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Abstract
We address instance-based learning from a perceptual organization standpoint and present methods
for dimensionality estimation, manifold learning and function approximation. Under our approach,
manifolds in high-dimensional spaces are inferred by estimating geometric relationships among the
input instances. Unlike conventional manifold learning, we do not perform dimensionality reduc-
tion, but instead perform all operations in the original input space. For this purpose we employ
a novel formulation of tensor voting, which allows anN-D implementation. Tensor voting is a
perceptual organization framework that has mostly been applied to computer vision problems. An-
alyzing the estimated local structure at the inputs, we are able to obtain reliable dimensionality
estimates at each instance, instead of a global estimate forthe entire data set. Moreover, these
local dimensionality and structure estimates enable us to measure geodesic distances and perform
nonlinear interpolation for data sets with varying density, outliers, perturbation and intersections,
that cannot be handled by state-of-the-art methods. Quantitative results on the estimation of local
manifold structure using ground truth data are presented. In addition, we compare our approach
with several leading methods for manifold learning at the task of measuring geodesic distances.
Finally, we show competitive function approximation results on real data.

Keywords: dimensionality estimation, manifold learning, geodesic distance, function approxima-
tion, high-dimensional processing, tensor voting

1. Introduction

In this paper, we address a subfield of machine learning that operates in continuous domains and
learns from observations that are represented as points in a Euclidean space. This type of learning
is termedinstance-basedor memory-basedlearning (Mitchell, 1997). The goal of instance-based
learning is to learn the underlying relationships between observations, which are points in anN-
D continuous space, under the assumption that they lie in a limited part of the space, typically a
manifold, the dimensionality of which is an indication of the degrees of freedomof the underlying
system.
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Instance-based learning has recently received renewed interest from the machine learning com-
munity, due to its many applications in the fields of pattern recognition, data mining, kinematics,
function approximation and visualization, among others. This interest was sparked by a wave of
new algorithms that advanced the state of the art and are capable of learning nonlinear manifolds
in spaces of very high dimensionality. These include kernel PCA (Schölkopf et al., 1998), locally
linear embedding (LLE) (Roweis and Saul, 2000), Isomap (Tenenbaum et al., 2000) and charting
(Brand, 2003), which are reviewed in Section 2. They aim at reducing the dimensionality of the
input space in a way that preserves certain geometric or statistical properties of the data. Isomap,
for instance, attempts to preserve the geodesic distances between all points as the manifold is “un-
folded” and mapped to a space of lower dimension.

Our research focuses on data presented as large sets of observations, possibly containing out-
liers, in high dimensions. We view the problem of learning an unknown function based on these
observations as equivalent to learning a manifold, or manifolds, formed bya set of points. Having
a good estimate of the manifold’s structure, one is able to predict the positions of other points on
it. The first task is to determine the intrinsic dimensionality of the data. This can provide insights
on the complexity of the system that generates the data, the type of model needed to describe it, as
well as the actual degrees of freedom of the system, which are not equal to the dimensionality of the
input space, in general. We also estimate the orientation of a potential manifold that passes through
each point. Dimensionality estimation and structure inference are accomplishedsimultaneously by
encoding the observations as symmetric, second order, non-negative definite tensors and analyzing
the outputs of tensor voting (Medioni et al., 2000). Since the process thatestimates dimensionality
and orientation is performed on the inputs, our approach falls under the “eager learning” category,
according to Mitchell (1997). Unlike other eager approaches, however, ours is not global. This of-
fers considerable advantages when the data become more complex, or when the number of instances
is large.

We take a different path to manifold learning than Roweis and Saul (2000),Tenenbaum et al.
(2000) and Brand (2003). Whereas these methods address the problem as one of dimensionality
reduction, we propose an approach that does not embed the data in a lower dimensional space. Pre-
liminary versions of this approach were published in Mordohai and Medioni (2005) and Mordohai
(2005). A similar methodology was also presented by Dollár et al. (2007a). We compute local
dimensionality estimates, but instead of performing dimensionality reduction, we perform all oper-
ations in the original input space, taking into account the estimated dimensionality of the data. We
also estimate the orientation of the manifold locally and are able to approximate intrinsic or geodesic
distances1 and perform nonlinear interpolation. Since we perform all processing inthe input space
we are able to process data sets that are not manifolds globally, or ones withvarying intrinsic di-
mensionality. The latter pose no additional difficulties, since we do not use a global estimate for
the dimensionality of the data. Moreover, outliers, boundaries, intersections or disconnected com-
ponents are handled naturally as in 2-D and 3-D (Medioni et al., 2000; Tang and Medioni, 1998).
Quantitative results for the robustness to outliers that outnumber the inliers are presented in Sec-
tions 5 and 6. Once processing under our approach has been completed, dimensionality reduction

1. The requirements for a distance to be geodesic are stricter than those for being intrinsic. Intrinsic distances are
computed on the manifold, while geodesics are based on the gradient of the distance function. For the manifolds we
examine in this paper, these two almost always coincide. See Mémoli and Sapiro (2005) and references therein for
more details.
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can be performed using any of the approaches described in the next section to reduce the storage
requirements, if appropriate and desirable.

Manifold learning serves as the basis for the last part of our work, which addresses function
approximation. As suggested by Poggio and Girosi (1990), function approximation from samples
and hypersurface inference are equivalent. The main assumption is thatsome form of smoothness
exists in the data and unobserved outputs can be predicted from previouslyobserved outputs for
similar inputs. The distinction between low and high-dimensional spaces is necessary, since highly
specialized methods for low-dimensional cases exist in the literature. Our approach is local, non-
parametric and has a weak prior model of smoothness, which is implemented in theform of votes
that communicate a point’s preferred orientation to its neighbors. This generic prior and the absence
of global computations allow us to address a large class of functions as wellas data sets comprising
very large numbers of observations. As most of the local methods reviewed in the next section,
our algorithm is memory-based. This increases flexibility, since we can process data that do not
conform to pre-specified models, but also increases storage requirements, since all samples are kept
in memory.

All processing in our method is performed using tensor voting, which is a computational frame-
work for perceptual organization based on the Gestalt principles of proximity and good continuation
(Medioni et al., 2000). It has mainly been applied to organize generic points into coherent groups
and for computer vision problems that were formulated as perceptual organization tasks. For in-
stance, the problem of stereo vision can be formulated as the organization of potential pixel corre-
spondences into salient surfaces, under the assumption that correct correspondences form coherent
surfaces and wrong ones do not (Mordohai and Medioni, 2006). Salient structures are inferred based
on the support potential correspondences receive from their neighbors in the form of votes, which
are also second order tensors that are cast from each point to all other points within its neighbor-
hood. Each vote conveys the orientation the receiver would have if the voter and receiver were in the
same structure. In Section 3, we present a new implementation of tensor votingthat is not limited
to low-dimensional spaces as the original one of Medioni et al. (2000).

The paper is organized as follows: an overview of related work includingthe algorithms that are
compared with ours is given in the next section; a new implementation of tensor voting applicable
to N-D data is described in Section 3; results in dimensionality estimation are presented in Section
4, while results in local structure estimation are presented in Section 5; our algorithm for estimating
geodesic distances and a quantitative comparison with state of the art methods are shown in Section
6; function approximation is described in Section 7; finally, Section 8 concludes the paper.

2. Related Work

In this section, we present related work in the domains of dimensionality estimation, manifold
learning and multivariate function approximation.

2.1 Dimensionality Estimation

Bruske and Sommer (1998) present an approach for dimensionality estimation where an optimally
topology preserving map (OTPM) is constructed for a subset of the data,which is produced after
vector quantization. Principal Component Analysis (PCA) is then performed for each node of the
OTPM under the assumption that the underlying structure of the data is locally linear. The average of
the number of significant singular values at the nodes is the estimate of the intrinsic dimensionality.
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Kégl (2003) estimates the capacity dimension of a manifold, which is equal to the topological
dimension and does not depend on the distribution of the data, using an efficient approximation
based on packing numbers. The algorithm takes into account dimensionality variations with scale
and is based on a geometric property of the data, rather than successiveprojections to increasingly
higher-dimensional subspaces until a certain percentage of the data is explained. Raginsky and
Lazebnik (2006) present a family of dimensionality estimators based on the concept of quantization
dimension. The family is parameterized by the distortion exponent and includesthe method of Ḱegl
(2003) when the distortion exponent tends to infinity. The authors show that small values of the
distortion exponent yield estimators that are more robust to noise.

Costa and Hero (2004) estimate the intrinsic dimension of the manifold and the entropy of
the samples using geodesic-minimal-spanning trees. The method, similarly to Isomap (Tenenbaum
et al., 2000), considers global properties of the adjacency graph andthus produces a single global
estimate.

Levina and Bickel (2005) compute maximum likelihood estimates of dimensionality byexam-
ining the number of neighbors included in spheres, the radii of which are selected in such a way
that they contain enough points and that the density of the data contained in them can be assumed
constant. These requirements cause an underestimation of the dimensionality when it is very high.

The difference between our approach and those of Bruske and Sommer(1998), Ḱegl (2003),
Brand (2003), Weinberger and Saul (2004), Costa and Hero (2004) and Levina and Bickel (2005) is
that it produces reliable dimensionality estimates at the point level. While this is notimportant for
data sets with constant dimensionality, the ability to estimate local dimensionality reliablybecomes
a key factor when dealing with data generated by different unknown processes. Given reliable local
estimates, the data set can be segmented in components with constant dimensionality.

2.2 Manifold Learning

Here, we briefly present recent approaches for learning low dimensional embeddings from points
in high dimensional spaces. Most of them are inspired by linear techniques, such as Principal
Component Analysis (PCA) (Jolliffe, 1986) and Multi-Dimensional Scaling (MDS) (Cox and Cox,
1994), based on the assumption that nonlinear manifolds can be approximated by locally linear
parts.

Scḧolkopf et al. (1998) propose kernel PCA that extends linear PCA by implicitly mapping
the inputs to a higher-dimensional space via kernels. Conceptually, applying PCA in the high-
dimensional space allows the extraction of principal components that capture more information
than their counterparts in the original space. The mapping to the high-dimensional space does not
need to carried out explicitly, since dot product computations suffice. The choice of kernel is still
an open problem. Weinberger et al. (2004) describe an approach to compute the kernel matrix by
maximizing variance in feature space in the context of dimensionality reduction.

Locally Linear Embedding (LLE) was presented by Roweis and Saul (2000) and Saul and
Roweis (2003). The underlying assumption is that if data lie on a locally linear,low-dimensional
manifold, then each point can be reconstructed from its neighbors with appropriate weights. These
weights should be the same in a low-dimensional space, the dimensionality of which is greater or
equal to the intrinsic dimensionality of the manifold. The LLE algorithm computes thebasis of
such a low-dimensional space. The dimensionality of the embedding, however, has to be given as a
parameter, since it cannot always be estimated from the data (Saul and Roweis, 2003). Moreover,
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the output is an embedding of the given data, but not a mapping from the ambient to the embedding
space. Global coordination of the local embeddings, and thus a mapping, can be computed accord-
ing to Teh and Roweis (2003). LLE is not isometric and often fails by mapping distant points close
to each other.

Tenenbaum et al. (2000) propose Isomap, which is an extension of MDSthat uses geodesic
instead of Euclidean distances and thus can be applied to nonlinear manifolds. The geodesic dis-
tances between points are approximated by graph distances. Then, MDS isapplied on the geodesic
distances to compute an embedding that preserves the property of points to be close or far away
from each other. Isomap can handle points not in the original data set, andperform interpolation.
C-Isomap, a variant of Isomap applicable to data with intrinsic curvature, but known distribution,
and L-Isomap, a faster alternative that only uses a few landmark point for distance computations,
have also been proposed by de Silva and Tenenbaum (2003). Isomap and its variants are limited to
convex data sets.

The Laplacian Eigenmaps algorithm was developed by Belkin and Niyogi (2003). It computes
the normalized graph Laplacian of the adjacency graph of the input data, which is an approximation
of the Laplace-Beltrami operator on the manifold. It exploits locality preserving properties that
were first observed in the field of clustering. The Laplacian Eigenmaps algorithm can be viewed as
a generalization of LLE, since the two become identical when the weights of thegraph are chosen
according to the criteria of the latter. Much like LLE, the dimensionality of the manifold also has to
be provided, the computed embeddings are not isometric and a mapping between the two spaces is
not produced. The latter is addressed by He and Niyogi (2004) wherea variation of the algorithm
is proposed.

Donoho and Grimes (2003) propose Hessian LLE (HLLE), an approach similar to the above,
which computes the Hessian instead of the Laplacian of the graph. The authors claim that the
Hessian is better suited than the Laplacian in detecting linear patches on the manifold. The major
contribution of this approach is that it proposes a global, isometric method, which, unlike Isomap,
can be applied to non-convex data sets. The requirement to estimate secondderivatives from possi-
bly noisy, discrete data makes the algorithm more sensitive to noise than the others reviewed here.

Semidefinite Embedding (SDE) was proposed by Weinberger and Saul (2004, 2006) who ad-
dress the problem of manifold learning by enforcing local isometry. The lengths of the sides of
triangles formed by neighboring points are preserved during the embedding. These constraints can
be expressed in terms of pairwise distances and the optimal embedding can befound by semidefinite
programming. The method is among the most computationally demanding reviewed here, but can
reliably estimate the underlying dimensionality of the inputs by locating the largest gap between the
eigenvalues of the Gram matrix of the outputs. Similarly to our approach, dimensionality estimation
does not require a threshold.

Other research related to ours includes the charting algorithm of Brand (2003). It computes a
pseudo-invertible mapping of the data, as well as the intrinsic dimensionality of the manifold, which
is estimated by examining the rate of growth of the number of points contained in hyper-spheres as
a function of the radius. Linear patches, areas of curvature and noisecan be distinguished using the
proposed measure. At a subsequent stage a global coordinate systemfor the embedding is defined.
This produces a mapping between the input space and the embedding space.

Wang et al. (2005) propose an adaptive version of the local tangent space alignment (LTSA)
of Zhang and Zha (2004), a local dimensionality reduction method that is a variant of LLE. Wang
et al. address a limitation of most of the approaches presented in this section,which is the use of
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a fixed number of neighbors (k) for all points in the data. Inappropriate selection ofk can cause
problems at points near boundaries, or if the density of the data is not approximately constant. The
authors propose a method to adapt the neighborhood size according to local criteria and demonstrate
its effectiveness on data sets of varying distribution. Using an appropriate value fork at each point
is important for graph-based methods, since the contributions of each neighbor are typically not
weighted, making the algorithms very sensitive to the selection ofk.

In a more recent paper, Sha and Saul (2005) propose Conformal Eigenmaps, an algorithm that
operates on the output of LEE or Laplacian Eigenmaps to produce a conformal embedding, which
preserves angles between edges in the original input space, without incurring a large increase in
computational cost. A similar approach that “stiffens” the inferred manifoldsemploying a multi-
resolution strategy was proposed by Brand (2005). Both these papersaddress the limitation of
some of the early algorithms which preserve graph connectivity, but not local structure, during the
embedding.

The most similar method to ours is that of Dollár et al. (2007a) and Dollár et al. (2007b) in which
the data are not embedded in a lower dimensional space. Instead, the localstructure of a manifold at
a point is learned from neighboring observations and represented by aset of radial basis functions
(RBFs) centered onK points discovered byK-means clustering. The manifold can then be traversed
by “walking” on its tangent space between and beyond the observations.Representation by RBFs
without dimensionality reduction allows the algorithm to be robust to outliers and be applicable to
non-isometric manifolds. An evaluation of manifold learning using geodesic distance preservation
as a metric, similar to the one of Section 6.1, is presented in Dollár et al. (2007b).

A different approach for intrinsic distance estimation that bypasses learning the structure of the
manifold has been proposed by Mémoli and Sapiro (2005). It approximates intrinsic distances and
geodesics by computing extrinsic Euclidean distances in a thin band that surrounds the points. The
algorithm can handle manifolds in any dimension and of any co-dimension and ismore robust to
noise than graph-based methods, such as Isomap, since in the latter the outliers are included in the
graph and perturb the approximation of geodesics.

Souvenir and Pless (2005) present an approach capable of learningmultiple, potentially inter-
secting, manifolds of different dimensionality using an expectation maximization (EM) algorithm
with a variant of MDS as the M step. Unlike our approach, however, the number and dimensionality
of the manifolds have to be provided externally.

2.3 Function Approximation

Here we review previous research on function approximation focusing on methods that are appli-
cable to large data sets in high-dimensional spaces. Neural networks areoften employed as global
methods for function approximation. Poggio and Girosi (1990) addressed function approximation in
a regularization framework implemented as a three-layer neural network. They view the problem as
hypersurface reconstruction, where the main assumption is that of smoothness. The emphasis is on
the selection of the appropriate approximating functions and optimization algorithm. Other research
based on neural networks includes the work of Sanger (1991) who proposed a tree-structured neural
network, which does not suffer from the exponential growth with dimensionality of the number of
models and parameters that plagued previous approaches. It does, however, require the selection
of an appropriate set of basis functions to approximate a given function.Neural network based
approaches with pre-specified types of models are also proposed by: Barron (1993) who derived
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the bounds for approximation using a superposition of sigmoidal functions;Breiman (1993) who
proposed a simpler and faster model based on hinging hyperplanes; andSaha et al. (1993) who used
RBFs.

Xu et al. (1995) modified the training scheme for the mixture of experts architecture so that
a single-loop EM algorithm is sufficient for optimization. Mitaim and Kosko (2001) approached
the problem within the fuzzy systems framework. They investigated the selection of the shape of
fuzzy sets for an adaptive fuzzy system and concluded that no shapeemerges as the best choice.
These approaches, as well as the ones based on neural networks, are global and model-based. They
can achieve good performance, but they require all the inputs to be available at the same time for
training and the selection of an appropriate model that matches the unknown function. If the latter
is complex, the resulting model may have an impractically large number of parameters.

Support Vector Machines (SVMs), besides classification, have also been extensively applied for
regression based on the work of Vapnik (1995). Collobert and Bengio(2001) address a limitation of
the SVM algorithm for regression, which is its increased computational complexity as the number
of samples grows, with a decomposition algorithm. It operates on a working set of the variables,
while keeping fixed variables that are less likely to change.

All the above methods are deterministic and make hard decisions. On the other hand, Bayesian
learning brings the advantages of probabilistic predictions and a significant decrease in the number
of basis functions. Tresp (2000) introduced the Bayesian Committee Machine that is able to handle
large data sets by splitting them in subsets and training an estimator for each. These estimators
are combined with appropriate weights to generate the prediction. What is noteworthy about this
approach is the fact that the positions of query points are taken into account in the design of the
estimator and that performance improves when multiple query points are processed simultaneously.
Tipping (2001) proposed a sparse Bayesian learning approach, which produces probabilistic predic-
tions and automatically detects nuisance parameters, and the Relevance Vector Machine that can be
viewed as stochastic formulation of an SVM. A Bayesian treatment of SVM-based regression can
also be found in the work of Chu et al. (2004). Its advantages include reduced computational com-
plexity over Gaussian Process Regression (GPR), reviewed below, and robustness against outliers.
Inspired by Factor Analysis Regression, Ting et al. (2006) propose aBayesian regression algorithm
that is robust to ill-conditioned data, detects relevant features and identifies input and output noise.

An approach that has attracted a lot of attention is the use of Gaussian Processes (GPs) for
regression. Williams and Rasmussen (1996) observed that Bayesian analysis of neural networks
is difficult due to complex prior distributions over functions resulting even from simple priors over
weights. Instead, if one uses Gaussian processes as priors over the functions, then Bayesian analysis
can be carried out exactly. Despite the speed up due to GPs, faster implementations were still needed
for practical applications. A sparse greedy GP regression algorithm was presented by Smola and
Bartlett (2001) who approximate the MAP estimate by expanding in terms of a smallset of kernels.
Csat́o and Opper (2002) described an alternative sparse representation for GP regression models. It
operates in an online fashion and maintains a sparse basis which is dynamicallyupdated as more
data become available.

Lawrence et al. (1996) compared a global approach using a multi-layer perceptron with a linear
local approximation model. They found that the local model performed betterwhen the density of
the input data deviated a lot from being uniform. Furthermore, the local model allowed for incre-
mental learning and cross-validation. On the other hand, it showed poorer generalization, slower
performance after training and required more memory, since all input data had to be stored. The
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global model performed better in higher dimensions, where data sparsity becomes a serious prob-
lem for the local alternative. Wedge et al. (2006) bring together the advantages of global and local
approaches using a hybrid network architecture that combines RBFs andsigmoid neural networks.
It first identifies global features of the system before adding local details via the RBFs.

Schaal and Atkeson (1998) proposed a nonparametric, local, incremental learning approach
based on receptive field weighted regression. The approach is truly local since the parameters for
each model and the size and shape of each receptive field are learned independently. The provided
mechanisms for the addition and pruning of local models enable incremental learning as new data
points become available.

Atkeson et al. (1997) survey local weighted learning methods and identifythe issues that must
be taken into account. These include the selection of the distance metric, the weighting function,
prediction assessment and robustness to noise. The authors argue thatin certain cases no values of
the parameters of a global model can provide a good approximation of the true function. In these
cases, a local approximation using a simpler, even linear model, is a better approach than increasing
the complexity of the global model. Along these lines, Vijayakumar and Schaal (2000) proposed lo-
cally weighted projection regression, an algorithm based on successiveunivariate regressions along
projections of the data in directions given by the gradient of the underlyingfunction.

We opt for a local approach and address the problem as an extension of manifold learning.
Note, however, that we are not limited to functions that are strictly manifolds. Using tensor voting,
we are able to reliably estimate the normal and tangent space at each sample, as described in the
following section. These estimates allow us to perform nonlinear interpolation and generate outputs
for unobserved inputs, even under severe noise corruption.

3. Tensor Voting in High-Dimensional Spaces

The tensor voting framework, in its preliminary version (Guy and Medioni, 1996), is an imple-
mentation of two Gestalt principles, namely proximity and good continuation, for grouping generic
tokens in 2-D. The 2-D domain has always been the main focus of research in perceptual organi-
zation, beginning with the research of Köhler (1920), Wertheimer (1923) and Koffka (1935). The
generalization of perceptual organization to 3-D is relatively straightforward, since salient group-
ings can be detected by the human visual system in 3-D based on the same principles. Guy and
Medioni (1997) extended tensor voting to three dimensions. The term saliency here refers tostruc-
tural saliency, which, according to Shashua and Ullman (1988) is the property of structures to stand
out due to the configuration of local elements. That is, the local elements of the structure are not
salient in isolation, but instead the arrangement of the elements is what makes the structure salient.
The saliency of each element is estimated by accumulatingvotescast from its neighbors. Tensor
voting is a pairwise operation in which elements cast and collect votes in local neighborhoods. Each
vote is a tensor and encodes the orientation the receiver would have according to the voter, if the
voter and receiver belonged in the same structure. According to the Gestalt theory, simple figures
are preferable to complex alternatives, if no evidence favors the latter. The evidence in tensor voting
are the position and preferred orientation, if available, of the voter and theposition of the receiver.
Given this information, we show examples of votes cast by an oriented voterin 2-D in Figure 1. The
voterV is a point on a horizontal curve and its normal is represented by the orange arrow. (Details
on the representation can be found in Section 3.1). The other points,R1-R4, act as receivers. The
simplest curve, the one with minimum total curvature, that passes through an oriented voter and
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Figure 1: Illustration of tensor voting in 2-D. The voter is an oriented curveelementV on a hori-
zontal curve whose normal is represented by the orange arrow. The four receiversR1-R4

collect votes fromV. (In practice, they would also cast votes toV and among themselves,
but this is omitted here.) Each receiver is connected toV by a circular arc which is the
simplest structure that can be inferred from two points, one of which is oriented. The
gray votes at the receivers indicate the curve normal the receivers should have according
to the voter.

a receiver is a circular arc, for which curvature is constant. Therefore, we connect the voter and
receiver by a circular arc which is tangent at the voter and passes through the receiver and define
the vote cast as the normal to this arc at the location of the receiver. The votes shown as gray arrows
in Figure 1 represent the orientations the receivers would have according to the voterV. The mag-
nitude of the votes decays with distance and curvature. It will be defined formally in Section 3.2.
Voting from all possible types of voters, such as surface or curve elements in 3-D, can be derived
from the fundamental case of a curve element voter in 2-D (Medioni et al.,2000). Tensor voting is
based on strictly local computations in the neighborhoods of the inputs. The size of these neighbor-
hoods is controlled by the only critical parameter in the framework: the scale of voting σ. The scale
parameter is introduced in Eq. 3. By determining the size of the neighborhoods, scale regulates the
amount of smoothness and provides a knob to the user for balancing fidelityto the data and noise
reduction.

Regardless of the computational feasibility of an implementation, the same grouping principles
apply to spaces with even higher dimensions. For instance, Tang et al. (2001) observed that pixel
correspondences can be viewed as points in the 8-D space of free parameters of the fundamental
matrix. Correct correspondences align to form a hyperplane in that space, while wrong correspon-
dences are randomly distributed. By applying tensor voting in 8-D, Tang etal. were able to infer
the dominant hyperplane and the desired parameters of the fundamental matrix. Storage and com-
putation requirements, however, soon become prohibitively high as the dimensionality of the space
increases. Even though the applicability of tensor voting as a manifold learning technique seems to
have merit, the generalization of the implementation of Medioni et al. (2000) is not practical, mostly
due to computational complexity and storage requirements inN dimensions. The bottleneck is the
generation and storage of voting fields, the number of which is equal to the dimensionality of the
space.

In this section, we describe the tensor voting framework beginning with data representation
and proceeding to the voting mechanism and vote analysis. The representation and vote analysis
schemes areN-D extensions of the original implementation (Medioni et al., 2000). The novelty of
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(a) Oriented orstick tensor (b) Unoriented orball tensor (c) Generic tensor

Figure 2: Examples of tensors in 3-D. The tensor on the left has only one non-zero eigenvalue and
encodes a preference for an orientation parallel to the eigenvector corresponding to that
eigenvalue. The eigenvalues of the tensor in the middle are all equal, and thus the tensor
does not encode a preference for a particular orientation. The tensoron the right is a
generic 3-D tensor.

our work is a new formulation of the voting process that is practical for spaces of dimensionality up
to a few hundreds. Efficiency is considerably higher than the preliminary version of this formulation
presented in Mordohai and Medioni (2005), where we focused on dimensionality estimation.

3.1 Data Representation

The representation of a token (a generic data point) is a second order, symmetric, non-negative
definite tensor, which is equivalent to anN×N matrix and an ellipsoid in anN-D space. All tensors
in this paper are second order, symmetric and non-negative definite, so any reference to a tensor
automatically implies these properties. Three examples of tensors, in 3-D, canbe seen in Figure 2.
A tensor represents the structure of a manifold going through the point by encoding the normals to
the manifold as eigenvectors of the tensor that correspond to non-zero eigenvalues, and the tangents
as eigenvectors that correspond to zero eigenvalues. (Note that eigenvectors and vectors in general
in this paper are column vectors.) For example, a point in anN-D hyperplane has one normal and
N−1 tangents, and thus is represented by a tensor with one non-zero eigenvalue associated with
an eigenvector parallel to the hyperplane’s normal. The remainingN−1 eigenvalues are zero. A
point belonging to a 2-D manifold inN-D is represented by two tangents andN−2 normals, and
thus is represented by a tensor with two zero eigenvalues associated with theeigenvectors that span
the tangent space of the manifold. The tensor also hasN−2 non-zero, equal eigenvalues whose
corresponding eigenvectors span the manifold’s normal space. Two special cases of tensors are: the
stick tensor that has only one non-zero eigenvalue and represents perfect certainty for a hyperplane
normal to the eigenvector that corresponds to the non-zero eigenvalue;and theball tensor that has
all eigenvalues equal and non-zero which represents perfect uncertainty in orientation, or, in other
words, just the presence of an unoriented point.

The tensors can be formed by the summation of the direct products (~n~nT) of the eigenvectors
that span the normal space of the manifold. The tensor at a point on a manifold of dimensionality
d, with~ni being the unit vectors that span the normal space, can be computed as follows:

T =
d

∑
i=1

~ni~n
T
i . (1)
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An unoriented point can be represented by aball tensor which contains all possible normals and
is encoded as theN×N identity matrix. Any point on a manifold of known dimensionality and
orientation can be encoded in this representation by appropriately constructed tensors, according to
Eq. 1.

On the other hand, given anN-D second order, symmetric, non-negative definite tensor, the type
of structure encoded in it can be inferred by examining its eigensystem. Anysuch tensor can be
decomposed as in the following equation:

T =
N

∑
d=1

λdêdêT
d =

= (λ1−λ2)ê1êT
1 +(λ2−λ3)(ê1êT

1 + ê2êT
2 )+ ....+λN(ê1êT

1 + ê2êT
2 + ...+ êNêT

N)

=
N−1

∑
d=1

[(λd−λd+1)
d

∑
k=1

êdêT
d ]+λN(ê1êT

1 + ...+ êNêT
N)

(2)

whereλd are the eigenvalues in descending order of magnitude and ˆed are the corresponding eigen-
vectors. The tensor simultaneously encodesall possible types of structure. The confidence, or
saliencyin perceptual organization terms, of the type that hasd normals is encoded in the differ-
enceλd−λd+1, or λN for the ball tensor. If only one of these eigenvalue differences is not zero,
then the tensor encodes a single type of structure. Otherwise, more than one type can be present at
the location of the tensor, each having a saliency value given by the appropriate difference between
consecutive eigenvalues ofλN. An illustration of tensor decomposition in 3-D can be seen in Figure
3.

(a) Generic 3-D tensor (b) Elementary 3-D tensors

Figure 3: Tensor decomposition in 3-D. A generic tensor can be decomposed into the stick, plate
and ball components that have a normal subspace of rank one, two and three respectively.

3.2 The Voting Process

After the inputs have been encoded with tensors, the information they containis propagated to their
neighbors via a voting operation. Given a tensor atA and a tensor atB, the vote the token atA (the
voter) casts toB (the receiver) has the orientation the receiver would have, if both the voter and
receiver belong to the same structure. The magnitude of the vote is a functionof the confidence we
have that the voter and receiver indeed belong to the same structure.
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3.2.1 STICK VOTING

We first examine the case of a voter associated with asticktensor, that is the normal space is a single
vector in N-D. We claim that, in the absence of other information, the arc of theosculating circle
(the circle that shares the same normal as a curve at the given point) atA that goes throughB is
the most likely smooth path betweenA andB, since it minimizes total curvature. The center of the
circle is denoted byC in Figure 4(a). (For visualization purposes, the illustrations are for the 2-D
and 3-D cases.) In case of straight continuation fromA to B, the osculating circle degenerates to
a straight line. Similar use of circular arcs can also be found in Parent andZucker (1989), Saund
(1992), Sarkar and Boyer (1994) and Yen and Finkel (1998). Thevote is also a stick tensor and is
generated as described in Section 3 according to the following equation:

Svote(s,θ,κ) = e−( s2+cκ2

σ2 )
[

−sin(2θ)
cos(2θ)

]

[−sin(2θ) cos(2θ)], (3)

θ = arcsin(
~vT ê1

‖~v‖
),

s =
θ‖~v‖
sin(θ)

,

κ =
2sin(θ)

‖~v‖
.

In the above equation,s is the length of the arc between the voter and receiver, andκ is its curvature
(which can be computed from the radiusAC of the osculating circle in Figure 4(a)),σ is the scale
of voting, andc is a constant, which controls the degree of decay with curvature. The constantc
is a function of the scale and is optimized to make the extension of two orthogonalline segments
to from a right angle equally likely to the completion of the contour with a roundedcorner (Guy
and Medioni, 1996). Its value is given by:c = −16log(0.1)×(σ−1)

π2 . The scaleσ essentially controls
the range within which tokens can influence other tokens. It can also be viewed as a measure of
smoothness that regulates the inevitable trade-off between over-smoothingand over-fitting. Small
values preserve details better, but are more vulnerable to noise and over-fitting. Large values pro-
duce smoother approximations that are more robust to noise. As shown in Section 7, the results are
very stable with respect to the scale. Note thatσ is the only free parameter in the framework.

The vote as defined above is on the plane defined byA, B and the normal atA. Regardless of
the dimensionality of the space, stick vote generation always takes place in a 2-D subspace defined
by the position of the voter and the receiver and the orientation of the voter.(This explains why
Eq. 3 is defined in a 2-D space.) Stick vote computation is identical in any spacebetween 2 and
N dimensions. After the vote has been computed, it has to be transformed to theN-D space and
aligned to the voter by a rotation and translation. For simplicity, we also use the notation:

Svote(A,B,~n) = S(s(A,B,~n),θ(A,B,~n),κ(A,B,~n)) (4)

to denote the stick vote fromA to B with~n being the normal atA. s(A,B,~n), θ(A,B,~n) andκ(A,B,~n)
are the resulting values of the parameters of Eq. 3 givenA,B and~n.

According to the Gestalt principles we wish to enforce, the magnitude of the vote should be a
function of proximity and smooth continuation. Thus the influence from a pointto another attenu-
ates with distance, to minimize interference from unrelated points; and curvature, to favor straight
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continuation over curved alternatives. Moreover, no votes are cast ifthe receiver is at an angle larger
than 45◦ with respect to the tangent of the osculating circle at the voter. Similar restrictions on re-
gions of influence also appear in Heitger and von der Heydt (1993), Yen and Finkel (1998) and Li
(1998) to prevent high-curvature connections without support fromthe data. Votes corresponding
to such connections would have been very weak regardless of the restriction since their magni-
tude is attenuated due to curvature. The saliency decay function (Gaussian) of Eq. 3 has infinite
support, but for practical purposes the field is truncated so that negligible votes do not have to be
computed. For all experiments shown here, we limited voting neighborhoods tothe extent in which
the magnitude of a vote is more than 3% of the magnitude of the voter. Both truncation beyond
45◦ and truncation beyond a certain distance are not critical choices, but are made to eliminate the
computation of insignificant votes.

3.2.2 N-D FORMULATION OF TENSORVOTING

We have shown that stick vote computation is identical up to a simple transformationfrom 2-D
to N-D. Now we turn our attention to votes generated by voters that are not sticktensors. In the
original formulation (Medioni et al., 2000) these votes can be computed by integrating the votes
cast by a rotating stick tensor that spans the normal space of the voting tensor. Since the resulting
integral has no closed form solution, the integration is approximated numerically by taking sample
positions of the rotating stick tensor and adding the votes it generates at each point within the voting
neighborhood. As a result, votes that cover the voting neighborhood are pre-computed and stored in
voting fields. The advantage of this scheme is that all votes are generated based on the stick voting
field. Its computational complexity, however, makes its application in high-dimensional spaces
prohibitive. Voting fields are used as look-up tables to retrieve votes via interpolation between the
pre-computed samples. For instance, a voting field in 10-D withk samples per axis, requires storage
for k10 10× 10 tensors, which need to be computed via numerical integration over 10 variables.
Thus, the use of pre-computed voting fields becomes impractical as dimensionality grows. At the
same time, the probability of using a pre-computed vote decreases.

Here, we present a simplified vote generation scheme that allows the direct computation of
votes from arbitrary tensors in arbitrary dimensions. Storage requirements are limited to storing the
tensors at each sample, since explicit voting fields are not used any more. The advantage of the
novel vote generation scheme is that it does not require integration. As in the original formulation,
the eigenstructure of the vote represents the normal and tangent spacesthat the receiver would have,
if the voter and receiver belong in the same smooth structure.

3.2.3 BALL VOTING

For the generation of ball votes, we propose the following direct computation. It is based on the
observation that the vote generated by a ball voter propagates the voter’s preference for a straight
line that connects it to the receiver (Figure 4(b)). The straight line is the simplest and smoothest
continuation from a point to another point in the absence of other information. Thus, the vote
generated by a ball voter is a tensor that spans the(N−1)-D normal space of the line and has one
zero eigenvalue associated with the eigenvector that is parallel to the line. Itsmagnitude is a function
of only the distance between the two points, since curvature is zero. Takingthese observations into
account, the ball vote can be constructed by subtracting the direct product of the unit vector in
the direction from the voter to the receiver from a full rank tensor with equal eigenvalues (i.e., the
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identity matrix). The resulting tensor is attenuated by the same Gaussian weight according to the
distance between the voter and the receiver.

Bvote(s) = e−( s2

σ2 )
(

I −
~v~vT

‖~vT~v‖

)

(5)

where~v is a unit vector parallel to the line connecting the voter and the receiver andI is theN-D
identity matrix. In this case,s= |~v| and we omitθ andκ since they do not affect the computation.

Along the lines of Equation 4, we define a simpler notation:

Bvote(A,B) = Bvote(s(A,B)) (6)

wheres(A,B) = |~v|.

3.2.4 VOTING BY ELEMENTARY TENSORS

To complete the description of vote generation, we need to describe the caseof a tensor that has
d equal eigenvalues, whered is not equal to 1 orN. (An example of such a tensor would be a
curve element in 3-D, which has a rank-two normal subspace and a rank-one tangent subspace.)
The description in this section also applies to ball and stick tensors, but we use the above direct
computations, which are faster. Let~v be the vector connecting the voting and receiving points. It
can be decomposed into~vt and~vn in the tangent and normal spaces of the voter respectively. The
new vote generation process is based on the observation that curvaturein Eq. 3 is not a factor when
θ is zero, or, in other words, if the voting stick is orthogonal to~vn. We can exploit this by defining
a new basis for the normal space of the voter that includes~vn. The new basis is computed using
the Gramm-Schmidt procedure. The vote is then constructed as the tensor addition of the votes cast
by stick tensors parallel to the new basis vectors. Among those votes, only the one generated by
the stick tensor parallel to~vn is not parallel to the normal space of the voter and curvature has to be
considered. All other votes are a function of the length of~vt only. See Figure 5 for an illustration
in 3-D. Analytically, the vote is computed as the summation ofd stick votes cast by the new basis
of the normal space. LetNS denote the normal space of the voter and let~bi , i ∈ [1,d] be a basis for
it with ~b1 being parallel to~vn. If Svote(A,B,~b) is the function that generates the stick vote from a

(a) Stick voting (b) Ball voting

Figure 4: Vote generation for a stick and a ball voter. The votes are functions of the position of the
voter A and receiver B and the tensor of the voter.
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Figure 5: Vote generation for generic tensors. The voter here is a tensor with a 2-D normal subspace
in 3-D. The vector connecting the voter and receiver is decomposed into~vn and~vt that lie
in the normal and tangent space of the voter. A new basis that includes~vn is defined for
the normal space and each basis component casts a stick vote. Only the votegenerated
by the orientation parallel to~vn is not parallel to the normal space. Tensor addition of the
stick votes produces the combined vote.

unit stick tensor atA parallel to~b to the receiverB, then the vote from a generic tensor with normal
spaceN is given by:

Vvote(A,B,Te,d) = Svote(A,B,~b1)+ ∑
i∈[2,d]

Svote(A,B,~bi). (7)

In the above equation,Te,d denotes the elementary voting tensor withd equal non-zero eigenvalues.
On the right-hand side, all the terms are pure stick tensors parallel to the voters, except the first
one which is affected by the curvature of the path connecting the voter andreceiver. Therefore,
the computation of the lastd−1 terms is equivalent to applying the Gaussian weight to the voting
sticks and adding them at the position of the receiver. Only one vote requires a full computation of
orientation and magnitude. This makes the proposed scheme computationally inexpensive.

3.2.5 THE VOTING PROCESS

During the voting process (Algorithm 1), each point casts a vote to all its neighbors within the
voting neighborhood. If the voters are not pure elementary tensors, that is if more than one saliency
value is non-zero, they are decomposed before voting according to Eq.2. Then, each component
votes separately and the vote is weighted byλd−λd+1, except the ball component whose vote is
weighted byλN. Besides the voting tensorT, points also have a receiving tensorR that acts as vote
accumulator. Votes are accumulated at each point by tensor addition, whichis equivalent to matrix
addition.

3.3 Vote Analysis

Vote analysis takes place after voting to determine the most likely type of structure and the orienta-
tion at each point. There areN + 1 types of structure in anN-D space ranging from 0-D points to
N-D hypervolumes.

The eigensystem of the receiving tensorR is computed once at the end of the voting process and
the tensor is decomposed as in Eq. 2. The estimate of local intrinsic dimensionalityis given by the
maximum gap in the eigenvalues. Quantitative results on dimensionality estimation arepresented
in Section 4. In general, if the maximum eigenvalue gap isλd−λd+1, the estimated local intrinsic
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Algorithm 1 The Voting Process
1. Initialization
ReadM input pointsPi and initial conditions, if available.
for all i ∈ [1,M] do

Initialize T i according to initial conditions or set equal to the identityI .
ComputeT i ’s eigensystem(λ(i)

d , ê(i)
d ).

Set vote accumulatorRi ← 0
end for
Initialize Approximate Nearest Neighbor (ANN) k-d tree (Arya et al., 1998) for fast neighbor
retrieval.

2. Voting
for all i ∈ [1,M] do

for all Pj in Pi ’s neighborhooddo
if λ1−λ2 > 0 then

Compute stick voteSvote(Pi ,Pj , ê
(i)
1 ) from Pi to Pj according to Eq. 4.

end if
if λN > 0 then

Compute ball voteBvote(Pi ,Pj) from Pi to Pj according to Eq. 6.
end if
for d = 2 toN−1 do

if λd−λd+1 > 0 then
Compute voteVvote(Pi ,Pj ,T

(i)
e,d) according to Eq. 7.

end if
end for
Add votes to Pj ’s accumulator

R j ←R j +(λ1−λ2)Svote(Pi ,Pj , ê1)+(λN)Bvote(Pi ,Pj)

+ ∑
d∈[2,N−1]

(λd−λd+1)Vvote(Pi ,Pj ,T
(i)
e,d)

end for
end for

3. Vote Analysis
for all i ∈ [1,M] do

Compute eigensystem ofRi (Eq. 2) to determine dimensionality and orientation.
T i ← Ri

end for

dimensionality isN−d, and the manifold hasd normals andN−d tangents. Moreover, the first
d eigenvectors that correspond to the largest eigenvalues are the normalsto the manifold, and the
remaining eigenvectors are the tangents. Outliers can be detected since all their eigenvalues are
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small and no preferred structure type emerges. This happens becausethey are more isolated than
inliers, thus they do not receive votes that consistently support any salient structure. Our past and
current research has demonstrated that tensor voting is very robust against outliers.

This vote accumulation and analysis method does not optimize any explicit objective function,
especially not a global one. Dimensionality emerges from the accumulation of votes, but it is
not a equal to the average, nor the median, nor the majority of the dimensionalities of the voters.
For instance, the accumulation of votes from elements of two or more intersecting curves in 2-D
results in a rank-two normal space at the junction. If one restricts the analysis to the estimates of
orientation, tensor voting can be viewed as a method for maximizing an objectiveat each point.
The weighted (tensor) sum of all votes received is up to a constant equivalent to the weighted mean
in the space of symmetric, non-negative definite, second-order tensors. This can be thought of
as the tensor that maximizes the consensus among the incoming votes. In that sense, assuming
dimensionality is provided by some other process, the estimated orientation at each point is the
maximum likelihood estimate given the incoming votes. It should be pointed out here, that the sum
is used for all subsequent computations, since the magnitude of the eigenvalues and the of the gaps
between them are measures of saliency.

In all subsequent sections, the eigensystem of the accumulator tensor is used as the voter during
subsequent processing steps described in the following sections.

Figure 6: 20,000 points sampled from the “Swiss Roll” data set in 3-D.

4. Dimensionality Estimation

In this section, we present experimental results in dimensionality estimation. According to Section
3.3, the intrinsic dimensionality at each point can be found as the maximum gap in the eigenvalues
of the tensor after votes from its neighboring points have been collected. All inputs consist of
unoriented points since no orientation information is provided and are encoded as ball tensors.

4.1 Swiss Roll

The first experiment is on the “Swiss Roll” data set, which is frequently usedin the literature and is
available athttp://isomap.stanford.edu/ . It contains 20,000 points on a 2-D manifold in 3-D
(Figure 6). We sample two random variables from independent uniform distributions to generate
Swiss rolls with as many as 20,000 points, as in Tenenbaum et al. (2000), and as few as 1,250
points. We present quantitative results for 10 different instances of 1,250, 5,000 and 20,000 points
in Table 1 as a function ofσ. The first column for each set of results shows the percentage of points
with correct dimensionality estimates, that is for whichλ1−λ2 is the maximal eigenvalue gap. The
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Points 1250 5000 20000
σ DE NN Time DE NN Time DE NN Time
1 0.5% 1.6 0.2 4.3% 3.6 0.4 22.3% 11.2 3.8
2 4.2% 3.7 0.2 22.3% 11.1 0.8 67.9% 40.8 5.4
4 21.5% 11.0 0.2 70.0% 40.7 0.8 98.0% 156.3 12.3
8 64.5% 38.3 0.2 96.9% 148.9 2.6 99.9% 587.2 36.9
12 87.4% 83.4 0.4 99.3% 324.7 5.0 99.9% 1285.4 77.4
16 94.3% 182.4 0.7 99.5% 715.7 10.1 99.8% 2838.0 164.8
20 94.9% 302.6 1.0 99.2% 1179.4 16.5 99.5% 4700.9 268.7
30 91.0% 703.6 2.3 97.0% 2750.8 37.4 97.6% 10966.5 615.2
40 83.6% 1071.7 3.6 86.7% 4271.5 57.7 87.7% 16998.2 947.3

Table 1: Rate of correct dimensionality estimation (DE), average number of neighbors per point and
execution times (in seconds) as functions ofσ and the number of samples for the “Swiss
Roll” data set. All experiments have been repeated 10 times on random samplings of the
Swiss Roll function. Note that the range of scales includes extreme values as evidenced
by the very high and very low numbers of neighbors in several cases.

second column shows the average number of nearest neighbors included in the voting neighborhood
of each point. The third column shows processing times of a single-threadedC++ implementation
running on an Intell Pentium 4 processor at 2.50GHz. We have also repeated the experiment on 10
instances of 500 points from the Swiss Roll using the same values of the scale. Meaningful results
are obtained forσ > 8. The peak of correct dimensionality estimation is at 80.3% for σ = 20.

A conclusion that can be drawn from Table 1 is that the accuracy is high and stable for a large
range of values ofσ, as long as a few neighbors are included in each neighborhood. The majority of
neighborhoods being empty is an indication of inappropriate scale selection.Performance degrades
as scale increases and the neighborhoods become too large to capture thecurvature of the manifold.
This robustness to large variations in parameter selection are due to the weighting of the votes
according to Eqs. 3, 5 and 7 and alleviates the need for extensive parameter tuning.

4.2 Structures with Varying Dimensionality

The second data set is in 4-D and contains points sampled from three structures: a line, a 2-D cone
and a 3-D hyper-sphere. The hyper-sphere is a structure with three degrees of freedom. It cannot be
unfolded unless we remove a small part from it. Figure 7(a) shows the first three dimensions of the
data. The data set contains a total 135,864 points, which are encoded as ball tensors. Tensor voting
is performed withσ = 200. Figures 7(b-d) show the points classified according to their dimension-
ality. Methods based on dimensionality reduction or methods that estimate a single dimensionality
estimate for the data set would fail for this data set because of the presence of structures with dif-
ferent dimensionalities and because the hyper-sphere cannot be unfolded.
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(a) Input (b) 1-D points

(c) 2-D points (d) 3-D points

Figure 7: Data of varying dimensionality in 4-D. (The first three dimensions of the input and the
classified points are shown.) Note that the hyper-sphere is empty in 4-D, but appears as a
full sphere when visualized in 3-D.

4.3 Data in High Dimensions

The data sets for this experiment were generated by sampling a few thousand points from a low-
dimensional space (3- or 4-D) and mapping them to a medium dimensional space (14- to 16-D)
using linear and quadratic functions. The generated points were then rotated and embedded in a
50- to 150-D space. Outliers drawn from a uniform distribution inside the bounding box of the
data were added to the data set. The percentage of correct point-wise dimensionality estimates after
tensor voting can be seen in Table 2.

Intrinsic Linear Quadratic Space Dimensionality
Dimensionality Mappings Mappings Dimensions Estimation (%)

4 10 6 50 93.6
3 8 6 100 97.4
4 10 6 100 93.9
3 8 6 150 97.3

Table 2: Rate of correct dimensionality estimation for high dimensional data.
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5. Manifold Learning

In this section we show quantitative results on estimating manifold orientation for various data sets.

Points 1250 5000 20000
σ Orientation Error Orientation Error Orientation Error
1 47.2 28.1 3.1
2 28.7 3.5 0.4
4 4.9 0.9 0.5
8 2.0 1.3 1.1
12 2.5 2.0 1.9
16 3.5 3.1 3.0
20 5.4 4.8 4.7
30 16.9 15.0 14.9
40 28.3 26.2 25.9

Table 3: Error (in degrees) in surface normal orientation estimation as a function of σ and the
number of samples for the “Swiss Roll” data set. The error reported is the (unsigned)
angle between the eigenvector corresponding to the largest eigenvalue of the estimated
tensor at each point and the ground truth surface normal. See also Table1 for processing
times and the average number of points in each neighborhood.

5.1 Swiss Roll

We begin this section by completing the presentation of our experiments on the Swiss Roll data sets
described in the previous section. Here we show the accuracy of normalestimation, regardless of
whether the dimensionality was estimated correctly, for the experiments of Table1. Table 3 is a
complement to Table 1, which contains information on the average number of points in the voting
neighborhoods and processing time that is not repeated here. The error reported is the (unsigned)
angle between the eigenvector corresponding to the largest eigenvalue of the estimated tensor at
each point and the ground truth surface normal. These results are over10 different samplings for
each number of points reported in the table.

For comparison, we also estimated the orientation at each point of the Swiss Roll using local
PCA computed on the point’sk nearest neighbors. We performed an exhaustive search overk, but
only report the best results here. As for tensor voting, orientation accuracy was measured on 10
instances of each data set. The lowest errors for 1,250, 5,000 and 20,000 points are 2.51◦, 1.16◦

and 0.56◦ for values ofk equal to 9, 10 and 13 respectively. These errors are approximately 20%
larger than the lowest errors achieved by tensor voting, which are shown in bold in Table 3. It
should be noted, that, unlike tensor voting, local PCA cannot be used to refine these estimates or
take advantage of existing orientation estimates that may be available at the inputs.

We observe that accuracy using tensor voting is very high for a large range of scales and im-
proves, as expected, with higher data density. Random values (around45◦) result when the neigh-
borhood does not contain enough points for normal estimation. See Mitra etal. (2004) and Lalonde
et al. (2005) for an analysis of the 3-D case based on theGershgorin Circle Theoremthat provides
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(a) Cylinder (b) Sphere (c) Noisy sphere

Figure 8: Data sets used in Sections 5 and 6.

bounds for the eigenvalues of square matrices. The authors show how noise and curvature affect
the estimation of curve and surface normals under some assumptions about the distribution of the
points. The conclusions are that for large neighborhood sizes, errors caused by curvature dominate,
while for small neighborhood sizes, errors due to noise dominate. (Thereis no noise in the data for
this experiment.)

5.2 Spherical and Cylindrical Sections

Here, we present quantitative results on simple data sets in 3-D for which ground truth can be
analytically computed. In Section 6, we process the same data with state of the art manifold learning
algorithms and compare their results against ours. The two data sets are a section of a cylinder and
a section of a sphere shown in Figure 8. The cylindrical section spans 150◦ and consists of 1000
points. The spherical section spans 90◦×90◦ and consists of 900 points. Both are approximately
uniformly sampled. The points are represented by ball tensors, assuming no information about
their orientation. In the first part of the experiment, we compute local dimensionality and normal
orientation as a function of scale. The results are presented in Tables 4 and 5. The results show that
if the scale is not too small, dimensionality estimation is very reliable. For all scales the orientation
errors are below 0.4o.

The same experiments were performed for the spherical section in the presence of outliers.
Quantitative results are shown in the following tables for a number of outliers that ranges from 900
(equal to the inliers) to 5000. The latter data set is shown in Figure 8(c). The outliers are drawn
from a uniform distribution inside an extended bounding box of the data. Note that performance
was evaluated only on the points that belong to the sphere and not the outliers. Larger values of
the scale prove to be more robust to noise, as expected. The smallest values of the scale result
in voting neighborhoods that include less than 10 points, which are insufficient. Taking this into
account, performance is still good even with wrong parameter selection. Also note that one could
reject the outliers by thresholding, since they have smaller eigenvalues thanthe inliers, and perform
tensor voting again to obtain even better estimates of structure and dimensionality. Even a single
pass of tensor voting, however, turns out to be very effective, especially considering that no other
method can handle such a large number of outliers. Foregoing the low-dimensional embedding is
a main reason that allows our method to perform well in the presence of noise, since embedding
random outliers in a low-dimensional space would make their influence more detrimental. This is
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σ Average Orientation Dimensionality
Neighbors Error (◦) Estimation (%)

10 5 0.06 4
20 9 0.07 90
30 9 0.08 90
40 12 0.09 90
50 20 0.10 100
60 20 0.11 100
70 23 0.12 100
80 25 0.12 100
90 30 0.13 100
100 34 0.14 100

Table 4: Results on the cylinder data set. Shown in the first column isσ, in the second is the average
number of neighbors that cast votes to each point, in the third the average error in degrees
of the estimated normals, and in the fourth the accuracy of dimensionality estimation.

σ Average Orientation Dimensionality
Neighbors Error (◦) Estimation (%)

10 5 0.20 44
20 9 0.23 65
30 11 0.24 93
40 20 0.26 94
50 21 0.27 94
60 23 0.29 94
70 26 0.31 94
80 32 0.34 94
90 36 0.36 94
100 39 0.38 97

Table 5: Results on the sphere data set. The columns are the same as in Table 4.

due to the structure imposed to them by the mapping, which makes the outliers less random, and
due to the increase in their density in the low-dimensional space compared to that in the original
high-dimensional space.

5.3 Data with Non-uniform Density

We also conducted two experiments on functions proposed in Wang et al. (2005). The key difficulty
with these functions is the non-uniform density of the data. In the first example we attempt to
estimate the tangent at the samples of:

xi = [cos(ti) sin(ti)]
T ti ∈ [0,π], ti+1− ti = 0.1(0.001+ |cos(ti)|) (8)
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Outliers 900 3000 5000
σ
10
20
30
40
50
60
70
80
90
100

OE DE
1.15 44
0.93 65
0.88 92
0.88 93
0.90 93
0.93 94
0.97 94
1.00 94
1.04 95
1.07 97

OE DE
3.68 41
2.95 52
2.63 88
2.49 90
2.41 92
2.38 93
2.38 93
2.38 94
2.38 95
2.39 95

OE DE
6.04 39
4.73 59
4.15 85
3.85 88
3.63 91
3.50 93
3.43 93
3.38 94
3.34 94
3.31 95

Table 6: Results on the sphere data set contaminated by noise. OE: error in normal estimation in
degrees, DE: percentage of correct dimensionality estimation.

(a) Samples from Eq. 8 (b) Samples from Eq. 9

Figure 9: Input data for the two experiments proposed by Wang et al. (2005).

where the distance between consecutive samples is far from uniform. SeeFigure 9(a) for the inputs
and the second column of Table 7 for quantitative results on tangent estimationfor 152 points as a
function of scale.

In the second example, which is also taken from Wang et al. (2005), pointsare uniformly sam-
pled on thet-axis from the [-6, 6] interval. The output is produced by the following function:

xi = [ti 10e−t2
i ]. (9)

The points, as can be seen in Figure 9(b), are not uniformly spaced. The quantitative results on
tangent estimation accuracy for 180 and 360 samples from the same intervalare reported in the last
two columns of Table 7. Naturally, as the sampling becomes denser, the quality of the approximation
improves. What should be emphasized here is the stability of the results as a function ofσ. Even
with as few as 5 or 6 neighbors included in the voting neighborhood, the tangent at each point is
estimated quite accurately.
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σ Eq. 8 Eq. 9 Eq. 9
152 points 180 points 360 points

10 0.60 4.52 2.45
20 0.32 3.37 1.89
30 0.36 2.92 1.61
40 0.40 2.68 1.43
50 0.44 2.48 1.22
60 0.48 2.48 1.08
70 0.51 2.18 0.95
80 0.54 2.18 0.83
90 0.58 2.02 0.68
100 0.61 2.03 0.57

Table 7: Error in degrees for tangent estimation for the functions of Eq. 8and Eq. 9.

6. Geodesic Distances and Nonlinear Interpolation

In this section, we present an algorithm that can interpolate, and thus produce new points, on the
manifold and is also able to evaluate geodesic distances between points. Both of these capabilities
are useful tools for many applications. The key concept is that the intrinsic distance between any
two points on a manifold can be approximated by taking small steps on the manifold,collecting
votes, estimating the local tangent space and advancing on it until the destination is reached. Such
processes have been reported in Mordohai (2005), Dollár et al. (2007a) and Dollár et al. (2007b).

Processing begins by learning the manifold structure, as in the previous section, usually starting
from unoriented points that are represented by ball tensors. Then, weselect a starting point that has
to be on the manifold and a target point or a desired direction from the startingpoint. At each step,
we can project the desired direction on the tangent space of the currentpoint and create a new point
at a small distance. The tangent space of the new point is computed by collecting votes from the
neighboring points, as in regular tensor voting. Note that the tensors usedhere are no longer balls,
but the ones resulting from the previous pass of tensor voting, according to Algorithm 1, step 3.
The desired direction is then projected on the tangent space of the new point and so forth until the
destination is reached. The process is illustrated in Figure 10, where we start from pointA and wish
to reachB. We project~t, the vector fromA to B, on the estimated tangent space ofA and obtain its
projection~p. Then, we take a small step along~p to pointA1, on which we collect votes to obtain
an estimate of its tangent space. The desired direction is then projected on thetangent space of
each new point until the destination is reached withinε. The geodesic distance betweenA andB is
approximated by measuring the length of the path. In the process, we have also generated a number
of new points on the manifold, which may be a desirable by-product for someapplications.

There are certain configurations that cannot be handled by the algorithmdescribed above with-
out additional precautions. One such configuration is when the source or destination point or both
are in deep concavities which attract the desired direction if the step fromA to A1 is not large enough
to move the path outside the concave region. A multi-scale implementation of the above scheme
can overcome this problem. A few intermediate points can be marked using a large value for the
step and then used as intermediate destinations with a finer step size. Under thisscheme, the path
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Figure 10: Nonlinear interpolation on the tangent space of a manifold.

converges to the destination and the geodesic distance is approximated accurately using a small step
size. A second failure mode of the simple algorithm is for cases where the desired direction may
vanish. This may occur in a manifold such as the “Swiss Roll” (Figure 6) if the destination lies on
the normal space of the current point. Adding memory or inertia to the system when the desired
direction vanishes, effectively addresses this situation. It should be noted that our algorithm does
not handle holes and boundaries properly at its current stage of development.

6.1 Comparison with State-of-the-Art algorithms

The first experiment on manifold distance estimation is a quantitative evaluation against some of
the most widely used algorithms of the literature. For the results reported in Table 8, we learn the
local structure of the cylinder and sphere manifolds of the previous section using tensor voting.
We also compute embeddings using LLE (Roweis and Saul, 2000), Isomap (Tenenbaum et al.,
2000), Laplacian eigenmaps (Belkin and Niyogi, 2003), HLLE (Donoho and Grimes, 2003) and
SDE (Weinberger and Saul, 2004). Matlab implementations for these methods can be downloaded
from the following internet locations.

• LLE from http://www.cs.toronto.edu/ ˜ roweis/lle/code.html

• Isomap fromhttp://isomap.stanford.edu/

• Laplacian Eigenmaps fromhttp://people.cs.uchicago.edu/ ˜ misha/ManifoldLearning/
index.html

• HLLE from http://basis.stanford.edu/HLLE and

• SDE fromhttp://www.seas.upenn.edu/ ˜ kilianw/sde/download.htm .

We are grateful to the authors for making the code for their methods availableto the community.
We have also made our software publicly available at:

http://iris.usc.edu/ ˜ medioni/download/download.htm .
The experiment is performed as follows. We randomly select 5000 pairs ofpoints on each

manifold and attempt to measure the geodesic distance between the points of each pair in the input
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space using tensor voting and in the embedding space using the other five methods. The estimated
distances are compared to the ground truth:r∆θ for the sphere and

√

(r∆θ)2 +(∆z)2 for the cylin-
der. Among the above approaches, only Isomap and SDE produce isometric embeddings, and only
Isomap preserves the absolute distances between the input and the embedding space. To make the
evaluation fair, we compute a uniform scale that minimizes the error between thecomputed dis-
tances and the ground truth for all methods, except Isomap for which it is not necessary. Thus,
perfect distance ratios would be awarded a perfect rating in the evaluation, even if the absolute
magnitudes of the distances are meaningless in the embedding space. For all the algorithms, we
tried a wide range for the number of neighbors,K. In some cases, we were not able to produce
good embeddings of the data for any value ofK. This occurred more frequently for the cylinder,
probably due to its data density not being perfectly uniform. Errors above20% indicate very poor
performance, which is also confirmed by visual inspection of the embeddings.

Even though among the other approaches only Isomap and SDE produce isometric embeddings,
while the rest produce embeddings that only preserve local structure, we think that the evaluation of
the quality of manifold learning based on the computation of pairwise distances isa fair measure for
the performance of all algorithms, since high quality manifold learning should minimize distortions.
The distances on which we evaluate the different algorithms are both large and small, with the latter
measuring the presence of local distortions. Quantitative results, in the form of the average absolute
difference between the estimated and the ground truth distances as a percentage of the latter, are
presented in Tables 8-10, along with the parameter that achieves the best performance for each
method. In the case of tensor voting, the same scale was used for both learning the manifold and
computing distances.

We also apply our method in the presence of 900, 3000 and 5000 outliers, while the inliers
for the sphere and the cylinder data sets are 900 and 1000 respectively. The outliers are generated
according to a uniform distribution. The error rates using tensor voting for the sphere are 0.39%,
0.47% and 0.53% respectively. The rates for the cylinder are 0.77%, 1.17% and 1.22%. Compared
with the noise free case, these results demonstrate that our approach degrades slowly in the presence
of outliers. The best performance achieved by any other method is 3.54% on the sphere data set with
900 outliers by Isomap. Complete results are shown in Table 9. In many cases, we were unable to
achieve useful embeddings for data sets with outliers. We were not able to perform this experiment

Data Set Sphere Cylinder
K Err(%) K Err(%)

LLE 18 5.08 6 26.52
Isomap 6 1.98 30 0.35
Laplacian Eigenmaps 16 11.03 10 29.36
HLLE 12 3.89 40 26.81
SDE 2 5.14 6 25.57
TV (σ) 60 0.34 50 0.62

Table 8: Error rates in distance measurement between pairs of points on themanifolds. The best re-
sult of each method is reported along with the number of neighbors used for the embedding
(K), or the scaleσ in the case of tensor voting (TV).
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Data Set Sphere Cylinder
900 outliers 900 outliers

K Err(%) K Err(%)
LLE 40 60.74 6 15.40
Isomap 18 3.54 14 11.41
Laplacian Eigenmaps 6 13.97 14 27.98
HLLE 30 8.73 30 23.67
SDE N/A N/A
TV (σ) 70 0.39 100 0.77

Table 9: Error rates in distance measurement between pairs of points on themanifolds under outlier
corruption. The best result of each method is reported along with the number of neighbors
used for the embedding (K), or the scaleσ in the case of tensor voting (TV). Note that
HLLE fails to compute an embedding for small values ofK, while SDE fails at both
examples for all choices ofK.

Data Set σ Error rate
Sphere (3000 outliers) 80 0.47
Sphere (5000 outliers) 100 0.53
Cylinder (3000 outliers) 100 1.17
Cylinder (5000 outliers) 100 1.22

Table 10: Error rates for our approach for the experiment of Section 6.1 in the presence of 3000
and 5000 outliers.

in the presence of more than 3000 outliers with any graph-based method, probably because the
graph structure is severely corrupted by the outliers.

6.2 Data Sets with Varying Dimensionality and Intersections

For the final experiment of this section, we create synthetic data in 3-D that were embedded in
higher dimensions. The first data set consists of a line and a cone. The points are embedded in
50-D by three orthonormal 50-D vectors and initialized as ball tensors. Tensor voting is performed
in the 50-D space and a path from point A on the line to point B on the cone is interpolated as
in the previous experiment, making sure that it belongs to the local tangent space, which changes
dimensionality from one to two. The data is re-projected back to 3-D for visualization in Figure
11(a).

In the second part of the experiment, we generate an intersecting S-shaped surface and a plane
(a total of 11,000 points) and 30,000 outliers from a uniform distribution, and embed them in a 30-D
space. Without explicitly removing the noise, we interpolate between two points on the S (A and B)
and a point on the S and a point on the plane (C and D) and create the paths shown in Figure 11(b) re-
projected in 3-D. The first path is curved, while the second jumps from manifold to manifold without
deviating from the optimal path. (The outliers are not shown for clarity.) Processing time for 41,000
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(a) Line and cone (b) S and plane

Figure 11: Nonlinear interpolation in 50-D with varying dimensionality (a) and 30-D with inter-
secting manifolds under noise corruption (b).

points in 30-D is 2 min. and 40 sec. on a Pentium 4 at 2.8GHz using voting neighborhoods that
included an average of 44 points.

7. Generation of Unobserved Samples and Nonparametric Function Approximation

In this section, we build upon the results of the previous section to address function approximation.
A common practice is to treat functions with multiple outputs as multiple single-output functions.
We adopt this scheme here, even though nothing prohibits us from directly approximating multiple-
input multiple-output functions. We assume that observations inN-D that include values for the
input and output variables are available for training. The difference withthe examples of the pre-
vious sections is that the queries are given as input vectors with unknownoutput values, and thus
are of lower dimensionality than the voting space. The required module to convert this problem to
that of Section 6 is one that can find a point on the manifold that correspondsto an input similar to
the query. Then, in order to predict the outputy of the function for an unknown input~x, under the
assumption of local smoothness, we move on the manifold formed by the training samples until we
reach the point corresponding to the given input coordinates. To ensure that we always remain on
the manifold, we need to start from a point on it and proceed as in the previous section.

One way to find a suitable starting point is to find the nearest neighbor of~x in the input space,
which has fewer dimensions than the joint input-output (voting) space. Then, we can compute the
desired direction in the low dimensional space and project it to the input-outputspace. If many
outputs are possible for a given input (if the data have not been generated by a function in the
strict sense), we have to either find neighbors at each branch of the function and produce multiple
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Figure 12: Interpolation to obtain output value for unknown input pointAi . Bi is the nearest neigh-
bor in the input space and corresponds toB in the joint input-output space. We can
march fromB on the manifold to arrive at the desired solutionA that projects onAi in
the input space.

outputs, or use other information, such as the previous state of the system, topursue only one of the
alternatives. One could find multiple nearest neighbors, run the proposed algorithm starting from
each of them and produce a multi-valued answer with a probability associatedwith each potential
output value.

Figure 12 provides a simple illustration. We begin with a pointAi in the input space. We
proceed by finding its nearest neighbor among the projections of the training data on the input space
Bi . (Even ifBi is not the nearest neighbor the scheme still works but possibly requires more steps.)
The sampleB in the input-output space that corresponds toBi is the starting point on the manifold.
The desired direction is the projection of theAiBi vector on the tangent space ofB. Now, we are
in the case described in Section 6, where the starting point and the desired direction are known.
Processing stops when the input coordinates of the point on the path fromB are withinε of Ai . The
corresponding pointA in the input-output space is the desired interpolated sample.

As in all the experiments presented in this paper, the input points are encoded as ball tensors,
since we assume that we have no knowledge of their orientation. We first attempt to approximate
the following function, proposed by Schaal and Atkeson (1998):

y = max{e−10x2
1 e−50x2

2 1.25e−5(x2
1+x2

2)}. (10)

1681 samples ofy are generated by uniformly sampling the[−1,1]× [−1,1] square. We perform
four experiments with increasing degree of difficulty. In all cases, aftervoting on the given inputs,
we generate new samples by interpolating between the input points. The fourconfigurations and
noise conditions were:

• In the first experiment, we performed all operations with noise free data in 3-D.

• For the second experiment, we added 8405 outliers (five times more than the inliers) drawn
from a uniform distribution in a 2×2×2 cube containing the data.

• For the third experiment, we added Gaussian noise with variance 0.01 to the coordinates of
all points while adding the same number of outliers as above.
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(a) Noise free inputs (b) Inputs with outliers

(c) Interpolated points with (d) Interpolated points with
outliers and perturbation outliers and perturbation in 60-D

Figure 13: Inputs and interpolated points for Eq. 10. The top row shows the noise-free inputs and
the noisy input set where only 20% of the points are inliers. The bottom row shows the
points generated in 3-D and 60-D respectively. In both cases the inputs were contami-
nated with outliers and Gaussian noise.

• Finally, we embedded the perturbed data (and the outliers) in a 60-D space,before voting and
nonlinear interpolation.

The noise-free and noisy input, as well as the generated points can be seen in Figure 13. We
computed the mean square error between the outputs generated by our method and Eq. 10 nor-
malized by the variance of the noise-free data. The NMSE for all cases is reported in Table 11.
Robustness against outliers is due to the fact that the inliers form a consistent surface and thus re-
ceive votes that support the correct local structure from other inliers. Outliers, on the other hand,
are random and do not form any structure. They cast and receive inconsistent votes and therefore
neither develop a preference for a certain manifold nor significantly disrupt the structure estimates
at the inliers. They can be removed by simple thresholding since all their eigenvalues are small and
almost equal, but this is not done here. Note that performance in 60-D is actually better since the
interference by outliers is reduced as the dimensionality of the space increases. Tensor voting is also
robust against perturbation of the coordinates as long as it is not biasedto favor a certain direction.
If the perturbation is zero-mean, its effects on individual votes are essentially canceled out, because
they only contribute to the ball component of the accumulated tensor at each point, causing small
errors in orientation estimation.
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Experiment NMSE
Noise-free 0.0041
Outliers 0.0170
Outliers & N(0, 0.01) 0.0349
Outliers & N(0, 0.01) in 60-D 0.0241

Table 11: Normalized MSE for the interpolated points of Eq. 10 under different noise conditions.

7.1 Results on Real Data

The final experiments are on real data taken from the University of California at Irvine Machine
Learning Repository (Newman et al., 1998) available online at
http://www.ics.uci.edu/ ˜ mlearn/MLRepository.html and the University of Toronto DELVE
archive (http://www.cs.toronto.edu/ ˜ delve )(Rasmussen et al., 1996). We used the “abalone”,
“Boston housing” and “Computer activity” data sets. These data sets wereselected because they
contain data from a single class in spaces of 9, 14 and 22 dimensions respectively. In each case one
variable is treated as the output and all others as inputs. Most of the input variables are continu-
ous, but vary widely in magnitude. Since our method is based on distance relationships between
the samples, we re-scaled the data so that the ratio of maximum to minimum standard deviation of
the variables was approximately 10 : 1, instead of the original, which for several cases exceeded
1000 : 1. We split the data in training and test sets and perform tensor votingon the training data to
learn the structure of the manifold. For each test sample, we begin by finding the average position
of a few nearest neighbors in the(N− 1)-D input space and then follow a path on the estimated
manifold inN-D until the desired input coordinates are reached. The value of the output variable
when the input variables are equal to the query is the estimate returned by our method.

In the case of the “abalone” data, we follow common practice and map the firstvariable from M
for male, F for female and I for infant to (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively. The resulting
space is 12-D, with the last variable being the one we attempt to estimate. Again, we scale the data
so that the variances of different variables are comparable. Following most authors, we divide the
4177 samples in training and test sets containing 3000 and 1177 samples respectively. Our results
after 10 runs of the experiment with randomly selected training and test sets and a comparison with
a number of other published results on the same data can be seen in Table 12.We also applied our
algorithm to the “Boston housing” data set, which has been extensively used as a benchmark. It
contains 506 samples of house prices as a function of 13 variables. We use training and test sets
containing 481 and 25 points respectively. Due to the small size of the test set, we repeated the
experiment 20 times always using as queries points that had not been included in the test set before,
thus using virtually all points for queries. Error rates can be seen in Table12. Finally, we used the
“computer activity” data set from the DELVE archive (Rasmussen et al., 1996). It contains 8192
observations in a 22-D space. We used 2000 samples for training and the rest for testing.

In summary, our algorithm achieves what we think is satisfactory performance despite the fact
that the data sets contain insufficient samples to describe complex manifolds. The sparseness of the
data under-uses the capability of our approach to handle complex nonlinear manifolds. We observed
that for certain query points there are very few similar samples in the training set. In the absence of
enough samples, our algorithm may not improve the initial solution given by the nearest neighbors
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of the point. These errors cause the ranking of our results in terms of RMSto be worse than in terms
of mean absolute error (MAE) in Table 12.

Abalone Housing Computer
MAE RMS MAE RMS MAE RMS

BCM (Tresp, 2000) - - - 3.100 - -
GPR1 (Tresp, 2000) - - - 3.013 - -
RVM (Tipping, 2001) - - - 8.04 - -
SVM (Tipping, 2001) - - - 7.46 - -
Sparse GPR (Smola and Bartlett,
2001)

1.785 - - - - -

GPR2 (Smola and Bartlett, 2001) 1.782 - - - - -
Online GPR (Schwaighofer and
Tresp, 2003)

- 2.111 - - - -

BCM2 (Schwaighofer and Tresp,
2003)

- 2.111 - - - -

Inductive SRM (Schwaighofer and
Tresp, 2003)

- 2.109 - - - -

Transductive SRM (Schwaighofer
and Tresp, 2003)

- 2.109 - - - -

SVR (Chu et al., 2004) 1.421 2.141 2.13 3.205 2.28 3.715
BSVR (Chu et al., 2004) 1.464 2.134 2.19 3.513 2.33 4.194
GPR-ARD (Chu et al., 2004) 1.493 2.134 2.01 2.884 1.686 2.362
BSVR-ARD (Chu et al., 2004) 1.454 2.119 1.86 2.645 1.687 2.408
Tensor voting 1.630 2.500 1.272 1.860 1.970 2.815

Table 12: Mean Absolute Error (MAE) and Root Mean squared Error (RMS) for benchmark data
sets. Unless otherwise noted, training and testing is performed with 3000 and1177 sam-
ples for “abalone”, 481 and 25 for “Boston housing” and 2000 and 6192 for “computer
activity”, respectively. Results by other methods were not generated byus. BCM is the
Bayesian committee machine of Tresp (2000) and GPR1 is Gaussian processregression
implemented by Tresp. 400 samples are used for training for “Boston housing” for BCM
and GPR1. RVM is the relevance vector machine of Tipping (2001) and SVMis a sup-
port vector machine implemented by Tipping. Sparse GPR is the algorithm of Smolaand
Bartlett (2001) and GPR2 is their implementation of Gaussian process regression. 4000
samples are used for training for the “abalone” data set for Sparse GPRand GPR2. Online
GPR is the algorithm of Csató and Opper (2002), BCM2 is the Bayesian committee ma-
chine implemented by Schwaighofer and Tresp (2003), while inductive andtransductive
SRM are algorithms from the same paper. The number of training and testing samples
is not provided by the authors for Online GPR, BCM2, inductive and transductive SRM.
SVR is the support vector regression of Vapnik (1995), BSVR is Bayesian support vector
regression of Chu et al. (2004), GPR-ARD is Gaussian process regression using the ARD
Gaussian covariance function and BSVR-ARD is BSVR using the ARD function (Chu
et al., 2004).
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8. Discussion

We have presented an approach for dimensionality estimation, manifold learning and function ap-
proximation that offers certain advantages over the state of the art. Tensor voting may on the surface
look similar to other local, instance-based learning algorithms that propagate information from point
to point, but the fact that the votes are tensors and not scalars allows themto convey considerably
more information. The properties of the tensor representation, which can handle the simultaneous
presence of multiple orientations and structure types, allow the reliable inference of the normal and
tangent space at each point. In addition, tensor voting is very robust against outliers, as demon-
strated for the 2-D and 3-D case in numerous publications including Tang and Medioni (1998) and
Medioni et al. (2000). This property holds in higher dimensions, where random noise is even more
scattered. See for instance the results presented in Table 11.

It should also be noted that the votes attenuate with distance and curvature.This is a more
intuitive formulation than using thek nearest neighbors with equal weights, since some of them
may be too far, or belong to a different part of the manifold. For both tensor voting and the methods
presented in Section 2, however, the distance metric in the input space has tobe meaningful. Our
method is less sensitive to a somewhat incorrect selection of the distance metricsince all neighbors
do not contribute equally. After this choice has been made, the only free parameter in our approach
is σ, the scale of voting. Small values tend to preserve details better, while large values are more
robust to noise. The scale can be selected automatically by randomly sampling afew points before
voting and making sure that enough points are included in their voting neighborhoods. Our results
show that sensitivity with respect to scale is small, as shown in Tables 1, 3, 4-6 and 7. The number of
points that can be considered sufficient is a function of the dimensionality ofthe space, the intrinsic
dimensionality of the data, as well as noise and curvature. The two latter factors have been analyzed
by Mitra et al. (2004) and Lalonde et al. (2005), using the Gershgorin Circle Theorem, for the case
of curves in 2-D and surfaces in 3-D under mild restrictions on data distribution. To the best of our
knowledge no similar analysis has been done for manifolds with co-dimension other than one or in
high-dimensional spaces. A thorough investigation of these issues is amongthe objectives of our
future research.

Our algorithms fail when the available observations do not suffice to represent the manifold,
as for instance in the face with varying pose and illumination data set of Tenenbaum et al. (2000),
where 698 instances represent a manifold in 4096-D. Global methods may be more successful in
such situations. The number of sufficient samples for tensor voting cannot be easily predicted
from the dimensionality of the space, since it also depends on the complexity (curvature) of the
underlying manifolds. (See also the discussion above.) For instance, 486samples in 14-D turn out
to be sufficient for the “Boston housing” function approximation experiment. Nevertheless, in many
practical cases the challenges are the over-abundance of data and theneed for efficient processing
of large data sets. Tensor voting is a well suited framework for such cases, since it can efficiently
process hundreds of thousands of points in spaces of up to a few hundred dimensions.

Another important advantage of tensor voting is the absence of global computations, which
makes time complexityO(NMlogM), whereN is the dimensionality of the space andM is the
number of points. This property enables us to process data sets with very large number of points.
Computation time does not become impractical as the number of points grows, assuming that more
points are added to the data set in such a way that the density remains constant. In this case,
the number of votes cast per point remains constant and time requirements grow linearly. Com-

443



MORDOHAI AND MEDIONI

plexity is adversely affected by the dimensionality of the spaceN, since eigen-decomposition of
N×N tensors has to be performed resulting in a complexity that is cubic with respectto N due to
the eigensystem computations that areO(N3). For most practical purposes, however, the number
of points has to be considerably larger2 than the dimensionality of the space(M ≫ N) to allow
structure inference. The complexity for a nearest neighbor query using the ANN k-d tree (Arya
et al., 1998) isO(NlogM) and one query is required for each voter. Thus the total complexity is
O(NMlogM+MN3) ≈ O(NMlogM). Computational complexity, therefore, is reasonable with re-
spect to the largest parameter, which for our methods to work has to beM. Table 1 shows the effect
of data set and neighborhood size on processing time. Notice that time is linearwith respect to
the average number of points in each neighborhood, as expected. Space requirements forM N×N
tensors areO(MN2).

In terms of dimensionality estimation, we are able to obtain accurate estimates at the point level.
Moreover, since the dimensionality is found as the maximum gap in the eigenvalues of the tensor
at each point, no thresholds are needed. Under most other approaches, the dimensionality has to be
provided, or, at best, an average intrinsic dimensionality is estimated for the entire data set, as in
Bruske and Sommer (1998), Brand (2003), Kégl (2003), Weinberger and Saul (2004) and Costa and
Hero (2004).

The novelty of our approach regarding manifold learning is that it is not based on dimension-
ality reduction. Instead, we perform tasks such as geodesic distance measurement and nonlinear
interpolation in the input space. Experimental results show that we can perform these tasks in the
presence of outlier noise at high accuracy, even without explicitly removing the outliers from the
data. This choice also broadens the range of data sets we can process.While isometric embed-
dings can be achieved for a certain class of manifolds, we are able to process non-flat manifolds and
even non-manifolds. The last experiment of Section 6 demonstrates our ability to work with data
sets of varying dimensionality or with intersecting manifolds. To the best of ourknowledge, this
is impossible with any other method. If dimensionality reduction is desired due to its considerable
reduction in storage requirements, a dimensionality reduction method, such asRoweis and Saul
(2000), Tenenbaum et al. (2000), Belkin and Niyogi (2003), Brand(2003), Donoho and Grimes
(2003) and Weinberger and Saul (2006), can be used after tensor voting. The benefits of this pro-
cess are in the form of noise robustness and smooth component identification, with respect to both
dimensionality and orientation, via tensor voting followed by memory savings via dimensionality
reduction.

We have also presented, in Section 7, a local nonparametric approach for function approximation
that combines the advantages of local methods with the efficient representation and information
propagation of tensor voting. Local function approximation methods are more flexible in the type of
functions they can approximate, since the properties of the function are allowed to vary throughout
the space. Our approach, in particular, has no parameters that have to be selected, such as the number
and type of local models to be used, besides the scale of voting. Its drawback, in line with other
local methods, is higher memory requirements. We have shown that we can process challenging
examples from the literature under very adverse noise conditions. As shown in the example of Eq.
10, even when more than 80% of the samples are outliers and the inliers are corrupted by noise in
the form of perturbation, we are still able to correctly predict unobserved outputs. We have also
shown in Table 12 promising results on publicly available data sets, despite the fact that they are not

2. While in principal three points are sufficient to define a surface, 10 points are sufficient to define a 9-D manifold and
so forth, one or two orders of magnitude more points are required for practical applications in our experience.
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well suited for our approach, since the number of observations they contain is hardly sufficient to
define the manifold.

As mentioned above, an issue we do not fully address here is that of the selection of an appro-
priate distance metric. We assume that the Euclidean distance in the input coordinate system is a
meaningful distance metric. This is not the case if the coordinates are not ofthe same type. On the
other hand, a metric such as the Mahalanobis distance is not necessarily appropriate in all cases,
since the data typically lie in a limited part of the input space and scaling all dimensions, including
the redundant ones, to achieve equal variance would be detrimental. Forthe experiments shown in
Section 7, we apply heuristic scaling of the coordinates when necessary.We intend to develop a
systematic way based on cross-validation that automatically scales the coordinates by maximizing
prediction performance for the observations that have been left out.

Our future research will focus on addressing the limitations of our current algorithm and extend-
ing its capabilities. An interpolation mechanism that takes into account holes andboundaries during
geodesic distance approximation should be implemented. Additionally, in the areaof function ap-
proximation, the issue of approximating functions with multiple branches for the same input value,
which often appear in practical applications, has to be handled more rigorously. We also intend
to develop an online, incremental version of our approach, possibly including a forgetting and an
updating module, that will be able to process data as they are collected, instead of requiring the en-
tire data set to proceed. Potential applications of our work include challenging real problems, such
as the study of direct and inverse kinematics where there are typically largenumbers of samples
in spaces of up to a few hundred dimensions. Function approximation for complex functions, for
which global models would become very complicated, is another area where our methods could be
effective. Finally, one can view the proposed approach as learning data from a single class, which
can serve as the groundwork for an approach for pattern recognition, data mining, supervised and
unsupervised classification.
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