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Abstract
Maximum entropy (Maxent) is useful in natural language processing and many other areas. Iterative
scaling (IS) methods are one of the most popular approaches to solve Maxent. With many variants
of IS methods, it is difficult to understand them and see the differences. In this paper, we create a
general and unified framework for iterative scaling methods. This framework also connects iterative
scaling and coordinate descent methods. We prove general convergence results forIS methods and
analyze their computational complexity. Based on the proposed framework, we extend a coordinate
descent method for linear SVM to Maxent. Results show that itis faster than existing iterative
scaling methods.

Keywords: maximum entropy, iterative scaling, coordinate descent, natural language processing,
optimization

1. Introduction

Maximum entropy (Maxent) is widely used in many areas such as natural language processing
(NLP) and document classification. It is suitable for problems needing probability interpretations.
For many NLP tasks, given a word sequence, we can use Maxent modelsto predict the label se-
quence with the maximal probability (Berger et al., 1996). Such tasks are different from traditional
classification problems, which assign label(s) to a single instance.

Maxent models the conditional probability as:

Pw(y|x)≡ Sw(x,y)
Tw(x)

,

Sw(x,y)≡ e∑t wt ft(x,y), Tw(x)≡∑
y

Sw(x,y),
(1)

wherex indicates a context,y is the label of the context, andw ∈ Rn is the weight vector. A real-
valued functionft(x,y) denotes thet-th feature extracted from the contextx and the labely. We
assume a finite number of features. In some cases,ft(x,y) is 0/1 to indicate a particular property.
Tw(x) is a normalization term applied to make∑yPw(y|x) = 1.
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Given an empirical probability distributioñP(x,y) obtained from training samples, Maxent min-
imizes the following negative log-likelihood:

min
w
−∑

x,y
P̃(x,y) logPw(y|x),

or equivalently,
min

w ∑
x

P̃(x) logTw(x)−∑
t

wtP̃( ft), (2)

whereP̃(x,y) = Nx,y/N, Nx,y is the number of times that(x,y) occurs in training data, andN is the
total number of training samples.̃P(x) = ∑y P̃(x,y) is the marginal probability ofx, andP̃( ft) =

∑x,y P̃(x,y) ft(x,y) is the expected value offt(x,y). To avoid overfitting the training samples, some
add a regularization term to (2) and solve:

min
w

L(w)≡min
w ∑

x
P̃(x) logTw(x)−∑

t
wtP̃( ft)+

1
2σ2 ∑

t
w2

t , (3)

whereσ is a regularization parameter. More discussion about regularization terms for Maxent can
be seen in, for example, Chen and Rosenfeld (2000). We focus on (3)in this paper because it is
strictly convex. Note that (2) is convex, but may not be strictly convex. Wecan further prove that a
unique global minimum of (3) exists. The proof, omitted here, is similar to Theorem 1 in Lin et al.
(2008).

Iterative scaling (IS) methods are popular in training Maxent models. They all share the same
property ofsolving a one-variable sub-problem at a time.Existing IS methods include general-
ized iterative scaling (GIS) by Darroch and Ratcliff (1972), improved iterative scaling (IIS) by
Della Pietra et al. (1997), and sequential conditional generalized iterative scaling (SCGIS) by Good-
man (2002). The approach by Jin et al. (2003) is also anIS method, but it assumes that every class
uses the same set of features. As this assumption is not general, in this paper we do not include
this approach for discussion. In optimization, coordinate descent (CD) is a popular method which
also solves a one-variable sub-problem at a time. With these manyIS andCD methods, it is diffi-
cult to see their differences. In Section 2, we propose a unified framework to describeIS andCD
methods from an optimization viewpoint. We further analyze the theoretical convergence as well
as computational complexity ofIS andCD methods. In particular, general linear convergence is
proved. In Section 3, based on a comparison betweenIS andCD methods, we propose a new and
more efficientCD method. These two results (a unified framework and a fasterCD method) are the
main contributions of this paper.

BesidesIS methods, numerous optimization methods have been applied to train Maxent. For
example, Liu and Nocedal (1989), Bottou (2004), Daumé (2004), Keerthi et al. (2005), McDonald
and Pereira (2006), Vishwanathan et al. (2006), Koh et al. (2007),Genkin et al. (2007), Andrew
and Gao (2007), Schraudolph et al. (2007), Gao et al. (2007), Collins et al. (2008), Lin et al. (2008)
and Friedman et al. (2008). They do not necessarily solve the optimization problem (3). Some
handle more complicated log linear models such as Conditional Random Fields (CRF), but their
approaches can be modified for Maxent. Some focus on logistic regression, which is a special form
of Maxent if the number of labels is two. Moreover, some consider the L1 regularization term∑t |wt |
in (3). Several papers have compared optimization methods for Maxent, though it is difficult to have
a complete study. Malouf (2002) compares methods for NLP data, while Minka(2003) focuses on
logistic regression for synthesis data. In this paper, we are interested in adetailed investigation of
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Iterative scaling

Sequential update

FindAt(zt) to approximate
L(w+ztet)−L(w)

SCGIS

Let At(zt) =
L(w+ztet)−L(w)

CD

Parallel update

Find a separable functionA(z)
to approximateL(w+z)−L(w)

GIS, IIS

Figure 1: An illustration of various iterative scaling methods.

IS methods because they remain one of the most used approaches to train Maxent. This fact can
be easily seen from popular NLP software. The Stanford Log-linear POS Tagger1 supports two
optimization methods, where one isIIS. The OpenNLP Maxent package (Baldridge et al., 2001)
provides only one optimization method, which isGIS.

This paper is organized as follows. In Section 2, we present a unified framework forIS/CD
methods and give theoretical results. Section 3 proposes a newCD method. Its advantages over
existingIS/CD methods are discussed. In Section 4, we investigate some implementation issues for
IS/CD methods. Section 5 presents experimental results. With a careful implementation, our CD
outperformsIS and quasi-Newton techniques. Finally, Section 6 gives discussion and conclusions.

Part of this work appears in a short conference paper (Huang et al.,2009).
Notation X, Y, andn are the numbers of contexts, class labels, and features, respectively.The

total number of nonzeros in training data and the average number of nonzeros per feature are re-
spectively

#nz≡∑
x,y

∑
t: ft(x,y)6=0

1 and l̄ ≡ #nz
n

. (4)

In this paper, we assume non-negative feature values:

ft(x,y)≥ 0, ∀t,x,y. (5)

Most NLP applications have non-negative feature values. All existingIS methods use this property.

2. A Framework for Iterative Scaling and Coordinate DescentMethods

An important characteristic ofIS andCD methods is that they solve a one-variable optimization
problem and then modify the corresponding element inw. Conceptually, the one-variable sub-
problem is related to the function reduction

L(w+ztet)−L(w),

whereet ≡ [0, . . . ,0
︸ ︷︷ ︸

t−1

,1,0, . . . ,0]T . Then IS methods differ in how they approximate the function

reduction. They can also be categorized according to whetherw’s components are updated in a
sequential or parallel way. In this section, we create a framework for these methods. A hierarchical
illustration of the framework is in Figure 1.

1. Stanford Log-linear POS Tagger can be found athttp://nlp.stanford.edu/software/tagger.shtml .
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2.1 The Framework

To introduce the framework, we separately discuss coordinate descentmethods according to whether
w is sequentially or parallely updated.

2.1.1 SEQUENTIAL UPDATE

For a sequential-update algorithm, once a one-variable sub-problem is solved, the corresponding
element inw is updated. The neww is then used to construct the next sub-problem. The procedure
is sketched in Algorithm 1. If thet-th component is selected for update, a sequentialIS method
solves the following one-variable sub-problem:

min
zt

At(zt),

whereAt(zt) is twice differentiable and bounds the function difference:

At(zt)≥ L(w+ztet)−L(w), ∀zt . (6)

We hope that by minimizingAt(zt), the resultingL(w + ztet) can be smaller thanL(w). However,
(6) is not enough to ensure this property, so we impose an additional condition

At(0) = 0 (7)

on the approximate functionAt(zt). The explanation below shows that we can strictly decrease the
function value. IfA′t(0) 6= 0 and assume ¯zt ≡ argminzt At(zt) exists, with the conditionAt(0) = 0,
we haveAt(z̄t) < 0. This property and (6) then implyL(w + z̄tet) < L(w). If A′t(0) = 0, we can
prove that∇tL(w) = 0,2 where∇tL(w) = ∂L(w)/∂wt . In this situation, the convexity ofL(w) and
∇tL(w) = 0 imply that we cannot decrease the function value by modifyingwt , so we should move
on to modify other components ofw.

A CD method can be viewed as a sequential-updateIS method. Its approximate functionAt(zt)
is simply the function difference:

ACD
t (zt) = L(w+ztet)−L(w). (8)

OtherIS methods consider approximations so thatAt(zt) is simpler for minimization. More details
are in Section 2.2. Note that the name “sequential” comes from the fact that each sub-problemAt(zt)
depends onw obtained from the previous update. Therefore, sub-problems must be sequentially
solved.

2.1.2 PARALLEL UPDATE

A parallel-updateIS method simultaneously constructsn independent one-variable sub-problems.
After (approximately) solving all of them, the whole vectorw is updated. Algorithm 2 gives the
procedure. The functionA(z), z∈ Rn, is an approximation ofL(w+z)−L(w) satisfying

A(z)≥ L(w+z)−L(w), ∀z, A(0) = 0, and A(z) =
n

∑
t=1

At(zt). (9)

2. Define a functionD(zt) ≡ A(zt)− (L(w + ztet)− L(w)). We haveD′(0) = A′(0)−∇tL(w). If ∇tL(w) 6= 0 and
A′t(0) = 0, thenD′(0) 6= 0. SinceD(0) = 0, we can find azt such thatA(zt)−(L(w+ztet)−L(w)) < 0, a contradiction
to (6).
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Algorithm 1 A sequential-updateIS method
While w is not optimal

For t = 1, . . . ,n
1. Find an approximate functionAt(zt) satisfying (6)-(7).
2. Approximately solve minzt At(zt) to getz̄t .
3. wt ← wt + z̄t .

Algorithm 2 A parallel-updateIS method
While w is not optimal

1. Find approximate functionsAt(zt) ∀zt satisfying (9).
2. Fort = 1, . . . ,n

Approximately solve minzt At(zt) to getz̄t .
3. Fort = 1, . . . ,n

wt ← wt + z̄t .

The first two conditions are similar to (6) and (7). By a similar argument, we can ensure that the
function value is strictly decreasing. The last condition indicates thatA(z) is separable, so

min
z

A(z) =
n

∑
t=1

min
zt

At(zt).

That is, we can minimizeAt(zt), ∀zt simultaneously, and then updatewt ∀t together. We show
in Section 4 that a parallel-update method possesses some nicer implementation properties than a
sequential method. However, as sequential approaches updatew as soon as a sub-problem is solved,
they often converge faster than parallel methods.

If A(z) satisfies (9), takingz = ztet implies that (6) and (7) hold forAt(zt), ∀t = 1, . . . ,n. A
parallel-update method could thus be transformed to a sequential-update method using the same
approximate function. Contrarily, a sequential-update algorithm cannot bedirectly transformed to
a parallel-update method because the summation of the inequality in (6) does notimply (9).

2.2 Existing Iterative Scaling Methods

We introduceGIS, IIS andSCGIS via the proposed framework.GIS andIIS use a parallel update, but
SCGIS is sequential. Their approximate functions aim to bound the change of the function values

L(w+z)−L(w) = ∑
x

P̃(x) log
Tw+z(x)
Tw(x)

+∑
t

Qt(zt), (10)

whereTw(x) is defined in (1) and

Qt(zt)≡
2wtzt +z2

t

2σ2 −ztP̃( ft). (11)

ThenGIS, IIS andSCGIS use similar inequalities to get approximate functions. With

Tw+z(x)
Tw(x)

=
∑ySw+z(x,y)

Tw(x)
=

∑ySw(x,y)
(
e∑t zt ft(x,y)

)

Tw(x)

=∑
y

Pw(y|x)e∑t zt ft(x,y),
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they apply logα≤ α−1 ∀α > 0 and∑yPw(y|x) = 1 to get

(10)≤∑
t

Qt(zt)+∑
x

P̃(x)

(

∑
y

Pw(y|x)e∑t zt ft(x,y)−1

)

= ∑
t

Qt(zt)+∑
x,y

P̃(x)Pw(y|x)
(

e∑t zt ft(x,y)−1
)

.

(12)

GIS defines
f #≡max

x,y
f #(x,y), f #(x,y)≡∑

t
ft(x,y),

and adds a featurefn+1(x,y) ≡ f #− f #(x,y) with zn+1 = 0. Using Jensen’s inequality and the
assumption of non-negative feature values (5),

e∑n
t=1 zt ft(x,y) = e

∑n+1
t=1

ft (x,y)
f # zt f #

(13)

≤
n+1

∑
t=1

ft(x,y)
f # ezt f #

=
n

∑
t=1

ft(x,y)
f # ezt f #

+
f #− f #(x,y)

f # =
n

∑
t=1

(

ezt f #−1
f # ft(x,y)

)

+1.

Substituting (13) into (12), the approximate function ofGIS is

AGIS(z) = ∑
t

Qt(zt)+∑
x,y

P̃(x)Pw(y|x)∑
t

(

ezt f #−1
f # ft(x,y)

)

.

Then we obtainn independent one-variable functions:

AGIS
t (zt) = Qt(zt)+

ezt f #−1
f # ∑

x,y
P̃(x)Pw(y|x) ft(x,y).

IIS assumesft(x,y)≥ 0 and applies Jensen’s inequality

e∑t zt ft(x,y) = e
∑t

ft (x,y)
f #(x,y)

zt f #(x,y) ≤∑
t

ft(x,y)
f #(x,y)

ezt f #(x,y)

on (12) to get the approximate function

AIIS
t (zt) = Qt(zt)+∑

x,y
P̃(x)Pw(y|x) ft(x,y)

ezt f #(x,y)−1
f #(x,y)

.

SCGIS is a sequential-update algorithm. It replacesf # in GIS with

f #
t ≡max

x,y
ft(x,y). (14)

Usingztet asz in (10), a derivation similar to (13) gives

ezt ft(x,y) ≤ ft(x,y)

f #
t

ezt f #
t +

f #
t − ft(x,y)

f #
t

. (15)
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The approximate function ofSCGIS is

ASCGIS
t (zt) = Qt(zt)+

ezt f #
t −1

f #
t

∑
x,y

P̃(x)Pw(y|x) ft(x,y).

As a comparison, we expandACD
t (zt) in (8) to the following form:

ACD
t (zt) = Qt(zt)+∑

x
P̃(x) log

Tw+ztet (x)
Tw(x)

(16)

= Qt(zt)+∑
x

P̃(x) log

(

1+∑
y

Pw(y|x)(ezt ft(x,y)−1)

)

, (17)

where (17) is from (1) and

Sw+ztet (x,y) = Sw(x,y)ezt ft(x,y), (18)

Tw+ztet (x) = Tw(x)+∑
y

Sw(x,y)(ezt ft(x,y)−1). (19)

A summary of approximate functions ofIS andCD methods is in Table 1.

2.3 Convergence of Iterative Scaling and Coordinate Descent Methods

The convergence ofCD methods has been well studied (e.g., Bertsekas, 1999; Luo and Tseng,
1992). However, for methods likeIS which use only an approximate function to bound the function
difference, the convergence is less studied. In this section, we generalize the linear convergence
proof in Chang et al. (2008) to show the convergence ofIS andCD methods. To begin, we consider
any convex and differentiable functionL: Rn→ R satisfying the following conditions in the set

U = {w | L(w)≤ L(w0)}, (20)

wherew0 is the initial point of anIS/CD algorithm:

1. ∇L is bi-Lipschitz: there are two positive constantsτmax andτmin such that for anyu,v ∈U ,

τmin‖u−v‖ ≤ ‖∇L(u)−∇L(v)‖ ≤ τmax‖u−v‖. (21)

2. Quadratic bound property: there is a constantK > 0 such that for anyu,v ∈U

|L(u)−L(v)−∇L(v)T(u−v)| ≤ K‖u−v‖2. (22)

The following theorem proves that (3) satisfies these two conditions.

Theorem 1 L(w) defined in(3) satisfies(21)and (22).

The proof is in Section 7.1.
We denotewk as the point after each iteration of the while loop in Algorithm 1 or 2. Hence

from wk to wk+1, n sub-problems are solved. The following theorem establishes our main linear
convergence result forIS methods.
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AGIS
t (zt) = Qt(zt)+

ezt f #−1
f # ∑

x,y
P̃(x)Pw(y|x) ft(x,y)

AIIS
t (zt) = Qt(zt)+∑

x,y
P̃(x)Pw(y|x) ft(x,y)

ezt f #(x,y)−1
f #(x,y)

ASCGIS
t (zt) = Qt(zt)+

ezt f #
t −1

f #
t

∑
x,y

P̃(x)Pw(y|x) ft(x,y)

ACD
t (zt) = Qt(zt)+∑

x
P̃(x) log

(

1+∑
y

Pw(y|x)(ezt ft(x,y)−1)

)

Table 1: Approximate functions ofIS andCD methods.

Theorem 2 Consider Algorithm 1 or 2 to minimize a convex and twice differentiable function L(w).
Assume L(w) attains a unique global minimumw∗ and L(w) satisfies(21)-(22). If the algorithm
satisfies

‖wk+1−wk‖ ≥ η‖∇L(wk)‖, (23)

L(wk+1)−L(wk) ≤ −ν‖wk+1−wk‖2, (24)

for some positive constantsη and ν, then the sequence{wk} generated by the algorithm linearly
converges. That is, there is a constant µ∈ (0,1) such that

L(wk+1)−L(w∗)≤ (1−µ)(L(wk)−L(w∗)),∀k.

The proof is in Section 7.2. Note that this theorem is not restricted toL(w) in (3). Next, we show that
IS/CD methods discussed in this paper satisfy (23)-(24), so they all possess the linear convergence
property.

Theorem 3 Consider L(w) defined in(3) and assume At(zt) is exactly minimized inGIS, IIS,
SCGIS, or CD. Then{wk} satisfies(23)-(24).

The proof is in Section 7.3.

2.4 Solving One-variable Sub-problems

After generating approximate functions,GIS, IIS, SCGIS andCD need to minimize one-variable
sub-problems. In general, the approximate function possesses a uniqueglobal minimum. We do not
discuss some rare situations where this property does not hold (for example, minzt AGIS

t (zt) has an
optimal solutionzt =−∞ if P̃( ft) = 0 and the regularization term is not considered).

Without the regularization term, byA′t(zt) = 0, GIS andSCGIS both have a simple closed-form
solution of the sub-problem:

zt =
1
f s log

(

P̃( ft)

∑x,y P̃(x)Pw(y|x) ft(x,y)

)

, where f s≡
{

f # if s is GIS,

f #
t if s is SCGIS.

(25)
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For IIS, the termezt f #(x,y) in AIIS
t (zt) depends onx andy, so it does not have a closed-form solution.

CD does not have a closed-form solution either.
With the regularization term, the sub-problems no longer have a closed-formsolution. While

many optimization methods can be applied, in this section we analyze the complexity ofusing
the Newton method to solve one-variable sub-problems. The Newton method minimizesAs

t (zt) by
iteratively updatingzt :

zt ← zt −As
t
′(zt)/As

t
′′(zt), (26)

wheres indicates anIS or aCD method. This iterative procedure may diverge, so we often need a
line search procedure to ensure the function value is decreasing (Fletcher, 1987, p. 47). Due to the
many variants of line searches, here we discuss only the cost for findingthe Newton direction. The
Newton directions ofGIS andSCGIS are similar:

− As
t
′(zt)

As
t
′′(zt)

=−
Q′t(zt)+ezt f s

∑x,y P̃(x)Pw(y|x) ft(x,y)

Q′′t (zt)+ f sezt f s ∑x,y P̃(x)Pw(y|x) ft(x,y)
, (27)

where f s is defined in (25). ForIIS, the Newton direction is:

− AIIS
t
′
(zt)

AIIS
t
′′
(zt)

=−
Q′t(zt)+∑x,y P̃(x)Pw(y|x) ft(x,y)ezt f #(x,y)

Q′′t (zt)+∑x,y P̃(x)Pw(y|x) ft(x,y) f #(x,y)ezt f #(x,y)
. (28)

The Newton directions ofCD is:

− ACD
t
′
(zt)

ACD
t
′′
(zt)

, (29)

where

ACD
t
′
(zt) = Q′t(zt)+∑

x,y
P̃(x)Pw+ztet (y|x) ft(x,y), (30)

ACD
t
′′
(zt) = Q′′t (zt)+∑

x,y
P̃(x)Pw+ztet (y|x) ft(x,y)

2−

∑
x

P̃(x)

(

∑
y

Pw+ztet (y|x) ft(x,y)

)2

. (31)

Eqs. (27)-(28) can be easily obtained using formulas in Table 1. We showdetails of deriving
(30)-(31) in Section 7.4.

We separate the complexity analysis to two parts. One is on calculating ofPw(y|x) ∀x,y, and the
other is on the remaining operations.

ForPw(y|x)= Sw(x,y)/Tw(x), parallel-update approaches calculate it once everynsub-problems.
To getSw(x,y) ∀x,y, the operation

∑
t

wt ft(x,y) ∀x,y

needsO(#nz) time. If XY≤ #nz, the cost for obtainingPw(y|x), ∀x,y is O(#nz), whereX andY are
respectively the numbers of contexts and labels.3 Therefore, on average each sub-problem shares
O(#nz/n) = O(l̄) cost. For sequential-update methods, they expensively updatePw(y|x) after every

3. If XY > #nz, one can calculateewt ft (x,y), ∀ ft(x,y) 6= 0 and then the product∏t: ft (x,y)6=0ewt ft (x,y). The complexity is
still O(#nz).
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CD GIS SCGIS IIS

1st Newton direction O(l̄) O(l̄) O(l̄) O(l̄)
Each subsequent Newton directionO(l̄) O(1) O(1) O(l̄)

Table 2: Cost for finding Newton directions if the Newton method is used to minimizeAt(zt).

sub-problem. A trick to trade memory for time is to store allSw(x,y) andTw(x), and use (18) and
(19). SinceSw+ztet (x,y) = Sw(x,y), if ft(x,y) = 0, this procedure reduces the number of operations
from theO(#nz) operations toO(l̄). However, it needsO(XY) extra spaces to store allSw(x,y) and
Tw(x). This trick has been used in theSCGIS method (Goodman, 2002).

From (27) and (28), all remaining operations ofGIS, IIS, andSCGIS involve the calculation of

∑
x,y

P̃(x)Pw(y|x) ft(x,y)(a function ofzt), (32)

which needsO(l̄) under a fixedt. ForGIS andSCGIS, since the function ofzt in (32) is independent
of x,y, we can calculate and store∑x,y P̃(x)Pw(y|x) ft(x,y) in the first Newton iteration. Therefore,
the overall cost (including calculatingPw(y|x)) is O(l̄) for the first Newton iteration andO(1) for
each subsequent iteration. ForIIS, becauseezt f #(x,y) in (28) depends onx andy, we needO(l̄) for
every Newton direction. ForCD, it calculatesPw+ztet (y|x) for every zt , so the cost per Newton
direction isO(l̄). We summarize the cost for solving sub-problems ofGIS, SCGIS, IIS andCD in
Table 2.

2.5 Related Work

Our framework forIS methods includes two important components:

1. ApproximateL(w+ztet)−L(w) or L(w+z)−L(w) to obtain functionsAt(zt).

2. Sequentially or parallely minimize approximate functions.

Each component has been well discussed in many places. However, ours may be the first to investi-
gateIS methods in detail. Below we discuss some related work.

The closest work to our framework might be Lange et al. (2000) from thestatistics community.
They discuss “optimization transfer” algorithms which constructAt(zt) or A(z) satisfying conditions
similar to (6)-(7) or (9). However, they do not require one-variable sub-problems, soA(z) of a
parallel-update method may be non-separable. They discuss that “optimization transfer” algorithms
can be traced back to EM (Expectation Maximization). In their paper, the functionAt(zt) or A(z) is
called a “surrogate” function or a “majorizing” function. Some also call it an“auxiliary” function.
Lange et al. (2000) further discuss several ways to constructA(z), where Jensen’s inequality used
in (13) is one of them. An extension along this line of research is by Zhang etal. (2007).

The concept of sequential- and parallel-update algorithms is well known in many subjects. For
example, these algorithms are used in iterative methods for solving linear systems(Jacobi and
Gauss-Seidel methods). Some recent machine learning works which mentionthem include, for
example, Collins et al. (2002) and Dudı́k et al. (2004). Dud́ık et al. (2004) propose a variant ofIS
methods for L1-regularized maximum entropy. They consider both sequential- and parallel-update
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algorithms using certain approximate functions. Their sequential methods greedily choose coordi-
nates minimizingAt(zt), while ours in Section 2.1.1 chooses coordinates cyclicly.

Regarding the convergence, if the sub-problem has a closed-form solution like (25), it is easy to
apply the result in Lange et al. (2000). However, the case with regularization is more complicated.
For example, Dud́ık et al. (2004) point out that Goodman (2002) does not give a “completeproof
of convergence.” Note that the strict decrease of function values following conditions (6)-(7) or (9)
does not imply the convergence to the optimal function value. In Section 2.3, we prove not only the
global convergence but also the linear convergence for a general class ofIS/CD methods.

3. Comparison and a New Coordinate Descent Method

Using the framework in Section 2, we compareCD and IS methods in this section. Based on the
comparison, we propose a new and fastCD method.

3.1 Comparison of Iterative Scaling and Coordinate Descent Methods

An IS or CD method falls into a place between two extreme designs:

At(zt) a loose bound ⇐⇒ At(zt) a tight bound
Easy to minimizeAt(zt) Hard to minimizeAt(zt)

That is, there is a tradeoff between the tightness to bound the function difference and the hardness
to solve the sub-problem. To check howIS andCD methods fit into this explanation, we obtain the
following relationship of their approximate functions:

ACD
t (zt)≤ ASCGIS

t (zt)≤ AGIS
t (zt),

ACD
t (zt)≤ AIIS

t (zt)≤ AGIS
t (zt) ∀ zt .

(33)

The derivation is in Section 7.5. From (33),CD considers more accurate sub-problems thanSCGIS
andGIS. However, when solving the sub-problem, from Table 2,CD’s each Newton step takes more
time. The same situation occurs in comparingIIS andGIS.

The above discussion indicates that while a tightAt(zt) can give faster convergence by handling
fewer sub-problems, the total time may not be less due to the higher cost of each sub-problem.

3.2 A Fast Coordinate Descent Method

Based on the discussion in Section 3.1, we develop aCD method which is cheaper in solving each
sub-problem but still enjoys fast final convergence. This method is modified from Chang et al.
(2008), aCD approach for linear SVM. They approximately minimizeACD

t (zt) by applying only one
Newton iteration. This approach is a truncated Newton method: In the early stage of the coordinate
descent method, we roughly minimizeACD

t (zt) but in the final stage, one Newton update can quite
accurately solve the sub-problem. The Newton direction atzt = 0 is

d =− ACD
t
′
(0)

ACD
t
′′
(0)

. (34)

We discuss in Section 2.4 that the update rule (26) may not decrease the function value. Hence
we need a line search procedure to findλ ≥ 0 such thatzt = λd satisfies the following sufficient
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Algorithm 3 A fast coordinate descent method for Maxent
• Chooseβ ∈ (0,1) andγ ∈ (0,1/2). Give initial w and calculateSw(x,y), Tw(x), ∀x,y.
• While w is not optimal

– For t = 1, . . . ,n
1. Calculate the Newton direction

d =−ACD
t
′
(0)/ACD

t
′′
(0)

=
−
(

∑x,y P̃(x)Pw(y|x) ft(x,y)+ wt
σ2

)

∑x,y P̃(x)Pw(y|x) ft(x,y)2−∑x P̃(x)
(

∑yPw(y|x) ft(x,y)
)2

+ 1
σ2

,

where

Pw(y|x) =
Sw(x,y)
Tw(x)

.

2. Whileλ = 1,β,β2, . . .
(a) Letzt = λd
(b) Calculate

ACD
t (zt) = Qt(zt)+∑

x
P̃(x) log

(

1+∑
y

Sw(x,y)
Tw(x)

(ezt ft(x,y)−1)

)

(c) If ACD
t (zt)≤ γztACD

t
′
(0), then break.

3. wt ← wt +zt

4. UpdateSw(x,y) andTw(x) ∀x,y by (18)-(19)

decrease condition:

ACD
t (zt)−ACD

t (0) = ACD
t (zt)≤ γztA

CD
t
′
(0)≤ 0, (35)

whereγ is a constant in(0,1/2). Note thatztACD
t
′
(0) is negative under the definition ofd in (34).

Instead of (35), Grippo and Sciandrone (1999) and Chang et al. (2008) use

ACD
t (zt)≤−γz2

t (36)

as the sufficient decrease condition. We prefer (35) as it is scale-invariant. That is, ifACD
t is linearly

scaled, then (35) holds under the sameγ. In contrast,γ in (36) may need to be changed. To findλ
for (35), a simple way is by sequentially checkingλ = 1,β,β2, . . . , whereβ∈ (0,1). We chooseβ as
0.5 for experiments. The following theorem proves that the condition (35) can always be satisfied.

Theorem 4 Given the Newton direction d as in(34). There is̄λ > 0 such that zt = λd satisfies(35)
for all 0≤ λ < λ̄.

The proof is in Section 7.6. The newCD procedure is in Algorithm 3. In the rest of this paper, we
refer toCD as this new algorithm.

In Section 2.3 we prove the linear convergence ofIS/CD methods. In Section 7.7, we use the
same framework to prove that Algorithm 3 linearly converges:
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Theorem 5 Algorithm 3 satisfies(23)-(24)and linearly converges to the global optimum of(3).

As evaluatingACD
t (zt) via (17)-(19) needsO(l̄) time, the line search procedure takes

O(l̄)× (# line search steps).

This causes the cost of solving a sub-problem higher than that ofGIS/SCGIS (see Table 2). Fortu-
nately, we show that near the optimum, the line search procedure needs onlyone step:

Theorem 6 In a neighborhood of the optimal solution, the Newton direction d defined in(34) sat-
isfies the sufficient decrease condition(35)with λ = 1.

The proof is in Section 7.8. If the line search procedure succeeds atλ = 1, then the cost for each
sub-problem is similar to that ofGIS andSCGIS.

Next we show that near the optimum, one Newton direction ofCD’s tight ACD
t (zt) already re-

duces the objective functionL(w) more rapidly than directions by exactly minimizing a looseAt(zt)
of GIS, IIS or SCGIS. Thus Algorithm 3 has faster final convergence thanGIS, IIS, or SCGIS.

Theorem 7 Assumew∗ is the global optimum of(3). There is anε > 0 such that the following
result holds. For anyw satisfying‖w−w∗‖ ≤ ε, if we select an index t and generate directions

d =−ACD
t
′
(0)/ACD

t
′′
(0) and ds = argmin

zt
As

t (zt), s= GIS, IIS or SCGIS, (37)

then
δt(d) < min

(

δt(d
GIS),δt(d

IIS),δt(d
SCGIS)

)

,

where
δt(zt)≡ L(w+ztet)−L(w).

The proof is in Section 7.9. Theorems 6 and 7 show that Algorithm 3 improves upon the traditional
CD by approximately solving sub-problems, while still maintaining fast convergence. That is, it
attempts to take both advantages of the two designs mentioned in Section 3.1.

3.2.1 EFFICIENT L INE SEARCH

We propose a technique to speed up the line search procedure. We derive a functionĀCD
t (zt) so that

it is cheaper to calculate thanACD
t (zt) and satisfies̄ACD

t (zt)≥ ACD
t (zt) ∀zt . Then,

ĀCD
t (zt)≤ γztA

CD
t
′
(0) (38)

implies (35), so we can save time by replacing step 2 of Algorithm 3 with

2’. While λ = 1,β,β2, . . .
(a) Letzt = λd
(b) CalculateĀCD

t (zt)

(c) If ĀCD
t (zt)≤ γztACD

t
′
(0), then break.

(d) CalculateACD
t (zt)

(e) If ACD
t (zt)≤ γztACD

t
′
(0), then break.
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We assume non-negative feature values and obtain

ĀCD
t (zt)≡Qt(zt)+ P̃t log

(

1+
ezt f #

t −1

f #
t P̃t

∑
x,y

P̃(x)Pw(y|x) ft(x,y)

)

, (39)

where f #
t is defined in (14),

P̃t ≡∑
Ωt

P̃(x), and Ωt ≡ {x : ∃y such thatft(x,y) 6= 0}. (40)

The derivation is in Section 7.10. Because

∑
x,y

P̃(x)Pw(y|x) ft(x,y), t = 1, . . . ,n (41)

are available from findingACD
t
′
(0), gettingĀCD

t (zt) and checking (38) take onlyO(1), smaller than
O(l̄) for (35). Using logα≤ α−1 ∀α > 0, it is easy to see that

ĀCD
t (zt)≤ ASCGIS

t (zt), ∀zt .

Therefore, we can simply replaceASCGIS
t (zt) of theSCGIS method withĀCD

t (zt) to have a newIS
method.

4. Implementation Issues

In this section we analyze some implementation issues ofIS andCD methods.

4.1 Row Versus Column Format

In many Maxent applications, data are sparse with few nonzeroft(x,y). We store such data by
a sparse matrix. Among many ways to implement sparse matrices, two common ones are “row
format” and “column format.” For the row format, each(x,y) corresponds to a list of nonzero
ft(x,y), while for the column format, each featuret is associated with a list of(x,y). The loop
to access data in the row format is(x,y)→ t, while for the column format it ist → (x,y). By
(x,y)→ t we mean that the outer loop goes through(x,y) values and for each(x,y), there is an
inner loop for a list of feature values. For sequential-update algorithms such asSCGIS andCD,
as we need to maintainSw(x,y) ∀x,y via (18) after solving thet-th sub-problem, an easy access of
t ’s corresponding(x,y) elements is essential. Therefore, the column format is more suitable. In
contrast, parallel-update methods can use either row or column formats. ForGIS, we can store alln
elements of (41) before solvingn sub-problems by (25) or (27). The calculation of (41) can be done
by using the row format and a loop of(x,y)→ t. For IIS, an implementation by the row format is
more complicated due to theezt f #(x,y) term in AIIS

t (zt). Take the Newton method to solve the sub-
problem as an example. We can calculate and store (28) for allt = 1, . . . ,n by a loop of(x,y)→ t.
That is,n Newton directions are obtained together before conductingn updates.

4.2 Memory Requirement

For sequential-update methods, to save the computational time of calculatingPw(y|x), we use (18)-
(19), soSw(x,y) ∀x,y must be stored. Therefore,O(XY) storage is needed. For parallel-update
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Data set X Y n #nz
CoNLL2000-P 197,979 44 168,674 48,030,163
CoNLL2000-C 197,252 22 273,680 53,396,844
BROWN 935,137 185 626,726 601,216,661

Table 3: Statistics of NLP data (0/1 features).X: number of contexts,Y: number of class labels,n:
number of features, and #nz: number of total non-zero feature values; see (4).

methods, they also needO(XY) spaces if using the column format: To calculatee∑t wt ft(x,y) ∀x,y via
a loop oft → (x,y), we needO(XY) positions to store∑t wt ft(x,y) ∀x,y. In contrast, if using the
row format, the loop isx→ y→ t, so for each fixedx, we need onlyO(Y) spaces to storeS(x,y) ∀y
and then obtainTw(x). This advantage makes the parallel update a viable approach ifY (the number
of labels) is very large.

4.3 Number ofexpand log Operations

Many exp/log operations are needed in training a Maxent model. On most computers, exp/log
operations are much more expensive than multiplications/divisions. It is important to analyze the
number of exp/log operations inIS andCD methods.

We first discuss the number of exp operations. A simple check of (27)-(31) shows that the
numbers are the same as those in Table 2.IIS andCD needO(l̄) exp operations for every Newton
direction because they calculateezt f #(x,y) in (28) andezt ft(x,y) in (17), respectively.CD via Algorithm
3 takes only one Newton iteration, but each line search step also needsO(l̄) exp operations. If
feature values are binary,ezt ft(x,y) in (17) becomesezt , a value independent ofx,y. Thus the number
of exp operations is significantly reduced fromO(l̄) to O(1). This property implies that Algorithm
3 is more efficient if data are binary valued. In Section 5, we will confirm thisresult through
experiments.

Regarding log operations,GIS, IIS andSCGIS need none as they remove the log function in
At(zt). CD via Algorithm 3 keeps log inACD

t (zt) and requiresO(|Ωt |) log operations at each line
search step, whereΩt is defined in (40).

4.4 Permutation of Indices in Solving Sub-problems

For sequential-update methods, one does not have to follow a cyclic way to updatew1, . . . ,wn.
Chang et al. (2008) report that in theirCD method, a permutation of{1, . . . ,n} as the order for
solvingn sub-problems leads to faster convergence. For sequential-updateIS methods adopting this
strategy, the linear convergence in Theorem 2 still holds.

5. Experiments

In this section, we compareIS/CD methods to reconfirm properties discussed in earlier sections. We
consider two types of data for NLP (Natural Language Processing) applications. One is Maxent for
0/1-featured data and the other is Maxent (logistic regression) for document data with non-negative
real-valued features. Programs used for experiments in this paper are online available at
http://www.csie.ntu.edu.tw/ ˜ cjlin/liblinear/exp.html .
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(a) CoNLL2000-P
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(b) CoNLL2000-C
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(c) BROWN
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(f) BROWN
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(h) CoNLL2000-C
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Figure 2: Results on 0/1-featured data. The first row shows time versus the relative function dif-
ference (42). The second and third rows show‖∇L(w)‖ and testing performances along
time, respectively. Time is in seconds.

5.1 Maxent for 0/1-featured Data in NLP

We apply Maxent models to part of speech (POS) tagging and chunking tasks. In POS tagging,
we mark a POS tag to the word in a text based on both its definition and context. Ina chunking
task, we divide a text into syntactically correlated parts of words. That is,given words in a sentence
annotated with POS tags, we label each word with a chunk tag. Other learningmodels such as CRF
(Conditional Random Fields) may outperform Maxent for these NLP applications. However, we do
not consider other learning models as the focus of this paper is to studyIS methods for Maxent.

We useCoNLL2000 shared task data4 for chunking and POS tagging, andBROWN corpus5

for POS tagging.CoNLL2000-P indicatesCoNLL2000 for POS tagging, andCoNLL2000-C means
CoNLL2000 for chunking. CoNLL2000 data consist of Sections 15-18 of the Wall Street Journal
corpus as training data and Section 20 as testing data. For theBROWN corpus, we randomly se-

4. Data can be found athttp://www.cnts.ua.ac.be/conll2000/chunking .
5. Corpus can be found athttp://www.nltk.org .
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lect four-fifth articles for training and use the rest for testing. We omit the stylistic tag modifiers
“fw,”“tl,”“nc,”and “hl,” so the number of labels is reduced from 472 to185. Our implementation is
built upon the OpenNLP package (Baldridge et al., 2001). We use the default setting of OpenNLP
to extract binary features (0/1 values) suggested by Ratnaparkhi (1998). The OpenNLP imple-
mentation assumes that each feature indext corresponds to a unique labely. In prediction, we
approximately maximize the probability of tag sequences to the word sequencesby a beam search
(Ratnaparkhi, 1998). Table 3 lists the statistics of data sets.

We implement the following methods for comparisons.

1. GIS and SCGIS: To minimize At(zt), we run Newton updates (without line search) until
|A′t(zt)| ≤ 10−5. We can afford many Newton iterations because, according to Table 2, each
Newton direction costs onlyO(1) time.

2. CD: the coordinate descent method proposed in Section 3.2.

3. LBFGS: a limited memory quasi Newton method for general unconstrained optimization
problems (Liu and Nocedal, 1989).

4. TRON: a trust region Newton method for logistic regression (Lin et al., 2008). Weextend the
method for Maxent.

We considerLBFGS as Malouf (2002) reports that it is better than other approaches including
GIS andIIS. Lin et al. (2008) show thatTRON is faster thanLBFGS for document classification, so
we includeTRON for comparison. We excludeIIS because of its higher cost per Newton direction
thanGIS/SCGIS (see Table 2). Indeed Malouf (2002) reports thatGIS outperformsIIS. Our imple-
mentation of all methods takes the property of 0/1 features. We use the regularization parameter
σ2 = 10 as under this value Maxent models achieve good testing performances.We setβ = 0.5 and
γ = 0.001 for the line search procedure (35) inCD. The initialw of all methods is0.

We begin at checking time versus the relative difference of the function value to the optimum:

L(w)−L(w∗)
L(w∗)

, (42)

wherew∗ is the optimal solution of (3). Asw∗ is not available, we obtain a reference point satisfying
‖∇L(w)‖ ≤ 0.01. Results are in the first row of Figure 2. Next, we check these methods’gradient
values. As‖∇L(w)‖ = 0 implies thatw is the global minimum, usually‖∇L(w)‖ is used in a
stopping condition. The second row of Figure 2 shows time versus‖∇L(w)‖. We are also interested
in the time needed to achieve a reasonable testing result. We measure the performance of POS
tagging by accuracy and chunking by F1 measure. The third row of Figure 2 presents the testing
accuracy/F1 versus training time. Note that (42) and‖∇L(w)‖ in Figure 2 are both log scaled.

We give some observations from Figure 2. Among the threeIS/CD methods compared, the new
CD approach discussed in Section 3.2 is the fastest.SCGIS comes the second, whileGIS is the last.
This result is consistent with the tightness of their approximate functions; see(33). RegardingIS/CD
methods versusLBFGS/TRON, the threeIS/CD methods more quickly decrease the function value
in the beginning, butLBFGS has faster final convergence. In fact, if we draw figures with longer
training time,TRON’s final convergence is the fastest. This result is reasonable asLBFGS and
TRON respectively have superlinear and quadratic convergence, higher than the linear rate proved
in Theorem 2 forIS methods. The choice of methods thus relies on whether one prefers getting a
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Problem l n #nz σ2

astro-physic 62,369 99,757 4,834,550 8l
yahoo-japan 176,203 832,026 23,506,415 4l
rcv1 677,399 47,236 49,556,258 8l

Table 4: Statistics of document data (real-valued features).l : number of instances,n: number
of features, #nz: number of total non-zero feature values, andσ2: best regularization
parameter from five-fold cross validation.

reasonable model quickly (IS/CD methods) or accurately minimizing the function (LBFGS/TRON).
PracticallyCD/IS may be more useful as they reach the final testing accuracy rapidly. Finally, we
compareLBFGS andTRON. Surprisingly,LBFGS outperformsTRON, a result opposite to that in
Lin et al. (2008). We do not have a clear explanation yet. A difference isthat Lin et al. (2008)
deal with document data of real-valued features, but here we have 0/1-featured NLP applications.
Therefore, one should always be careful that for the same approaches, observations made on one
type of data may not extend to another.

In Section 4, we discussed a strategy of permutingn sub-problems to speed up the convergence
of sequential-updateIS methods. However, in training Maxent models for 0/1-featured NLP data,
with/without permutation gives similar performances. We find that this strategy tends to work better
if features are related. Hence we suspect that features used in POS tagging or chunking tasks are
less correlated than those in documents and the order of sub-problems is not very important.

5.2 Maxent (Logistic Regression) for Document Classification

In this section, we experiment with logistic regression on document data with non-negative real-
valued features. Chang et al. (2008) report that theirCD method is very efficient for linear SVM, but
is slightly less effective for logistic regression. They attribute the reason tothat logistic regression
requires expensive exp/log operations. In Section 4, we show that for0/1 features, the number of
IS methods’ exp operations is smaller. Experiments here help to check ifIS/CD methods are more
suitable for 0/1 features than real values.

Logistic regression is a special case of maximum entropy with two labels+1 and−1. Consider
training data{x̄i , ȳi}li=1, x̄i ∈ Rn, ȳi = {1,−1}. Assume ¯xit ≥ 0, ∀i, t. We set the featureft(xi ,y) as

ft(xi ,y) =

{

x̄it if y = 1,

0 if y =−1,

wherexi denotes the index of thei-th training instancēxi . Then

Sw(xi ,y) = e∑t wt ft(xi ,y) =

{

ewT x̄i if y = 1,

1 if y =−1,

and

Pw(y|xi) =
Sw(xi ,y)
Tw(xi)

=
1

1+e−ywT x̄i
. (43)

From (2) and (43),

L(w) = 1
2σ2 ∑t w2

t + 1
l ∑i log

(

1+e−ȳiwT x̄i

)
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Figure 3: Results on real-valued document data. The first row shows time versus the relative func-
tion difference (42). The second and third rows show‖∇L(w)‖ and testing performances
along time, respectively. Time is in seconds.

is the common form of regularized logistic regression. We give approximate functions ofIS/CD
methods in Section 7.11.

We compare the same methods:SCGIS, CD, LBFGS, andTRON. GIS is not included because
of its slow convergence shown in Section 5.1. Our implementations are based on sources used in
Chang et al. (2008).6 We select three data sets considered in Chang et al. (2008). Each instance has
been normalized to‖x̄i‖= 1. Data statistics andσ2 for each problem are in Table 4. We setβ = 0.5
andγ = 0.01 for the line search procedure (35) inCD. Figure 3 shows the results of the relative
function difference to the optimum, the gradient‖∇L(w)‖, and the testing accuracy.

From Figure 3, the relation between the twoIS/CD methods is similar to that in Figure 2, where
CD is faster thanSCGIS. However, in contrast to Figure 2, hereTRON/LBFGS may surpassIS/CD
in an earlier stage. Some preliminary analysis on the cost per iteration seems to indicate thatIS/CD

6. Source can be found athttp://www.csie.ntu.edu.tw/ ˜ cjlin/liblinear/exp.html .
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Figure 4: This figure shows the effect of using (38) to do line search. The first and second rows
show time versus the relative function difference with differentσ2. CDD indicates theCD
method without using (38). Time is in seconds.

methods are more efficient on 0/1-featured data due to a smaller number of exp operations, but more
experiments/data are needed to draw definitive conclusions.

In Figure 3,TRON is only similarly to or moderately better thanLBFGS, but Lin et al. (2008)
show thatTRON is much better. The only difference between their setting and ours is that Lin et al.
(2008) add one feature to each data instance. That is, they modifyx̄i to

[ x̄i
1

]
, so weights of Maxent

become[w
b ], whereb is called the bias term. It is surprising that this difference affectsLBFGS’

performance that much.

6. Discussion and Conclusions

In (38), we propose a way to speed up the line search procedure of Algorithm 3. Figure 4 shows
how effective this trick is by varying the value ofσ2. Clearly, the trick is more useful ifσ2 is
small. In this situation, the functionL(w) is well conditioned (as it is closer to a quadratic function
∑t w2

t ). Hence (38) more easily holds atλ = 1. Then the line search procedure costs onlyO(1) time.
However, a too smallσ2 may downgrade the testing accuracy. For example, the final accuracy for
yahoo-japan is 92.75% withσ2 = 4l , but is 92.31% withσ2 = 0.5l .

Some work has concluded that approaches likeLBFGS or nonlinear conjugate gradient are better
thanIS methods for training Maxent (e.g., Malouf, 2002; Daumé, 2004). However, experiments in
this paper show that comparison results may vary under different circumstances. For example,
comparison results can be affected by:

1. Data of the target application.IS/CD methods seem to perform better if features are 0/1 and
if implementations have taken this property.

834



ITERATIVE SCALING AND COORDINATE DESCENTMETHODS FORMAXIMUM ENTROPY MODELS

2. TheIS method being compared. Our experiments indicate thatGIS is inferior to many meth-
ods, but otherIS/CD methods likeSCGIS or CD (Algorithm 3) are more competitive.

In summary, we create a general framework for iterative scaling and coordinate descent meth-
ods for maximum entropy. Based on this framework, we discuss the convergence, computational
complexity, and other properties ofIS/CD methods. We further develop a new coordinate decent
method for Maxent. It is more efficient than existing iterative scaling methods.

7. Proofs and Derivations

We define 1-norm and 2-norm of a vectorw ∈ Rn:

‖w‖1≡
n

∑
t=1

|wt |, ‖w‖2≡
√

n

∑
t=1

w2
t .

The following inequality is useful in our proofs.

‖w‖2≤ ‖w‖1≤
√

n‖w‖2, ∀w ∈ Rn. (44)

Subsequently we simplify‖w‖2 to ‖w‖.

7.1 Proof of Theorem 1

Due to the regularization term1
2σ2 wTw, one can prove that the setU defined in (20) is bounded;

see, for example, Theorem 1 of Lin et al. (2008). As∇2L(w) is continuous in the bounded setU ,
the followingτmax andτmin exist:

τmax≡max
w∈U

λmax(∇2L(w)) and τmin≡min
w∈U

λmin(∇2L(w)), (45)

whereλmax(·) andλmin(·) mean the largest and the smallest eigenvalues of a matrix, respectively.
To show thatτmax andτmin are positive, it is sufficient to proveτmin > 0. As∇2L(w) is I/σ2 plus a
positive semi-definite matrix, it is easy to seeτmin≥ 1/(σ2) > 0.

To prove (21), we apply the multi-dimensional Mean-Value Theorem (Apostol, 1974, Theorem
12.9) to∇L(w). If u,v ∈ Rn, then for anya∈ Rn, there is ac = αu+(1−α)v with 0≤ α≤ 1 such
that

aT(∇L(u)−∇L(v)) = aT∇2L(c)(u−v). (46)

Set
a = u−v.

Then for anyu,v ∈U , there is a pointc such that

(u−v)T(∇L(u)−∇L(v)) = (u−v)T∇2L(c)(u−v). (47)

SinceU is a convex set from the convexity ofL(w), c∈U . With (45) and (47),

‖u−v‖‖∇L(u)−∇L(v)‖ ≥ (u−v)T(∇L(u)−∇L(v))≥ τmin‖u−v‖2.
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Hence

‖∇L(u)−∇L(v)‖ ≥ τmin‖u−v‖. (48)

By applying (46) again witha = ∇L(u)−∇L(v),

‖∇L(u)−∇L(v)‖2≤‖∇L(u)−∇L(v)‖‖∇2L(c)(u−v)‖
≤‖∇L(u)−∇L(v)‖‖u−v‖τmax.

Therefore,

‖∇L(u)−∇L(v)‖ ≤ τmax‖u−v‖. (49)

Then (21) follows from (48) and (49)
To prove the second property (22), we write the Taylor expansion ofL(u):

L(u) = L(v)+∇L(v)T(u−v)+
1
2
(u−v)T∇2L(c)(u−v),

wherec∈U . With (45), we have

τmin

2
‖u−v‖2≤ L(u)−L(v)−∇L(v)T(u−v)≤ τmax

2
‖u−v‖2.

Sinceτmax≥ τmin > 0, L satisfies (22) by choosingK = τmax/2.

7.2 Proof of Theorem 2

The following proof is modified from Chang et al. (2008). SinceL(w) is convex andw∗ is the
unique solution, the optimality condition shows that

∇L(w∗) = 0. (50)

From (21) and (50),
‖∇L(wk)‖ ≥ τmin‖wk−w∗‖. (51)

With (23) and (51),
‖wk+1−wk‖ ≥ ητmin‖wk−w∗‖. (52)

From (24) and (52),

L(wk)−L(wk+1)≥ νη2τ2
min‖wk−w∗‖2. (53)

Combining (22) and (50),
L(wk)−L(w∗)≤ K‖wk−w∗‖2. (54)

Using (53) and (54),

L(wk)−L(wk+1)≥ νη2τ2
min

K

(

L(wk)−L(w∗)
)

.

This is equivalent to

(

L(wk)−L(w∗)
)

+
(

L(w∗)−L(wk+1)
)

≥ νη2τ2
min

K

(

L(wk)−L(w∗)
)

.
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Finally, we have

L(wk+1)−L(w∗)≤
(

1− νη2τ2
min

K

)(

L(wk)−L(w∗)
)

. (55)

Let µ≡ νη2τ2
min/K. As all constants are positive,µ > 0. If µ > 1, L(wk) > L(w∗) implies that

L(wk+1) < L(w∗), a contradiction to the definition ofL(w∗). Thus we have eitherµ ∈ (0,1) or
µ= 1, which suggests we get the optimum in finite steps.

7.3 Proof of Theorem 3

We prove the result forGIS and IIS first. Let z̄ = argminzAs(z), wheres indicatesGIS or IIS
method.7 From the definition ofAs(z) and its convexity,8

∇As(0) = ∇L(wk) and∇As(z̄) = 0.9 (56)

Note that∇As(z) is the gradient with respect toz, but ∇L(w) is the gradient with respect tow.
SinceU is bounded, the set{(w,z) | w ∈U andw+z∈U} is also bounded. Thus we have that

max
w∈U

max
z:w+z∈U

λmax
(
∇2As(z)

)

is bounded by a constantK. Hereλmax(·) means the largest eigenvalue of a matrix. To prove (23),
we use

‖wk+1−wk‖= ‖z̄−0‖

≥ 1
K
‖∇As(z̄)−∇As(0)‖=

1
K
‖∇As(0)‖=

1
K
‖∇L(wk)‖,

(57)

where the inequality is from the same derivation for (49) in Theorem 1. Thelast two equalities
follow from (56).

Next, we prove (24). By (56) and the fact that the minimal eigenvalue of∇2As(z) is greater than
or equal to 1/(σ2), we have

As(0)≥ As(z̄)−∇As(z̄)T z̄+
1

2σ2 z̄T z̄ = As(z̄)+
1

2σ2 z̄T z̄. (58)

From (9) and (58),

L(wk)−L(wk+1) = L(wk)−L(wk + z̄)≥ As(0)−As(z̄)≥ 1
2σ2 z̄T z̄ =

1
2σ2‖w

k+1−wk‖2.

Let ν = 1/(2σ2) and we obtain (24).
We then prove results forSCGIS andCD. For the convenience, we define some notation. A

sequential algorithm starts from an initial pointw0, and produces a sequence{wk}∞
k=0. At each iter-

ation,wk+1 is constructed by sequentially updating each component ofwk. This process generates
vectorswk,t ∈ Rn, t = 1, . . . ,n, such thatwk,1 = wk, wk,n+1 = wk+1, and

wk,t = [wk+1
1 , . . . ,wk+1

t−1 ,wk
t , . . . ,w

k
n]

T for t = 2, . . . ,n.

7. The existence of ¯z follows from thatU is bounded. See the explanation in the beginning of Section 7.1.
8. It is easy to see that allAt(zt) in Table 1 are strictly convex.

9. Because∇tL(wk) = ACD
t
′
(0), we can easily obtain∇As(0) = ∇L(wk) by checkingAs

t
′(0) = ACD

t
′
(0), wheres is GIS

or IIS. See formulas in Table 1.
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By an argument similar to (57) and (58), we can prove that the one-variable functionAs
t (zt), where

s is SCGIS or CD, satisfies

|wk,t+1
t −wk,t

t | ≥ η̄|As
t
′(0)|= η̄|∇L(wk,t)t | and (59)

L(wk,t)−L(wk,t+1)≥ 1
2σ2 |w

k,t+1
t −wk,t

t |2. (60)

Note thatη̄ > 0 is a positive constant. To prove (23), taking the summation of (59) fromt = 1 ton,

‖wk+1−wk‖1≥ η̄
n

∑
t=1

|∇L(wk,t)t | ≥ η̄
n

∑
t=1

(

|∇L(wk,1)t |− |∇L(wk,t)t −∇L(wk,1)t |
)

= η̄

(

‖∇L(wk,1)‖1−
n

∑
t=1

|∇L(wk,t)t −∇L(wk,1)t |
)

. (61)

SinceL(w) satisfies (21), using (44),

n

∑
t=1

|∇L(wk,t)t −∇L(wk,1)t | ≤
n

∑
t=1

‖∇L(wk,t)−∇L(wk,1)‖1

≤
n

∑
t=1

√
nτmax‖wk,t −wk,1‖1≤ n

√
nτmax‖wk+1−wk‖1.

(62)

From (61) and (62), we have

‖wk+1−wk‖1≥
η̄

1+ η̄n
√

nτmax
‖∇L(wk,1)‖1.

This inequality and (44) imply

‖wk+1−wk‖ ≥ 1√
n‖w

k+1−wk‖1≥ η̄√
n+η̄n2τmax

‖∇L(wk)‖.

Let η = η̄/(
√

n+ η̄n2τmax). We then have (23).
Taking the summation of (60) fromt = 1 ton, we get (24):

L(wk)−L(wk+1)≥ 1
2σ2‖w

k+1−wk‖2.

7.4 Derivation of (30)-(31)

Using (18)-(19), we have

dSw+ztet (x,y)
dzt

= Sw(x,y)ezt ft(x,y) ft(x,y) = Sw+ztet (x,y) ft(x,y)

and
dTw+ztet (x)

dzt
= ∑

y
Sw(x,y)ezt ft(x,y) ft(x,y) = ∑

y
Sw+ztet (x,y) ft(x,y).
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Then (30) can be obtained from (16), the definition ofTw+ztet (x) in (1), and the following calculation:

d logTw+ztet (x)
dzt

=
∑ySw+ztet (x,y) ft(x,y)

Tw+ztet (x)
= ∑

y
Pw+ztet (y|x) ft(x,y).

For (31), we use

d∑yPw+ztet (y|x) ft(x,y)

dzt

=∑
y

ft(x,y)
Tw+ztet (x)

dSw+zt et (x,y)
dzt

− dTw+zt et (x)
dzt

Sw+ztet (x,y)

Tw+ztet (x)
2

=∑
y

ft(x,y)

(

ft(x,y)Pw+ztet (y|x)−
Sw+ztet (x,y)
Tw+ztet (x)

∑
y′

Pw+ztet (y
′|x) ft(x,y

′)

)

=∑
y

Pw+ztet (y|x) ft(x,y)
2−∑

y

(

Pw+ztet (y|x) ft(x,y)∑
y′

Pw+ztet (y
′|x) ft(x,y

′)

)

=∑
y

Pw+ztet (y|x) ft(x,y)
2−
(

∑
y

Pw+ztet (y|x) ft(x,y)

)2

.

7.5 Derivation of (33)

From (6) and (9), we immediately haveASCGIS
t (zt)≥ACD

t (zt) andAIIS
t (zt)≥ACD

t (zt). Next we prove
thatAGIS

t (zt)≥ ASCGIS
t (zt). AssumeD(zt)≡ AGIS

t (zt)−ASCGIS
t (zt). Then

D′(zt) =
(

ezt f #−ezt f #
t

)

∑
x,y

P̃(x)Pw(y|x) ft(x,y).

Since f #≥ f #
t ≥ 0,

D′(zt)≥ 0 if zt > 0,

D′(zt)≤ 0 if zt < 0.
(63)

From Taylor expansion, there existsh between 0 andzt such that

D(zt) = D(0)+ztD
′(h).

FromASCGIS
t (0) = AGIS

t (0) = 0, we haveD(0) = 0. By (63),ztD′(h)≥ 0, so

AGIS
t (zt)−ASCGIS

t (zt) = D(zt)≥ D(0) = 0.

We can use a similar method to proveAGIS
t (zt)≥ AIIS

t (zt).

7.6 Proof of Theorem 4

From (31), we can define

H = max
t

(

1
σ2 +∑

x,y
P̃(x) ft(x,y)

2

)

≥ ACD
t
′′
(zt), ∀zt . (64)
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From the Taylor expansion ofACD
t (zt) at zt = 0, there existsh between 0 andd such thatzt = λd

satisfies

ACD
t (λd)− γλdACD

t
′
(0)

= ACD
t (0)+ACD

t
′
(0)λd+

1
2

ACD
t
′′
(h)λ2d2− γλdACD

t
′
(0)

≤ ACD
t
′
(0)λd+

1
2

Hλ2d2− γλdACD
t
′
(0)

= −λ
ACD

t
′
(0)2

ACD
t
′′
(0)

+
1
2

Hλ2 ACD
t
′
(0)2

ACD
t
′′
(0)2

+ γλ
ACD

t
′
(0)2

ACD
t
′′
(0)

= λ
ACD

t
′
(0)2

ACD
t
′′
(0)

(

λ

(

H

2ACD
t
′′
(0)

)

−1+ γ

)

. (65)

If we choose

λ̄ =
2ACD

t
′′
(0)(1− γ)
H

, (66)

then forλ≤ λ̄, (65) is non-positive. Therefore, (35) is satisfied for all 0≤ λ≤ λ̄.

7.7 Proof of Theorem 5

Following the proof in Section 7.3, it is sufficient to prove inequalities in the sameform as (59) and
(60). By Theorem 4, anyλ∈ [βλ̄, λ̄], whereβ∈ (0,1) andλ̄ is defined in (66), satisfies the sufficient
decrease condition (35). Since Algorithm 3 selectsλ by trying{1,β,β2, . . .}, with (64), the selected
valueλ satisfies

λ≥ βλ̄ = β
2ACD

t
′′
(0)(1− γ)
H

.

This and (34) suggest that the step sizezt = λd in Algorithm 3 satisfies

|zt |= λ

∣
∣
∣
∣
∣

−ACD
t
′
(0)

ACD
t
′′
(0)

∣
∣
∣
∣
∣
≥ 2β(1− γ)

H

∣
∣
∣ACD

t
′
(0)
∣
∣
∣ . (67)

From (34), (35),zt = λd, ACD
t
′′
(0)≥ 1/σ2 andλ≤ 1, we have

ACD
t (zt)−ACD

t (0)≤ γztA
CD
t
′
(0) =−γztdACD

t
′′
(0)≤− γ

λσ2z2
t ≤−

γ
σ2z2

t . (68)

Note thatzt is the step taken for updatingwk,t
t to wk,t+1

t . With ACD
t (zt) = L(wk,t+1)−L(wk,t), (67)-

(68) are in the same form as (59)-(60). In Section 7.3, (59)-(60) aresufficient to prove the desired
conditions (23)-(24) for the linear convergence (Theorem 2). Therefore, Algorithm 3 linearly con-
verges.
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7.8 Proof of Theorem 6

A direct calculation ofACD
t
′′′
(zt) shows that it is bounded for allzt andwk

t . We assume that a bound
is M. UsingACD

t (0) = 0, (34) and Taylor expansion, there existsh between 0 andd such that

ACD
t (d) = ACD

t
′
(0)d+

1
2

ACD
t
′′
(0)d2 +

1
6

ACD
t
′′′
(h)d3

= −1
2

ACD
t
′
(0)2

ACD
t
′′
(0)

+
1
6

ACD
t
′′′
(h)d3

≤ −1
2

ACD
t
′′
(0)d2 +

1
6

M
∣
∣d3
∣
∣ (69)

= −γd2ACD
t
′′
(0)+

(

γACD
t
′′
(0)− 1

2
ACD

t
′′
(0)+

1
6

M|d|
)

d2

= γdACD
t
′
(0)+

(

γACD
t
′′
(0)− 1

2
ACD

t
′′
(0)+

1
6

M|d|
)

d2.

Note thatγ < 1/2. AsACD
t
′′
(0)≥ 1/σ2 and|ACD

t
′
(0)|→ 0 whenw converges to the optimal solution

w∗, near the optimum,d is small enough so that

0≤ |d| ≤ 6
M

(
1
2
− γ
)

ACD
t
′′
(0).

Then we obtainACD
t (d)≤ γdACD

t
′
(0) and (35) is satisfied.

7.9 Proof of Theorem 7

The following lemma, needed for proving Theorem 7, shows that the direction taken byCD is bigger
than that ofGIS, IIS, or SCGIS.

Lemma 8 There exists a positive constantλ such that in a neighborhood ofw∗,

|ds|(1+λ)≤ |d|=
∣
∣
∣
∣

δ′t(0)

δ′′t (0)

∣
∣
∣
∣
, (70)

where d and ds are defined in(37).

Proof. Sinceds = argminzt As
t (zt) andAs

t (zt) is strictly convex,

As
t
′(ds) = 0. (71)

We separate the proof to two cases:As
t
′(0) > 0 andAs

t
′(0) < 0. If As

t
′(0) = 0, thends = 0, so (70)

immediately holds.
If As

t
′(0) > 0, from the strict convexity ofAs

t (zt) and (71),ds < 0. It is sufficient to prove that
there isλ such thatAs

t
′(d/(1+λ))≤ 0. This result impliesd/(1+λ)≤ ds, so we obtain (70) .

Using Taylor expansion, ifzt f s(x,y) < 0, then

ezt f s(x,y) ≤ 1+zt f s(x,y)+
1
2

z2
t ( f s(x,y))2, (72)
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where

f s(x,y)≡







f # if s is GIS,

f #
t if s is SCGIS,

f #(x,y) if s is IIS.

From Table 1 and (72),

As
t
′(zt) = ∑

x,y
P̃(x)Pw(y|x) ft(x,y)e

zt f s(x,y) +Q′t(zt) (73)

≤
(

∑
x,y

P̃(x)Pw(y|x) ft(x,y)+
wt

σ2 − P̃( ft)

)

+

(

R1(w)+
1

σ2

)

zt +
1
2

z2
t R2(w)

= As
t
′(0)+

(

R1(w)+
1

σ2 −
1
2
|zt |R2(w)

)

zt ,

where

R1(w)≡∑
x,y

P̃(x)Pw(y|x) ft(x,y) f s(x,y) and

R2(w)≡∑
x,y

P̃(x)Pw(y|x) ft(x,y) f s(x,y)2.

Now the Newton direction is

d =− ACD
t
′
(0)

ACD
t
′′
(0)

=− δ′t(0)

δ′′t (0)
=−As

t
′(0)

δ′′t (0)
< 0. (74)

From (31),

δ′′t (0) = ∑
x,y

P̃(x)Pw(y|x) ft(x,y)
2−∑

x
P̃(x)

(

∑
y

Pw(y|x) ft(x,y)

)2

+
1

σ2

≤ R1(w)−R3(w)+
1

σ2 ,

(75)

where

R3(w)≡∑
x

P̃(x)

(

∑
y

Pw(y|x) ft(x,y)

)2

.

Whenw→ w∗, R1(w), R2(w), R3(w) respectively converge toR1(w∗), R2(w∗), R3(w∗). Moreover,
asw+dset ∈ {w̄ | L(w̄)≤ L(w)}, ds→ 0 whenw→ w∗. Therefore,

lim
w→w∗

δ′′t (0)

R1(w)+ 1
σ2 − 1

2|ds|R2(w)
= 1− R3(w∗)

R1(w∗)+ 1
σ2

. (76)

Here we can assumeR3(w∗) > 0. If not, ft(x,y) = 0 for all x,y. Thenw∗t = 0 is obtained in just one
iteration. From (76), we can choose a positiveλ such that

1
1+λ

> 1− R3(w∗)

R1(w∗)+ 1
σ2

. (77)
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From (76) and (77), for anyw in a neighborhood ofw∗,

δ′′t (0)≤
R1(w)+ 1

σ2 − 1
2|ds|R2(w)

1+λ
.

From (74),
d

1+λ
≤− As

t
′(0)

R1(w)+ 1
σ2 − 1

2|ds|R2(w)
. (78)

From (73) withzt = d/(1+λ) and (78),

As
t
′
(

d
1+λ

)

≤ As
t
′(0)−As

t
′(0) = 0.

Therefore,d/(1+λ)≤ ds < 0.
If As

t
′(0) < 0, thends > 0. Using Taylor expansion, ifzt f s(x,y) > 0, we have

ezt f s(x,y) ≥ 1+zt f s(x,y).

Then (73) becomes

As
t
′(zt)≥

(

∑
x,y

P̃(x)Pw(y|x) ft(x,y)+
wt

σ2 − P̃( ft)

)

+

(

R1(w)+
1

σ2

)

zt

= As
t
′(0)+

(

R1(w)+
1

σ2

)

zt .

(79)

From (75) and a derivation similar to (76), there is aλ > 0 such that

δ′′t (0)(1+λ)≤ R1(w)+
1

σ2 .

Let zt = d/(1+λ) in (79). With (74),

As
t
′
(

d
1+λ

)

≥ As
t
′(0)−As

t
′(0) = 0.

Therefore, 0< ds≤ d/(1+λ).
Proof of Theorem 7 We prove this theorem by calculating a lower bound ofδt(ds)− δt(d).

From (69),

δt(d)≤−1
2

δ′t(0)2

δ′′t (0)
+

1
6

Md3, (80)

whereM is an upper bound ofδ′′′t (zt). If w is sufficiently close tow∗,

δt(d
s) = δ′t(0)ds+

1
2

δ′′t (0)(ds)2 +
1
6

δ′′′t (h)(ds)3

=
1
2

δ′′t (0)

(
δ′t(0)

δ′′t (0)
−ds

)2

− 1
2

δ′t(0)2

δ′′t (0)
+

1
6

δ′′′t (h)(ds)3

≥ 1
2

δ′′t (0)

(
λ

1+λ

)
δ′t(0)2

δ′′t (0)2 −
1
2

δ′t(0)2

δ′′t (0)
− 1

6
M|d3|

=
1
2

( −1
1+λ

)
δ′t(0)2

δ′′t (0)
− 1

6
M|d3|,

(81)
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whereh is between 0 andds and the inequality is from Lemma 8. Combining (80) and (81),

δt(d
s)−δt(d)≥ 1

2

(

1− 1
1+λ

)
δ′t(0)2

δ′′t (0)
− 1

3
M|d3|

=

(
1
2

(
λ

1+λ

)

− 1
3

M
|δ′t(0)|
δ′′t (0)2

)
δ′t(0)2

δ′′t (0)
.

Sinceδ′′t (0)≥ 1/(σ2) andδ′t(0)→∇tL(w∗) = 0, there is a neighborhood ofw∗ so thatδ′t(0) is small
enough and

1
2

(
λ

1+λ

)

>
1
3

M
|δ′t(0)|
δ′′t (0)2 .

Therefore,δt(ds) > δt(d) in a neighborhood ofw∗.

7.10 Derivation of (39)

From Jensen’s inequality and the fact that log(x) is a concave function,

∑Ωt
P̃(x) log Tw+zt et (x)

Tw(x)

∑Ωt
P̃(x)

≤ log




∑Ωt

P̃(x)Tw+zt et (x)
Tw(x)

∑Ωt
P̃(x)



 .

With (16), (19) and (40), we have

ACD
t (zt)≤Qt(zt)+ P̃t log

(

1+
∑Ωt

P̃(x)∑yPw(y|x)(ezt ft(x,y)−1)

P̃t

)

.

By the inequality (15),

ACD
t (zt)≤Qt(zt)+ P̃t log







1+

∑Ωt
P̃(x)∑yPw(y|x)

(

ft(x,y)ezt f #
t

f #
t

+ f #
t − ft(x,y)

f #
t
−1

)

P̃t







= Qt(zt)+ P̃t log



1+

(

ezt f #
t −1

)

∑Ωt
P̃(x)∑yPw(y|x) ft(x,y)

f #
t P̃t





= ĀCD
t (zt).

Note that replacing̃Pt with ∑x P̃(x) leads to another upper bound ofACD
t (zt). It is, however, looser

thanĀCD
t (zt).

7.11 Logistic Regression

We list approximate functions ofIS/CD methods for logistic regression. Note that

P̃(xi ,y) =

{
1
l if y = ȳi ,

0 otherwise,
andP̃( ft) = ∑

i:ȳi=1

1
l
x̄it . (82)
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For GIS, using the formula in Table 1 and (43),

AGIS
t (zt) = Qt(zt)+

1
l

(

ezt f #−1
f # ∑

i

x̄it

1+e−wT x̄i

)

,

where from (11) and (82),

Qt(zt) =
2wtzt +z2

t

2σ2 − zt

l ∑
i:ȳi=1

x̄it and f #≡max
j

f #(i).

Similarly, IIS andSCGIS respectively solve

AIIS
t (zt) = Qt(zt)+

1
l

(

∑
i

x̄it

1+e−wTxi

ezt f #(i)−1
f #(i)

)

,

ASCGIS
t (zt) = Qt(zt)+

1
l

(

ezt f #
t −1

f #
t

∑
i

x̄it

1+e−wTxi

)

,

where f #
t = maxi x̄it and f #(i) = ∑t x̄it . Finally, from (17), (30), and (31),

ACD
t (zt) = Qt(zt)+

1
l ∑

i

log

(

1+
ezt x̄it −1

1+e−wT x̄i

)

,

ACD
t
′
(0) =

wt

σ2 +
1
l

(

∑
i

x̄it

1+e−wT x̄i
− ∑

i:ȳi=1

x̄it

)

,

ACD
t
′′
(0) =

1
σ2 +

1
l

(

∑
i

e−wT x̄i x̄2
it

(1+e−wT x̄i )2

)

.
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