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Abstract
We present a new sparse Gaussian Process (GP) model for regression. The key novel idea is to
sparsify thespectral representationof the GP. This leads to a simple, practical algorithm for regres-
sion tasks. We compare the achievable trade-offs between predictive accuracy and computational
requirements, and show that these are typically superior toexisting state-of-the-art sparse approx-
imations. We discuss both the weight space and function space representations, and note that the
new construction implies priors over functions which are always stationary, and can approximate
any covariance function in this class.

Keywords: Gaussian process, probabilistic regression, sparse approximation, power spectrum,
computational efficiency

1. Introduction

One of the main practical limitations of Gaussian processes (GPs) for machinelearning (Rasmussen
and Williams, 2006) is that in a direct implementation the computational and memory requirements
scale asO(n2) andO(n3), respectively. In practice this limits the applicability of exact GP imple-
mentations to data sets where the number of training samplesn does not exceed a few thousand.

A number of computationally efficient approximations to GPs have been proposed, which re-
duce storage requirements toO(nm) and the number of computations toO(nm2), wherem is much
smaller thann. One family of approximations, reviewed in Quiñonero-Candela and Rasmussen
(2005), is based on assumptions of conditional independence given a reduced set ofm inducing
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inputs. Examples of such models are those proposed in Seeger et al. (2003), Smola and Bartlett
(2001), Tresp (2000), Williams and Seeger (2001) and Csató and Opper (2002), as well as the Fully
Independent Training Conditional (FITC) model, introduced as SparsePseudo-input GP (SPGP)
by Snelson and Ghahramani (2006). Walder et al. (2008) introduced the Sparse Multiscale GP
(SMGP), a modification of FITC that allows each basis function to have its ownset of length-
scales.1 This additional flexibility typically yields some performance improvement over FITC, but
it also requires learning twice as many parameters. SMGP can alternatively be derived within the
unifying framework of Quiñonero-Candela and Rasmussen (2005) if weallow the inducing inputs
to lie in a transformed domain, as shown in Lázaro-Gredilla and Figueiras-Vidal (2010).

Another family of approximations is based on approximate matrix-vector-multiplications
(MVMs), wherem is for example a reduced number of conjugate gradient steps to solve a sys-
tem of linear equations. Some of these methods have been briefly reviewed inQuiñonero-Candela
et al. (2007). Local mixtures of GP have been used by Urtasun and Darrell (2008) for efficient
modelling of human poses.

In this paper we introduce a stationary trigonometric Bayesian model for regression that retains
the computational efficiency of the aforementioned approaches, while improving performance. The
model consists of a linear combination of trigonometric functions where both weights and phases are
integrated out. All hyperparameters of the model (frequencies and amplitudes) are learned jointly by
maximizing the marginal likelihood. This model is a stationary sparse GP that can approximate any
desired stationary full GP. Sparse trigonometric expansions have been proposed in several contexts,
for example, Lázaro-Gredilla et al. (2007) and Rahimi and Recht (2008), as discussed further in
Section 4.3.

FITC, SMGP, and the model introduced in this paper focus on predictive accuracy at low com-
putational cost, rather than on faithfully converging towards the full GP asthe number of basis func-
tions grows. Performance-wise, FITC and the more recent SMGP can beregarded as the current
state-of-the-art sparse GP approximations, so we will use them as benchmarks in the performance
comparisons.

In Section 2 we give a brief review of GP regression. In Section 3 we introduce the trigono-
metric Bayesian model, and in Section 4 we present the Sparse Spectrum Gaussian Process (SSGP)
algorithm. Section 5 contains a comparative performance evaluation on several data sets.

2. Gaussian Process Regression

Regression is often formulated as the task of predicting the scalar outputy∗ associated to theD-
dimensional inputx∗, given a training data setD ≡ {x j ,y j | j = 1, . . .n} of n input-output pairs. A
common approach is to assume that the outputs have been generated by an unknown latent function
f (x) and independently corrupted by additive Gaussian noise of constant varianceσ2

n:

y j = f (x j)+ ε j , ε j ∼ N (0, σ2
n) .

The regression task boils down to making inference aboutf (x). Gaussian process (GP) regression
is a probabilistic, non-parametric Bayesian approach. A Gaussian process prior distribution onf (x)
allows us to encode assumptions about the smoothness (or other properties) of the latent function

1. Note that SMGP only extends FITC in the specific case of the anisotropic squared exponential covariance function,
whereas FITC can be applied to any covariance function.
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(Rasmussen and Williams, 2006). For any set of inputs{xi}
n
i=1 the corresponding vector of function

evaluationsf = [ f (x1), . . . , f (xn)]
⊤ has a joint Gaussian distribution:

p(f|{xi}
n
i=1) = N (f|0,K ff ) .

This paper follows the common practice of setting the mean of the process to zero.2 The properties
of the GP prior over functions are governed by the covariance function

[

K ff
]

i j = k(xi ,x j) = E[ f (xi) f (x j)] , (1)

which determines how the similarity between a pair of function values varies as afunction of the
corresponding pair of inputs. A covariance function isstationaryif it only depends on the difference
between its inputs

k(xi ,x j) = k(xi −x j) = k(τ).

The elegance of the GP framework is that the properties of the function areconveniently expressed
directly in terms of the covariance function, rather than implicitly via basis functions.

To obtain the predictive distributionp(y∗|x∗,D) it is useful to express the model in matrix
notation by stacking the targetsy j in vectory = [y1, . . . ,yn]

⊤ and writing the joint distribution of
training and test targets:

[

y
y∗

]

∼ N

(

0,
[

K ff +σ2
nIn kf∗

k⊤
f∗ k∗∗+σ2

n

])

,

wherekf∗ is the vector of covariances betweenf (x∗) and the training latent function values, and
k∗∗ is the prior variance off (x∗). In is then×n identity. The predictive distribution is obtained by
conditioning on the observed training outputs:

p(y∗|x∗,D) = N (µ∗,σ2
∗), where

{

µ∗ = k∗f(K ff +σ2
nIn)

−1y
σ2
∗ = σ2

n+k∗∗−k∗f(K ff +σ2
nIn)

−1kf∗ .
(2)

The covariance function is parameterized byhyperparameters. Consider for example the sta-
tionary anisotropic squared exponential covariance function

kARD(τ) = σ2
0exp(−1

2τ⊤Λ−1τ), where Λ = diag([ℓ2
1, ℓ

2
2, . . . ℓ

2
D]). (3)

The hyperparameters are the prior varianceσ2
0 and the lengthscales{ℓd} that determine how rapidly

the covariance decays with the distance between inputs. This covariance function is also known
as the ARD (Automatic Relevance Determination) squared exponential, because it can effectively
prune input dimensions by growing the corresponding lengthscales.

It is convenient to denote all hyperparameters including the noise variance byθ. These can be
learned by maximizing the evidence, or log marginal likelihood:

logp(y|θ) = −
n
2

log(2π)−
1
2
|K ff +σ2

nIn|−
1
2

y⊤
(

K ff +σ2
nIn

)−1
y. (4)

Provided there exist analytic forms for the gradients of the covariance function with respect to the
hyperparameters, the evidence can be maximized by using a gradient-based search. Unfortunately,
computing the evidence and the gradients requires the inversion of the covariance matrixK ff +σ2

nIn

at a cost ofO(n3) operations, which is prohibitive for large data sets.

2. The extension to GPs with general mean functions is straightforward.
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3. Trigonometric Bayesian Regression

In this section we present a Bayesian linear regression model with trigonometric basis functions,
and related it to a full GP in the next section. Consider the model

f (x) =
m

∑
r=1

ar cos(2πs⊤r x)+br sin(2πs⊤r x) , (5)

where each of thempairs of basis functions is parametrized by aD-dimensional vectorsr of spectral
frequencies. Note that eachpair of basis functions share frequencies, but each have independent
amplitude parameters,ar and br . We treat the frequencies as deterministic parameters and the
amplitudes in a Bayesian way. The priors are independent Gaussian

ar ∼ N
(

0,
σ2

0

m

)

, br ∼ N
(

0,
σ2

0

m

)

,

where the variances are scaled down linearly by the number of basis functions. Under the prior, the
distribution over functions from Equation (5) is Gaussian with mean function zero and covariance
function (from Equation (1))

k(xi ,x j) =
σ2

0

m
φ(xi)

⊤φ(x j) =
σ2

0

m

m

∑
r=1

cos
(

2πs⊤r (xi −x j)
)

, (6)

where we define the column vector of length 2mcontaining the evaluation of thempairs of trigono-
metric functions atx

φ(x) =
[

cos(2πs⊤1 x) sin(2πs⊤1 x) . . . cos(2πs⊤mx) sin(2πs⊤mx)
]⊤

.

Sparse linear models generally induce priors over functions whose variance depends on the input.
In contrast, the covariance function in Equation (6) is stationary, that is, the prior variance is inde-
pendent of the input and equal toσ2

0. This is due to the particular nature of the trigonometric basis
functions and implies that the predictive variances cannot be “healed”, as proposed in Rasmussen
and Quiñonero-Candela (2005) for the case of the Relevance Vector Machine.

The predictions and marginal likelihood can be evaluated using Equations (2) and (4), although
direct evaluation is computationally inefficient when 2m< n. For the predictive distribution we use
the more efficient

E[y∗] = φ(x∗)⊤A−1Φfy, V[y∗] = σ2
n+σ2

nφ(x∗)⊤A−1φ(x∗), (7)

where we have defined the 2mby n design matrixΦf = [φ(x1), . . . ,φ(xn)] andA = ΦfΦ⊤
f + mσ2

n
σ2

0
I2m.

Similarly, for the log marginal likelihood

logp(y|θ) = −
[

y⊤y−y⊤Φ⊤
f A−1Φfy

]

/(2σ2
n)−

1
2

log|A|+mlog
mσ2

n

σ2
0

−
n
2

log2πσ2
n . (8)

A stable and efficient implementation uses Cholesky decompositions, AppendixA. Both the predic-
tive distribution and the marginal likelihood can be computed inO(nm2). The predictive mean and
variance at an additional test point can be computed inO(m) andO(m2) respectively. The storage
costs are also reduced, since we no longer store the full covariance matrix (of sizen×n), but only
the design matrix (of sizen×2m).
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3.1 Periodicity

One might be tempted to assume that this model would only be useful for modeling periodic func-
tions, since strictly speaking a linear combination of periodic signals is itself periodic. However,
if the individual frequencies are not all multiples of a common base frequency, then the period
of the resulting signal will be very long, typically exceeding the range of theinputs by orders of
magnitude. Thus, the model based on trigonometric basis functions has practical use for modeling
non-periodic functions. The same principle is used (interchanging input and frequency domains)
in uneven sampling to space apart frequency replicas an avoid aliasing, see for instance Bretthorst
(2000). As our experimental results suggest, the model provides satisfactory predictive variances.

3.2 Representation

An alternative and equivalent representation of the model in Equation (5), which only uses half
the number of trigonometric basis functions is possible, by writing the linear combination of a
sine and a cosine as a cosine with an amplitude and a phase. Although these tworepresentations
are equivalent,inferencebased on them differs. Whereas we have been able to integrate out the
amplitudes to arrive at the GP in Equation (6), this would not be possible analytically using the
more parsimonious representation.

Optimization instead of marginalization of the phases has two important consequences. Firstly,
we lose the property of stationarity of the prior over functions. Secondly we may expect that the
model becomes more prone to overfitting. When considering the contribution from a basis func-
tion (pair) with a specific frequency, the optimization based scheme could fit arbitrarily the phase,
whereas the integration based inference is constrained to use a flat priorover phases. In Section 5.3
we empirically verify that the computation vs accuracy tradeoff typically favors the less compact
representation.

4. The Sparse Spectrum Gaussian Process

In the previous section we presented an explicit basis function regression model, but we did not dis-
cuss how to select the frequencies defining the basis functions. In this section, we present a sparse
GP approximation view of this model, which shows how it can be understood asa computation-
ally efficient approximation to any GP with stationary covariance function. Inthe next section we
present experimental results showing that dramatic improvements over otherstate-of-the-art sparse
GP regression algorithms are possible.

We will now take a generic GP with stationary covariance function and sparsify its power spec-
tral density to obtain a sparse GP that approximates the full GP. The power spectral density (or power
spectrum)S(s) of a stationary random process expresses how the power is distributed over the fre-
quency domain. For a stationary GP, the power is equal to the prior variance k(x,x) = k(0) = σ2

0.
The frequency vectorshas the same lengthD as the input vectorx. Thed-th element ofscan be in-
terpreted as the frequency associated to thed-th input dimension. The Wiener-Khintchine theorem
(see for example Carlson, 1986, p. 162) states that the power spectrumand the autocorrelation of
the random process constitute a Fourier pair. In our case, given thatf (·) is drawn from a stationary
Gaussian process, the autocorrelation function is equal to the stationary covariance function, and
we have:

k(τ) =
∫
RD

e2πis⊤τS(s)ds, S(s) =
∫
RD

e−2πis⊤τk(τ)dτ. (9)
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We thus see that there are two equivalent representations for a stationary Gaussian process: the
traditional one in terms of the covariance function in the (input) space domain,and a perhaps less
usual one as the power spectrum in the frequency domain.

Bochner’s theorem (Stein, 1999, p. 24) states that any stationary covariance functionk(τ) can
be represented as the Fourier transform of a positive finite measure. This means that the power
spectrum in (9) is a positive finite measure, and in particular that it isproportional to a probability
measure,S(s) ∝ pS(s). The proportionality constant can be directly obtained by evaluating the
covariance function in (9) atτ = 0. We obtain the relation:

S(s) = k(0) pS(s) = σ2
0 pS(s). (10)

We can use the fact thatS(s) is proportional to a multivariate probability density ins to rewrite the
covariance function in (9) as an expectation:

k(xi ,x j) = k(τ) =
∫
RD

e2πis⊤(xi−x j )S(s)ds = σ2
0

∫
RD

e2πis⊤xi

(

e2πis⊤x j

)∗
pS(s)ds

= σ2
0EpS

[

e2πis⊤xi

(

e2πis⊤x j

)∗]

, (11)

whereEpS denotes expectation wrt.pS(s) and superscript asterisk3 denotes complex conjugation.
This last expression is an exact expansion of the covariance function as the expectation of a product
of complex exponentials with respect to a particular distribution over their frequencies. This integral
can be approximated by simple Monte Carlo by taking an average of a few samples corresponding
to a finite set of frequencies, which we callspectral points.

Since the power spectrum is symmetric around zero, a valid Monte Carlo procedure is to sample
frequencies always as a pair{sr ,−sr}. This has the advantage of preserving the property of the exact
expansion, Equation (11) that the imaginary terms cancel:

k(xi ,x j) ≃
σ2

0

2m

m

∑
r=1

[

e2πis⊤r xi

(

e2πis⊤r x j

)∗
+
(

e2πis⊤r xi

)∗
e2πis⊤r x j

]

=
σ2

0

m
Re

[ m

∑
r=1

e2πis⊤r xi

(

e2πis⊤r x j

)∗ ]

=
σ2

0

m

m

∑
r=1

cos
(

2πs⊤r (xi −x j)
)

,

wheresr is drawn frompS(s) and Re[·] denotes the real part of a complex number. Notice, that
we have recovered exactly the expression for the covariance functioninduced by the trigonometric
basis functions model, Equation (6). Further, we have given an interpretation of the frequencies as
spectral Monte Carlo samples, approximatingany stationary covariance function. This is a more
general result than that of (MacKay, 2003, Ch. 45), which only applies to Gaussian covariances.
The approximation is equivalent to replacing the original spectrumS(s) by a set of Dirac deltas of
amplitudeσ2

0 distributed according topS(s). Thus, we “sparsify” the spectrum of the GP.
This convergence result can also be stated as follows: A stationary GP can be seen as a neural

network with infinitely many hidden units and trigonometric activations if independent priors fol-
lowing Gaussian andpS(s) distributions are placed on the output and input weights, respectively.
This is analogous to the result of Williams (1997) for the non-stationary multilayer perceptron co-
variance function.
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Figure 1: Squared exponential covariance function and its approximationwith (a) 10 and (b) 50
random spectral points respectively.

4.1 Example: The Squared Exponential Covariance Function

The probability density associated to the squared exponential covariancefunction of Equation (3)
can be obtained from the Fourier transform

pARD
S (s) =

1
kARD(0)

∫
RD

e−2πis⊤τkARD(τ)dτ =
√

|2πΛ|exp(−2π2s⊤Λs), (12)

which also has the form of a multivariate Gaussian distribution. For illustration purposes, we com-
pare the exact squared exponential covariance function with its spectral approximation in Figure 1,
where the spectral points are sampled from Equation (12). As expected,the quality of the approxi-
mation improves with the number of samples.

4.2 The SSGP Algorithm

One of the main goals of sparse approximations is to reduce the computational burden while re-
taining as much predictive accuracy as possible. Sampling from the spectral density constitutes a
way of building a sparse approximation. However, we may suspect that wecan obtain much sparser
models if the spectral frequencies are learned by optimizing the marginal likelihood, an idea which
we pursue in the following.

The algorithm we propose uses conjugate gradients to optimize the marginal likelihood (8)
with respect to the spectral points{sr} and the hyperparametersσ2

0, σ2
n, and{ℓ1, ℓ2, . . . ℓD}.

Optimizing with respect to the lengthscales in addition to the spectral points is effectively an over-
parametrization, but in our experience this redundancy proves helpfulin avoiding undesired local
minima. As is usual with this kind of optimization, the problem is non-convex and wecannot expect
to find the global optimum. The goal of the optimization is to find a reasonable local optimum.

In detail, model selection for the SSGP algorithm consists in:

1. Initialize{ℓd}, σ2
0, andσ2

n to some sensible values. We use one half of the ranges of the input
dimensions, the variance of{y j} andσ2

0/4, respectively.

2. Initialize the{sr} by sampling from (10).

3. The superscript asterisk denotes complex conjugate and the subscript asterisk indicates test quantity.
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3. Jointly optimize the marginal likelihood wrt. spectral points and hyperparameters.

The computational cost of training the SSGP algorithm isO(nm2) per conjugate gradient step.
At prediction time, the cost isO(m) for the predictive mean andO(m2) for the predictive vari-
ance per test point. These computational costs are of the same order as those of the majority of
the sparse GP approximations that have recently been proposed (see Quiñonero-Candela and Ras-
mussen, 2005, for a review).

Learning the spectral frequencies by optimization departs from the original motivation of ap-
proximating a full GP. The optimization stage poses a risk of overfitting, which we assess in the
experimental section that follows. However, the additional flexibility can potentially improve per-
formance since it allows learning a covariance function suitable to the problem at hand.

4.3 Related Algorithms

Finite decompositions in terms of harmonic basis functions, such as Fourier series, are a classic
idea. In the context of kernel machines recent work include Lázaro-Gredilla et al. (2007) for GPs
and Rahimi and Recht (2008) for Support Vector Machines (SVMs). As we show in the experimen-
tal section, the details of the implementation turn out to have a critical impact on the performance
of the algorithms. The SVM based approach uses projections onto a random set of harmonic func-
tions, whereas the approach used in this paper uses the evidence framework to carefully craft an
optimized sparse harmonic representation. As is revealed in the experimentalsection, optimization
of the frequencies, amplitudes and noise offers dramatic performance improvements for comparable
sparseness.

5. Experiments

In this section we investigate properties of the SSGP algorithm, and evaluate thecomputational
complexity vs. accuracy tradeoff. We first relate the FITC and SSGP approximations. We then
present empirical comparisons on several data sets, using FITC and SMGP as benchmarks. Finally,
we revisit the alternative more compact representation of SSGP using phases, and discuss a data set
where SSGP performs badly.

Our implementation of SSGP in matlab is available fromhttp://www.tsc.uc3m.es/~miguel/
simpletutorialssgp.php together with a simple usage tutorial and the data sets from this sec-
tion. An implementation of FITC is available from Snelson’s web page athttp://www.gatsby.
ucl.ac.uk/~snelson .

5.1 Comparing Predictive Distributions for SSGP and FITC

Whereas SSGP relies on a sparse approximation to the spectrum, the FITC approximation is sparse
in a spatial sense: A set ofpseudo-inputsis used as an information bottleneck. The only evaluations
of the covariance function allowed are those involving a function value at apseudo-input. For a set
of mpseudo-inputs the computational complexity of FITC is of the same order as that of SSGP with
mspectral points.

The covariance function induced by FITC has a constant prior variance, but it is not stationary.
The original covariance of the full GP is only approximated faithfully in the vicinity of the pseudo-
inputs and the covariance between any two function values that are both far apart from any pseudo-
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Figure 2: Learning the sinc(x) function from 100 noisy observations (plusses) using 40 basis func-
tions with shaded area showing 95% (noise free) posterior confidence area. In panel (a)
the SSGP method with three functions drawn from the posterior is shown. In (b) the same
data for the FITC method with samples (dots) drawn from the joint posterior.
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Figure 3: Kin-40kdata set. (a) NMSE and (b) MNLP as a function of the number of basis functions.

input decays to zero. As a result, functions sampled from the GP prior induced by FITC tend to
white Gaussian noise away from the pseudo-inputs.
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Figure 4: Pumadyn-32nmdata set. (a) NMSE and (b) MNLP as a function of the number of basis
functions.

Figure 2 compares the predictive posterior distributions of SSGP and FITCfor a simple synthetic
data set. The training data is generated by evaluating the sinc function on 100random inputsx ∈
[−1,5] and adding white, zero-mean Gaussian noise of varianceσ2

n = 0.052. SSGP is given 20 fixed
spectral points sampled from the spectrum of a squared exponential covariance function, and FITC
is given 40 fixed pseudo-inputs sampled uniformly from the range of the training inputs. The rest
of the hyperparameters are optimized in both cases by maximizing the marginal likelihood. We plot
the 95% confidence interval for both predictive distributions (mean± two standard deviations), and
draw three samples from the SSGP posterior and one sample from the FITC posterior.

Despite the different nature of the approximations, the figure shows that for an equal number
of basis functions both predictive distributions are qualitatively very similar:the uncertainty grows
away from the training data. In the following section, we verify empirically thatthe SSGP is a
practical approximation for modelling non-periodic data.

5.2 Performance Evaluation

We will use two quantitative performance measures: the test Normalized MeanSquare Error (NMSE)
and the test Mean Negative Log Probability (MNLP) , defined as:

NMSE=
〈(y∗ j −µ∗ j)

2〉

〈(y∗ j −y)2〉
and MNLP=

1
2

〈(y∗ j −µ∗ j

σ∗ j

)2
+ logσ2

∗ j + log2π
〉

, (13)

whereµ∗ j andσ2
∗ j are, respectively, the predictive mean and variance for test samplej andy∗ j is

the actual test value for that sample. The average output value for training data isy. We denote
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the average over test cases by〈·〉. For all experiments the values reported are averages over ten
repetitions.

For each data set we report the performance of five different methods: first, the SSGP algorithm
as presented in Section 4.2; second, a version of SSGP where the spectral points are “fixed” to sam-
ples from the spectral density of a squared exponential covariance function whose lengthscales are
learned (SSGP fixed spectral points);4 third, the FITC approximation, learning the pseudo-inputs;
fourth, SMGP, trained as described in Walder et al. (2008); and finally as a base line comparison
we report the result of a full GP trained on the entire training set. We plot theperformance as a
function of the number of basis functions. For FITC this is equivalent to thenumber of pseudo-
inputs, whereas for SSGP a spectral point corresponds to two basis functions. The number of basis
functions is a good proxy for computational cost.

We consider four data sets of size moderate enough to be tractable by a fullGP, but still large
enough that there is a motivation for computationally efficient approximations.

The two first data sets are both artificially generated using a robot arm simulator and are highly
non-linear and have very low noise. They were both used in Seeger et al. (2003) and Snelson and
Ghahramani (2006), but note that their definition of the NMSE measure differs by a factor of 2
from our definition in (13). We follow precisely their preprocessing and use the original splits. The
first data set isKin-40k (8 dimensions, 10000 training and 30000 testing samples) and the results
are displayed in Figure 3. For both error measures SSGP outperforms FITC and SMGP by a large
margin, and even improves on the performance of the full GP. The SSGP withfixed spectral points
is inferior, proving that a greater sparsity vs. accuracy tradeoff canbe achieved by optimizing the
spectral points.

ThePumadyn-32nmproblem (32 dimensions, 7168 training and 1024 testing samples) can be
seen as a test of the ARD capabilities of a regression model, since only 4 outof the 32 input
dimensions are relevant. Following Snelson and Ghahramani (2006), to avoid getting stuck at an
undesirable bad local optimum, lengthscales areinitialized from a full GP on a subset of 1024
training data points, for all compared methods. The results are shown in figure 4.

The conclusions are similar as for theKin-40kdata set. SSGP matches the full GP for a surpris-
ingly small number of basis functions.

The Pole Telecommand theElevatorsdata sets are taken fromhttp://www.liaad.up.pt/
~ltorgo/Regression/DataSets.html . In thePole Telecommdata set we retain 26 dimensions,
removing constants. We use the original split, 10000 data for training and 5000 for testing. Both the
inputs and the outputs take a discrete set of values. In particular, the outputs take values between
0 and 100, in multiples of 10. We take into account the output quantization by lower bounding the
value ofσ2

n to the value of the quantization noise, bin2
spacing/12. This lower bounding is applied to

all the compared methods. The effect is to provide a better estimation forσ2
n and therefore, better

MNLP measures, but we have observed that this modification has no noticeable effect on NMSE
values. Resulting plots are in Figure 5.

SSGP is superior in terms of NMSE, getting very close to the full GP for more than 200 basis
functions. In terms of MNLP, SSGP is between FITC and SMGP for smallm, but slightly worse
for more than 100 basis functions. This may be an indication that SSGP produces better predictive
means than variances. We also see that SSGP with fixed spectral points is uniformly worse.

4. In practice the spectral points are sampled from the spectral density of a squared exponential covariance function,
and scaled as the lengthscales adapt.
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Figure 5: Pole Telecommdata set. (a) NMSE and (b) MNLP as a function of the number of basis
functions.

The fourth data set,Elevators, relates to controlling the elevators of an F16 aircraft. After
removing some constant inputs the data is 17-dimensional. We use the original split with 8752 data
for training and 7847 for testing. Results are displayed in Figure 6. SSGP consistently outperforms
FITC and SMGP and gets very close to the full GP using a very low number ofbasis functions. The
large NMSE average errors incurred by SSGP with fixed spectral pointsfor small numbers of basis
functions are due to outliers that are present in a small number (about 10 out of 7847) of the test
inputs, in some of the 10 repeated runs. The predictive variances for these few points are also big,
so their impact on the MNLP score is small. Such an effect has not been observed in any of the
other data sets.

5.3 Explicit Phase Representation

In Section 3.2 we considered an alternative representation of the SSGP model using only half the
basis functions, but explicitly representing the phases. Bayesian inference in this representation is
intractable, but one can optimize the phases instead, at the possibly increased risk of overfitting.
As an example, we evaluate the performance of the cosine only expansion with explicit phases
on thePole-Telecommdata set in Figure 7. Whereas the performance for the two variants are
comparable for small numbers of basis functions, the cosine only representation becomes worse
when the number of basis functions gets larger, confirming our suspicion that optimization of the
phases increases the risk of overfitting.
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Figure 6: Elevatorsdata set. (a) NMSE and (b) MNLP as a function of the number of basis func-
tions.

5.4 The Pendulum Data Set

So far we have seen data sets where SSGP consistently outperforms FITCand SMGP, and often
approaches the performance of a full GP for quite small numbers of basisfunctions. In this section
we present a counter example, showing that SSGP may occasionally fail, although we suspect that
this is the exception rather than the norm.

The small data setPendulum(9 dimensions, 315 training and 315 testing samples) represents
the problem of predicting the change in angular velocity of a simulated mechanical pendulum over
a short time frame (50 ms) as a function of various parameters of the dynamical system. The target
variable depends heavily on all inputs and the targets are almost noise free. Figure 8 shows the
results of our experiments. Note that we use up to 800 basis functions for investigation, although
for computational reasons it would make sense to use the full GP rather thanan approximation
with more than 315 basis functions. Although the SSGP NMSE performance is good, we see that
especially for large number of basis functions, the MNLP performance is spectacularly bad. A
closer inspection shows that the mean predictions are quite accurate, the predictive variances are
excessively small. This SSGP model thus exhibits overfitting in the form of being overconfident.
Note, that the SSGP with fixed spectral points seems to suffer much less fromthis effect, as would
be expected. Interestingly, re-running the SSGP algorithm with differentrandom initializations
gives very different predictions, the predictive distributions from separate runs disagreeing wildly.
One could perhaps diagnose the occurrence of the problem in this way. The bottom line is that
any algorithm which optimizes the marginal likelihood over a large number of parameters, will risk

1877



LÁZARO-GREDILLA , QUIÑONERO-CANDELA , RASMUSSEN ANDFIGUEIRAS-V IDAL

10 24 50 100 250 500 1000
0.01

0.02

0.03

0.04

0.05

0.1

0.15

0.2

Number of basis functions

N
or

m
al

iz
ed

 M
ea

n 
S

qu
ar

ed
 E

rr
or

 

 

FITC
SSGP Cosines Only
SSGP
Full GP on 10000 data points

10 24 50 100 250 500 1000
2.5

3

3.5

4

4.5

Number of basis functions
M

ea
n 

N
eg

at
iv

e 
Lo

g−
P

ro
ba

bi
lit

y

 

 

FITC
SSGP Cosines Only
SSGP
Full GP on 10000 data points

(a) (b)

Figure 7: Pole Telecommdata set. (a) NMSE and (b) MNLP as a function of the number of basis
functions, comparing SSGP with the version with cosines only and explicit phases.

falling in the overfitting trap. We nevertheless think that the SSGP algorithm will often have very
good performance, and will be a practically important algorithm, although onemust use it with care.

6. Discussion

We have introduced the Sparse Spectrum Gaussian Process (SSGP) algorithm, a novel perspective
on sparse GP approximations where rather than the usual sparsity approximation in the spatial do-
main, it is the spectrum of the covariance function that is subject to a sparseapproximation by
means of a discrete set of samples, the spectral points. We have provideda detailed comparison
of the computational complexity vs. accuracy tradeoff of SSGP to that of thestate of the art GP
sparse approximation FITC and its extension SMGP. SSGP shows a dramatic improvement in four
commonly used benchmark regression data sets, including the two data sets used for evaluation
in the paper where FITC was originally proposed (Snelson and Ghahramani, 2006). However, we
found a small data set where SSGP badly fails, with good predictive means but with overconfident
predictive variances. This indicates that although SSGP is practically a very appealing algorithm,
care must be taken to avoid the occasional risk of overfitting.

Other algorithms, such as the variational approach of Titsias (2009) whichfocus on approaching
the full GP in the limit of large numbers of basis functions are to a large degreesafeguarded from
overfitting. However, algorithms derived from GPs whose focus is on achieving good predictive
accuracy on a limited computational budget, such as FITC, SMGP and the currently proposed SSGP,
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Figure 8: Pendulumdata set. (a) NMSE and (b) MNLP as a function of the number of basis func-
tions.

typically achieve superior performance, see Figure 3 in Titsias (2009), with some risk of overfitting.
Note, that these algorithms don’t generally converge toward the full GP.

An equivalent view of SSGP is as a sparse Bayesian linear combination of pairs of trigonometric
basis functions, a sine and a cosine for each spectral point. The weightsare integrated out, and at
the price of having two basis functions per frequency, the phases are effectively integrated out as
well. We have shown that although a representation in terms of a single basis function per frequency
and an explicit phase is possible, learning the phases poses an increased risk of overfitting. If the
spectral points are sampled from the power spectrum of a stationary GP, then SSGP approximates
its covariance function. However, much sparser solutions can be achieved by learning the spectral
points, which effectively implies learning the covariance function. The SSGP model is to the best
of our knowledge the only sparse GP approximation that induces a stationarycovariance function.

SSGP has been presented here as a Gaussian process prior for regression with a tractable like-
lihood function from the assumption of Gaussian observation noise. Extending to other types of
analytically intractable likelihood functions, such as sigmoid for classification or Laplace for robust
regression is possible by using the same approximation techniques as for full GPs. An example
is the use of Expectation Propagation in the derivation of generalized FITC(Naish-Guzman and
Holden, 2008). Further modifications and extensions of SSGP are discussed in Lázaro-Gredilla
(2010).

The main differences between SSGP and most previous approaches to sparse GP regression is
the stationarity of the prior and the non-local nature of the basis functions.It will be interesting to
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investigate more carefully in the future the exact conditions under which these spectacular sparsity
vs. accuracy improvements can be expected.
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Appendix A. Details of the Implementation

In practice, to improve numerical accuracy and speed, Equations (7) and (8) should be implemented
using the Cholesky decompositionR = chol(A). Thus the predictive distribution is computed as

E[y∗] = φ(x∗)⊤R\(R⊤\(Φfy)) V[y∗] = σ2
n+σ2

n||R
⊤\φ(x∗)||2,

and the log evidence as

logp(y|θ) = −
1

2σ2
n

[

||y||2−||R⊤\(Φfy) ||2
]

−
1
2 ∑

i

logR2
ii +mlog

mσ2
n

σ2
0

−
n
2

log2πσ2
n ,

whereRii refers to the diagonal elements ofR.
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