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Abstract
Estimating the error rates of classifiers or regression models is a fundamental task in machine
learning which has thus far been studied exclusively using supervised learning techniques. We
propose a novel unsupervised framework for estimating these error rates using only unlabeled data
and mild assumptions. We prove consistency results for the framework and demonstrate its practical
applicability on both synthetic and real world data.
Keywords: classification and regression, maximum likelihood, latentvariable models

1. Introduction

A common task in machine learning is predicting a response variabley∈Y based on an explanatory
variablex∈ X . Assuming a joint distributionp(x,y) and a loss functionL(y, ŷ), a predictorf : X →
Y is characterized by an expected loss or risk function

R( f ) = E p(x,y){L(y, f (x))}.

For example, in classification we may haveX = R
d, Y = {1, . . . , l}, andL(y, ŷ) = I(y 6= ŷ) where

I(A) = 1 if A is true and 0 otherwise. The resulting risk is known as the 0-1 risk or simply the
classification error rate

R( f ) = P( f predicts the wrong class).

In regression we may haveX = Y = R, andL(y, ŷ) = (y− ŷ)2. The resulting risk is the mean
squared error

R( f ) = E p(x,y)(y− f (x))2.

We consider the case where we are provided withk predictorsfi : X → Y , i = 1, . . . ,k (k ≥ 1)
whose risks are unknown. The main task we are faced with is estimating the risks R( f1), . . . ,R( fk)
without using any labeled data whatsoever. The estimation ofR( fi) is rather based on an estimator
R̂( fi) that uses unlabeled datax(1), . . . ,x(n) iid∼ p(x).
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A secondary task that we consider is obtaining effective schemes for combining k predictors
f1, . . . , fk in a completely unsupervised manner. We refer to these two tasks of risk estimation and
predictor combination as unsupervised-supervised learning since they refer to unsupervised analysis
of supervised prediction models.

It may seem surprising that unsupervised risk estimation is possible at all. After all in the
absence of labels there is no ground truth that guides us in estimating the risks. However, as we
show in this paper, if the marginalp(y) is known it is possible in some cases to obtain a consistent
estimator for the risks using only unlabeled data, that is,

lim
n→∞

R̂( fi ;x
(1), . . . ,x(n)) = R( fi) with probability 1, i = 1, . . . ,k.

In addition to demonstrating consistency, we explore the asymptotic variance of the risk estimators
and how it is impacted by changes inn (amount of unlabeled data),k (number of predictors), and
R( f1), . . . ,R( fk) (risks). We also demonstrate that the proposed estimation technique works well in
practice on both synthetic and real world data.

The assumption thatp(y) is known seems restrictive, but there are plenty of cases where it
holds. Examples include medical diagnosis (p(y) is the well known marginal disease frequency),
handwriting recognition/OCR (p(y) is the easily computable marginal frequencies of different En-
glish letters), regression model for life expectancy (p(y) is the well known marginal life expectancy
tables). In these and other examplesp(y) is obtained from extremely accurate histograms.

There are several reasons that motivate our approach of using exclusively unlabeled data to esti-
mate the risks. Labeled data may be unavailable due to privacy considerations where the predictors
are constructed by organizations using training sets with private labels. For example, in medical
diagnosis prediction, the predictorsf1, . . . , fk may be obtained byk different hospitals, each using a
private internal labeled set. Following the training stage, each hospital releases its predictor to the
public who then proceed to estimateR( f1), . . . ,R( fk) using a separate unlabeled data set.

Another motivation for using unlabeled data is domain adaptation where predictors that are
trained on one domain, are used to predict data from a new domain from which we have only
unlabeled data. For example, predictors are often trained on labeled examples drawn from the
past but are used at test time to predict data drawn from a new distribution associated with the
present. Here the labeled data used to train the predictors will not provide an accurate estimate due
to differences in the test and train distributions.

Another motivation is companies releasing predictors to clients as black boxes(without their
training data) in order to protect their intellectual property. This is the situationin business analytics
and consulting. In any case, it is remarkable that without labels we can still accurately estimate
supervised risks.

The collaborative nature of this diagnosis is especially useful for multiple predictors as the
predictor ensemble{ f1, . . . , fk} diagnoses itself. However, our framework is not restricted to a large
k and works even for a single predictor withk = 1. It may further be extended to the case of active
learning where classifiers are queried for specific data and the case ofsemi-supervised learning
where a small amount of labeled data is augmented by massive unlabeled data.

We proceed in the next section to describe the general framework and some important special
cases. In Section 3 we discuss extensions to the general framework andin Section 4-5 we discuss the
theory underlying our estimation process. In Section 6 we discuss practical optimization algorithms.
Section 7 contains an experimental study. We conclude with a discussion in Section 8.
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2. Unsupervised Risk Estimation Framework

We adopt the framework presented in Section 1 with the added requirement that the predictors
f1, . . . , fk are stochastic, that is, their prediction ˆy = fi(x) (conditioned onx) is a random variable.
Such stochasticity occurs if the predictors are conditional models predictingvalues according to
their estimated probability, that is,fi models a conditional distributionqi and predictsy′ with prob-
ability qi(y′|x).

As mentioned previously our goal is to estimate the risk associated with classification or re-
gression modelsf1, . . . , fk based on unlabeled datax(1), . . . ,x(n) iid∼ p(x). The testing marginal and
conditional distributionsp(x), p(y|x) may differ from the distributions used at training time for the
different predictors. In fact, each predictor may have been trained ona completely different training
distribution, or may have been designed by hand with no training data whatsoever. We consider
the predictors as black boxes and do not assume any knowledge of their modeling assumptions or
training processes.

At the center of our framework is the idea to define a parameter vectorθ∈Θ which characterizes
the risksR( f1), . . . ,R( fk), that is,R( f j) = g j(θ) for some functiong j : Θ → R, j = 1, . . . ,k. The
parameter vectorθ is estimated from data by connecting it to the probabilities

p j(y
′|y) def

= p( f j predictsy′| true label isy).

More specifically, we use a plug-in estimateR̂( f j) = g j(θ̂) whereθ̂ maximizes the likelihood of

the predictor outputs ˆy(i)
j = f j(x(i)) with respect to the modelpθ(ŷ) =

R

pθ(ŷ|y)p(y)dy. The precise
equations are:

R̂( f j ; ŷ
(1), . . . , ŷ(n)) = g j(θ̂mle(ŷ(1), . . . , ŷ(n))) where (1)

ŷ(i) def
= (ŷ(i)

1 , . . . , ŷ(i)
k )

ŷ(i)
j

def
= f j(x

(i)),

θ̂mle(ŷ(1), . . . , ŷ(n)) = argmaxℓ(θ ; ŷ(1), . . . , ŷ(n)), (2)

ℓ(θ ; ŷ(1), . . . , ŷ(n)) =
n

∑
i=1

logpθ(ŷ
(i)
1 , . . . , ŷ(i)

k ) (3)

=
n

∑
i=1

log
Z

Y

pθ(ŷ
(i)
1 , . . . , ŷ(i)

k |y(i))p(y(i))dµ(y(i)).

The integral in (3) is over the unobserved labely(i) associated withx(i). It should be a continu-
ous integral

R ∞
y(i)=−∞ for regression and a finite summation∑l

y(i)=1 for classification. For notational
simplicity we maintain the integral sign for both cases with the understanding that itis over a con-
tinuous or discrete measureµ, depending on the topology ofY . Note that (3) and its maximizer
are computable without any labeled data. All that is required are the classifiers (as black boxes),
unlabeled datax(1), . . . ,x(n), and the marginal label distributionp(y).
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Besides being a diagnostic tool for the predictor accuracy,θ̂mle can be used to effectively aggre-
gate f1, . . . , f j to predict the label of a new examplexnew

ŷnew = argmax
y∈Y

pθ̂mle(y | f1(x
new), . . . , fk(x

new))

= argmax
y∈Y

p(y)
k

∏
j=1

pθ̂mle
j

( f j(x
new) | y). (4)

As a result, our framework may be used to combine existing classifiers or regression models in a
completely unsupervised manner.

There are three important research questions concerning the above framework. First, what are
the statistical properties of̂θmle and R̂ (consistency, asymptotic variance). Second, how can we
efficiently solve the maximization problem (2). And third, how does the framework work in practice.
We address these three questions in Sections 4-5, 6, 7 respectively, Wedevote the rest of the current
section to examine some important special cases of (2)-(3) and consider some generalizations in the
next section.

2.1 Non-Collaborative Estimation of the Risks

In the non-collaborative case we estimate the risk of each one of the predictors f1, . . . , fk separately.
This reduces the problem to that of estimating the risk of a single predictor, which is repeatedk
times for each one of the predictors. We thus assume in this subsection the framework (1)-(3) with
k = 1 with no loss of generality. For simplicity we denote the single predictor byf rather thanf1
and denoteg = g1 andŷ(i) = ŷ(i)

1 . The corresponding simplified expressions are

R̂( f ; ŷ(1), . . . , ŷ(n)) = g(θ̂mle(ŷ(1), . . . , ŷ(n))),

θ̂mle(ŷ(1), . . . , ŷ(n)) = argmax
θ

n

∑
i=1

log
Z

Y

pθ(ŷ
(i)|y(i))p(y(i))dµ(y(i)) (5)

whereŷ(i) = f (x(i)).
We consider below several important special cases.

2.1.1 CLASSIFICATION

Assuming l labelsY = {1, . . . , l}, the classifierf defines a multivariate Bernoulli distribution
pθ(ŷ|y) mapping the true labely to ŷ

pθ(ŷ|y) = θŷ,y. (6)

whereθ is the stochastic confusion matrix or noise model corresponding to the classifier f . In this
case, the relationship between the riskR( f ) and the parameterθ is

R( f ) = 1− ∑
y∈Y

θyy p(y). (7)
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Equations (6)-(7) may be simplified by assuming a symmetric error distribution (Cover and Thomas,
2005)

pθ(ŷ|y) = θI(ŷ=y)
(

1−θ
l −1

)I(ŷ6=y)

, (8)

R( f ) = 1−θ

whereI is the indicator function andθ ∈ [0,1] is a scalar corresponding to the classifier accuracy.
Estimatingθ by maximizing (5), with (6) or (8) substitutingpθ completes the risk estimation task.

In the simple binary casel = 2,Y = {1,2} with the symmetric noise model (8) the loglikelihood

ℓ(θ) =
n

∑
i=1

log
2

∑
y(i)=1

θI(ŷ(i)=y(i))(1−θ)I(ŷ(i) 6=y(i))p(y(i))

may be shown to have the following closed form maximizer

θ̂mle =
p(y = 1)−m/n
2p(y = 1)−1

. (9)

wherem
def
= |{i ∈ {1, . . . ,n} : ŷ(i) = 2}|. The estimator (9) works well in practice and is shown to be

a consistent estimator in the next section (i.e., it converges to the true parameter value). In cases
where the symmetric noise model (8) does not hold, using (9) to estimate the classification risk may
be misleading. For example, in some cases (9) may be negative. In these cases, using the more
general model (6) instead of (8) should provide more accurate results.We discuss this further from
theoretical and experimental perspectives in Sections 4-5, and 7 respectively.

2.1.2 REGRESSION

Assuming a regression equation

y = ax+ ε, ε ∼ N(0,τ2)

and an estimated regression model or predictor ˆy = a′x we have

ŷ = a′x = a′a−1(y− ε) = θy−θε

whereθ = a′a−1. Thus, in the regression case the distributionpθ(ŷ|y) and the relationship between
the risk and the parameterR( f ) = g(θ) are

pθ(ŷ|y) = (2πθ2τ2)−1/2exp

(

−(ŷ−θy)2

2θ2τ2

)

, (10)

R( f |y) = bias2( f )+Var( f ) = (1−θ)2y2 +θ2τ2,

R( f ) = θ2τ2 +(1−θ)2E p(y)(y
2).

Note that we consider regression as a stochastic estimator in that it predictsy = a′x+ ε or y|x ∼
N(a′x,τ2).
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Assumingp(y) = N(µy,σ2
y) (as is often done in regression analysis) we have

pθ(ŷ
(i)) =

Z

R

pθ(ŷ
(i)|y)p(y)dy= (2πθ2τ22πσ2

y)
−1/2

Z

R

exp

(

−(ŷ−θy)2

2θ2τ2 − (y−µy)
2

2σ2
y

)

dy (11)

=
1

θ
√

2π(τ2 +σ2
y)

exp

(

(ŷ(i))2

2θ2τ2

(

σ2
y

σ2
y + τ2 −1

)

+
µ2

y

2σ2
y

(

τ2

σ2
y + τ2 −1

)

+
ŷ(i)µy

θ
(

τ2 +σ2
y

)

)

where we used the following lemma in the last equation.

Lemma 1 (e.g., Papoulis, 1984)

Z ∞

−∞
Ae−Bx2+Cx+D dx= A

√

π
B

exp
(

C2/4B+D
)

where A,B,C,D are constants that do not depend on x.

In this case the loglikelihood simplifies to

ℓ(θ) = −nlog
(

θ
√

2π(τ2 +σ2
y)
)

−
(

∑n
i=1(ŷ

(i))2

2(τ2 +σ2
y)

)

1
θ2 +

(

µy ∑n
i=1 ŷ(i)

τ2 +σ2
y

)

1
θ
−n

µ2
y

2(σ2
y + τ2)

which can be shown to have the following closed form maximizer

θ̂mle = − µy ∑n
i=1 ŷ(i)

2n(τ2 +σ2
y)

±

√

√

√

√

(

µy ∑n
i=1 ŷ(i)

)2

4n2(τ2 +σ2
y)

2 +
∑n

i=1(ŷ
(i))2

n(τ2 +σ2
y)

where the two roots correspond to the two cases whereθ = a′/a > 0 andθ = a′/a < 0.
The univariate regression case described above may be extended to multiple explanatory vari-

ables, that is,y = Ax+ ε wherey,x,ε are vectors andA is a matrix. This is an interesting extension
which falls beyond the scope of the current paper.

2.1.3 NOISY GAUSSIAN CHANNEL

In this case our predictorf corresponds to a noisy channel mapping a real valued signaly to its noisy
versionŷ. The aim is to estimate the mean squared error or noise levelR( f ) = E‖y− ŷ‖2. In this
case the distributionpθ(ŷ|y) and the relationship between the risk and the parameterR( f ) = g(θ)
are

pθ(ŷ|y) = (2πθ2)−1/2exp

(

−(ŷ−y)2

2θ2

)

,

R( f |y) = θ2,

R( f ) = θ2E p(y)(y).

The loglikelihood and other details in this case are straightforward variationson the linear re-
gression case described above. We therefore concentrate in this paper on the classification and linear
regression cases.
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As mentioned above, in both classification and regression, estimating the risksfor k ≥ 2 pre-
dictors rather than a single one may proceed by repeating the optimization process described above
for each predictor separately. That isR̂( f j) = g j(θ̂mle

j ) whereθ̂mle
1 , . . . , θ̂mle

k are estimated by max-
imizing k different loglikelihood functions. In some cases the convergence rate tothe true risks
can be accelerated by jointly estimating the risksR( f1), . . . ,R( fk) in a collaborative fashion. Such
collaborative estimation is possible under some assumptions on the statistical dependency between
the noise processes defining thek predictors. We describe below such an assumption followed by a
description of more general cases.

2.2 Collaborative Estimation of the Risks: Conditionally IndependentPredictors

We have previously seen how to estimate the risks ofk predictors by separately applying (1) to each
predictor. If the predictors are known to be conditionally independent given the true label, that is,
pθ(ŷ1, . . . , ŷk|y) = ∏ j pθ j (ŷ j |y) the loglikelihood (3) simplifies to

ℓ(θ) =
n

∑
i=1

log
Z

Y

k

∏
j=1

pθ j (ŷ
(i)
j |y(i))p(y(i))dµ(y(i)), where ŷ(i)

j = f j(x
(i)) (12)

andpθ j above is (6) or (8) for classification and (10) for regression. Maximizing the loglikelihood
(12) jointly overθ1, . . . ,θk results in estimatorŝR( f1), . . . , R̂( fk) that converge to the true value faster
than the non-collaborative MLE (5) (more on this in Section 7). Equation (12) does not have a closed
form maximizer requiring the use of iterative computational techniques.

The conditional independence of the predictors is a much weaker conditionthan the indepen-
dence of the predictors which is very unlikely to hold. In our case, each predictor f j has its own
stochastic noise operatorTj(r,s) = p(ŷ = r|y = s) (regression) or matrix[Tj ]rs = p j(ŷ = r|y = s)
(classification) whereT1, . . . ,Tk may be arbitrarily specified. In particular, some predictors may be
similar, for example,Ti ≈ Tj , and some may be different, for example,Ti 6≈ Tj . The conditional
independence assumption that we make in this subsection is that conditioned onthe latent labely
the predictions of the predictors proceed stochastically according toT1, . . . ,Tk in an independent
manner.

Figure 1 displays the loglikelihood functionsℓ(θ) for three different data set sizesn= 100,250,
500. As the sizen of the unlabeled data grows the curves become steeper andθ̂mle

n approachθtrue.
Figure 2 displays a similar figure fork = 1 in the case of regression.
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Figure 1: A plot of the loglikelihood functionsℓ(θ) in the case of classification fork = 1 (left,
θtrue = 0.75) andk = 2 (right, θtrue = (0.8,0.6)⊤). The loglikelihood was constructed
based on random samples of unlabeled data with sizesn= 100,250,500 (left) andn= 250
(right) andp(y = 1) = 0.75. In the left panel they values of the curves were scaled so
their maxima would be aligned. Fork = 1 the estimatorŝθmle (and their errors|θ̂mle−
0.75|) for n = 100,250,500 are 0.6633 (0.0867), 0.8061 (0.0561), 0.765 (0.0153). As
additional unlabeled examples are added the loglikelihood curves become steeper and
their maximizers become more accurate and closer toθtrue.
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Figure 2: A plot of the loglikelihood functionℓ(θ) in the case of regression fork = 1 with
θtrue = 0.3, τ = 1, µy = 0 andσy = 0.2. As additional unlabeled examples are added the
loglikelihood curve become steeper and their maximizers get closer to the true parameter
θtrue resulting in a more accurate risk estimate.
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In the case of regression (12) involves an integral over a product ofk+1 Gaussians, assuming
thaty∼ N(µy,σ2

y). In this case the integral in (12) simplifies to

pθ(ŷ
(i)
1 , . . . , ŷ(i)

k ) =
Z ∞

−∞

(

k

∏
j=1

1

θ jτ
√

2π
e
−
(

ŷ(i)
j −θ j y(i)

)2
/

2θ2
j τ2
)

1

σy
√

2π
e
−(y(i)−µy)

2
/

2σ2
y dy(i)

=
1

τk(
√

2π)
k+1σy ∏k

j=1 θ j

Z ∞

−∞
exp



−1
2





(

y(i)−µy

σy

)2

+
k

∑
j=1

(

y(i)

τ
−

ŷ(i)
j

τθ j

)2





 dy(i)

=

R ∞
−∞ exp

(

−1
2

(

1
σ2

y
+ k

τ2

)

(y(i))2 +

(

µy

σ2
y
+∑k

j=1
ŷ(i)

j

τ2θ j

)

y(i)− 1
2

(

µ2
y

σ2
y
+∑k

j=1
(ŷ(i)

j )2

τ2θ2
j

))

τk(
√

2π)
k+1σy ∏k

j=1 θ j

=

√
π
[

1
2

(

1
σ2

y
+ k

τ2

)]−1/2

τk(
√

2π)k+1σy ∏k
j=1 θ j

exp











(

µy

σ2
y
+∑k

j=1
ŷ(i)

j

τ2θ j

)2

2
(

1
σ2

y
+ k

τ2

) −
k

∑
j=1

(ŷ(i)
j )2

2τ2θ2
j

−
µ2

y

2σ2
y











(13)

where the last equation was obtained using Lemma 1 concerning Gaussian integrals. Note that
this equation does not have a closed form maximizer requiring the use of iterative computational
techniques.

2.3 Collaborative Estimation of the Risks: Conditionally Correlated Predictors

In some cases the conditional independence assumption made in the previoussubsection does not
hold and the factorization (12) is violated. In this section, we discuss how to relax this assumption
in the classification case. A similar approach may also be used for regression. We omit the details
here due to notational clarity.

There are several ways to relax the conditional independence assumption. Most popular, per-
haps, is the mechanism of hierarchical loglinear models for categorical data (Bishop et al., 1975).
For example, generalizing our conditional independence assumption to second-order interaction
log-linear models we have

logp(ŷ1, . . . , ŷk|y) = αy +
l

∑
i=1

βi,ŷi ,y + ∑
i< j

γi, j,ŷi ,ŷ j ,y (14)

where the following ANOVA-type parameter constraints are needed (Bishopet al., 1975)

0 = ∑̂
yi

βi,ŷi ,y ∀i,y, (15)

0 = ∑̂
yi

γi, j,ŷi ,ŷ j ,y = ∑̂
y j

γi, j,ŷi ,ŷ j ,y ∀i, j,y.

Theβ parameters in (14) correspond to the order-1 interaction between the variablesŷ1, . . . , ŷk,
conditioned ony. They correspond to theθi in the independent formulation (6)-(8). Theγ parameters
capture two-way interactions which do not appear in the conditionally independent case. Indeed,
settingγi, j,ŷi ,ŷ j ,y = 0 retrieves the independent models (6)-(8).
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In the case of classification, the number of degrees of freedom or freeunconstrained parameters
in (14) depends on whether the number of classes is 2 or more and what additional assumptions exist
onβ andγ. For example, assuming that the probability offi , f j making an error depends on the true
classy but not on the predicted classes ˆyi , ŷ j results in ak+k2 parameters. Relaxing that assumption
but assuming binary classification results in 2k+ 4k2 parameters. The estimation and aggregation
techniques described in Section 2.1 work as before with a slight modification of replacing (6)-(8)
with variations based on (14) and enforcing the constraints (15).

Equation (14) captures two-way interactions but cannot model higher order interactions. How-
ever, three-way and higher order interaction models are straightforward generalizations of (14) cul-
minating in the full loglinear model which does not make any assumption on the statistical depen-
dency of the noise operatorsT1, . . . ,Tk. However, as we weaken the assumptions underlying the
loglinear models and add higher order interactions the number of parametersincreases adding to
the difficulty in estimating the risksR( f1), . . . ,R( fk).

In our experiments on real world data (see Section 7), it is often the case that maximizing the
loglikelihood under the conditionally independent assumption (12) providesadequate accuracy and
there is no need for the more general (14)-(15). Nevertheless, we include here the case of loglinear
models as it may be necessary in some situations.

3. Extensions: Missing Values, Active Learning, and Semi-Supervised Learning

In this section, we discuss extensions to the current framework. Specifically, we consider extending
the framework to the cases of missing values, active and semi-supervised learning.

Occasionally, some predictors are unable to provide their output over specific data points. That
is assuming a data setx(1), . . . ,x(n) each predictor may provide output on an arbitrary subset of the
data points{ f j(x(i)) : i ∈ Sj}, whereSj ⊂ {1, . . . ,n}, j = 1, . . . ,k.

Commonly referred to as a missing value situation, this scenario may apply in cases where dif-
ferent parts of the unlabeled data are available to the different predictors at test time due to privacy,
computational complexity, or communication cost. Another example where this scenario applies is
active learning where operatingf j involves a certain costc j ≥ 0 and it is not advantageous to operate
all predictors with the same frequency for the purpose of estimating the risksR( f1), . . . ,R( fk). Such
is the case whenf j corresponds to judgments obtained from human experts or expensive machinery
that is busy serving multiple clients. Active learning fits into this situation withSj denoting the set
of selected data points for each predictor.

We proceed in this case by defining indicatorsβ ji denoting whether predictorj is available
to emit f j(x(i)). The risk estimation proceeds as before with the observed likelihood modifiedto
account for the missing values.

In the case of collaborative estimation with conditional independence, the estimator and log-
likelihood become

θ̂mle
n = argmax

θ
ℓ(θ),

ℓ(θ) =
n

∑
i=1

log ∑
r:βri =0

Z

Y

pθ(ŷ
(i)
1 , . . . , ŷ(i)

k )dµ(ŷ(i)
r ) (16)

=
n

∑
i=1

log ∑
r:βri =0

ZZ

Y 2
pθ(ŷ

(i)
1 , . . . , ŷ(i)

k |y(i))p(y(i))dµ(ŷ(i)
r )dµ(y(i))
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wherepθ may be further simplified using the non-collaborative approach, or using the collaborative
approach with conditional independence or loglinear model assumptions.

In the case of semi-supervised learning a small set of labeled data is augmented by a large set
of unlabeled data. In this case our framework remains as before with the likelihood summing over
the observed labeled and unlabeled data. For example, in the case of collaborative estimation with
conditional independence we have

ℓ(θ) =
n

∑
i=1

log
Z

Y

k

∏
j=1

pθ j (ŷ
(i)
j |y(i))p(y(i))dµ(y(i))+

m

∑
i=n+1

log
k

∏
j=1

pθ j (ŷ
(i)
j |y(i))p(y(i)).

The different variations concerning missing values, active learning, semi-supervised learning,
and non-collaborative or collaborative estimation with conditionally independent or correlated noise
processes can all be combined in different ways to provide the appropriate likelihood function. This
provides substantial modeling flexibility.

4. Consistency of̂θmle
n and R̂( f j)

In this and the next section we consider the statistical behavior of the estimatorθ̂mle
n defined in

(2) and the risk estimator̂R( f j) = g j(θ̂mle) defined in (1). The analysis is conducted under the

assumption that the vectors of observed predictors outputs ˆy(i) = (ŷ(i)
1 , . . . , ŷ(i)

k ) are iid samples from
the distribution

pθ(ŷ) = pθ(ŷ1, . . . , ŷk) =
Z

Y

pθ(ŷ1, . . . , ŷk|y)p(y)dµ(y).

We start by investigating whether estimatorθ̂mle in (2) converges to the true parameter value.
More formally, strong consistency of the estimatorθ̂mle

n = θ̂(ŷ(1), . . . , ŷ(n)), ŷ(1), . . . , ŷ(n) iid∼ pθ0 is
defined as strong convergence of the estimator toθ0 asn→ ∞ (Ferguson, 1996)

lim
n→∞

θ̂mle
n (ŷ(1), . . . , ŷ(n)) = θ0 with probability 1.

In other words as the number of samplesn grows, the estimator will surely converge to the true
parameterθ0 governing the data generation process.

Assuming that the risksR( f j) = g j(θ) are defined using continuous functionsg j , strong consis-
tency ofθ̂mle implies strong convergence ofR̂( f j) to R( f j). This is due to the fact that continuity
preserves limits. Indeed, as theg j functions are continuous in both the classification and regression
cases, strong consistency of the risk estimatorsR̂( f j) reduces to strong consistency of the estimators
θ̂mle.

It is well known that the maximum likelihood estimator is often strongly consistent. Consider,
for example, the following theorem.

Proposition 2 (e.g., Ferguson, 1996)Let ŷ(1), . . . , ŷ(n) iid∼ pθ0, θ0 ∈ Θ. If the following conditions
hold

1. Θ is compact (compactness)
2. pθ(ŷ) is upper semi-continuous inθ for all ŷ (continuity)
3. There exists a function K(ŷ) such thatE pθ0

|K(ŷ)| < ∞ (boundedness)
and logpθ(ŷ)− logpθ0(ŷ) ≤ K(ŷ) ∀ŷ ∀θ

4. For all θ and sufficiently smallρ > 0, sup|θ′−θ|<ρ pθ′(ŷ) is (measurability)
measurable in̂y

5. pθ ≡ pθ0 ⇒ θ = θ0 (identifiability)
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then the maximum likelihood estimator is strongly consistent, that is,θ̂mle → θ0 as n→ ∞ with
probability 1.

Note thatpθ(ŷ) in the proposition above corresponds to
R

Y pθ(ŷ|y)p(y)dµ(y) in our framework.

That is the MLE operates on the observed data or predictor output ˆy(1), . . . , ŷ(n) that is sampled iid
from the distributionpθ0(ŷ) =

R

Y pθ0(ŷ|y)p(y)dµ(y).
Of the five conditions above, the last condition of identifiability is the only one that is truly prob-

lematic. The first condition of compactness is trivially satisfied in the case of classification. In the
case of regression it is satisfied assuming that the regression parameter and model parameter are fi-
nite anda 6= 0 as the estimator̂θmle will eventually lie in a compact set. The second condition of con-
tinuity is trivially satisfied in both classification and regression as the function

R

Y pθ(ŷ|y)p(y)dµ(y)
is continuous inθ onceŷ is fixed. The third condition is trivially satisfied for classification (finite
valuedy). In the case of regression due to conditions 1,2 (compactness and semi-continuity) we
can replace the quantifier∀θ with a particular valueθ′ ∈ Θ representing worst case situation in the
bound of the logarithm difference. Then, the boundK may be realized by the difference of log
terms (with respect to that worst caseθ′) whose expectation converges to the KL divergence which
in turn is never∞ for Gaussian distributions or its derivatives. The fourth condition of measurability
follows aspθ is specified in terms of compositions, summations, multiplications, and point-wise
limits of well-known measurable functions.

The fifth condition of identifiability states that ifpθ(ŷ) andpθ0(ŷ) are identical as functions, that
is, they are identical for every value of ˆy, then necessarilyθ = θ0. This condition does not hold in
general and needs to be verified in each one of the special cases.

We start with establishing consistency in the case of classification where we rely on a symmetric
noise model (8). The non-symmetric case (6) is more complicated and is treatedafterwards. We
conclude the consistency discussion with an examination of the regression case.

4.1 Consistency of Classification Risk Estimation

Proposition 3 Let f1, . . . , fk be classifiers fi :X →Y , |Y |= l, with conditionally independent noise
processes described by(8). If the classifiers are weak learners, that is,1/l < 1−err( fi) < 1 and
p(y) is not uniform the unsupervised collaborative diagnosis model is identifiable.

Corollary 4 Let f1, . . . , fk be classifiers fi : X → Y with |Y | = l and noise processes described by
(8). If the classifiers are weak learners, that is,1/l < 1−err( fi) < 1, and p(y) is not uniform the
unsupervised non-collaborative diagnosis model is identifiable.

Proof Proving identifiability in the non-collaborative case proceeds by invoking Proposition 3
(whose proof is given below) withk = 1 separately for each classifier. The conditional indepen-
dence assumption in Proposition 3 becomes redundant in this case of a singleclassifier, resulting in
identifiability of pθ j (ŷ j) for eachj = 1, . . . ,k

Corollary 5 Under the assumptions of Proposition 3 or Corollary 4 the unsupervised maximum
likelihood estimator is consistent, that is,

P
(

lim
n→∞

θ̂mle
n (ŷ(1), . . . ,y(n)) = (θtrue

1 , . . . ,θtrue
k )

)

= 1.
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Consequentially, assuming that R( f j) = g j(θ), j = 1, . . . ,k with continuous gj we also have

P
(

lim
n→∞

R̂( f j ;y
(1), . . . ,y(n)) = R( f j), ∀ j = 1, . . . ,k

)

= 1.

Proof Proposition 3 or Corollary 4 establishes identifiability, which in conjunction with Proposi-
tion 2 proves the corollary.

Proof (for Proposition 3) We prove identifiability by induction onk. In the base case ofk = 1, we
have a set ofl equations, corresponding toi = 1,2. . . l ,

pθ(ŷ1 = i) = p(y = i)θ1 +

(

∑
j 6=i

p(y = j)

)

(1−θ1)

(l −1)

= p(y = i)θ1 +(1− p(y = i))
(1−θ1)

(l −1)

=
θ1(l p(y = i)−1)+1− p(y = i)

(l −1)

from which we can see that ifη 6= θ andp(y = i) 6= 1/l thenpθ(ŷ1) 6= pη(ŷ1). This proves identifi-
ability for the base case ofk = 1.

Next, we assume identifiability holds fork and prove that it holds fork+ 1. We do so by
deriving a contradiction from the assumption that identifiability holds fork but not fork+ 1. We
denote the parameters corresponding to thek labelers by the vectorsθ,η∈ [0,1]k and the parameters
corresponding the additionalk+1 labeler byθk+1,ηk+1.

In the case ofk classifiers we have

pθ(ŷ1, . . . , ŷk) =
l

∑
i=1

pθ(ŷ1, . . . , ŷk|y = i)p(y = i) =
l

∑
i=1

G(Ai ,θ)

where

G(Ai ,θ)
def
= p(y = i) ∏

j∈Ai

θ j · ∏
j 6∈Ai

(1−θ j)

(l −1)
,

Ai
def
= { j ∈ {1,2...,k} : ŷ j = i}.

Note that theA1, . . . ,Al form a partition of{1, . . . ,k}, that is, they are disjoint and their union is
{1, . . . ,k}.

In order to have unidentifiability for thek+1 classifiers we need(θ,θk+1) 6= (η,ηk+1) and the
following l equations (corresponding to ˆyk+1 = 1,2, . . . , l ) to hold for any ˆy1, . . . , ŷk which corre-

1335



DONMEZ, LEBANON AND BALASUBRAMANIAN

sponds to any partitionA1, . . . ,Al

θk+1G(A1,θ)+
(1−θk+1)

(l −1) ∑
i 6=1

G(Ai ,θ) = ηk+1G(A1,η)+
(1−ηk+1)

(l −1) ∑
i 6=1

G(Ai ,η),

θk+1G(A2,θ)+
(1−θk+1)

(l −1) ∑
i 6=2

G(Ai ,θ) = ηk+1G(A2,η)+
(1−ηk+1)

(l −1) ∑
i 6=2

G(Ai ,η),

...

θk+1G(Al ,θ)+
(1−θk+1)

(l −1) ∑
i 6=l

G(Ai ,θ) = ηk+1G(Al ,η)+
(1−ηk+1)

(l −1) ∑
i 6=l

G(Ai ,η).

We consider two cases in which(θ,θk+1) 6= (η,ηk+1): (a) θ 6= η, and (b)θ = η,θk+1 6= ηk+1.
In the case of (a) we add thel equations above which marginalizes ˆyk+1 out of pθ(ŷ1, . . . , ŷk, ŷk+1)
andpη(ŷ1, . . . , ŷk, ŷk+1) to provide

l

∑
i=1

G(Ai ,θ) =
l

∑
i=1

G(Ai ,η)

which together withθ 6= η contradicts the identifiability for the case ofk classifiers.
In case (b) we have from thel equations above

θk+1G(At ,θ)+
1−θk+1

l −1

(

l

∑
i=1

G(Ai ,θ)−G(At ,θ)

)

= ηk+1G(At ,η)+
1−ηk+1

l −1

(

l

∑
i=1

G(Ai ,η)−G(At ,η)

)

for anyt ∈ {1, . . . , l} which simplifies to

0 = (θk+1−ηk+1)

(

lG(At ,θ)−
l

∑
i=1

G(Ai ,θ)

)

t = 1, . . . ,k.

As we assume at this point thatθk+1 6= ηk+1 the above equality entails

lG(At ,θ) =
l

∑
i=1

G(Ai ,θ). (17)

We show that (17) cannot hold by examining separately the casesp(y= t) > 1/l andp(y= t) < 1/l .
Recall that there exists at for which p(y = t) 6= 1/l since the proposition requires thatp(y) is not
uniform.

If p(y = t) > 1/l we chooseAt = {1, . . . ,k} and obtain

l p(y = t)
k

∏
j=1

θ j = ∑
i 6=t

p(y = i)
k

∏
j=1

1−θ j

l −1
+ p(y = t)

k

∏
j=1

θ j

(l −1)p(y = t)
k

∏
j=1

θ j = (1− p(y = t))
k

∏
j=1

1−θ j

l −1

p(y = t)
k

∏
j=1

θ j =
(1− p(y = t))

(l −1)

k

∏
j=1

1−θ j

l −1
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which cannot hold as the term on the left hand side is necessarily larger than the term on the right
hand side (ifp(y = t) > 1/l andθ j > 1/l ). In the casep(y = t) < 1/l we chooseAs = {1, . . . ,k},
s 6= t to obtain

l p(y = t)
k

∏
j=1

1−θ j

l −1
= ∑

i 6=s

p(y = i)
k

∏
j=1

1−θ j

l −1
+ p(y = s)

k

∏
j=1

θ j

(l p(y = t)− p(y 6= s))
k

∏
j=1

1−θ j

l −1
= p(y = s)

k

∏
j=1

θ j

which cannot hold as the term on the left hand side is necessarily smaller thanthe term on the right
hand side (ifp(y = t) < 1/l andθ j > 1/l ).

Since we derived a contradiction to the fact that we havek-identifiability but notk+1 identifia-
bility, the induction step is proven which establishes identifiability for anyk≥ 1.

The conditions asserted above thatp(y) 6= 1/l and 1/l < 1−err( fi) < 1 are intuitive. If they
are violated a certain symmetry may emerge which renders the model non-identifiable and the MLE
estimator not consistent.

In the case of the non-collaborative estimation for binary classification with the non-symmetric
noise model, the matrixθ in (6) is a 2×2 matrix with two degrees of freedom as each row sums to
one. In particular we haveθ11 = pθ(ŷ = 1|y = 1), θ12 = pθ(ŷ = 1|y = 2), θ21 = pθ(ŷ = 2|y = 1),
θ22 = pθ(ŷ= 2|y= 2) with the overall riskR( f ) = 1−θ11p(y= 1)−θ22p(y= 2). Unfortunately, the
matrixθ is not identifiable in this case and neither is the scalar parameterθ11p(y= 1)+θ22p(y= 2)
that can be used to characterize the risk.

We can, however, obtain a consistent estimator forθ (and therefore forR( f )) by first showing
that the parameterθ11p(y = 1)−θ22p(y = 2) is identifiable and then taking the intersection of two
such estimators.

Lemma 6 In the case of the non-collaborative estimation for binary classification with thenon-
symmetric noise model and p(y) 6= 0, the parameterθ11p(y = 1)−θ22p(y = 2) is identifiable.

Proof For two different parameterizationsθ,η we have

pθ(ŷ = 1) = p(y = 1)θ11+(1− p(y = 1))(1−θ22), (18)

pθ(ŷ = 2) = p(y = 1)(1−θ11)+(1− p(y = 1))θ22 (19)

and

pη(ŷ = 1) = p(y = 1)η11+(1− p(y = 1))(1−η22), (20)

pη(ŷ = 2) = p(y = 1)(1−η11)+(1− p(y = 1))η22. (21)

Equating the two Equations (18) and (20) we have

p(y = 1)(θ11+θ22)+1− p(y = 1)−θ22 = p(y = 1)(η11+η22)+1− p(y = 1)−η22

p(y = 1)θ11− (1− p(y = 1))θ22 = p(y = 1)η11− (1− p(y = 1))η22

p(y = 1)θ11− p(y = 2)θ22 = p(y = 1)η11− p(y = 2)η22
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Similarly, equating Equation (19) and Equation (21) also results inp(y = 1)θ11− p(y = 2)θ22 =
p(y = 1)η11− p(y = 2)η22. As a result, we have

pθ ≡ pη ⇒ p(y = 1)θ11− p(y = 2)θ22 = p(y = 1)η11− p(y = 2)η22.

The above lemma indicates that we can use the maximum likelihood method to obtain a consis-
tent estimator for the parameterθ11p(y = 1)−θ22p(y = 2). Unfortunately the parameterθ11p(y =
1)−θ22p(y= 2) does not have a clear probabilistic interpretation and does not directly characterize
the risk. As the following proposition shows we can obtain a consistent estimator for the riskR( f )
if we have two populations of unlabeled data drawn from distributions with two distinct marginals
p1(y) andp2(y).

Proposition 7 Consider the case of the non-collaborative estimation of binary classification risk
with the non-symmetric noise model. If we have access to two unlabeled datasets drawn indepen-
dently from two distributions with different marginals, that is,

x(1), . . . ,x(n) iid∼ p1(x) = ∑
y

p(x|y)p1(y),

x′(1), . . . ,x′(m) iid∼ p2(x) = ∑
y

p(x|y)p2(y)

we can obtain a consistent estimator for the classification risk R( f ).

Proof Operating the classifierf on both sets of unlabeled data we get two sets of observed clas-
sifier outputs ˆy(1), . . . , ŷ(n), ŷ′(1), . . . , ŷ′(m) whereŷ(i) iid∼ ∑y pθ(ŷ|y)p1(y) andŷ′(i)

iid∼ ∑y pθ(ŷ|y)p2(y).
In particular, note that the marginal distributionsp1(y) and p2(y) are different but the parameter
matrix θ is the same in both cases as we operate the same classifier on samples from the same class
conditional distributionp(x|y).

Based on Lemma 6 we construct a consistent estimator forp1(y = 1)θ11− p1(y = 2)θ22 by
maximizing the likelihood of ˆy(1), . . . , ŷ(n). Similarly, we construct a consistent estimator forp2(y=
1)θ11− p2(y = 2)θ22 by maximizing the likelihood of ˆy′(1), . . . , ŷ′(m). Note thatp1(y = 1)θ11−
p1(y = 2)θ22 andp2(y = 1)θ11− p2(y = 2)θ22 describe two lines in the 2-D space(θ11,θ22). Since
the true value ofθ11,θ22 represent a point in that 2-D space belonging to both lines, it is neces-
sarily the intersection of both lines (the lines cannot be parallel since their linear coefficients are
distributions which are assumed to be different).

As n andm increase to infinity, the two estimators converge to the true parameter values. As a
result, the intersection of the two lines described by the two estimators converges to the true values
of (θ11,θ22) thus allowing reconstruction of the matrixθ and the riskR( f ).

Clearly, the conditions for consistency in the asymmetric case are more restricted than in the
symmetric case. However, situations such as in Proposition 7 are not necessarily unrealistic. In
many cases it is possible to identify two unlabeled sets with different distributions. For example, if
y denotes a medical condition, it may be possible to obtain two unlabeled sets fromtwo different

1338



ESTIMATING CLASSIFICATION AND REGRESSIONERRORS WITHOUTLABELS

hospitals or two different regions with different marginal distribution corresponding to the frequency
of the medical condition.

As indicated in the previous section, the risk estimation framework may be extended beyond
non-collaborative estimation and collaborative conditionally independent estimation. In these ex-
tensions, the conditions for identifiability need to be determined separately, in asimilar way to
Corollary 4. A systematic way to do so may be obtained by noting that the identifiability equations

0 = pθ(ŷ1, . . . , ŷk)− pη(ŷ1, . . . , ŷk) ∀ŷ1, . . . , ŷk

is a system of polynomial equations in(θ,η). As a result, demonstrating lack of identifiability
becomes equivalent to obtaining a solution to a system of polynomial equations. Using Hilbert’s
Nullstellensatz theorem we have that a solution to a polynomial system exists if thepolynomial
system defines a proper ideal of the ring of polynomials (Cox et al., 2006). As k increases the
chance of identifiability failing decays dramatically as we have a system oflk polynomials with 2k
variables. Such an over-determined system with substantially more equationsthan variables is very
unlikely to have a solution.

These observations serve as both an interesting theoretical connection toalgebraic geometry as
well as a practical tool due to the substantial research in computational algebraic geometry. See
Sturmfels (2002) for a survey of computational algorithms and software associated with systems of
polynomial equations.

4.2 Consistency of Regression Risk Estimation

In this section, we prove the consistency of the maximum likelihood estimatorθ̂mle in the regression
case. As in the classification case our proof centers on establishing identifiability.

Proposition 8 Let f1, . . . , fk be regression models fi(x) = a′ix with y∼N(µy,σ2
y), y= ax+ε. Assum-

ing that a6= 0 the unsupervised collaborative estimation model assuming conditionally independent
noise processes(12) is identifiable.

Corollary 9 Let f1, . . . , fk be regression models fi(x)= a′ix with y∼N(µy,σ2
y), y= ax+ε. Assuming

that a 6= 0 the unsupervised non-collaborative estimation model(12) is identifiable.

Proof Proving identifiability in the non-collaborative case proceeds by invoking Proposition 8
(whose proof is given below) withk = 1 separately for each regression model. The conditional
independence assumption in Proposition 8 becomes redundant in this case of a single predictor, re-
sulting in identifiability ofpθ j (ŷ j) for eachj = 1, . . . ,k.

Corollary 10 Under the assumptions of Proposition 8 or Corollary 9 the unsupervised maximum
likelihood estimator is consistent, that is,

P
(

lim
n→∞

θ̂mle
n (ŷ(1), . . . ,y(n)) = (θtrue

1 , . . . ,θtrue
k )

)

= 1.

Consequentially, assuming that R( f j) = g j(θ), j = 1, . . . ,k with continuous gj we also have

P
(

lim
n→∞

R̂( f j ;y
(1), . . . ,y(n)) = R( f j), ∀ j = 1, . . . ,k

)

= 1.
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Proof Proposition 8 or Corollary 9 establish identifiability, which in conjunction with Proposition 2
completes the proof.

Proof (of Proposition 8).
We will proceed, as in the case of classification, with induction on the number of predictorsk.

In the base case ofk = 1 we have derivedpθ1(ŷ1) in Equation (11). Substituting in it ˆy1 = 0 we get

Pθ1(ŷ1 = 0) =
1

θ1

√

2π(τ2 +σ2
y)

exp

(

µ2
y

2σ2
y

(

τ2

σ2
y + τ2 −1

))

,

Pη1(ŷ1 = 0) =
1

η1

√

2π(τ2 +σ2
y)

exp

(

µ2
y

2σ2
y

(

τ2

σ2
y + τ2 −1

))

.

The above expression leads toθ1 6= η1 ⇒ pθ1(ŷ1 = 0) 6= pη1(ŷ1 = 0) which implies identifiability.
In the induction step we assume identifiability holds fork and we prove that it holds also fork+1

by deriving a contradiction to the assumption that it does not hold. We assumethat identifiability
fails in the case ofk+1 due to differing parameter values, that is,

p(θ,θk+1)(ŷ1, . . . , ŷk, ŷk+1) = p(η,ηk+1)(ŷ1, . . . , ŷk, ŷk+1) ∀ŷ j ∈ R j = 1, . . . ,k+1 (22)

with (θ,θk+1) 6= (η,ηk+1) whereθ,η ∈ R
k. There are two cases which we consider separately: (a)

θ 6= η and (b)θ = η.
In case (a) we marginalize both sides of (22) with respect to ˆyk+1 which leads to a contradiction

to our assumption that identifiability holds fork
Z ∞

−∞
p(θ,θk+1)(ŷ1, . . . , ŷk, ŷk+1)dŷk+1 =

Z ∞

−∞
p(η,ηk+1)(ŷ1, . . . , ŷk, ŷk+1)dŷk+1

pθ(ŷ1, . . . , ŷk) = pη(ŷ1, . . . , ŷk).

In case (b)θ = η andθk+1 6= ηk+1. Substituting ˆy1 = · · · = ŷk+1 = 0 in (22) (see (13) for a
derivation) we have

P(θ,θk+1)(ŷ1 = 0, . . . , ŷk+1 = 0) = P(η,ηk+1)(ŷ1 = 0, . . . , ŷk+1 = 0)

or

√
π
[

1
2

(

1
σ2

y
+ k+1

τ2

)]−1/2

τk+1(
√

2π)k+2σyθk+1 ∏k
j=1 θ j

exp







(

µy

σ2
y

)2

2
(

1
σ2

y
+ k+1

τ2

) −
µ2

y

2σ2
y







=

√
π
[

1
2

(

1
σ2

y
+ k+1

τ2

)]−1/2

τk+1(
√

2π)k+2σyηk+1 ∏k
j=1 η j

exp







(

µy

σ2
y

)2

2
(

1
σ2

y
+ k+1

τ2

) −
µ2

y

2σ2
y







which cannot hold ifθ = η but θk+1 6= ηk+1.
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5. Asymptotic Variance of θ̂mle
n and R̂

A standard result from statistics is that the MLE has an asymptotically normal distribution with
mean vectorθtrue and variance matrix(nJ(θtrue))−1, whereJ(θ) is the r × r Fisher information
matrix

J(θ) = E pθ{∇ logpθ(ŷ)(∇ logpθ(ŷ))
⊤}

with ∇ logpθ(ŷ) represents ther × 1 gradient vector of logpθ(ŷ) with respect toθ. Stated more
formally, we have the following convergence in distribution asn→ ∞ (Ferguson, 1996)

√
n(θ̂mle

n −θ0) N(0,J−1(θtrue)). (23)

It is instructive to consider the dependency of the Fisher information matrix,which corresponds
to the asymptotic estimation accuracy, onn,k, p(y),θtrue.

In the case of classification considering (8) withk = 1 andY = {1,2} it can be shown that

J(θ) =
α(2α−1)2

(θ(2α−1)−α+1)2 −
(2α−1)2(α−1)

(α−θ(2α−1))2 (24)

whereα = P(y = 1). As Figure 3 (right) demonstrates, the asymptotic accuracy of the MLE (as
indicated byJ) tends to increase with the degree of non-uniformity ofp(y). Recall that since identi-
fiability fails for a uniformp(y) the risk estimate under a uniformp(y) is not consistent. The above
derivation (24) is a quantification of that fact reflecting the added difficulty in estimating the risk as
we move closer to a uniform label distributionα → 1/2. The dependency of the asymptotic accu-
racy onθtrue is more complex, tending to favorθtrue values close to 1 or 0.5. Figure 3 (left) displays
the empirical accuracy of the estimator as a function ofp(y) andθtrue and shows remarkable simi-
larity to the contours of the Fisher information (see Section 7 for more details onthe experiments).
In particular, whenever the estimation error is high the asymptotic variance ofthe estimator is high
(or equivalently, the Fisher information is low). For instance, the top contours in the left panel have
smaller estimation error on the top right than in the top left. Similarly, the top contoursin the right
panel have smaller asymptotic variance on the top right than on the top left. We thus conclude that
the Fisher information provides practical, as well as theoretical insight into the estimation accuracy.

Similar calculations ofJ(θtrue) for collaborative classification case or for the regression case
result in more complicated but straightforward derivations. It is important torealize that consistency
is ensured for any identifiableθtrue, p(y). The value(J(θtrue))−1 is the constant dominating that
consistency convergence.

A similar distributional analysis can be derived for the risk estimator. ApplyingCramer’s theo-
rem (Ferguson, 1996) tôR( f j) = g j(θ̂mle), j = 1, . . . ,k and (23) we have

√
n(R̂( f )−R( f )) N

(

0,∇g(θtrue)J(θtrue)∇g(θtrue)⊤
)

whereR( f ), R̂( f ) are the vectors of true risk and risk estimates for the different predictorsf1, . . . , fk
and∇g(θtrue) is the Jacobian matrix of the mappingg = (g1, . . . ,gk) evaluated atθtrue.

For example, in the case of classification withk = 1 we haveR( f j) = 1−θ j and the Jacobian
matrix is−1, leading to an identical asymptotic distribution to that of the MLE (23)-(24)

√
n(R̂( f )−R( f )) N

(

0,

(

α(2α−1)2

(θ(2α−1)−α+1)2 −
(2α−1)2(α−1)

(α−θ(2α−1))2

)−1
)

.
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6. Optimization Algorithms

Recall that we obtained closed forms for the likelihood maximizers in the cases of non-collaborative
estimation for binary classifiers and non-collaborative estimation for one dimensional regression
models. The lack of closed form maximizers in the other cases necessitates iterative optimization
techniques.

One class of technique for optimizing nonlinear loglikelihoods is the class of gradient based
methods such as gradient descent, conjugate gradients, and quasi Newton methods. These tech-
niques proceed iteratively following a search direction; they often have good performance and are
easy to derive. The main difficulty with their implementation is the derivation of the loglikelihood
and its derivatives. For example, in the case of collaborative estimation of classification (l ≥ 2) with
symmetric noise model and missing values the loglikelihood gradient is

∂ℓ

∂θ j
=

n

∑
i=1

∑
y(i)

p(y(i)) ∑
r:βri =0

∑
ŷ(i)

r

∏p6= j hpi(I(ŷ
(i)
j = y(i))−θ j)((l −1)θ j)

I(ŷ(i)
j =y(i))−1(1−θ j)

−I(ŷ(i)
j =y(i))

∑y(i) p(y(i))∑r:βri =0 ∑ŷ(i)
r

∏k
p=1hpi

,

hpi = θI(ŷ(i)
p =y(i))

p

(

1−θp

l −1

)I(ŷ(i)
p 6=y(i))

Similar derivations may be obtained in the other cases in a straightforward manner.
An alternative iterative optimization technique for finding the MLE is expectationmaximization

(EM). The derivation of the EM update equations is again relatively straightforward. For example
in the above case of collaborative estimation of classification (l ≥ 2) with symmetric noise model
and missing values the EM update equations are

θ(t+1) = argmax
θ

n

∑
i=1

∑
y(i)

∑
r:βri =0

∑
ŷ(i)

r

q(t)(ŷ(i)
r ,y(i))

k

∑
j=1

logp j(ŷ
(i)
j |y(i))

=
1
n

n

∑
i=1

∑
y(i)

∑
r:βri =0

∑
ŷ(i)

r

q(t)(ŷ(i)
r ,y(i))I(ŷ(i)

j = y(i)),

q(t)(ŷ(i)
r ,y(i)) =

p(y(i))∏k
j=1 p j(ŷ

(i)
j |y(i),θ(t))

∑y(i) ∑r:βri =0 ∑ŷ(i)
r

p(y(i))∏k
j=1 p j(ŷ

(i)
j |y(i),θ(t))

.

whereq(t) is the conditional distribution defining the EM bound over the loglikelihood function.
If all the classifiers are always observed, that is,βri = 1 ∀r, i Equation (16) reverts to (12), and

the loglikelihood and its gradient may be efficiently computed inO(nlk2). In the case of missing
classifier outputs a naive computation of the gradient or EM step is exponential in the number of
missing valuesR= maxi ∑r βri . This, however, can be improved by careful dynamic programming.
For example, the nested summations over the unobserved values in the gradient may be computed
using a variation of the elimination algorithm inO(nlk2R) time.

7. Empirical Evaluation

We start with some experiments demonstrating our framework using synthetic data. These experi-
ments are meant to examine the behavior of the estimators in a controlled setting. Wethen describe
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Figure 3: Left: Average value of|θ̂mle
n −θtrue| as a function ofθtrue andp(y= 1) for k = 1 classifier

andn= 500 (computed over a uniform spaced grid of 15×15 points). The plot illustrates
the increased accuracy obtained by a less uniformP(y). Right: Fisher informationJ(θ)
for k = 1 as a function ofθtrue andP(y). The asymptotic variance of the estimator is
J−1(θ) which closely matches the experimental result in the left panel.

some experiments using several real world data sets. In these experimentswe examine the behav-
ior of the estimators in an uncontrolled setting where some of the underlying assumptions may be
violated. In most of the experiments we consider the mean absolute error (mae) or theℓ1 error as a
metric that measures the estimation quality

mae(θ̂mle,θtrue) =
1
k

k

∑
i=1

∣

∣θtrue
i − θ̂mle

i

∣

∣.

In the non-collaborative case (which is equivalent to the collaborative case withk= 1) this translates
into the absolute deviation of the estimated parameter from the true parameter.

In Figure 3 (left) we display mae(θ̂mle,θtrue) for classification withk = 1 as a function ofθtrue

and p(y) for n = 500 simulated data points. The estimation error, while overall relatively small,
decays asp(y) diverges from the uniform distribution. The dependency onθtrue indicates that the
error is worst forθtrue around 0.75 and it decays as|θtrue− 0.75| increases with a larger decay
attributed to higherθtrue. These observations are remarkably consistent with the developed theory
as Figure 3 (right) shows by demonstrating the value of the inverse asymptoticvarianceJ(θ) which
agrees nicely with the empirical measurement in the left panel.

Figure 4 (left) contains a scatter plot contrasting values ofθtrue andθ̂mle for k = 1 classifier and
p(y = 1) = 0.8. The estimator was constructed based on 500 simulated data points. We observe
a symmetric Gaussian-like distribution of estimated valuesθ̂mle, conditioned on specific values of
θtrue. This is in agreement with the theory predicting an asymptotic Gaussian distribution for the
mle, centered around the true valueθtrue. A similar observation is made in Figure 5 (left) which
contains a similar scatter plot in the regression case (k = 1, σy = 1, n = 1000). In both figures, the
striped effect is due to selection ofθtrue over a discrete grid with a small perturbation for increased
visibility. Similar plots of larger and smallern values (not shown) verify that the variation ofθ̂mle
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Figure 4: Left: Scatter plot contrasting the true and predicted values ofθ in the case of a single clas-
sifierk = 1, p(y = 1) = 0.8, andn = 500 unlabeled examples. The displayed points were
perturbed for improved visualization and the striped effect is due to empirical evaluation
over a discrete grid ofθtrue values. Right: mae(θ̂mle,θtrue) as a function of the number
of unlabeled examples for different number of classifiers (θtrue

i = p(y = 1) = 0.75) in the
collaborative case. The estimation error decreases as more classifiers are used due to the
collaborative nature of the estimation process.

aroundθtrue decreases asn increases. This agrees with the theory that indicates aO(n−1) rate of
decay for the variance of the asymptotic distribution.

Figures 4 and 5 (right) show the mae(θ̂mle,θtrue) for variousk values in classification and re-
gression, respectively. In classification,θ̂mle was obtained by sampling data fromp(y = 1) =
0.75 = θtrue

i ,∀i. In regression, the data was sampled from the regression equation withθtrue
i = 1

and p(y) = N(0,1). In both cases, the mae error decays withn as expected from the consistency
proof and withk as a result of the collaborative estimation effect.

To further illustrate the effect of the collaboration on the estimation accuracy, we estimated the
error rates individually (non-collaboratively) for 10 predictors and compared their mae to that of
the collaborative estimation case in Figure 6. This shows that each of the classifiers have a similar
mae curve when non-collaborative estimation is used. However, all of these curves are higher than
the collaborative mae curve (solid black line in Figure 6) demonstrating the improvement of the
collaborative process.

We compare in Figure 7 the proposed unsupervised estimation framework withsupervised es-
timation that takes advantage of labeled information to determine the classifier accuracy. We con-
ducted this study using equal number of examples for both supervised andunsupervised cases.
Clearly, this is an unfair comparison if we assume that labeled data is unavailable or is difficult to
obtain. The unsupervised estimation does not perform as well as the supervised version especially
in general. Nevertheless, the unsupervised estimation accuracy improvessignificantly with increas-
ing number of classifiers and finally reaches the performance level of thesupervised case due to
collaborative estimation.

In Figure 8 we report the effect of misspecification of the marginalp(y) on the estimation
accuracy. More specifically, we generated synthetic data using a true marginal distribution but
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Figure 5: Left: Scatter plot contrasting the true and predicted values ofθ in the case of a single
regression modelk = 1, σy = 1, andn = 1000 unlabeled examples. The displayed points
were perturbed for improved visualization and the striped effect is due to empirical eval-
uation over a discrete grid ofθtrue values. Right: mae(θ̂mle,θtrue) as a function of the
number of unlabeled examples for different number of regression models(θtrue

i = σy = 1)
in the collaborative case. The estimation error decreases as more regression models are
used due to the collaborative nature of the estimation process.
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collaborative vs. non−collaborative estimation for k=10

 

 

Figure 6: Comparison of collaborative and non-collaborative estimation for k = 10 classifiers.
mae(θ̂mle,θtrue) as a function ofn is reported forθtrue

i = 0.75 ∀ki andP(y = 1) = 0.75.
The colored lines represent the estimation error for each individual classifier and the solid
black line represents the collaborative estimation for all classifiers. The estimation con-
verges to the truth faster in the collaborative case than in the non-collaborative case.
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Figure 7: Comparison of supervised and unsupervised estimation for different values of classifiers
with k = 1,3,5,10. Supervised estimation uses the true labels to determine the accuracy
of the classifiers whereas in the unsupervised case the estimation proceeds according to
the collaborative estimation framework. Despite the fact that the supervisedcase uses
labels the unsupervised framework reaches similar levels by increasing thenumber of
classifiers.

estimated the classifier accuracy on this data assuming a misspecified marginal. Generally, the
estimation framework is robust to small perturbations while over-specifying tends to hurt less than
under-specifying (misspecification closer to uniform distribution).

Figure 9 shows the mean prediction accuracy for the unsupervised predictor combination scheme
in (4) for synthetic data. The left panel displays classification accuracyand the right panel displays
the regression accuracy as measured by 1− 1

m ∑m
i=1(ŷ

new
i − ynew

i )2. The graphs show that in both
cases the accuracy increases withk andn in accordance with the theory and the risk estimation
experiments. The parameterθtrue

i was chosen uniformly in the range(0.5,1), andP(y = 1) = 0.75
for classification andθtrue

i = 0.3, p(y) = N(0,1) in the case of regression.
We also experimented with the natural language understanding data set introduced in Snow

et al. (2008). This data was created using the Amazon Mechanical Turk (AMT) for data annotation.
AMT is an online tool that uses paid employees to complete small labeling and annotation tasks.
We selected two binary tasks from this data: the textual entailment recognition (RTE) and temporal
event recognition (TEMP) tasks. In the former task, the annotator is presented with two sentences
for each question. He needs to decide whether the second sentence canbe inferred from the first.
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Figure 8: The figure compares the estimator accuracy assuming that the marginal p(y) is misspec-
ified. The plots draw mae(θ̂mle,θtrue) as a function ofn for k = 1 andθtrue = 0.75 when
Ptrue(y= 1) = 0.8 (left) andPtrue(y= 1) = 0.75 (right). Small perturbations inPtrue(y) do
not affect the results significantly; interestingly over-specifyingPtrue(y= 1) leads to more
accurate estimates than under-specifying (misspecification closer to uniform distribution)
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Figure 9: Mean prediction accuracy for the unsupervised predictor combination scheme in (4) for synthetic
data. The left panel displays classification accuracy and the right panel displays the regression ac-
curacy as measured by 1− 1

m ∑m
i=1(ŷ

new
i −ynew

i )2. The graphs show that in both cases the accuracy
increases withk andn in accordance with the theory and the risk estimation experiments.

The original data set contains 800 sentence pairs with a total of 165 annotators. The latter task
involves recognizing the temporal relation in verb-event pairs. The annotator is forced to decide
whether the event described by the first verb occurs before or afterthe second. The original data
set contains 462 pairs and 76 annotators. In both data sets, most of the annotators have completed
only a handful of tasks. Therefore, we selected a subset of these annotators for each task such that
each annotator has completed at least 100 problems and has differing accuracies. The data sets
contain ground truth labels which are used solely to calculate the annotator accuracy and not used

1347



DONMEZ, LEBANON AND BALASUBRAMANIAN

20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of unlabeled examples

M
ea

n 
ab

so
lu

te
 e

rr
or

 o
f t

he
 M

LE

 

 

k=3
k=4
k=5

10 40 70 100 130 160 190
0

0.05

0.1

0.15

0.2

0.24

Number of unlabeled examples

M
ea

n 
ab

so
lu

te
 e

rr
or

 o
f t

he
 M

LE

 

 

k=3
k=4
k=5

Figure 10: mae(θ̂mle,θtrue) as a function ofn for different number of annotatorsk on RTE
(left) and TEMP (right) data sets. Left:n = 100, P(y = 1) = 0.5 and θtrue =
{0.85,0.92,0.58,0.5,0.51}. Right: n = 190, P(y = 1) = 0.56 and θtrue =
{0.93,0.92,0.54,0.44,0.92}. The classifiers were added in the order specified.

at all during the estimation process. For efficiency, we selected only the instances for which all
annotators provide an answer. This resulted inn = 100,190 for RTE and TEMP, respectively.

In Figure 10 we display mae(θtrue, θ̂mle) for these data sets as function ofn for different values of
k. These plots generated from real-world data show similar trend to the synthetic experiments. The
estimation errors decay to 0 asn increases and generally tend to decrease ask increases. This corre-
spondence is remarkable since two of the labelers have worse than random accuracy and since it is
not clear whether the conditional independence assumption actually holds in reality for these data
sets. Nevertheless, the collaborative estimation error behaves in accordance with the synthetic data
experiments and the theory. This shows that the estimation framework is robust to the breakdown
of the assumption that the classifier accuracy must be higher than random choice. Also, whether the
conditional independence assumption holds or not is not crucial in this case.

We further experimented with classifiers trained on different representations of the same data
set and estimated their error rates. We adopted the Ringnorm data set generated by Breiman (1996).
Ringnorm is a 2-class artificial data set with 20 dimensions where each classis drawn from a multi-
variate normal distribution. One class has zero mean and a covarianceΣ = 4I whereI is the identity
matrix. The other class has unit covariance and a meanµ = ( 2√

20
, 2√

20
, . . . , 2√

20
). The total size

is 7400. We created 5 different representations of the data by projectingit onto mutually exclusive
sets of principal components obtained by Principal Component Analysis (PCA). We trained an SVM
classifier (with 2-degree polynomial kernel) (Vapnik, 2000; Joachims, 1999) on samples from each
representation while holding out 1400 examples as the test set resulting in a total of 5 classifiers. We
tested each of the 5 classifiers on the test set and used their outputs to estimatethe corresponding
parameters. The true labels of the test set examples were used as groundtruth to calculate the mae
of the mle estimators.

The mae curves for this data set appear in Figure 11 as a function of the numbern of unlabeled
examples. When all classifiers are highly accurate (upper left panel), the collaborative unsupervised
estimator is reliable, see Figure 11(a). With a mixture of weak and strong classifiers (upper right
panel), the collaborative unsupervised estimator is also reliable. This is despite the fact that some of
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(a) Strong classifiers

0 200 400 600 800 1000 1200 1400
0.05

0.06

0.07

0.08

0.09

0.1

0.11

Number of unlabeled examples

M
ea

n 
ab

so
lu

te
 e

rr
or

 o
f t

he
 M

LE

 

 

TrueTheta = [0.47 0.74 0.47 0.75 0.81]

(b) A mixture of strong and weak classifiers
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(c) Mostly weak classifiers
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(d) Very weak classifiers

Figure 11: mae(θtrue, θ̂mle) as a function of the test set size on the Ringnorm data set.p(y = 1) =
0.47, andθtrue is indicated in the legend in each plot. The four panels represent mostly
strong classifiers (upper left), a mixture of strong and weak classifiers (upper right),
mostly weak classifiers (bottom left), and mostly very weak classifiers (bottomright).
The figure shows that the framework is robust to occasional deviations from the as-
sumption regarding better than random guess classification accuracy (upper right panel).
However, as most of the classifiers become weak or very weak, the collaborative unsu-
pervised estimation framework results in worse estimation error.

the weak classifiers in Figure 11(b) have worse than random accuracywhich violates the assump-
tions in the consistency proposition. This shows again that the estimation framework is robust to
occasional deviations from the requirement concerning better than random classification accuracies.
On the other hand, as most of the classifiers become worse (bottom row), the accuracy of the un-
supervised estimator decreases, in accordance with the theory developed in Sections 5 (recall the
Fisher information contour plot).

Our experiments thus far assumed the symmetric noise model (8). Despite it notbeing always
applicable for real world data and classifiers, it did result in good estimationaccuracy in some of the
cases described thus far. However, in some cases this assumption is grossly violated and the more
general noise model is needed (6). For this reason, we conducted two experiments using real world
data assuming the more general (6).

The first experiment concerned domain adaptation (Blitzer et al., 2007) for Amazon’s product
reviews in four different product domains: books, DVDs, electronicsand kitchen appliances. Each
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book dvd kitchen electronics 20newsgroup
training error 0.22 0.23 0.26 0.30 0.028
non-collaborative 0.04 0.04 0.08 0.06 0.006
collaborative 0.10 0.10 0.09 0.08 n/a

Figure 12: mae(θ̂mle,θtrue) for the domain adaptation (n = 1000, p(y = 1) = 0.75) and 20 news-
group (n = 15,000, p(y = 1) = 0.05 for each one-vs-all data). The unsupervised non-
collaborative estimator outperforms the collaborative estimator due to violation of the
conditional independence assumption. Both unsupervised estimators perform substan-
tially better than the baseline training error rate estimator. In both cases the results were
averaged over 50 random train test splits.

domain consists of positive (y= 1) and negative (y= 2) reviews withp(y= 1) = 0.75. The task was
to estimate the error rates of classifiers (linear SVM, Vapnik, 2000; Joachims, 1999) that are trained
on 300 examples from one domain but tested on other domains. The mae valuesfor the classification
risks are displayed in Figure 12 with the columns indicating the test domain. In thiscase, the
unsupervised non-collaborative estimator outperforms the collaborativeestimator due to violation
of the conditional independence assumption. Both unsupervised estimatorsperform substantially
better than the baseline estimator that uses the training error on one domain to predict testing error
on another domain.

In the second experiment using (6) we estimated the risk (non-collaboratively) of 20 one vs. all
classifiers (trained to predict one class) on the 20 newsgroup data (Lang, 1995). The train set size
was 1000 and the unlabeled data size was 15000. In this case the unsupervised non-collaborative
estimator returned extremely accurate risk estimators. As a comparison, the risk estimates obtained
from the training error are four times larger than the unsupervised MLE estimator (See Figure 12).

8. Discussion

We have demonstrated a collaborative framework for the estimation of classification and regression
error rates fork ≥ 1 predictors. In contrast to previous supervised risk estimation methods such
as cross validation (Duda et al., 2001), bootstrap (Efron and Tibshirani, 1997), and others (Hand,
1986), our approach is fully unsupervised and thus able to use vast collections of unlabeled data.
Other related work includes Smyth et al. (1995) and Sheng et al. (2008) which consider repeated
labeling where each instance is labeled by multiple experts and the final label isdecided based on a
majority voting scheme. However, Smyth et al. and Sheng et al. fail to address estimating the risks
of the predictors which is the main focus of our work.

We prove statistical consistency in the unsupervised case and derive theasymptotic variance.
Our experiments on synthetic data demonstrate the effectiveness of the framework and verify the
theoretical results. Experiments on real world data show robustness to underlying assumptions. The
framework may be applied to estimate additional quantities in an unsupervised manner, including
noise level in noisy communication channels (Cover and Thomas, 2005) anderror rates in structured
prediction problems.
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