Dynamic Ranking with the BTL Model: A Nearest Neighbor based Rank Centrality Method

Eglantine Karlé, Hemant Tyagi.

Year: 2023, Volume: 24, Issue: 269, Pages: 1−57


Abstract

Many applications such as recommendation systems or sports tournaments involve pairwise comparisons within a collection of $n$ items, the goal being to aggregate the binary outcomes of the comparisons in order to recover the latent strength and/or global ranking of the items. In recent years, this problem has received significant interest from a theoretical perspective with a number of methods being proposed, along with associated statistical guarantees under the assumption of a suitable generative model. While these results typically collect the pairwise comparisons as one comparison graph $G$, however in many applications -- such as the outcomes of soccer matches during a tournament -- the nature of pairwise outcomes can evolve with time. Theoretical results for such a dynamic setting are relatively limited compared to the aforementioned static setting. We study in this paper an extension of the classic BTL (Bradley-Terry-Luce) model for the static setting to our dynamic setup under the assumption that the probabilities of the pairwise outcomes evolve smoothly over the time domain $[0,1]$. Given a sequence of comparison graphs $(G_{t'})_{t' \in \mathcal{T}}$ on a regular grid $\mathcal{T} \subset [0,1]$, we aim at recovering the latent strengths of the items $w_t^* \in \mathbb{R}^n$ at any time $t \in [0,1]$. To this end, we adapt the Rank Centrality method -- a popular spectral approach for ranking in the static case -- by locally averaging the available data on a suitable neighborhood of $t$. When $(G_{t'})_{t' \in \mathcal{T}}$ is a sequence of Erdös-Renyi graphs, we provide non-asymptotic $\ell_2$ and $\ell_{\infty}$ error bounds for estimating $w_t^*$ which in particular establishes the consistency of this method in terms of $n$, and the grid size $|\mathcal{T}|$. We also complement our theoretical analysis with experiments on real and synthetic data.

PDF BibTeX code