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Abstract
In this paper, we introduce PEBL, a Python library and application for learning Bayesian network
structure from data and prior knowledge that provides features unmatched by alternative software
packages: the ability to use interventional data, flexible specification of structural priors, modeling
with hidden variables and exploitation of parallel processing.
PEBL is released under the MIT open-source license, can be installed from the Python Package
Index and is available at http://pebl-project.googlecode.com.
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1. Introduction

Bayesian networks (BN) have become a popular methodology in many fields because they can
model nonlinear, multimodal relationships using noisy, inconsistent data. Although learning the
structure of BNs from data is now common, there is still a great need for high-quality open-source
software that can meet the needs of various users. End users require software that is easy to use;
supports learning with different data types; can accommodate missing values and hidden variables;
and can take advantage of various computational clusters and grids. Researchers require a frame-
work for developing and testing new algorithms and translating them into usable software. We have
developed the Python Environment for Bayesian Learning (PEBL) to meet these needs.

2. PEBL Features

PEBL provides many features for working with data and BNs; some of the more notable ones are
listed below.

2.1 Structure Learning

PEBL can load data from tab-delimited text files with continuous, discrete and class variables and
can perform maximum entropy discretization. Data collected following an intervention is important
for determining causality but requires an altered scoring procedure (Pe’er et al., 2001; Sachs et al.,
2002). PEBL uses the BDe metric for scoring networks and handles interventional data using the
method described by Yoo et al. (2002).
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[data]
filename = mydata.txt
[learner]

from pebl import data, result type = greedy.GreedyLearner
from pebl.learner.greedy import GreedyLearner numtasks = 10
from pebl.taskcontroller.xgrid import XgridController [taskcontroller]

type=xgrid.XgridController
dataset = data.fromfile(’mydata.txt’) [xgrid]
runner = XgridController(’grid.com’, ’pass’) controller = grid.com
learners = [GreedyLearner(dataset) for i in range(10)] password = pass
results = runner.run(learners) [result]
result.merge(results).tohtml(’./myoutput’) output = ./myoutput

(a) Python script (b) PEBL configuration file

Figure 1: Two ways of using PEBL: with a Python script and a configuration file. Both methods
create 10 greedy learners with default parameters and run them on an Apple Xgid. The Python
script can be typed in an interactive shell, run as a script or included as part of a larger application.

PEBL can handle missing values and hidden variables using exact marginalization and Gibbs
sampling (Heckerman, 1998). The Gibbs sampler can be resumed from a previously suspended
state, allowing for interactive inspection of preliminary results or a manual strategy for determining
satisfactory convergence.

A key strength of Bayesian analysis is the ability to use prior knowledge. PEBL supports struc-
tural priors over edges specified as ’hard’ constraints or ’soft’ energy matrices (Imoto et al., 2003)
and arbitrary constraints specified as Python functions or lambda expressions.

PEBL includes greedy hill-climbing and simulated annealing learners and makes writing cus-
tom learners easy. Efficient implementaion of learners requires careful programming to eliminate
redundant computation. PEBL provides components to alter, score and rollback changes to BNs in
a simple, transactional manner and with these, efficient learners look remarkably similar to pseu-
docode.

2.2 Convenience and Scalability

PEBL includes both a library and a command line application. It aims for a balance between ease of
use, extensibility and performance. The majority of PEBL is written in Python, a dynamically-typed
programming language that runs on all major operating systems. Critical sections use the numpy
library (Ascher et al., 2001) for high-performance matrix operations and custom extensions written
in ANSI C for portability and speed.

PEBL’s use of Python makes it suitable for both programmers and domain experts. Python pro-
vides interactive shells and notebook interfaces and includes an extensive standard library and many
third-party packages. It has a strong presence in the scientific computing community (Oliphant,
2007). Figure 1 shows a script and configuration file example that showcase the ease of using PEBL.
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BANJO BNT Causal Explorer Deal LibB PEBL
Latest Version 2.0.1 1.04 1.4 1.2-25 2.1 0.9.10
License Academic 1 GPL Academic 1 GPL Academic 1 MIT
Scripting Language Matlab 2 Matlab Matlab R N/A Python
Application Yes No No No Yes Yes
Interventional Data No Yes No No No Yes
DBN Yes Yes No No No No
Structural Priors Yes 3 No No No No Yes
Missing Data No Yes No No Yes Yes
Parallel Execution No No No No No Yes
1 Custom academic, non-commercial license; not OSI approved.
2 Via a Matlab-Java bridge.
3 Only constraints/hard-priors supported.

Table 1: Comparing the features of popular Bayesian network structure learning software.

While many tasks related to Bayesian learning are embarrassingly parallel in theory, few soft-
ware packages take advantage of it. PEBL can execute learning tasks in parallel over multiple pro-
cessors or CPU cores, an Apple Xgrid,1 an IPython cluster2 or the Amazon EC2 platform.3 The
EC2 platform is especially attractive for scientists because it allows one to rent processing power
on an on-demand basis and execute PEBL tasks on them.

With appropriate configuration settings and the use of parallel execution, PEBL can be used
for large learning tasks. Although PEBL has been tested successfully with data sets with 10000
variables and samples, BN structure learning is a known NP-Hard problem (Chickering et al., 1994)
and analysis using data sets with more than a few hundred variables is likely to result in poor results
due to poor coverage of the search space.

3. PEBL Development

The benefits of open source software derive not just from the freedoms afforded by the software
license but also from the open and collaborative development model. PEBL’s source code repository
and issue tracker are hosted at Google Code and freely available to all. Additionally, PEBL includes
over 200 automated unit tests and mandates that every source code submission and resolved error
be accompanied with tests.

4. Related Software

While there are many software tools for working with BNs, most focus on parameter learning and
inference rather than structure learning. Of the few tools for structure learning, few are open-source
and none provide the set of features included in PEBL. As shown in Table 1, the ability to handle
interventional data, model with missing values and hidden variables, use soft and arbitrary priors
and exploit parallel platforms are unique to PEBL. PEBL, however, does not currently provide any

1. Grid computing solution by Apple, Inc. http://www.apple.com/server/macosx/technology/xgrid.html.
2. Cluster of Python interpreters (http://ipython.scipy.org).
3. A pay-per-use, on-demand computing platform by Amazon, Inc. (http://aws.amazon.com).
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features for inference or learning Dynamic Bayesian Networks (DBN). Despite its use of optimized
matrix libraries and custom C extension modules, PEBL can be an order of magnitude or more
slower than software written in Java or C/C++; the ability to use a wider range of data and priors,
the parallel processing features and the ease-of-use, however, should make it an attractive option for
many users.

5. Conclusion and Future Work

We have developed a library and application for learning BNs from data and prior knowledge. The
set of features found in PEBL is unmatched by alternative packages and we hope that our open
development model will convince others to use PEBL as a platform for BN algorithms research.
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