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Abstract
WEKA is a popular machine learning workbench with a development life of nearly two decades.
This article provides an overview of the factors that we believe to be important to its success.
Rather than focussing on the software’s functionality, we review aspects of project management
and historical development decisions that likely had an impact on the uptake of the project.
Keywords: machine learning software, open source software

1. Introduction

We present a brief account of the WEKA 3 software, which is distributed under the GNU General
Public License, followed by some lessons learned over the period spanning its development and
maintenance. We also include a brief historical mention of its predecessors.

WEKA contains implementations of algorithms for classification, clustering, and association
rule mining, along with graphical user interfaces and visualization utilities for data exploration and
algorithm evaluation. This article shares some background on software design and management
decisions, in the hope that it may prove useful to others involved in the development of open-source
machine learning software. Hall et al. (2009) give an overview of the system; more comprehensive
sources of information are Witten and Frank’s bookData Mining (2005) and the user manuals
included in the software distribution.1 Online sources, including the WEKA Wiki pages2 and the
API, provide the most complete coverage. Thewekalistmailing list is a forum for discussion of
WEKA-related queries, with nearly 3000 subscribers.

2. What is WEKA?

WEKA is a machine learning workbench that supports many activities of machine learning practi-
tioners.

1. Available fromhttp://www.cs.waikato.ac.nz/ml/weka.
2. Available athttp://weka.wikispaces.com/.
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2.1 Basic Functionality

Here is a summary of WEKA’s main features.

• Data preprocessing. As well as a native file format (ARFF), WEKA supports various other
formats (for instance CSV, Matlab ASCII files), and database connectivity through JDBC.
Data can be filtered by a large number of methods (over 75), ranging fromremoving particular
attributes to advanced operations such as principal component analysis.

• Classification. One of WEKA’s drawing cards is the more than 100 classification methods it
contains. Classifiers are divided into “Bayesian” methods (Naive Bayes, Bayesian nets, etc.),
lazy methods (nearest neighbor and variants), rule-based methods (decision tables, OneR,
RIPPER), tree learners (C4.5, Naive Bayes trees, M5), function-based learners (linear regres-
sion, SVMs, Gaussian processes), and miscellaneous methods. Furthermore, WEKA includes
meta-classifiers like bagging, boosting, stacking; multiple instance classifiers; and interfaces
for classifiers implemented in Groovy and Jython.

• Clustering. Unsupervised learning is supported by several clustering schemes, including EM-
based mixture models,k-means, and various hierarchical clustering algorithms. Though not
as many methods are available as for classification, most of the classic algorithms are in-
cluded.

• Attribute selection. The set of attributes used is essential for classification performance. Var-
ious selection criteria and search methods are available.

• Data visualization. Data can be inspected visually by plotting attribute values against the
class, or against other attribute values. Classifier output can be compared to training data
in order to detect outliers and observe classifier characteristics and decision boundaries. For
specific methods there are specialized tools for visualization, such as a treeviewer for any
method that produces classification trees, a Bayes network viewer with automatic layout, and
a dendrogram viewer for hierarchical clustering.

WEKA also includes support for association rule mining, comparing classifiers, data set generation,
facilities for annotated documentation generation for source code, distribution estimation, and data
conversion.

2.2 Graphical User Interfaces

WEKA’s functionality can be accessed through various graphical userinterfaces, principally the
Explorer, and Experimenter interfaces shown in Figure 1, but also the Knowledge Flow interface.
The most popular interface, the Explorer, allows quick exploration of dataand supports all the main
items mentioned above—data loading and filtering, classification, clustering, attribute selection and
various forms of visualization—in an interactive fashion.

The Experimenter is a tool for setting up machine learning experiments that evaluate classifica-
tion and regression methods. It allows easy comparison of performance,and can tabulate summaries
in ways that are easy to incorporate into publications. Experiments can be set up to run in parallel
over different computers in a network so that multiple repetitions of cross validation (the default
method of performance analysis) can be distributed over multiple machines.
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Figure 1: The Explorer and Experimenter interfaces.

The Knowledge Flow interface is a Java Beans application that allows the samekind of data ex-
ploration, processing and visualization as the Explorer (along with some extras), but in a workflow-
oriented system. The user can define a workflow specifying how data is loaded, preprocessed,
evaluated and visualized, which can be repeated multiple times. This makes it easy to optimize the
workflow by tweaking parameters of algorithms, or to apply it to other data sources. In the Explorer,
on the other hand, the individual steps must be invoked manually, one at a time. This is a rather
tedious process, and is prone to errors such as omitting preprocessing steps.

WEKA also includes some specialized graphical interfaces, such as a Bayes network editor that
focuses on Bayes network learning and inference, an SQL viewer forinteraction with databases,
and an ARFF data file viewer and editor.

All functionality and some more specialized functions can be accessed froma command line
interface, so WEKA can be used without a windowing system.

2.3 Extending WEKA

One of WEKA’s major strengths is that it is easily extended with customized or new classifiers,
clusterers, attribute selection methods, and other components. For instance, all that is needed
to add a new classifier is a class that derives from theClassifier class and implements the
buildClassifier method for learning, and aclassifyInstance method for testing/predicting
the value for a data point. The code fragment in Figure 2 shows a minimal implementation of a
classifier that returns the mean or mode of the class in the training set (doublevalues are used to
store indices of nominal attribute values).

Any new class is picked up by the graphical user interfaces through Java introspection: no
further coding is needed to deploy it from WEKA’s graphical user interfaces. This makes it easy to
evaluate how new algorithms perform compared to any of the existing ones, which explains WEKA’s
popularity among machine learning researchers.

Besides being easy to extend, WEKA includes a wide range of support for adding functionality
to basic implementations. For instance, a classifier can have various optionalsettings by implement-
ing a pre-defined interface for option handling. Each option can be documented using a tool-tip text
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package weka . c l a s s i f i e r s . misc ;

impor t weka . c l a s s i f i e r s . C l a s s i f i e r ;
impo r t weka . co re .∗ ;

p u b l i c c l a s s N e w C l a s s i f i e r e x t e n d s C l a s s i f i e r{
doub le mfMean ;

p u b l i c vo id b u i l d C l a s s i f i e r ( I n s t a n c e s d a t a ) th rows Except i on {
m fMean = d a t a . meanOrMode ( d a t a . c l a s s I n d e x ( ) ) ;

}

p u b l i c doub le c l a s s i f y I n s t a n c e ( I n s t a n c e i n s t a n c e ) th rows Excep t i on {
r e t u r n m fMean ;

}

}

Figure 2: Classifier code example.

method, which is picked up by thehelpdialogs of the graphical user interfaces. Classes typically
implement methods described in papers, and this provenance metadata can becaptured in a method
that is used to generate documentation. Some methods only apply to certain kindsof data, such
as numeric class values or discrete attribute values. A ‘capabilities’ mechanism allows classes to
identify what kind of data is acceptable by any method, and the graphical user interfaces incorporate
this by making methods available only if they are able to process the data at hand.

There are many projects that build on top WEKA, about fifty of which are listed on the WEKA
Wiki.

3. Origins

The Machine Learning project at Waikato was launched in 1993 with a successful grant application
to the New Zealand Foundation for Research, Science, and Technology. The underlying intention
behind the request was not so much to further a specific agenda in machinelearning research as to
create a research culture in a small and obscure computer science department that brought different
people together. Machine learning was selected because of prior expertise and its potential appli-
cability to agriculture, New Zealand’s core industry; the grant was justifiedin terms of applications
research rather than the development of new learning techniques.

This gave the research team a license to incorporate and reimplement existingmethods, and
work soon began on a workbench, written in C, that was intended to provide a common interface to
a growing collection of machine learning algorithms. It contained some learningalgorithms writ-
ten mostly in C, data I/O and pre-processing tools, also written in C, and graphical user interfaces
written in TCL/TK. The number of learning algorithms was limited and they came fromdiffer-
ent sources; wrapper shell scripts were employed to bind them into the framework. The acronym
WEKA for “Waikato Environment for Knowledge Analysis” was coined, and the system gradually
became known in the international ML community, along with another machine learning library in
C++ from the University of Stanford called MLC++, developed by Kohavi et al. (1997).3

3. MLC++ is now distributed by Silicon Graphics athttp://www.sgi.com/Technology/mlc.
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Because of dependencies on other libraries, mainly related to the graphical user interfaces, the
software became increasingly unwieldy and hard to maintain. In 1997 work began on reimplement-
ing WEKA from scratch in Java into what we now term WEKA 3. One of the authors, Eibe Frank,
had earlier decided to adopt Java to implement algorithm prototypes, abandoning C++ because Java
development was rapid and debugging was dramatically simplified. This positive experience, the
promise of platform independence through virtual machine technology, and the fact that, as part
of the research code, classes for reading WEKA’s standard ARFF fileformat into appropriate data
structures already existed, led to the decision to re-write WEKA in Java.

Many of the classes in today’s code archive (including, for example, J48, the WEKA implemen-
tation of Quinlan’s C4.5) date from mid-1997. Rapid early development was stimulated by the need
to teach a course on machine learning at the University of Calgary during aFall 1997 sabbatical
visit by Witten, along with several students, including Frank. The Java version was called JAWS
for “Java Weka system” to avoid confusion with WEKA itself, and after some debate was changed
to WEKA in March 1999. The first paper written using this system was Frankand Witten (1998),
written in late 1997. By the end of 1998 WEKA included packages for classifiers, association rule
learners, filters, and evaluation, as well as a core package. Severalmethods that were relatively
advanced for the day, such as bagging, were in place, as well as old chestnuts like instance-based
learning and Naive Bayes. Attribute selection was added soon afterwards, in 1999.

Work began on the first edition of theData Mining book in 1997, based on earlier notes for
Witten’s courses at the University of Waikato, and a proposal was submitted to Morgan Kaufmann
late that year. It finally appeared in 1999 (though for reasons that arenot clear to us the official
publication date is 2000). WEKA was seen as an important adjunct to the book, and the original
title, Practical machine learning, was changed toData Mining: Practical machine learning tools
and techniques with Javato reflect this. The term “data mining” was prepended primarily for
marketing reasons. The WEKA software described in that edition was command-line oriented and
the book makes no mention of a graphical user interface, for which designbegan in 1999. By
the time the second edition appeared in 2005 the interactive versions of WEKA—the Explorer,
Experimenter, and Knowledge Flow interface—were mature and well-tested pieces of software.

4. How Did WEKA Become Widely Adopted?

The size of the mailing list, the volume of downloads, and the number of academic papers citing
WEKA-based results show that the software is widely deployed. It is usedin the machine learn-
ing and data mining community as an educational tool for teaching both applications and technical
internals of machine learning algorithms, and as a research tool for developing and empirically com-
paring new techniques. It is applied increasingly widely in other academic fields, and in commercial
settings. We are often asked what is the secret of WEKA’s success, and here we speculate on rea-
sons for the software’s broad uptake. An obvious one is that it is free and open-source software.
However, there are several other factors, many of which are exposed by the above brief historical
review.

4.1 Portability

Pre-Java versions of WEKA were limited to UNIX operating systems and distributions were made
available for Linux, Solaris, and SGI. The present popularity of the software owes much to the
existence of Java Virtual Machines for all important platforms, along with thefact that all code
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necessary to compile and run WEKA is included in the distribution. The lack of dependency on
externally-maintained libraries makes maintenance of the code base much easier.

The decision to rewrite WEKA from scratch in Java may seem obvious in hindsight, but was a
large step into the unknown at the time. For one thing, portability seemed less important in the days
when everyone we knew was using Unix! More importantly, in 1997 no-onecould forsee that Java
would turn out to be such a suitable platform. Just-in-time compilation was unknown (Sun’s Java
1.2, which included a just-in-time compiler, was introduced in December 1998).Fully-interpreted
execution suffered a substantial performance hit compared to C++. Anddeficiencies in early Java
technology still affect the WEKA code today: the original design of the basic data structures was
clean, object-oriented, and elegant, but the performance penalty incurred by extensive use of objects
led to a less generic array-based representation, where all data is stored in arrays of doubles. Many
of the design characteristics of WEKA that seem inelegant are due to pragmatic decisions based on
the Java technology available at the time.

Later versions of the Java Virtual Machine virtually eliminated the performance gap from C++
through just-in-time compilation and adaptive optimization. Although there still persists a percep-
tion that execution of Java code is too slow for scientific computing, this is not our experience and
does not appear to be shared by the WEKA community.

4.2 Graphical User Interface

Early releases of the WEKA 3 software were command-line driven and did not include graphical
user interfaces. Although many experienced users still shun them, the graphical interfaces undoubt-
edly contributed to the popularity of WEKA. The introduction of the Explorer inparticular has
made the software more accessible to users who want to employ machine learning in practice. It
has allowed many universities (including our own) to offer courses in applied machine learning and
data mining, and has certainly contributed to WEKA’s popularity for commercialand industrial use.
Again, while obvious in hindsight, the development of graphical user interfaces was a significant
risk, because valuable programming effort had to be diverted from the main job of implementing
learning algorithms into relatively superficial areas of presentation and interaction.

The WEKA 3 graphical user interface development benefited from the fact that the core sys-
tem was already up and running, and relatively mature—as evidenced by the first edition ofData
Mining—before any work began on interactive interfaces. The early WEKA project probably suf-
fered from attempting to develop interactive interfaces (in TCL/TK) at the same time as the basic
algorithms and data structures were being commissioned, a mistake that was avoided in the later
system.

4.3 TheData Mining Book

The first stable release of the WEKA 3 software coincided with the publicationof the first edition
of Data Mining by Witten and Frank, which contained a chapter describing it, both interactively
via the command-line and programmatically via the API and extension of superclasses. There has
been a symbiotic relationship between the software and the book: users of the software are likely
to consult the book and readers of the book are likely to try out the software. The combination
of a book explaining the core algorithms in a corresponding piece of free software is particularly
suitable for education. It seems likely that the feedback loop between the readership of the book
and the users of the software has bolstered the size of both populations. The early existence of a
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companion book, unusual for open source software, is particularly valuable for machine learning
because the techniques involved are quite simple and easy to explain, but byno means obvious.

4.4 Extensibility

WEKA can be used both for educational purposes and as a research platform. New algorithms
can easily be incorporated and compared to existing ones on a collection of data sets. As noted
earlier, only two methods from theClassifier superclass need be implemented to come up with
a classifier that takes advantage of all the infrastructure in WEKA, includingI/O, evaluation, and
so-called “meta” algorithms.

4.5 Documentation

In recent years there has been a dramatic growth in the volume of WEKA-related online documentation—
notably as part of the WEKA Wiki. This, in conjunction with the information in the mailing list
archives, provides a wealth of information for all users. The existenceof a steadily increasing,
knowledgeable and enthusiastic user community, and the combined knowledgethey share, has
played a significant role in the success of the software.

4.6 Comprehensiveness

Perhaps the foremost reason for the adoption of WEKA 3 by the research community has been
the inclusion of faithful reimplementations of classic benchmark methods, in particular the C4.5
decision tree learner (Quinlan, 1992), but also other algorithms such as the RIPPER rule learner
(Cohen, 1995). The original implementations of these algorithms were already very successful
software projects in themselves. Bringing them together in a common frameworkhas been a strong
drawing card.

4.7 Support

“Given sufficient funding, anyone could have done that!” is a refrainoften heard from sceptics.
We were lucky to receive an initial research grant forappliedmachine learning research from a
New Zealand funding agency that approved of our aspirations to investigate the application of this
technology in agricultural domains. Yet it is hard to reconcile the practical need to win academic
credit for research publications with the production of usable software,particularly when there is a
constantly growing pressure to commercialize. We continued to apply for, and receive, follow-on
funding from the same source, but—particularly as time went on—this compelledus to channel
much of our research in the direction of target applications rather than basic research in machine
learning.

5. Maintaining the Project

A software project can only become and remain successful if it is consistently maintained to a high
standard. It has been our experience that this requires a group of people who are continually involved
in the management and development of the software for an extended periodof time, spanning several
years. The core development team of WEKA has always been small and close-knit: having a small
team helps maintain code quality and overall coherence.
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Development of the software would not have been possible without financial support from the
New Zealand government in the form of successive research grants by the Foundation for Research,
Science and Technology, which have been awarded over a significantperiod of time—from 1993
to 2007. Over the years, work on the project has been done by a coupleof academic staff, who
were involved in the longer term and fitted it in with their teaching and researchduties, and a
succession of one (or one and a half) full-time equivalent research programmers. A fair amount
of work was undertaken by students on casual contracts or as part oftheir studies. The community
also contributed many algorithm implementations that are included in the WEKA distribution, along
with some patches for the basic framework.

The project has always had a policy of maintaining close control of what became part of the
software. Only a handful of developers have ever had write access tothe source code repository.
The drawback of this policy is reduced functionality; the advantages are improved code quality,
ease of maintenance, and greater coherence for both developer and end user. When new algorithm
implementations were considered for inclusion, we generally insisted on a backing publication de-
scribing the new method. In a few cases we have rejected submitted code, despite publication, when
our experiments revealed that the method did not appear to improve on what was already present in
WEKA.

The research contract that sponsored WEKA development required some measure of commer-
cialization, and a few commercial licenses to parts of the WEKA code base owned by the University
of Waikato have been sold. It eventually became clear that the successionof research contracts had
a finite life span, and support by a commercial organization was necessary to keep WEKA healthy.
Since 2007, Pentaho Corporation, a company that provides open-source business intelligence soft-
ware and support, has contributed substantially to the maintenance of WEKA by hiring one of the
chief developers and providing online help. As part of the requirement tocommercialize the soft-
ware, it has been necessary to maintain a branch in the source code repository that only contains
code owned by the University of Waikato, an onerous but necessary facet of project maintenance.

6. Concluding Remarks

Obviously, in almost two decades of project development, many mistakes weremade—but most
were quickly corrected. One, mentioned above, regards the premature design of interactive inter-
faces, where WEKA 3 benefited from a strategic error made in the early WEKA project. Below
are two instances of how adoption might have been strengthened had the project been managed
differently.

One of the most challenging aspects of managing open source software development is to decide
what to include in the software. Although careful control of contributionshas substantial benefits, it
limits community involvement (Bacon, 2009). A package-based architecture (such as that adopted
by the R Development Team, 2009) provides a better platform for more widespread ownership and
development. Under such a scheme, packages maintained by their developers can be loaded into
the system on demand, opening it up to greater diversity and flexibility. A recent development in
WEKA is the inclusion of package management, so that packages can easily be added to a given
installation.4 The project would probably have benefited by moving in this direction earlier.

We have learned that mailing lists for open source software are easier to maintain if the users
are researchers rather than teachers. WEKA’s widespread role in education has led to a repetitive

4. Currently in the development version only.

2540



WEKA—EXPERIENCES WITH AJAVA OPEN-SOURCEPROJECT

and distracting deluge of basic questions. Requests from students all over the world for assistance
with their assignments and projects present a significant (and growing) problem; moreover, students
often depart from proper mailing-list etiquette. It would have been better toidentify the clientele
for WEKA as a teaching tool, and offer a one-stop-shop for software,documentation and help that
is distinct from the support infrastructure used by researchers.

All in all, WEKA has been a resounding success which we believe has significantly advanced
the application of machine learning techniques in today’s world. One of the most satisfying aspects
of participating in the project is that the software has been incorporated into, and spawned, many
other open-source projects.
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