Causal Discovery Toolbox: Uncovering causal relationships in Python

Diviyan Kalainathan, Olivier Goudet, Ritik Dutta.

Year: 2020, Volume: 21, Issue: 37, Pages: 1−5


Abstract

This paper presents a new open source Python framework for causal discovery from observational data and domain background knowledge, aimed at causal graph and causal mechanism modeling. The cdt package implements an end-to-end approach, recovering the direct dependencies (the skeleton of the causal graph) and the causal relationships between variables. It includes algorithms from the `Bnlearn' and `Pcalg' packages, together with algorithms for pairwise causal discovery such as ANM.

PDF BibTeX code