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Abstract

An exceedingly large number of scientific and engineering fields are confronted with the need for
computer simulations to study complex, real world phenomena or solve challenging design prob-
lems. However, due to the computational cost of these high fidelity simulations, the use of neural
networks, kernel methods, and other surrogate modeling techniques have become indispensable.
Surrogate models are compact and cheap to evaluate, and haveproven very useful for tasks such
as optimization, design space exploration, prototyping, and sensitivity analysis. Consequently, in
many fields there is great interest in tools and techniques that facilitate the construction of such
regression models, while minimizing the computational cost and maximizing model accuracy. This
paper presents a mature, flexible, and adaptive machine learning toolkit for regression modeling
and active learning to tackle these issues. The toolkit brings together algorithms for data fitting,
model selection, sample selection (active learning), hyperparameter optimization, and distributed
computing in order to empower a domain expert to efficiently generate an accurate model for the
problem or data at hand.
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1. Background and Motivation

In many science and engineering problems researchers make heavy useof computer simulation
codes in order to replace expensive physical experiments and improve the quality and performance
of engineered products and devices. Such simulation activities are collectively referred to as com-
putational science/engineering. Unfortunately, while allowing scientists moreflexibility to study
phenomena under controlled conditions, computer simulations require a substantial investment of
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computation time. One simulation may take many minutes, hours, days or even weeks, quickly
rendering parameter studies impractical (Forrester et al., 2008; Simpson et al., 2008).

Of the different ways to deal with this problem, this paper is concerned with the construction
of simpler approximation models to predict the system performance and develop a relationship
between the system inputs and outputs. When properly constructed, theseapproximation models
mimic the behavior of the simulation accurately while being computationally cheap(er) to evalu-
ate. Different approximation methods exist, each with their relative merits. Thiswork concentrates
on the use of data-driven, global approximations using compact surrogate models (also known as
metamodels, replacement models, or response surface models). Examples include: rational func-
tions, Kriging models, Artificial Neural Networks (ANN), splines, and Support Vector Machines
(SVM). Once such a global approximation is available it is of great use forgaining insight into the
behavior of the underlying system. The surrogate may be easily queried, optimized, visualized, and
seamlessly integrated into CAD/CAE software packages.

The challenge is thus how to generate an approximation model that is as accurate as possible
over thecomplete domain of interest while minimizing the simulation cost. Solving this challenge
involves multiple sub-problems that must be addressed: how to interface with the simulation code,
how to run simulations (locally, or on a cluster or cloud), which model type to approximate the data
with and how to set the model complexity (e.g., topology of a neural network),how to estimate the
model quality and ensure the domain expert trusts the model, how to decide which simulations to
run (data collection), etc. The data collection aspect is worth emphasizing. Since data is compu-
tationally expensive to obtain and the optimal data distribution is not known up front, data points
should be selected iteratively, there where the information gain will be the greatest. A sampling
function is needed that minimizes the number of sample points selected in each iteration, yet max-
imizes the information gain of each iteration step. This process is called adaptive sampling but is
also known as active learning, or sequential design.

There is a complex dependency web between these different options anddealing with these de-
pendencies is non-trivial, particularly for a domain expert for whom the surrogate model is just an
intermediate step towards solving a larger, more important problem. Few domain experts will be
experts in the intricacies of efficient sampling and modeling strategies. Their primary concern is
obtaining an accurate replacement metamodel for their problem as fast as possible and with min-
imal overhead (Gorissen et al., 2009d). As a result these choices are often made in a pragmatic,
sometimes even ad-hoc, manner.

This paper discusses an advanced, and integrated software framework that provides a flexible
and rigorous means to tackle such problems. This work lies at the intersectionof Machine Learn-
ing/AI, Modeling and Simulation, and Distributed Computing. The methods developed are appli-
cable to any domain where a cheap, accurate, approximation is needed to replace some expensive
reference model. Our experience has been that the availability of such a framework can facilitate
the transfer of knowledge from surrogate modeling researchers and lower the barrier of entry for
domain experts.

2. SUMO Toolbox

The platform in question is the Matlab SUrrogate MOdeling (SUMO) Toolbox, illustrated in Figure
1. Given a simulation engine (Fluent, Cadence, Abaqus, HFSS, etc.) or other data source (data
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Figure 1: The SUMO Toolbox is a flexible framework for accurate global surrogate modeling and
adaptive sampling (active learning). It features a rich set of plugins, isapplicable to a wide
range of domains, and can be applied in an autonomous, black-box fashion, or under full
manual control. Written in Matlab and Java it is fully cross platform and comes with a
large (60+) number of example problems.

set, Matlab script, Java class, etc.), the toolbox drives the data source to produce a surrogate model
within the time and accuracy constraints set by the user.

The SUMO Toolbox adopts a microkernel design philosophy with many different plugins avail-
able for each of the different sub-problems:1 model types (rational functions, Kriging, splines,
SVM, ANN, etc.), hyperparameter optimization algorithms (Particle Swarm Optimization, Efficient
Global Optimization, simulated annealing, Genetic Algorithm, etc.), model selection algorithms
(cross validation, AIC, Leave-out set, etc.), sample selection (random, error based, density based,
hybrid, etc.), Design of Experiments (Latin hypercube, Box-Bhenken,etc.), and sample evaluation
methods (local, on a cluster or grid). The behavior of each software component is configurable
through a central XML file and components can easily be added, removed or replaced by custom
implementations. In addition the toolbox provides ‘meta’ plugins. For example to automatically
select the best model type for a given problem (Gorissen et al., 2009d)or to use multiple model
selection or sample selection criteria in concert (Gorissen et al., 2010).

Furthermore, there is built-in support for high performance computing. Onthe modeling side,
the model generation process can take full advantage of multi-core CPUs and even of a complete
cluster or grid. This can result in significant speedups for model types where the fitting process can
be expensive (e.g., neural networks). Likewise, sample evaluation (simulation) can occur locally
(with the option to take advantage of multi-core architectures) or on a separate compute cluster
or grid (possibly accessed through a remote head-node). All interfacing with the grid middleware

1. The full list of plugins and features can be found athttp://www.sumowiki.intec.ugent.be.
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(submission, job monitoring, rescheduling of failed/lost simulation points, etc.) ishandled transpar-
ently and automatically (see Gorissen et al., 2009c for more details). Also, thesample evaluation
component runs in parallel with the other components (non-blocking) and not sequentially. This
allows for an optimal use of computational resources.

In addition the SUMO Toolbox contains extensive logging and profiling capabilities so that the
modeling process can easily be tracked and the modeling decisions understood. Once a final model
has been generated, a GUI tool is available to visually explore the model (including derivatives and
prediction uncertainty), assess its quality, and export it for use in other software tools.

3. Applications

The SUMO Toolbox has already been applied successfully to a very wide range of applications,
including RF circuit block modeling (Gorissen et al., 2009b), hydrologicalmodeling (Couckuyt
et al., 2009), Electronic Packaging (Zhu and Franzon, 2009), aerodynamic modeling (Gorissen
et al., 2009a), process engineering (Stephens et al., 2009), and automotive data modeling (Gorissen
et al., 2010). Besides global modeling capabilities, the SUMO Toolbox also includes a powerful
optimization framework based on the Efficient Global Optimization framework developed by Jones
et al. (1998). As of version 6.1, the toolbox also contains an example of how the framework can
also be applied to solve classification problems.

In sum, the goal of the toolbox is to fill the void in machine learning software when it comes to
the challenging, costly, real-valued, problems faced in computational engineering. The toolbox is
in use successfully at various institutions and we are continuously refiningand extending the set of
available plugins as the number of applications increase. Usage instructions, design documentation,
and stable releases for all major platforms can be found athttp://www.sumo.intec.ugent.be.
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