,2|3|4 1|2,3|4 1,3|2|4

1,3|2,41|2,3,41,2,3|41,2|3,4

1|2|3|4 1|3|2|4

1,2,3,4

1|2|3,4 1|3|2,4 1,3|4|2 1|3,4|2

1|3|4|21|4|2|3

1,2|4|3 1|2,4|3

1|2|4|3 1|4|3|2

1,3,4|21,2,4|3

Figure 2: The Hasse diagram of W3 (top) and a partial Hasse diagram of W4 (bottom). Some of
the lines are dotted for 3D visualization purposes (think 3D).

Hasse diagram. For example, in Figure 2 (top) we have d(1|2|3,3|2|1) = 3 realized by the three
up-down moves along the shortest path

1|2|3 (↗ 1,2|3 ↘ 2|1|3) (↗ 2|1,3 ↘ 2|3|1) (↗ 2,3|1 ↘ 3|2|1).

A lower bound z of two elements in a poset x,y satisfies z � x and z � y. The greatest lower
bound of x,y or infimum is a lower bound of x,y that is greater than or equal to any other lower
bound of x,y. Infimum, and the analogous concept of supremum are denoted by x∧ y and x∨ y or
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V{x1, . . . ,xk} and
W{x1, . . . ,xk} respectively. Two elements x,y ∈ Wn are said to be consistent if

there exists a lower bound in Wn. Note that consistency is a weaker relation than comparability.
For example, 1|2,3|4 and 1,2|3,4 are consistent but incomparable while 1|2,3|4 and 2|1,3|4 are
both inconsistent and incomparable. Using the vertical bar notation, two elements are inconsistent
iff there exist two items i, j that appear on opposing sides of a vertical bar in x and y, that is,
x = · · · i| j · · · while y = · · · j|i · · · . A poset for which ∧ and ∨ always exist is called a lattice. Lattices
satisfy many useful combinatorial properties - one of which is that they are completely described
by the ∧ and ∨ operations. In fact lattices are often defined by the supremum and infimum relation,
rather than by the partial order. While the ranking poset is not a lattice, it may be turned into one by
augmenting it with a minimum element 0̂.

Proposition 3 The union W̃n
def
= Wn ∪{0̂} of the ranking poset and a minimum element is a lattice.

Proof Since W̃n is finite, it is enough to show existence of ∧,∨ for pairs of elements (Stanley,
2000). We begin by showing existence of x∧ y. If x,y are inconsistent, there is no lower bound
in Wn and therefore the unique lower bound 0̂ is also the infimum x∧ y. If x,y are consistent,
their infimum may be obtained as follows. Since x and y are consistent, we do not have a pair of
items i, j appearing as i| j in x and j|i in y. As a result we can form a lower bound z to x,y by
starting with a list of numbers and adding the vertical bars that are in either x or y, for example for
x = 3|1,2,5|4 and y = 3|2|1,4,5 we have z = 3|2|1,5|4. The resulting z ∈ Wn, is smaller than x and
y since by construction it contains all preferences (encoded by vertical bars) in x and y. It remains
to show that for every other lower bound z′ of x and y we have z′ � z. If z′ is comparable to z, z′ � z
since removing any vertical bar from z results in an element that is not a lower bound. If z′ is not
comparable to z, then both z,z′ contain the vertical bars in x and vertical bars in y possibly with
some additional ones. By construction z contains only the essential vertical bars to make it a lower
bound and hence z′ ≺ z, contradicting the assumption that z,z′ are non-comparable.

By Proposition 3.3.1 of Stanley (2000) a poset for which an infimum is always defined and that
has a supremum element is necessarily a lattice. Since we just proved that ∧ always exists for W̃n

and 1, . . . ,n =
W

W̃n, the proof is complete.

5. Probabilistic Models on the Ranking Lattice

The ranking lattice is a convenient framework to define and study probabilistic models on partial
rankings. Given a probability model p on Sn, we define the functions h,g : W̃n → [0,1]

h(α) =

{

p(α) α ∈ Sn

0 α ∈ W̃n \Sn

g(α) = ∑
β∈W̃n:β�α

h(β). (8)

Interpreting partial rankings Sγπ ∈ W̃n as the disjoint union of the events defined by the coset Sγπ
we have that

g(Sγπ) = ∑
τ∈Sγπ

p(τ) (9)
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may be interpreted as the probability under p of the disjoint union Sγπ of permutations. We refer
to the function g as the partial ranking or lattice version of p. The motivation for defining g through
h and not directly through p is that Equation (8) may be described and computed by the mechanism
of Möbius inversion on lattices. More specifically, the Möbius inversion on lattices states that for
two arbitrary real-valued functions on a lattice h,g : W̃n → [0,1] we have

g(τ) = ∑
τ′�τ

h(τ′) iff h(τ) = ∑
τ′�τ

g(τ′)µ(τ′,τ) τ,τ ∈ W̃n

where µ : W̃n × W̃n → R is the Möbius function of the lattice W̃n. In a certain sense this rela-
tionship between p and g generalizes the relationship between a probability mass function and the
corresponding cdf. More details on Möbius functions and Möbius inversion on lattices and their
computation may be found in Stanley (2000).

The function g is defined on the entire lattice, but when restricted to partial rankings of the same
type G = {Sγπ : π ∈ Sn} ⊂ W̃n, constitutes a normalized probability distribution on G. Estimating
and examining a restriction of g to a subset H ⊂ W̃n (note that in general H may include more than
one coset space G) rather than the function p is particularly convenient in cases of large n since H
is often much smaller than the unwieldy Sn. In such cases it is tempting to specify the function g
directly on H without referring to an underlying permutation model. However, doing so may lead
to probabilistic contradictions such as g(Sγπ) < g(Sλσ) for Sλσ ⊂ Sγπ. To avoid these and other
probabilistic contradictions, g needs to satisfy a set of linear constraints equivalent to the existence
of an underlying permutation model. Figure 3 illustrates this problem for partial rankings with the
same (left) and different (right) number of vertical bars. A simple way to avoid such contradictions
and satisfy the constraints is to define g indirectly in terms of a permutation model p as in (9).
Applied to the context of statistical estimation, we define the estimator ĝ in terms of an estimator p̂
of the underlying permutation model p.

In addition to this construction which logically occurs after obtaining the estimator p̂, we also
need to consider how to use partially ranked data in the process of obtaining the estimator p̂. Fully
ranked data is often not available for large n since it is difficult for rankers (both human and others) to
express with confidence full orderings over many items. Instead, the inference needs to be conducted
based on a set of partial rankings

D = {Sγiπi : i = 1, . . . ,m}. (10)

A general way of using D in (10) to estimate p̂ both parametrically and non-parametrically is
to consider partially ranked data as censored or missing data. In other words, in the process of
estimating p̂, the data Sγπ is considered as a single unknown permutation σ ∈ Sγπ that is lost
through a censoring process. Assuming uniformly random censoring in a parametric setting, we
obtain the following observed likelihood with respect to the partially ranked data set D

`(θ|D) =
m

∑
i=1

log
1

|Sγiπi | ∑
σ∈Sγi πi

pθ(σ) =
m

∑
i=1

log ∑
σ∈Sγi πi

pθ(σ)+ const.

While the above likelihood function can be efficiently computed using tools developed in Sec-
tion 7, its maximization is extremely difficult due to the discrete nature of the parametric space. In
the next section we explore in detail a non-parametric kernel smoothing alternative to estimating p
and g based on partially ranked data.
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PSfrag replacements

1, . . . ,n

0̂

Sγπ Sλσ

PSfrag replacements

1, . . . ,n

0̂

Sγπ

Sλσ

Figure 3: Two partial rankings with the same (left) and different (right) number of vertical bars
in the Hasse diagram of W̃n. The big triangles are schematic illustration of the Hasse
diagram of Wn as displayed in Figure 2 (top) with permutations occupying the bottom
level illustrated by the jagged line. The shaded regions correspond to order-intervals, that
is, all elements smaller or equal to the top vertices which correspond to partial rankings.
To avoid probabilistic contradictions, the values of g at two non-disjoint partial rankings
Sγπ,Sλσ cannot be specified in an independent manner.

6. Non-Parametric Kernel Smoothing on Partial Rankings

The Mallows model, which at first glance appears as a simple and effective analogue of the Gaussian
distribution, suffers from several drawbacks. Its unimodal assumption is often too restrictive for
high n as well as for low n (see experiments in Section 9). Another major drawback is that the
location parameter space Sn is discrete, making the maximum likelihood procedure an impossibly
large discrete search problem.

The unimodality and symmetry of the Mallows model make it a good choice for use as a kernel
in non-parametric smoothing. Since the normalization term ψ does not depend on the location
parameter (6), the kernel smoothing estimator for p is

p̂(π) =
1

mψ(c)

m

∑
i=1

exp(−cd(π,πi)) π,πi ∈ Sn (11)

assuming the data consists of complete rankings π1, . . . ,πm ∼ p. Note that the kernel parameter
c acts as an inverse scale parameter whose role is similar but inversely related to the traditional
bandwidth parameter h in kernel smoothing (Wand and Jones, 1995).

In case the available data is partially ranked D = {Sγiπi : i = 1, . . . ,m} and obtained by uniform
censoring as described in the previous section the kernel smoothing estimator becomes

p̂(π) =
1

mψ(c)

m

∑
i=1

1
|Sγi | ∑

τ∈Sγi πi

exp(−cd(π,τ)) π ∈ Sn (12)
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where we used the fact that |Sγiπi| = |Sγie| = |Sγi |. The lattice or partial ranking version ĝ corre-
sponding to p̂ in (12) is

ĝ(Sλπ) =
1

mψ(c)

m

∑
i=1

1
|Sγi | ∑

κ∈Sλπ
∑

τ∈Sγi πi

exp(−cd(κ,τ)) Sγπ ∈ W̃n. (13)

In the next section we derive efficient calculations and in some cases closed forms for expres-
sions (12)-(13). These calculations are efficient even for large n as their complexities depend on the
complexity of the compositions λ and γ1, . . . ,γm rather than on n! or even n. We then move on to
explore the bias and variance of p̂ in Section 8 and describe practical applications of p̂, ĝ and some
experiments.

7. Efficient Computation and Inversion Combinatorics

In order to apply the estimators p̂, ĝ in practice, it is crucial that the inner summations in Equa-
tions (12)-(13) be computed efficiently. We can achieve efficient computation of these summations
by considering how the pairs constituting inversions i(τ) decompose with respect to certain cosets.

Proposition 4 The following decomposition of i(τ) with respect to a composition γ = (γ1, . . . ,γr)
holds

i(τ) =
r

∑
k=1

aγ
k(τ)+

r

∑
k=1

r

∑
l=k+1

bγ
kl(τ) ∀τ ∈ Sn (14)

where

aγ
k(τ)

def
=

∣

∣

∣

∣

∣

{

(s, t) : s < t ,
k−1

∑
j=1

γ j < τ(t) < τ(s) ≤
k

∑
j=1

γ j

}∣

∣

∣

∣

∣

bγ
kl(τ)

def
=

∣

∣

∣

∣

∣

{

(s, t) : s < t ,
k−1

∑
j=1

γ j < τ(t) ≤
k

∑
j=1

γ j ≤
l−1

∑
j=1

γ j < τ(s) ≤
l

∑
j=1

γ j

}∣

∣

∣

∣

∣

.

Proof The set appearing in the definition of aγ
k(τ) contains all pairs (s, t) that are inversions of τ and

whose ranks appear in the k-compartment of the composition γ. The set appearing in the definition
of bγ

kl(τ) contains pairs (s, t) that are inversions of τ and for which s and t appear in the l and k com-
partments of γ respectively. Since any inversion pair appears in either one or two compartments, the
above forms a partition of the inversion set. The decomposition holds since i(τ), the cardinality of
the inversion set of the permutation τ, equals the summation of the cardinality of each subset in the
partition.

Equation (14) actually represents a family of decompositions as it holds for all possible com-
positions γ. For example, i(τ) = 4 for τ = 4|1|3|2, with inversions (1,4),(2,4),(3,4),(2,3) for τ.
For the composition γ = (2,2), the first compartment contains the inversion (1,4) and so aγ

1(τ) = 1.
The second compartment contains the inversion (2,3) and so aγ

2(τ) = 1. The cross compartment
inversions are (2,4),(3,4) making bγ

12(τ) = 2.
The significance of (14) is that as we sum over all representatives of the coset τ ∈ Sγπ the

cross compartmental inversions bγ
kl(τ) remain constant while the within-compartmental inversions
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aγ
k(τ) vary over all possible combinations. As a result we obtain the following generalization of

Proposition 2.

Proposition 5 For π ∈ Sn, q > 0, and a composition γ = (γ1, . . . ,γr) we have

∑
τ∈Sγπ

qi(τ) = q∑r
k=1 ∑r

l=k+1 bγ
kl(π)

r

∏
s=1

γs−1

∏
j=1

j

∑
k=0

qk. (15)

Proof

∑
τ∈Sγπ

qi(τ) = ∑
τ∈Sγπ

q∑r
k=1 aγ

k(τ)+∑r
k=1 ∑r

l=k+1 bγ
kl(τ)

= q∑r
k=1 ∑r

l=k+1 bγ
kl(π) ∑

τ∈Sγπ
q∑r

k=1 aγ
k(τ)

= q∑r
k=1 ∑r

l=k+1 bγ
kl(π)

r

∏
s=1

∑
τ∈Sγs

qi(τ)

= q∑r
k=1 ∑r

l=k+1 bγ
kl(π)

r

∏
s=1

γs−1

∏
j=1

j

∑
k=0

qk.

Above, we used two ideas: (i) disconcordant pairs between two different compartments of the coset
Sγπ are invariant under change of the coset representative, and (ii) the number of disconcordant
pairs within a compartment varies over all possible choices enabling the replacement of the summa-
tion by a sum over a lower order symmetric group.

An important feature of (15) is that only the first and relatively simple term q∑r
k=1 ∑r

l=k+1 bγ
kl(π)

depends on π. The remaining terms depend only on the partial ranking type γ and thus may be
pre-computed and tabulated for efficient computation.

Corollary 1

∑
τ∈Sγπ

qi(τκ) = q∑r
k=1 ∑r

l=k+1 bγ
kl(πκ)

r

∏
s=1

γs−1

∏
j=1

j

∑
k=0

qk κ ∈ Sn.

Proof Using group theory, it can be shown that the set equality (Sγπ)κ = Sγ(πκ) holds. As a
result, ∑τ∈Sγπ qi(τκ) = ∑τ′∈Sγ(πκ) qi(τ′). Proposition 5 completes the proof.

Corollary 2 The partial ranking version g corresponding to the Mallows kernel pκ is

pκ(Sγπ) =
∏r

s=1 ∏γs−1
j=1 ∑ j

k=0 e−kc

∏n−1
j=1 ∑ j

k=0 e−kc
e−c∑r

k=1 ∑r
l=k+1 bγ

kl(πκ−1)

∝ e−c∑r
k=1 ∑r

l=k+1 bγ
kl(πκ−1).
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Proof Using Corollary 1 we have

g(Sγπ) = ∑
τ∈Sγπ

pκ(τ) =
∑τ∈Sγπ exp(−cd(τ,κ))

∑τ∈Sn
exp(−cd(τ,κ))

=
∑τ∈Sγπ exp(−c i(τκ−1))

∏n−1
j=1 ∑ j

k=0 e−kc
=

∑τ∈Sγπ(exp(−c))i(τκ−1)

∏n−1
j=1 ∑ j

k=0 e−kc

= e−c∑r
k=1 ∑r

l=k+1 bγ
kl(πκ−1) ∏r

s=1 ∏γs−1
j=1 ∑ j

k=0 e−kc

∏n−1
j=1 ∑ j

k=0 e−kc
.

Despite its daunting appearance, the expression in Corollary 2 can be computed relatively easily.
The fraction does not depend on π or κ and in fact may be considered as a normalization constant
that may be easily pre-computed and tabulated. The remaining term is relatively simple and depends
on the location parameter κ and the coset representative π. Corollary 2 and Proposition 6 below,
provide efficient computation for the estimators (12), (13).

Proposition 6

∑
σ∈Sλπ1

∑
τ∈Sγπ2

e−cd(σ,τ) =



 ∑
τ∈π1π−1

2 Sγ

r

∏
k=1

r

∏
l=k+1

e−cbλ
kl(τ)





(

r

∏
s=1

λs−1

∏
j=1

j

∑
k=0

e−kc

)

. (16)

Proof Using (Sγπ)τ = Sγ(πτ), Corollary 1, and the fact that τ ∈ Sγ iff τ−1 ∈ Sγ, we have

∑
σ∈Sλπ1

∑
τ∈Sγπ2

e−cd(σ,τ) = ∑
σ∈Sλ

∑
τ∈Sγ

e−cd(σπ1,τπ2) = ∑
σ∈Sλ

∑
τ∈Sγ

e−cd(σπ1π−1
2 τ−1,e)

= ∑
τ∈Sγ

∑
σ∈Sλ

e−c i(σπ1π−1
2 τ−1) = ∑

τ∈Sγ

∑
σ∈Sλ

e−c i(σ(π1π−1
2 )τ)

= ∑
τ∈Sγ

e−c∑r
k=1 ∑r

l=k+1 bλ
kl(π1π−1

2 τ)
r

∏
s=1

λs−1

∏
j=1

j

∑
k=0

e−kc.

The complexity of computing (16), (12), (13) for some popular partial ranking types appears
in Table 1. The independence of these complexity terms from n enables the practical use of esti-
mators (12), (13) in large n situations. Some of the details concerning this complexity analysis and
algorithmic implementation may be found in Appendix A.

8. Statistical Properties of the Estimator

After studying the computational feasibility of the non-parametric estimator p̂ in the previous sec-
tion, we now turn to examine its statistical properties. In particular we examine its bias and variance,
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λ�γ (1,n−1) (1, · · · ,1,n− t) (t,n− t)

(1,n−1) O(1) O(1) O(1)
(1, · · · ,1,n− k) O(k) O(k + t) O(k + t)
(k,n− k) O(k) O(k + t) O(k + t)

Table 1: Computational complexity for computing Equation (13) for each training example. The
independence of the complexity terms from n enables the practical use of the estimators
(12),(13) in k � n situations.

show consistency for large n, and examine the statistical effect of using partially ranked or censored
data in the estimation process. Due to the discreteness of the probability space we replace tradi-
tional Taylor series expansion with a bound based on the Lipschitz continuity of p. The Lipschitz
continuity assumption is crucial since without such an assumption on the regularity of p, kernel
based smoothing or other neighborhood operations make little sense.

Proposition 7 Let π1, . . . ,πm ∈ Sn be sampled iid from a Lipschitz continuous p, that is, |p(π)−
p(τ)| ≤ M d(π,τ), ∀π,τ. The following bounds with respect to p̂ in (11) hold.

|bias(p̂(π))| ≤ −M
ψ′(c)
ψ(c)

,

Var(p̂(π)) ≤ p(π)

m
ψ(2c)
ψ2(c)

− M
m

ψ′(2c)
ψ2(c)

.

Proof Key properties in the following manipulations are the closed form expression of ψ(c) in (6)
and its independence from the location parameter of the Mallows kernel.

|bias(p̂(π))| =
∣

∣

∣E p(π1)

(

ψ−1(c)e−cd(π,π1)
)

− p(π)
∣

∣

∣

≤ ψ−1(c) ∑
π1∈Sn

|p(π1)− p(π)|e−cd(π,π1)

≤ ψ−1(c) ∑
π1∈Sn

Md(π,π1)e
−cd(π,π1) = −M

ψ′(c)
ψ(c)

.

ψ2(c)mVar(p̂(π)) = Var p(π1)e
−cd(π,π1) ≤ E p(π1)e

−2cd(π,π1)

= ∑
π1∈Sn

p(π1)e
−2cd(π,π1)

≤ ∑
π1∈Sn

(p(π)+M d(π,π1))e
−2cd(π,π1)

= p(π)ψ(2c)−Mψ′(2c).
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1 2 3 4 5
0

0.01
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c
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variance
MSE

Figure 4: Upper bounds on squared bias, variance and MSE as functions of c: M = 0.05, p(π) =
0.2, n = 4, m = 20.

The upper bounds in Proposition 7 are illustrated as functions of c in Figure 4. These expressions
may be written in a closed form using the formulas for ψ(2c)/ψ2(c) and ψ′(c)/ψ(c) derived in the
proof of Proposition 8 below.

Proposition 8 Under the same conditions as Proposition 7 and assuming the asymptotics

c,m,n → ∞, n = o(exp(c)), n = o(
√

m)

the estimator p̂ in (11) is pointwise consistent.

Proof We first derive closed form expressions for ψ′(c)/ψ(c) and ψ(2c)/ψ2(c) and then proceed
to demonstrate the convergence to 0 of the bias and variance bounds obtained in Proposition 7.

Using the result ψ(c) = ∏n
j=1

1−e− jc

1−e−c shown in (6), we have

ψ′(c)
ψ(c)

= (logψ(c))′ =
n

∑
j=1

je− jc

1− e− jc −
ne−c

1− e−c , (17)

ψ(2c)
ψ2(c)

=
n

∏
j=1

1− e−2 jc

1− e−2c

(1− e−c)2

(1− e− jc)2 =
n

∏
j=1

1+ e− jc

1+ e−c

1− e− jc

1− e−c

(1− e−c)2

(1− e− jc)2

=
n

∏
j=1

1+ e− jc

1− e− jc

1− e−c

1+ e−c . (18)

The term −ψ′(c)/ψ(c) is the expected distance under the Mallows model

−ψ′(c)/ψ(c) = ∑
σ∈Sn

d(π,σ)ψ−1(c)exp(−cd(π,σ))
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and therefore is bounded by maxπ,σ d(π,σ)≤ n2. The term ψ(2c)/ψ2(c) is bounded since it may be

written as a product ∏n
j=1 R j(c), with R j(c) = 1+e− jc

1−e− jc /
1+e−c

1−e−c ≤ 1 for all c ∈ R+ and j ≥ 1 since the

function 1+ε
1−ε increases with ε > 0.

Based on Proposition 7 and Equations (17)-(18)

|bias(p̂(π))| ≤ M
ne−c

1− e−c −M
n

∑
j=1

je− jc

1− e− jc ≤ M
ne−c

1− e−c

Var(p̂(π)) ≤ p(π)

m
ψ(2c)
ψ2(c)

− M
m

ψ′(2c)
ψ(2c)

ψ(2c)
ψ2(c)

.

The bias converges to 0 as nexp(−c)→ 0 or alternatively, c→∞,n = o(exp(c)). Since ψ(2c)/ψ2(c)
is bounded and −ψ′(2c)/ψ(2c) ≤ n2 the variance converges to 0 as well if m → ∞ and n2/m → 0.

Intuitively, the inverse scale parameter c has to go to ∞ in order for the bias to converge to 0
(similar to the requirement h → 0 for the bandwidth parameter h in kernel smoothing). The number
of samples m has to go to ∞ in order for the variance to go to 0. Allowing n → ∞ enables us to study
the behavior of p̂ in situations containing a large number of items. The proposition above (with a
slightly modified proof) also holds for fixed n.

The assumption above of Lipschitz continuity with respect to d is a very weak assumption since
the distance d tends to grow as n → ∞. In particular d takes values in [0,n(n− 1)/2] making the
Lipschitz continuity assumption weaker and weaker as n → ∞. A stronger assumption of Lipschitz
continuity with respect to the normalized dn (5)

|p(π)− p(τ)| ≤ M dn(π,τ), ∀π,τ

results in a similar conclusion to Proposition 8 asserting pointwise consistency of p̂ under weaker
asymptotic requirements.

For large n, it is often the case that partial, rather than full, rankings are available for estimating
p̂. Partially ranked data is easier for rankers to express than a lengthy list corresponding to a precise
permutation. Furthermore, in many cases, rankers can make some partial ranking assertions with
certainty but do not have a clear opinion on other preferences. Using the censored data interpreta-
tion of partially ranked data enables efficient use of partially ranked data of multiple types in the
estimation process (12).

Statistically, expressing partially ranked data as censored data has the effect of increased smooth-
ing and therefore it reduces the variance while increasing the bias. The following proposition quan-
tifies this effect in terms of the bias and variance of p̂. A consequence of this proposition which is
also illustrated in Section 9 experimentally is that even if the fully ranked data is somehow available,
estimating p̂ based on the partial rankings obtained by censoring it tends to increase the estimation
accuracy.
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Proposition 9 Assuming the same conditions as in Proposition 7, the bias and variance of the
censored data or partial ranking estimator (12) for γ1 = . . . = γm = γ satisfy

|bias(p̂(π))| ≤ −M
ψ′(c)
ψ(c)

+M
sp(Sγ)

|Sγ|
,

Var(p̂(π)) ≤ p(π)

m
1

|Sγ|
+

M
m

sp(Sn)

|Sγ|2
(19)

where sp(U)
def
= maxx∈U ∑y∈U d(x,y).

The choice of using γ1 = . . . = γm = γ above was made for simplicity. Similar results apply for more
heterogenous partially ranked data.
Proof

|bias(p̂(π))| =
∣

∣

∣ψ−1(c)|Sγ|−1E p(π1) ∑
τ∈Sγπ1

e−cd(π,τ) − p(π)
∣

∣

∣

a
≤ ψ−1(c)|Sγ|−1 ∑

π1∈Sn

∑
τ∈Sγπ1

|p(π1)− p(π)|e−cd(π,τ)

≤ Mψ−1(c)|Sγ|−1 ∑
π1∈Sn

∑
τ∈Sγπ1

d(π,π1)e
−cd(π,τ)

≤ Mψ−1(c)|Sγ|−1 ∑
π1∈Sn

∑
τ∈Sγπ1

(d(π,τ)+d(τ,π1))e
−cd(π,τ)

b
= −M

ψ′(c)
ψ(c)

+
M

ψ(c)|Sγ| ∑
π1∈Sn

∑
τ∈Sγπ1

d(τ,π1)e
−cd(π,τ)

where a and b follow from the fact that

∑
π1∈Sn

∑
τ∈Sγπ1

e−cd(π,τ) = |Sγ| ∑
τ∈Sn

e−cd(π,τ) = |Sγ|ψ(c).

The inner summation depends on π1 only through the coset Sγπ1 it resides in. To simplify the
expression, we separate the single outer summation to summations of π1 over the distinct cosets C j.
Since the number of distinct Sγ cosets in Sn is the index [Sn : Sγ] = |Sn|/|Sγ|, we have

|bias(p̂(π))| ≤ −M
ψ′(c)
ψ(c)

+
M

ψ(c)|Sγ|

[Sn:Sγ]

∑
j=1

∑
τ∈C j

(

∑
π1∈C j

d(τ,π1)

)

e−cd(π,τ)

≤−M
ψ′(c)
ψ(c)

+
M sp(Sγ)

ψ(c)|Sγ|

[Sn:Sγ]

∑
j=1

∑
τ∈C j

e−cd(π,τ)

= −M
ψ′(c)
ψ(c)

+M
sp(Sγ)

|Sγ|

using the fact that the spread is the same for all cosets of the same type sp(Sγπ) = sp(Sγ).
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mψ2(c) |Sγ|2 Var(p̂(π)) = Var p(π1) ∑
τ∈Sγπ1

e−cd(π,τ) ≤ E p(π1)

(

∑
τ∈Sγπ1

e−cd(π,τ)

)2

≤ ∑
π1∈Sn

(p(π)+Md(π,π1))

(

∑
τ∈Sγπ1

e−cd(π,τ)

)2

=
[Sn:Sγ]

∑
j=1

(

∑
τ∈C j

e−cd(π,τ)

)2(

p(π)|Sγ|+M ∑
σ∈C j

d(π,σ)

)

≤ p(π)|Sγ|ψ2(c)+Msp(Sn)ψ2(c).

In the last inequality we used the Cauchy-Schwartz inequality 〈u,v〉 ≤ ‖u‖2‖v‖2 ≤ ‖u‖1‖v‖1 to
obtain

[Sn:Sγ]

∑
j=1

(

∑
τ∈C j

e−cd(π,τ)

)2

≤
(

[Sn:Sγ]

∑
j=1

∑
τ∈C j

e−cd(π,τ)

)2

= ψ2(c).

Contrasting the expressions in Proposition 9 with those in Proposition 7 indicates that reverting
to partial rankings tends to increase the bias but reduce the variance. Intuitively, the bias increases
since we no longer have enough data, in general, to precisely estimate the permutation model p. The
variance (19), on the other hand, experiences a substantial reduction as compared to the fully ranked

case. Figure 5 displays the behavior of the quantities sp(Sγ)
|Sγ| and sp(Sn)

|Sγ|2 . The first quantity sp(Sγ)
|Sγ| ,

which bounds the bias, increases as the composition γ represents a lower degree of specificity. On
the other hand, the second quantity sp(Sn)

|Sγ|2 which bounds the variance decreases as the composition
γ represents less specificity.

The precise changes in the bias and variance that occur due to using partial rankings depend
on γ,n,m,c,M. However, generally speaking, the variance reduction becomes more pronounced
as n and |Sγ| grow. Indeed, in the common case described earlier where the number of items
n is large, switching to partially ranked data can dramatically improve the estimation accuracy.
This observation, which is illustrated in Section 9 using experiments on real world data, becomes
increasingly important as n increases. It is remarkable that this statistical motivation to use partial
rather than full rankings is aligned with the data availability and ease of use as well as with the
computational efficiency demonstrated in the previous section.

9. Applications and Experiments

The estimator p̂ defined in (11), (12) and its lattice version ĝ defined in (13) can be used in a number
of data analysis tasks. We briefly outline some of these tasks below and then proceed to describe
some experimental results.

Visual or computational exploration of the model probabilities {p̂(π) : π ∈ Sn} can be a useful
exploratory data analysis tool. Such exploration can be done by visualizing the values {p̂(π) : π ∈
Sn} for small n using the techniques developed in Thompson (1993). For medium and large n
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Figure 5: Values of sp(Sγ)
|Sγ| (top row), and log sp(Sn)

|Sγ|2 (bottom row) for n = 15 and various partial

ranking types. Note that sp(Sγ)
|Sγ| (which serves as a bound for the bias) decreases and

sp(Sn)
|Sγ|2 (which serves as a bound for the variance) increases for decreasing |Sγ|.

similar visualization techniques can be used to explore the values of the lattice version ĝ restricted
to certain subset H ⊂ W̃n of the ranking lattice. Since the number of distinct γ-cosets |Sn|/|Sγ| may
be much smaller than |Sn|, visualizing {ĝ(A) : A∈H} can be more effective than visualizing {p̂(π) :
π ∈ Sn}. Other explorations such as identifying the local modes of p̂ and ĝ may be automated and
computed without human intervention.

In some cases, the main objective of inference is a conditional version of p̂ such as p̂(π ∈ A|π ∈
B), A,B ⊂ Sn. A popular example is collaborative filtering which is the task of recommending
items to a user based on partial preference information that is output by that user (Resnick et al.,
1994). In this case, p̂ is estimated based on a large data set of partial preferences provided by many
users. Given a particular partial ranking Sγπ output by a certain user we can predict its most likely
refinement argmaxSλσ p̂(Sλσ|Sγπ). This task is central to many recommendation systems and

2420



NON-PARAMETRIC MODELING OF PARTIALLY RANKED DATA

has recently gained popularity in the machine learning research community due to its commercial
applications.

Statistics such as expectations and variances can be useful as summaries in situations where the
entire distribution is not necessary. For example, summaries such as the expectation and variance of
an item’s rank E p̂(π(k)), Var p̂(π(k)) or probabilities such as p̂(π(i) > π( j)) may be useful in some
cases. On the other hand, in situations where p̂ is a complex multimodal distribution, the summaries
need to be complemented with a careful examination of p̂.

We experimented with three different data sets. The first is the APA data set (Diaconis, 1989)
which contains several thousand rankings of 5 APA presidential candidates. The second is the Jester
data set containing rankings of 100 jokes by 73,496 users. The third data set is the EachMovie data
set containing rankings of 1628 movies by 72,916 users. In our experiments, we trained models
based on a randomly sampled training set and evaluated the log-likelihood on a separate held-out
testing set. We repeated this procedure 10 times and report the average log-likelihood in order to
reduce sampling noise.

Figure 6 displays the test set log-likelihood for the parametric Mallows model (fitted by maxi-
mum likelihood) and the non-parametric estimator. The log-likelihood, computed as a function of
the train set size, is displayed for several values of c for the non-parametric estimator. In the case
of the Mallows model we only display the optimal c. Due to the computational difficulty associated
with maximum likelihood for the Mallows model for large n we experimented with rankings over a
small number of items. The three panels of the figure display the log-likelihood with respect to the
APA data with n = 5 (top), the Jester data restricted to the n = 5 most frequently rated jokes (mid-
dle), and the EachMovie data restricted to the n = 4 most frequently rated movies. In all three cases,
the non-parametric estimator performed better than the parametric Mallows model given sufficient
training examples. As c increases, the non-parametric model tends to perform better for large data
sets and worse for small data sets, reflecting the non-parametric consistency as m,c → ∞.

The increased flexibility of the non-parametric model illustrated in Figure 6 can be visual-
ized further by comparing the probabilities assigned by the Mallows model and the non-parametric
model. We display these probabilities in the case of n = 4 (movies no. 357, 1356, 440, 25 from the
EachMovie data) by scaling appropriately the vertices of the permutation polytope. The vertices of
the permutation polytope, displayed in Figure 7, correspond to S4 and its edges correspond to pairs
of permutations with Kendall’s tau distance 1. In fact, Kendall’s tau distance d(π,σ) corresponds
to the length of the shortest path connecting the two vertices representing π and σ. As a result, the
3D embedding of the permutation polytope effectively visualizes the discrete metric space (S4,d).
In the figure, the radiuses of the vertices were scaled proportionally to (p̂(π))5/7 where p̂(π) are the
probabilities estimated by maximum likelihood Mallows model (left) and the non-parametric model
(right). The scaling exponent of 5/7 was chosen in agreement with Steven’s law (Cleveland, 1985)
for effective visualization. Figure 7 shows that the probabilities assigned by the Mallows model
form a diffuse unimodal function centered at 2|1|3|4. The non-parametric estimator, on the other
hand, discovers the true global mode 2|3|1|4 and an additional local mode at 4|1|2|3 both of which
were undiscovered by the Mallows model due to its unimodality property.

Figure 8 demonstrates non-parametric modeling of partial rankings for n = 100 (the Mallows
model maximum likelihood estimator cannot be computed for such n). We used 10043 rankings
from the Jester data set which contain users ranking all n = 100 jokes. As before, the figures display
the test-set log-likelihood as a function of the train set size. Due to the large n, we measured the test
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Figure 6: Average test log-likelihood as a function of the train set size: the maximum likelihood
Mallows model vs. the non-parametric estimator for (a) APA data n = 5, (b) n = 5 most
frequently rated Jester jokes, (c) n = 4 most frequently rated movies from EachMovie
data. In general, the non-parametric model provides a better fit than the Mallows model.
The non-parametric consistency is illustrated in the case of c,m → ∞.
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Figure 7: Visualizing estimated probabilities for EachMovie data by permutation polytopes: Mal-
lows model (left) and non-parametric model for c = 2 (right). The Mallows model locates
a single mode at 2|1|3|4 while the non-parametric estimator locates the global mode at
2|3|1|4 and a second local mode at 4|1|2|3.

set log-likelihood with respect to the lattice version ĝ(Sγπ) of the non-parametric estimator p̂ for
partial ranking γ = (5,n−5) (top) and γ = (1,1,1,n−3) (bottom).

The different lines in Figure 8 correspond to the performance of p̂ obtained by censoring the
training data in different ways. We compared p̂ for the following censored data: full ranking (no
censoring), γ = (1, . . . ,1,n− k) for k = 1,2,3,5 and γ = (k,n− k). The value of k in the censoring
corresponding to γ = (k,n− k) was chosen based on thresholding the scores output by the users.
In particular, (k(s),n− k(s)) corresponds to k being the number of jokes receiving a score of s or
higher (the users provided scores in the range [−10,10]). The figure illustrates the statistical benefit
of estimating p̂ based on partial rather than full rankings. The variance reduction by (k,n−k) partial
rankings clearly outweighs the bias increase.

10. Discussion

As the number of items n increases, the space Sn grows exponentially making discrete search
methods such as maximum likelihood for the Mallows model difficult to compute. Similarly, it is
typically the case for large n that both the data available for estimating p̂ and the use of p̂ will be
restricted to partial rankings or cosets of the symmetric group.

Attempts to define a probabilistic model directly on multiple types of partial rankings H ⊂ W̃n

face a challenging problem of preventing probabilistic contradictions. A simple solution is to define
the partial ranking model ĝ in terms of a permutation model p̂ through the mechanism of Möbius
inversion and censored data interpretation. However, doing so raises computational concerns that
often severely limit the practical use of such models for large n.

In this paper, we present a non-parametric kernel smoothing technique that uses the Mallows
model as a smoothing kernel on permutations. Using combinatorial properties of inversions and of
the symmetric group we simplify the computational difficulties and exhibit its practical use inde-
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Figure 8: Test-set loglikelihood for ĝ(Sγπ) with γ = (5,n−5) (top) and γ = (1,1,1,n−3) (bottom)
as a function of train set size (Jester data set with n = 100). The different lines correspond
to obtaining p̂ based on different censoring strategies of the fully ranked training data (see
description in text). The legend entries are sorted in roughly the same order as the lines
in the figures for increased visibility.

pendently of the number of items n. Theoretical and experimental examinations demonstrate the
role of the inverse scale parameter c in the bias-variance tradeoff. We also examine the effect of
using partial, rather than full, rankings on the bias and variance of the estimator. This effect plays a
similar role to increased kernel smoothing and often leads to increased estimation accuracy.
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Appendix A. Complexity Issues

Table 1 lists the computational complexity results for computing (13) for some popular partial rank-
ing types γ and λ. The arguments or proofs for these expressions are rather involved and contain
some details. We include in this appendix the details corresponding to the case of λ = (k,n−k) and
γ = (t,n− t). The other cases in Table 1 follow similarly, but with some differences.

Proposition 10 The complexity for computing

ψ−1(c) |Sγ|−1 ∑
σ∈Sλπ1

∑
τ∈Sγπ2

e−cd(σ,τ)

for λ = (k,n− k) and γ = (t,n− t) is O(k + t).

Proof We first generalize the definition of cross compartment inversions bγ
kl(τ) in Proposition 4 by

defining

bXY (τ) = |{(u,v) : u < v,τ(v) ∈ X ,τ(u) ∈ Y}|

where X and Y are arbitrary disjoint sets. If X =
{

∑k−1
j=1 γ j + 1, . . . ,∑k

j=1 γ j

}

and Y =
{

∑l−1
j=1 γ j +

1, . . . ,∑l
j=1 γ j

}

, we have bXY (τ) = bγ
kl(τ). If x < y,∀x ∈ X and y ∈ Y , bXY (τ) counts a subset of

inversion pairs of τ. However, in its most general form, bXY (τ) may include non-inversion pairs if
some numbers in X are greater than some numbers in Y .

We use the following definitions in our proof

A = {1, · · · ,k}∩{π1π−1
2 (1), · · · ,π1π−1

2 (t)},
Ā = {1, · · · ,k}\A,

B = {k +1, · · · ,n}∩{π1π−1
2 (1), · · · ,π1π−1

2 (t)},
B̄ = {k +1, · · · ,n}\B.

Note A, Ā,B, B̄ constitute a partition of {1, . . . ,n} and satisfy

A∪ Ā = {1, . . . ,k},
B∪ B̄ = {k +1, . . . ,n},
A∪B = {π1π−1

2 (1), · · · ,π1π−1
2 (t)},

Ā∪ B̄ = {1, · · · ,n}\{π1π−1
2 (1), · · · ,π1π−1

2 (t)}.
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Since λ = (k,n−k), we have bλ
12(τ) = bAB(τ)+bAB̄(τ)+bĀB(τ)+bĀB̄(τ), and the expression in the

first parenthesis of Equation 16 is simplified to be

∑
τ∈π1π−1

2 Sγ

r

∏
k=1

r

∏
l=k+1

e−cbλ
kl(τ) = ∑

τ∈π1π−1
2 Sγ

e−cbλ
12(τ)

= ∑
τ∈π1π−1

2 Sγ

e−c(bAB(τ)+bAB̄(τ)+bĀB(τ)+bĀB̄(τ))

= ∑
τ∈π1π−1

2 Sγ

e−c(bAB(τ)+0+|Ā||B|+bĀB̄(τ))

= e−c|Ā||B| ∑
τ∈π1π−1

2 Sγ

e−c(bAB(τ)+bĀB̄(τ))

= e−c|Ā||B| ∑
τ∈St

e−cb
γ1
12(τ) ∑

τ∈Sn−t

e−cb
γ2
12(τ)

where γ1 = (|A|, t − |A|) and γ2 = (|Ā|,n − t − |Ā|). The last equality comes from the fact that
∀τ ∈ π1π−1

2 Sγ

τ−1(i) ∈ {1, . . . , t} if i ∈ A∪B,

τ−1(i) ∈ {t +1, . . . ,n} if i ∈ Ā∪ B̄

and the choice of representatives π1,π2 of the cosets Sλπ1,Sγπ2 does not change |A|,|Ā|,|B| or |B̄|.
By Proposition 11, we have

∑
τ∈St

e−cb
γ1
12(τ) =

|A|!(t −|A|)!∏t
j=t−|A|+1(1− e− jc)

∏|A|
j=1(1− e− jc)

∑
τ∈Sn−t

e−cb
γ2
12(τ) =

|Ā|!(n− t −|Ā|)!∏n−t
j=n−t−|Ā|+1

(1− e− jc)

∏|Ā|
j=1(1− e− jc)

.

Substituting the above results into Equation 16, we get

ψ−1(c)|Sγ|−1 ∑
σ∈Sλπ1

∑
τ∈Sγπ2

e−cd(σ,τ)

=

(

e−c|Ā||B| ∑τ∈St e−cb
γ1
12(τ) ∑τ∈Sn−t e−cb

γ2
12(τ)

)(

∏k
j=1

1−e− jc

1−e−c ∏n−k
j=1

1−e− jc

1−e−c

)

(

∏n
j=1

1−e− jc

1−e−c

)

t!(n− t)!

=

(

|A|!(t−|A|)!∏t
j=t−|A|+1(1−e− jc)

∏|A|
j=1(1−e− jc)

)

(

|Ā|!(n−t−|Ā|)!∏n−t
j=n−t−|Ā|+1

(1−e− jc)

∏|Ā|
j=1(1−e− jc)

)

e−c|Ā||B| ∏k
j=1

(

1− e− jc
)

t!(n− t)!∏n
j=n−k+1 (1− e− jc)

=
|A|!|Ā|!(t −|A|)!e−c|Ā||B|

t!∏n−t
j=n−t−|Ā|+1

j





∏t
j=t−|A|+1(1− e− jc)∏n−t

j=n−t−|Ā|+1
(1− e− jc)∏k

j=1

(

1− e− jc
)

∏|A|
j=1(1− e− jc)∏|Ā|

j=1(1− e− jc)∏n
j=n−k+1 (1− e− jc)



 .

Note |A| ≤ min(k, t), |Ā| ≤ k and |B| ≤ t, therefore the above expression takes O(k + t) to evaluate.
Assuming π−1

1 and π−1
2 are given, it takes O(k) to get a representative π1 for the coset Sλπ1, and
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O(t) to get the set {π1π−1
2 (1), · · · ,π1π−1

2 (t)}, which completes the proof.

Proposition 11 For γ = (k,n− k), let

Q(k,n)
def
= ∑

π∈Sn

qbγ
12(π) (20)

where bγ
12(π) is defined in Proposition 4, we have

Q(k,n) = k!(n− k)!
∏n

i=n−k+1(1−qi)

∏k
i=1(1−qi)

∀n ≥ k. (21)

Proof We first derive an equivalent expression for (20). For fixed π, we sort {π−1(1),π−1(2),
· · · ,π−1(k)} in ascending order and denote them by a1 < a2 < · · · < ak. Note that

bγ
12(π) = (a1 −1)+(a2 −2)+ · · ·+(ak − k) =

k

∑
i=1

(ai − i).

Due to this observation and since there are k!(n − k)! different permutations for each sequence
(a1,a2, · · · ,ak), we have

Q(k,n) = ∑
π∈Sn

qbγ
12(π) = k!(n− k)!

n

∑
ak=k

ak−1

∑
ak−1=k−1

· · ·
a2−1

∑
a1=1

q(a1+···+ak−1−···−k)

=
k!(n− k)!

q
(1+k)k

2

n

∑
ak=k

qak

ak−1

∑
ak−1=k−1

qak−1 · · ·
a2−1

∑
a1=1

qa1 . (22)

We then prove (21) by mathematical induction on k using the result from (22).

(a) Base case: Considering (20) for the case k = 0 we see that b(0,n)
12 (π)≡ 0 and therefore Q(k,n) =

n! for n ≥ k. A similar result follows from substituting k = 0 in the right hand side of (21).

(b) Inductive step: Assuming (21) holds ∀n ≥ k for some k, we have for k +1

Q(k +1,n)

(k +1)!(n− k−1)!
a
=

1

q
(2+k)(1+k)

2

n

∑
ak+1=k+1

qak+1

ak+1−1

∑
ak=k

qak · · ·
a2−1

∑
a1=1

qa1

=
1

q1+k

n

∑
ak+1=k+1

qak+1

(

1

q
(1+k)k

2

ak+1−1

∑
ak=k

qak · · ·
a2−1

∑
a1=1

qa1

)

b
=

1
q1+k

n

∑
ak+1=k+1

qak+1
∏ak+1−1

i=ak+1−k(1−qi)

∏k
i=1(1−qi)

c
=

∏n
i=n−k(1−qi)

∏k+1
i=1 (1−qi)

where equality a follows from (22), equality b follows from the induction hypothesis, and
equality c follows from Proposition 12.
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Proposition 12

1
qk+1

n

∑
j=k+1

q j
k

∏
i=1

(1−q j−i) =
1

1−qk+1

n

∏
i=n−k

(1−qi) ∀n > k.

Proof We prove by mathematical induction on n.

(a) Base Case: Carefully substituting n = k + 1 in both the left hand side and the right hand side
yields equality.

(b) Inductive step:

1
qk+1

n+1

∑
j=k+1

q j
k

∏
i=1

(1−q j−i) =
1

qk+1

(

n

∑
j=k+1

q j
k

∏
i=1

(1−q j−i)+qn+1
n

∏
i=n−k+1

(1−qi)

)

=
1

1−qk+1

n

∏
i=n−k

(1−qi)+qn−k
n

∏
i=n−k+1

(1−qi)

=

(

1−qn−k

1−qk+1 +qn−k
) n

∏
i=n−k+1

(1−qi)

=
∏n+1

i=n−k+1(1−qi)

1−qk+1

where in the second equality we used the induction hypothesis.
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