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Abstract
For many supervised learning tasks it may be infeasible (or very expensive) to obtain objective and
reliable labels. Instead, we can collect subjective (possibly noisy) labels from multiple experts or
annotators. In practice, there is a substantial amount of disagreement among the annotators, and
hence it is of great practical interest to address conventional supervised learning problems in this
scenario. In this paper we describe a probabilistic approach for supervised learning when we have
multiple annotators providing (possibly noisy) labels butno absolute gold standard. The proposed
algorithm evaluates the different experts and also gives anestimate of the actual hidden labels.
Experimental results indicate that the proposed method is superior to the commonly used majority
voting baseline.

Keywords: multiple annotators, multiple experts, multiple teachers, crowdsourcing

1. Supervised Learning From Multiple Annotators/Experts

A typical supervised learning scenario consists of a training setD = {(xi ,yi)}
N
i=1 containingN

instances, wherexi ∈ X is an instance (typically ad-dimensional feature vector) andyi ∈ Y is the
corresponding known label. The task is to learn a functionf : X → Y which generalizes well on
unseen data. Specifically for binary classification the supervision is fromthe setY = {0,1}, for
multi-class classificationY = {1, . . . ,K}, for ordinal regressionY = {1, . . . ,K} (with an ordering
1 < .. . < K), andY = R for regression.
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However, for many real life tasks, it may not be possible, or may be too expensive (or tedious)
to acquire the actual labelyi for training—which we refer to as thegold standardor theobjec-
tive ground truth. Instead, we may have multiple (possibly noisy) labelsy1

i , . . . ,y
R
i provided byR

different experts or annotators. In practice, there is a substantial amount of disagreement among
the experts, and hence it is of great practical interest to address conventional supervised learning
algorithms in this scenario.

Our motivation for this work comes from the area of computer-aided diagnosis1 (CAD), where
the task is to build a classifier to predict whether a suspicious region on a medical image (like a
X-ray, CT scan, or MRI) is malignant (cancerous) or benign. In order to train such a classifier, a set
of images is collected from hospitals. The actual gold standard (whether it iscancer or not) can only
be obtained from a biopsy of the tissue. Since it is an expensive, invasive, and potentially dangerous
process, often CAD systems are built from labels assigned bymultiple radiologistswho identify the
locations of malignant lesions. Each radiologist visually examines the medical images and provides
a subjective(possibly noisy) version of the gold standard.2 The radiologist also annotates various
descriptors of the potentially malignant lesion, like the size (a regression problem), shape (a multi-
class classification problem), and also degree of malignancy (an ordinal regression problem). The
radiologists come from a diverse pool including luminaries, experts, residents, and novices. Very
often there is lot of disagreement among the annotations.

For a lot of tasks the labels provided by the annotators are inherentlysubjectiveand there will
be substantial variation among different annotators. The domain of text classification offers such
a scenario. In this context the task is to predict the category for a token oftext. The labels for
training are assigned by human annotators who read the text and attribute their subjective category.
With the advent of crowdsourcing (Howe, 2008) services like Amazon’sMechanical Turk,3 Games
with a Purpose,4 and reCAPTCHA5 it is quite inexpensive to acquire labels from a large number of
annotators (possibly thousands) in a short time (Sheng et al., 2008; Snowet al., 2008; Sorokin and
Forsyth, 2008). Websites such as Galaxy Zoo6 allow the public to label astronomical images over
the internet. In situations like these, the performance of different annotators can vary widely (some
may even be malicious), and without the actual gold standard, it may not be possible to evaluate the
annotators.

In this work, we provide principled probabilistic solutions to the following questions:

1. How to adapt conventional supervised learning algorithms when we have multiple annotators
providing subjective labels but no objective gold standard?

2. How to evaluate systems when we do not have absolute gold-standard?

3. A closely related problem—particularly relevant when there are a large number of annotators—
is to estimate how reliable/trustworthy is each annotator.

1. See Fung et al. (2009) for an overview of the data mining issues in this area.
2. Sometimes even a biopsy cannot confirm whether it is cancer or not and hence all we can hope to get is subjective

ground truth.
3. Mechanical Turk found athttps://www.mturk.com.
4. Games with a Purpose found athttp://www.gwap.com.
5. reCAPTCHA found athttp://recaptcha.net/.
6. Galaxy Zoo found athttp://galaxyzoo.org.
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1.1 The Problem With Majority Voting

When we have multiple labels a commonly used strategy is to use the labels on which the majority
of them agree (or average for regression problem) as an estimate of the actual gold standard. For
binary classification problems this amounts to using the majority label,7 that is,

ŷi =

{
1 if (1/R)∑R

j=1y j
i > 0.5

0 if (1/R)∑R
j=1y j

i < 0.5
,

as anestimate of the hidden true labeland use this estimate to learn and evaluate classifiers/annotators.
Another strategy is that of considering every pair (instance, label) provided by each expert as a sep-
arate example. Note that this amounts to using a soft probabilistic estimate of the actual ground
truth to learn the classifier, that is,

Pr[yi = 1|y1
i , . . . ,y

R
i ] = (1/R)

R

∑
j=1

y j
i .

Majority voting assumes all experts are equally good. However, for example, if there is only one
true expert and the majority are novices, and if novices give the same incorrect label to a specific
instance, then the majority voting method would favor the novices since they arein a majority. One
could address this problem by introducing a weight capturing how good each expert is. But how
would one measure the performance of an expert when there is no gold standard available?

1.2 Proposed Approach and Organization

To address the apparent chicken-and-egg problem, we present a maximum-likelihood estimator
that jointly learns the classifier/regressor, the annotator accuracy, and the actual true label. For
ease of exposition we start with binary classification problem in § 2. The performance of each
annotator is measured in terms of the sensitivity and specificity with respect to the unknown gold
standard (§ 2.1). The proposed algorithm automatically discovers the bestexperts and assigns a
higher weight to them. In order to incorporate prior knowledge about each annotator, we impose a
beta prior on the sensitivity and specificity and derive the maximum-a-posteriori estimate (§ 2.6).
The final estimation is performed by an Expectation Maximization (EM) algorithm that iteratively
establishes a particular gold standard, measures the performance of the experts given that gold
standard, and refines the gold standard based on the performance measures. While the proposed
approach is described using logistic regression as the base classifier (§2.2), it is quite general, and
can be used with any black-box classifier (§ 2.7), and can also handle missing labels (that is, each
expert is not required to label all the instances). Furthermore, we extend the proposed algorithm to
handle categorical (§ 3), ordinal (§ 4), and regression problems (§ 5). In § 6 section we extensively
validate our approach using both simulated data and real data from different domains.

1.3 Related Work and Novel Contributions

We first summarize the novel contributions of this work in context of other related work in this
emerging new area. There has been a long line of work in the biostatistics andepidemiology litera-
ture on latent variable models where the task is to get an estimate of the observer error rates based

7. When there is no clear majority among the multiple experts (that is, ˆyi = 0.5) in CAD domain the final decision is
often made by an adjudicator or a super-expert. When there is no adjudicator a fair coin toss is used.
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on the results from multiple diagnostic tests without a gold standard (see Dawid and Skene, 1979,
Hui and Walter, 1980, Hui and Zhou, 1998, Albert and Dodd, 2004 and references therein). In the
machine learning community Smyth et al. (1995) first addressed the same problem in the context of
labeling volcanoes in satellite images of Venus. We differ from this previous body of work in the
following aspects:

1. Unlike Dawid and Skene (1979) and Smyth et al. (1995) which just focused on estimating
the ground truth from multiple noisy labels, we specifically address the issue of learning a
classifier. Estimating the ground truth and the annotator/classifer performance is a byproduct
of our proposed algorithm.

2. In order to learn a classifier Smyth (1995) proposed to first estimate the ground truth (without
using the features) and then use the probabilistic ground truth to learn a classifier. In contrast,
our proposed algorithmlearns the classifier and the ground truth jointly. Our experiments
(§ 6.1.1) show that the classifier learnt and ground truth obtained by the proposed algorithm
is superior to that obtained by other procedures which first estimates the ground truth and then
learns the classifier.

3. Our solution is more general and can be easily extended to categorical(§3), ordinal(§ 4),
and continuous data(§ 5). It can also be used in conjunction with any supervised learning
algorithm. A preliminary version of this paper (Raykar et al., 2009) mainly discussed the
binary classification problem.

4. Our proposed algorithm is also Bayesian—we impose a prior on the experts. The priors can
potential capture the skill of different annotators. In this paper we refrain from doing a full
Bayesian inference and use the mode of the posterior as a point estimate. A recent complete
Bayesian generalization of these kind of models has been developed by Carpenter (2008).

5. The EM approach used in this paper is similar to that proposed by Jin and Ghahramani (2003).
However their motivation is somewhat different. In their setting, each trainingexample is
annotated with a set of possible labels, only one of which is correct.

There has been recent interest in the natural language processing (Sheng et al., 2008; Snow et al.,
2008) and computer vision (Sorokin and Forsyth, 2008) communities wherethey use Amazon’s
Mechanical Turk to collect annotations from many people. They show thatit can be potentially as
good as that provided by an expert. Sheng et al. (2008) analyzed when it is worthwhile to acquire
new labels for some of the training examples. There is also some theoretical work (see Lugosi,
1992 and Dekel and Shamir, 2009a) dealing with multiple experts. Recently Dekel and Shamir
(2009b) presented an algorithm which does not resort to repeated labeling, that is, each example
does not have to be labeled by multiple teachers. Donmez et al. (2009) address the issue of active
learning in this scenario—How to jointly learn the accuracy of labeling sources and obtain the most
informative labels for the active learning task? There has also been some work in the medical
imaging community (Warfield et al., 2004; Cholleti et al., 2008).

2. Binary Classification

We first describe our proposed noise model for the annotators. The performance of each annotator
is measured in terms of the sensitivity and specificity with respect to the unknown gold standard.
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2.1 A Two-coin Model for Annotators

Let y j ∈ {0,1} be the label assigned to the instancex by the j th annotator/expert. Lety be the actual
(unobserved) label for this instance. Each annotator provides a version of this hidden true label
based on two biased coins. If the true label is one, she flips a coin with biasα j (sensitivity). If the
true label is zero, she flips a coin with biasβ j (specificity). In each case, if she gets heads she keeps
the original label, otherwise she flips the label.

If the true label is one, the sensitivity (true positive rate) for thej th annotator is defined as the
probability that she labels it as one.

α j := Pr[y j = 1|y = 1]. (1)

On the other hand, if the true label is zero, the specificity (1−false positive rate) is defined as the
probability that she labels it as zero.

β j := Pr[y j = 0|y = 0]. (2)

The assumption introduced is thatα j andβ j do not depend on the instancex. For example, in the
CAD domain, this means that the radiologist’s performance is consistent across different sub-groups
of data.8

2.2 Classification Model

While the proposed method can be used for any classifier, for ease of exposition, we consider the
family of linear discriminating functions:F = { fw}, where for anyx,w ∈ R

d , fw(x) = w⊤x.
The final classifier can be written in the following form: ˆy = 1 if w⊤x ≥ γ and 0 otherwise. The
thresholdγ determines the operating point of the classifier. The Receiver Operating Characteristic
(ROC) curve is obtained asγ is swept from−∞ to ∞. The probability for the positive class is
modeled as alogistic sigmoidacting onfw, that is,

Pr[y = 1|x,w] = σ(w⊤x),

where the logistic sigmoid function is defined asσ(z) = 1/(1+ e−z). This classification model is
known aslogistic regression.

2.3 Estimation/Learning Problem

Given the training dataD consisting ofN instances with annotations fromR annotators, that is,
D = {xi ,y1

i , . . . ,y
R
i }

N
i=1, the task is to estimate the weight vectorw and also the sensitivityα =

[α1, . . . ,αR] and the specificityβ = [β1, . . . ,βR] of theR annotators. It is also of interest to get an
estimate of the unknown gold standardy1, . . . ,yN.

2.4 Maximum Likelihood Estimator

Assuming the training instances are independently sampled, the likelihood function of the parame-
tersθ = {w,α,β} given the observationsD can be factored as

Pr[D|θ] =
N

∏
i=1

Pr[y1
i , . . . ,y

R
i |xi ,θ].

8. While this is a reasonable assumption, it is not entirely true. It is known that some radiologists are good at detecting
certain kinds of malignant lesions based on their training and experience.
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Conditioning on the true labelyi , and also using the assumptiony j
i is conditionally independent (of

everything else) givenα j , β j andyi , the likelihood can be decomposed as

Pr[D|θ] =
N

∏
i=1

{
Pr[y1

i , . . . ,y
R
i |yi = 1,α]Pr[yi = 1|xi,w]

+ Pr[y1
i , . . . ,y

R
i |yi = 0,β]Pr[yi = 0|xi,w]

}
.

Given the true labelyi , we assume thaty1
i , . . . ,y

R
i are independent, that is, the annotators make their

decisions independently.9 Hence,

Pr[y1
i , . . . ,y

R
i |yi = 1,α] =

R

∏
j=1

Pr[y j
i |yi = 1,α j ] =

R

∏
j=1

[α j ]y
j
i [1−α j ]1−y j

i .

Similarly, we have

Pr[y1
i , . . . ,y

R
i |yi = 0,β] =

R

∏
j=1

[β j ]1−y j
i [1−β j ]y

j
i .

Hence the likelihood can be written as

Pr[D|θ] =
N

∏
i=1

[
ai pi +bi(1− pi)

]
,

where we have defined

pi := σ(w⊤xi).

ai :=
R

∏
j=1

[α j ]y
j
i [1−α j ]1−y j

i .

bi :=
R

∏
j=1

[β j ]1−y j
i [1−β j ]y

j
i .

The maximum-likelihood estimator is found by maximizing the log-likelihood, that is,

θ̂ML = {α̂, β̂,ŵ} = argmax
θ

{lnPr[D|θ]}.

2.5 The EM Algorithm

This maximization problem can be simplified a lot if we use the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977). The EM algorithm is an efficient iterative procedure to compute
the maximum-likelihood solution in presence of missing/hidden data. We will use the unknown
hidden true labelyi as the missing data. If we know the missing datay = [y1, . . . ,yN] then the
complete likelihood can be written as

lnPr[D,y|θ] =
N

∑
i=1

yi ln piai +(1−yi) ln(1− pi)bi .

9. This assumption is not true in general and there is some correlations among the labels assigned by multiple annotators.
For example in the CAD domain if the cancer is in advanced stage (which is very easy to detect) almost all the
radiologists assign the same label.
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Each iteration of the EM algorithm consists of two steps: an Expectation(E)-step and a Maximization(M)-
step. The M-step involves maximization of a lower bound on the log-likelihood that is refined in
each iteration by the E-step.

1. E-step. Given the observationD and the current estimate of the model parametersθ, the
conditional expectation (which is a lower bound on the true likelihood) is computed as

E{lnPr[D,y|θ]} =
N

∑
i=1

µi ln piai +(1−µi) ln(1− pi)bi , (3)

where the expectation is with respect to Pr[y|D,θ], andµi = Pr[yi = 1|y1
i , . . . ,y

R
i ,xi ,θ]. Using

Bayes’ theorem we can compute

µi ∝ Pr[y1
i , . . . ,y

R
i |yi = 1,θ] ·Pr[yi = 1|xi,θ]

=
ai pi

ai pi +bi(1− pi)
.

2. M-step. Based on the current estimateµi and the observationsD, the model parametersθ are
then estimated by maximizing the conditional expectation. By equating the gradientof (3) to
zero we obtain the following estimates for the sensitivity and specificity:

α j =
∑N

i=1µiy
j
i

∑N
i=1µi

, β j =
∑N

i=1(1−µi)(1−y j
i )

∑N
i=1(1−µi)

.

Due to the non-linearity of the sigmoid, we do not have a closed form solution for w and we
have to use gradient ascent based optimization methods. We use the Newton-Raphson update
given bywt+1 = wt −ηH−1g, whereg is the gradient vector,H is the Hessian matrix, and
η is the step length. The gradient vector is given by

g(w) =
N

∑
i=1

[
µi −σ(w⊤xi)

]
xi .

The Hessian matrix is given by

H(w) = −
N

∑
i=1

[
σ(w⊤xi)

][
1−σ(w⊤xi)

]
xix

⊤
i .

Essentially, we are estimatinga logistic regression model with probabilistic labels µi .

These two steps (the E- and the M-step) can be iterated till convergence. The log-likelihood in-
creases monotonically after every iteration, which in practice implies convergence to a local maxi-
mum. The EM algorithm is only guaranteed to converge to a local maximum. In practice multiple
restarts with different initializations can potentially mitigate the local maximum problem.In this
paper we use majority votingµi = 1/R∑R

j=1y j
i as the initialization forµi to start the EM-algorithm.
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2.6 A Bayesian Approach

In some applications we may want to trust a particular expert more than the others. One way to
achieve this is by imposing priors on the sensitivity and specificity of the experts. Sinceα j and
β j represent the probability of a binary event, a natural choice of prior is the beta prior. The beta
prior is also conjugate to the binomial distribution. For anya > 0, b > 0, andδ ∈ [0,1] the beta
distribution is given by

Beta(δ|a,b) =
δa−1(1−δ)b−1

B(a,b)
,

where B(a,b) =
R 1

0 δa−1(1− δ)b−1dδ is the beta function.We assume a beta prior10 for both the
sensitivity and the specificity as

Pr[α j |a
j
1,a

j
2] = Beta(α j |a

j
1,a

j
2).

Pr[β j |b
j
1,b

j
2] = Beta(β j |b

j
1,b

j
2).

For sake of completeness we also assume a zero mean Gaussian prior on theweightsw with in-
verse covariance matrixΓ, that is, Pr[w] = N (w|0,Γ−1). Assuming that{α j}, {β j}, andw have
independent priors, the maximum-a-posteriori (MAP) estimator is found by maximizing the log-
posterior, that is,

θ̂MAP = argmax
θ

{lnPr[D|θ]+ lnPr[θ]}.

An EM algorithm can be derived in a similar fashion for MAP estimation by relyingon the inter-
pretation of Neal and Hinton (1998). The final algorithm is summarized below:

1. Initializeµi = (1/R)∑R
j=1y j

i based on majority voting.

2. Givenµi , estimate the sensitivity and specificity of each annotator/expert as follows.

α j =
a j

1−1+∑N
i=1µiy

j
i

a j
1 +a j

2−2+∑N
i=1µi

.

β j =
b j

1−1+∑N
i=1(1−µi)(1−y j

i )

b j
1 +b j

2−2+∑N
i=1(1−µi)

. (4)

The Newton-Raphson update for optimizingw is given bywt+1 = wt −ηH−1g, with step
lengthη, gradient vector

g(w) =
N

∑
i=1

[
µi −σ(w⊤xi)

]
xi −Γw,

and Hessian matrix

H(w) = −
N

∑
i=1

σ(w⊤xi)
[
1−σ(w⊤xi)

]
xix

⊤
i −Γ.

10. It may be convenient to specify a prior in terms of the meanµ and varianceσ2. The mean and the variance
for a beta prior are given byµ = a/(a+b) and σ2 = ab/((a+ b)2(a+ b + 1)). Solving for a and b we get
a = (−µ3 +µ2−µσ2)/σ2 andb = a(1−µ)/µ.
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3. Given the sensitivity and specificity of each annotator and the model parameters, updateµi as

µi =
ai pi

ai pi +bi(1− pi)
, (5)

where

pi = σ(w⊤xi).

ai =
R

∏
j=1

[α j ]y
j
i [1−α j ]1−y j

i .

bi =
R

∏
j=1

[β j ]1−y j
i [1−β j ]y

j
i . (6)

Iterate (2) and (3) till convergence.

2.7 Discussions

1. Estimate of the gold standardThe value of the posterior probabilityµi is a soft probabilis-
tic estimate of the actual ground truthyi , that is,µi = Pr[yi = 1|y1

i , . . . ,y
R
i ,xi ,θ]. The actual

hidden labelyi can be estimated by applying a threshold onµi , that is,yi = 1 if µi ≥ γ and
zero otherwise. We can useγ = 0.5 as the threshold. By varyingγ we can change the misclas-
sification costs and obtain a ground truth with large sensitivity or large specificity. Because
of this in our experimental validation we can actually draw an ROC curve for the estimated
ground truth.

2. Log-odds ofµ A particularly revealing insight can be obtained in terms of the log-odds or
the logit of the posterior probabilityµi . From (5) the logit ofµi can be written as

logit(µi) = ln
µi

1−µi
= ln

Pr[yi = 1|y1
i , . . . ,y

R
i ,xi ,θ]

Pr[yi = 0|y1
i , . . . ,y

R
i ,xi ,θ]

= w⊤xi +c+
R

∑
j=1

y j
i [logit(α j)+ logit(β j)].

wherec = ∑R
j=1 log 1−α j

β j is a constant term which does not depend oni. This indicates that
the estimated ground truth (in the logit form of the posterior probability) is aweighted linear
combinationof the labels from all the experts. The weight of each expert is the sum ofthe
logit of the sensitivity and specificity.

3. Using any other classifierFor ease of exposition we used logistic regression. However,
the proposed algorithm can be used with any generalized linear model or in fact with any
classifier that can be trained with soft probabilistic labels. In each step of the EM-algorithm,
the classifier is trained with instances sampled fromµi . This modification is easy for most
probabilistic classifiers. For general black-box classifiers where we cannot tweak the training
algorithm an alternate approach is to replicate the training examples accordingto the soft
label. For example a probabilistic labelµi = 0.8 can be effectively simulated by adding 8
training examples with deterministic label 1 and 2 examples with label 0.
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4. Obtaining ground truth with no features In some scenarios we may not have featuresxi

and we wish to obtain an estimate of the actual ground truth based only on the labels from
multiple annotators. Here instead of learning a classifier we estimatepwhich is the prevalence
of the positive class, that is,p= Pr[yi = 1]. We further assume a beta prior for the prevalence,
that is, Beta(p|p1, p2). The algorithm simplifies as follows.

(a) Initializeµi = (1/R)∑R
j=1y j

i based on majority voting.

(b) Givenµi , estimate the sensitivity and specificity of each annotator using (4). The preva-
lence of the positive class is estimated as follows.

p =
p1−1+∑N

i=1µi

p1 + p2−2+N
.

(c) Given the sensitivity and specificity of each annotator and prevalence, refineµi as fol-
lows.

µi =
ai p

ai p+bi(1− p)
.

Iterate (2) and (3) till convergence. This algorithm is similar to the one proposed by Dawid
and Skene (1979) and Smyth et al. (1995).

5. Handling missing labelsThe proposed approach can easily handle missing labels, that is,
when the labels from some experts are missing for some instances. LetRi be the number of
radiologists labeling theith instance, and letNj be the number of instances labeled by thej th

radiologist. Then in the EM algorithm, we just need to replaceN by Nj for estimating the
sensitivity and specificity in (4), and replaceRby Ri for updatingµi in (6).

6. Evaluating a classifierWe can use the probability scoresµi directly to evaluate classifiers.
If zi are the labels obtained from any other classifier, then sensitivity and specificity can be
estimated as

α =
∑N

i=1µizi

∑N
i=1µi

, β =
∑N

i=1(1−µi)(1−zi)

∑N
i=1(1−µi)

.

7. Posterior approximation At the end of each EM iteration a crude approximation to the
posterior is obtained as

α j ∼ Beta

(
α j |a

j
1 +

N

∑
i=1

µiy
j
i ,a

j
2 +

N

∑
i=1

µi(1−y j
i )

)
,

β j ∼ Beta

(
β j |b

j
1 +

N

∑
i=1

(1−µi)(1−y j
i ),b

j
2 +

N

∑
i=1

(1−µi)y
j
i

)
.

3. Multi-class Classification

In this section we describe how the proposed approach for binary classification can be extended
to categorical data. Suppose there areK ≥ 2 categories. An example for categorical data from
the CAD domain is in LungCAD, where the radiologist needs to label whether anodule (known
to be precursors of cancer) is a solid, a part-solid, or a ground glass opacity—which are three
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different kinds on nodules. We can extend the previous model and introduce a vector of multinomial
parametersα j

c = (α j
c1, . . . ,α

j
cK) for each annotator, where

α j
ck := Pr[y j = k|y = c]

and∑K
k=1 α j

ck = 1. Hereα j
ck denotes the probability that the annotatorj assigns classk to an instance

given the true class isc. WhenK = 2, α j
11 andα j

00 are sensitivity and specificity, respectively. A
similar EM algorithm can be derived. In the E-step, we estimate

Pr[yi = c|Y ,α] ∝ Pr[yi = c|xi ]
R

∏
j=1

K

∏
k=1

(α j
ck)

δ(y j
i ,k),

whereδ(u,v) = 1 if u = v and 0 otherwise and in the M-step we learn a multi-class classifier and
update the multinomial parameter as

α j
ck =

∑N
i=1Pr[yi = c|Y ,α]δ(y j

i ,k)

∑N
i=1Pr[yi = c|Y ,α]

.

One can also assign a Dirichlet prior for the multinomial parameters, and this results in a smoothing
term in the above updates in the MAP estimate.

4. Ordinal Regression

We now consider the situation where the outputs are categorical and have an ordering among the
labels. In the CAD domain the radiologist often gives a score (for example,1 to 5 from lowest to
highest) to indicate how likely she thinks it is malignant. This is different from a multi-class setting
in which we do not have any preference among the multiple class labels.

Let y j
i ∈ {1, . . . ,K} be the label assigned to theith instance by thej th expert. Note that there is

an ordering in the labels 1< .. . < K. A simple approach is to convert the ordinal data into a series
of binary data (Frank and Hall, 2001). Specifically theK class ordinal labels are transformed into
K−1 binary class labels as follows:

y jc
i =

{
1 if y j

i > c
0 otherwise

c = 1, . . . ,K−1.

Applying the same procedure used for binary labels we can estimate Pr[yi > c] for c = 1, . . . ,K−1.
The probability of the actual class values can then be obtained as

Pr[yi = c] = Pr[yi > c−1 andyi ≤ c] = Pr[yi > c−1]−Pr[yi > c].

The class with the maximum probability is assigned to the instance.

5. Regression

In this section we develop a similar algorithm to learn a regression function using annotations from
multiple experts. In the CAD domain as a part of the annotation process a commontask for a
radiologist is to measure the diameter of a suspicious lesion.
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5.1 Model for Annotators

Let y j
i ∈R be the continuous target value assigned to theith instance by thej th annotator. Our model

is that the annotator provides a noisy version of the actual true valueyi . For the j th annotator we
will assume a Gaussian noise model with meanyi (the true unknown value) and inverse-variance
(precision)τ j , that is,

Pr[y j
i |yi ,τ j ] =N (y j

i |yi ,1/τ j), (7)

where the Gaussian distribution is defined asN (z|m,σ2) = (2πσ2)−1/2exp(−(z−m)2/2σ2). The
unknown inverse-varianceτ j measures the accuracy of each annotator—the larger the value ofτ j

the more accurate the annotator. We have assumed thatτ j does not depend on the instancexi . For
example, in the CAD domain, this means that the radiologist’s accuracy does not depend on the
nodule she is measuring. While this a practical assumption, it is not entirely true. It is known that
some nodules are harder to measure than others.

5.2 Linear Regression Model for Features

As before we consider the family of linear regression functions:F = { fw}, where for anyx,w∈R
d

, fw(x)=w⊤x. We assume that the actual target responseyi is given by the deterministic regression
function fw with additive Gaussian noise, that is,

yi = w⊤xi + ε,

whereε is a zero-mean Gaussian random variable with inverse-variance (precision) γ. Hence

Pr[yi |xi ,w,γ] =N (yi |w
⊤xi ,1/γ). (8)

5.3 Combined Model

Combining both the annotator (7) and the regressor (8) model we have

Pr[y j
i |xi ,w,τ j ,γ] =

Z

Pr[y j
i |yi ,τ j ]Pr[yi |xi ,w,γ]dyi =N (y j

i |w
⊤xi ,1/γ+1/τ j).

Since the two precision terms (γ andτ j ) are grouped together they are not uniquely identifiable.
Hence we will define a new precision termλ j as

1
λ j =

1
γ

+
1
τ j .

So we have the following model

Pr[y j
i |xi ,w,λ j ] =N (y j

i |w
⊤xi ,1/λ j). (9)

5.4 Estimation/Learning Problem

Given the training dataD consisting ofN instances with annotations fromR experts, that is,D =
{xi ,y1

i , . . . ,y
R
i }

N
i=1, the task is to estimate the weight vectorw and the precisionλ = [λ1, . . . ,λR] of

all the annotators.
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5.5 Maximum-likelihood Estimator

Assuming the instances are independent the likelihood of the parametersθ = {w,λ} given the
observationsD can be factored as

Pr[D|θ] =
N

∏
i=1

Pr[y1
i , . . . ,y

R
i |xi ,θ].

Conditional on the instancexi we assume thaty1
i , . . . ,y

R
i are independent, that is, the annotators

provide their responses independently. Hence from (9) the likelihood can be written as

Pr[D|θ] =
N

∏
i=1

R

∏
j=1

N (y j
i |w

⊤xi ,1/λ j).

The maximum-likelihood estimator is found by maximizing the log-likelihood

θ̂ML = {λ̂,ŵ} = argmax
θ

{lnPr[D|θ]}.

By equating the gradient of the log-likelihood to zero we obtain the following update equations for
the precision and the weight vector.

1

λ̂ j
=

1
N

N

∑
i=1

(
y j

i − ŵ⊤xi

)2
. (10)

ŵ =

(
N

∑
i=1

xix
⊤
i

)−1 N

∑
i=1

xi

(
∑R

j=1 λ̂ jy j
i

∑R
j=1 λ̂ j

)
. (11)

As the parameterŝw andλ̂ are coupled together we iterate these two steps till convergence.

5.6 Discussions

1. Is this standard least-squares?Define the design matrixX = [x1, . . . ,xN]⊤ and the re-
sponse vector for each annotator asy j = [y j

1, . . . ,y
j
N]⊤. Using matrix notation Equation 11

can be written as

ŵ = (X⊤X)−1X⊤ŷ where ŷ =
∑R

j=1 λ̂ jy j

∑R
j=1 λ̂ j

. (12)

Equation 12 is essentially the solution to a standard linear regression model, except that we are
training a linear regression model witĥy as the ground truth, which is a precision weighted
mean of the response vectors from all the annotators. The variance of each annotator is
estimated using (10). The final algorithm iteratively establishes a particular gold standard (̂y),
measures the performance of the annotators and learns a regressor given that gold standard,
and refines the gold standard based on the performance measures.

2. Are we better than the best annotator? If we assumêλ is fixed (i.e., we ignore the vari-
ability and assume that it is well estimated) then ˆw is an unbiased estimator ofw and the
covariance matrix is given by

Cov(ŵ) = Cov(ŷ)
(
X⊤X

)−1
=

1

∑R
j=1 λ̂ j

(
X⊤X

)−1
.
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Since∑R
j=1 λ̂ j > maxj (̂λ j) the proposed method has a lower variance than the regressor learnt

with the best annotator (i.e., the one with the minimum variance).

3. Are we better than the average?For a fixedX the error inŵ depends only on the variance
of ŷ j . If we know the trueλ j thenŷi is the best linear unbiased estimator foryi which mini-
mizes the variance. To see this consider any linear estimator of the formŷi = ∑ j a

j(y j
i −b j).

The variance is given by Var[ŷi ] = ∑ j(a
j)2/λ j . Since E[ŷi ] = yi ∑ j a

j , for the bias of this es-
timator to be zero we require that∑ j a

j = 1. Solving the constrained minimization problem
we see thata j = λ j/∑ j λ j minimizes the variance.

4. Obtaining a consensus without featuresWhen no features are available the same algorithm
can be simplified to get a consensus estimate of the actual ground truth and also evaluate the
annotators. Essentially we have to iterate the following two updates till convergence

ŷi =
∑R

j=1 λ̂ jy j
i

∑R
j=1 λ̂ j

1

λ̂ j
=

1
N

N

∑
i=1

(
y j

i − ŷi

)2
.

6. Experimental Validation

We now experimentally validate the proposed algorithms on both simulated and real data.

6.1 Classification Experiments

We use two CAD and one text data set in our experiments. The CAD data sets include a digital
mammography data set and a breast MRI data set, both of which are biopsy proven, that is, the
gold standard is available. For the digital mammography data set we simulate the radiologists in
order to validate our methods. The breast MRI data has annotations from four radiologists. We also
report results on a Recognizing Textual Entailment data collected by Snow et al. (2008) using the
Amazon’s Mechanical Turk which has annotations from 164 annotators.

6.1.1 DIGITAL MAMMOGRAPHY WITH SIMULATED RADIOLOGISTS

Mammograms are used as a screening tool to detect early breast cancer.CAD systems search for
abnormal areas (lesions) in a digitized mammographic image. These lesions generally indicate
the presence of malignant cancer. The CAD system then highlights these areas on the images,
alerting the radiologist to the need for a further diagnostic mammogram or a biopsy. In classification
terms, given a set of descriptive morphological features for a region on a image, the task is to
predict whether it is potentially malignant (1) or not (0). In order to train such a classifier, a set
of mammograms is collected from hospitals. The ground truth (whether it is cancer or not) is
obtained from biopsy. Since biopsy is an expensive, tedious, and an invasive process, very often
CAD systems are built from labels collected frommultiple expert radiologistswho visually examine
the mammograms and mark the lesion locations—this constitutes our ground truth (multiple labels)
for learning.

In this experiment we use a proprietary biopsy-proven data set (Krishnapuram et al., 2008)
containing 497 positive and 1618 negative examples. Each instance is described by a set of 27 mor-
phological features. In order to validate our proposed algorithm, we simulatemultiple radiologists
according to the two-coin model described in § 2.1. Based on the labels frommultiple radiologists,
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we can simultaneously (1) learn a logistic-regression classifier, (2) estimatethe sensitivity and speci-
ficity of each radiologist, and (3) estimate the golden ground truth. We compare the results with the
classifier trained using the biopsy proved ground truth as well as the majority-voting baseline. For
the first set of experiments we use 5 radiologists with sensitivityα = [0.90 0.80 0.57 0.60 0.55]
and specificityβ = [0.95 0.85 0.62 0.65 0.58]. This corresponds to a scenario where the first two
radiologists are experts and the last three are novices. Figure 1 summarizes the results. We compare
on three different aspects: (1) How good is the learnt classifier? (2) How well can we estimate the
sensitivity and specificity of each radiologist? (3) How good is the estimated ground truth? The
following observations can be made.

1. Classifier performanceFigure 1(a) plots the ROC curve of the learnt classifier on the training
set. The dotted (black) line is the ROC curve for the classifier learnt using the actual ground
truth. The solid (red) line is the ROC curve for the proposed algorithm and the dashed (blue)
line is for the classifier learnt using the majority-voting scheme. The classifierlearnt using
the proposed method is as good as the one learnt using the golden ground truth. The area
under the ROC curve (AUC) for the proposed algorithm is around 3.5% greater than that
learnt using the majority-voting scheme.

2. Radiologist performanceThe actual sensitivity and specificity of each radiologist is marked
as a black× in Figure 1(b). The end of the solid red line shows the estimates of the sensitivity
and specificity from the proposed method. We used a uniform prior on all the parameters.
The ellipse plots the contour of one standard deviation as obtained from the beta posterior
estimates. The end of the dashed blue line shows the estimate obtained from the majority-
voting algorithm. We see that the proposed method is much closer to the actual values of
sensitivity and specificity.

3. Actual ground truth Since the estimates of the actual ground truth are probabilistic scores,
we can also plot the ROC curves of the estimated ground truth. From Figure 1(b) we can
see that the ROC curve for the proposed method dominates the majority voting ROC curve.
Furthermore, the area under the ROC curve (AUC) is around 3% higher.The estimate ob-
tained by majority voting is closer to the novices since they form a majority (3/5). It does not
have an idea of who is an expert and who is a novice. The proposed algorithm appropriately
weights each radiologist based on their estimated sensitivity and specificity. The improve-
ment obtained is quite large in Figure 2 which corresponds a situation where we have only
one expert and 7 novices.

4. Joint Estimation To learn a classifier, Smyth et al. (1995) proposed to first estimate the
golden ground truth and then use the probabilistic ground truth to learn a classifier. In contrast,
our proposed algorithm learns the classifier and the ground truthjointly as a part of the EM
algorithm. Figure 3 shows that the classifier and the ground truth learnt obtained by the
proposed algorithm is superior than that obtained by other procedures which first estimates
the ground truth and then learns the classifier.

6.1.2 BREAST MRI

In this example, each radiologist reviews the breast MRI data and assesses the malignancy of each
lesion on a BIRADS scale of 1 to 5. The BIRADS scale is defined as follows:1 Negative, 2 Benign,
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Majority Voting True 1 True 2 True 3 True 4 True 5

Estimated 1 x 0.0217 0 x 0.0000
Estimated 2 x 0.5869 0 x 0.1785
Estimated 3 x 0.2391 0 x 0.1071
Estimated 4 x 0.1521 1 x 0.2500
Estimated 5 x 0.0000 0 x 0.4642

EM algorithm True 1 True 2 True 3 True 4 True 5

Estimated 1 x 0.0000 0 x 0.0000
Estimated 2 x 0.6957 0 x 0.1428
Estimated 3 x 0.1304 0 x 0.0000
Estimated 4 x 0.1739 1 x 0.3214
Estimated 5 x 0.0000 0 x 0.5357

Table 1: The confusion matrix for the estimate obtained using majority voting and the proposed
EM algorithm. The x indicates that there was no such category in the true labels(the gold
standard). The gold-standard is obtained by the biopsy which can confirm whether it is
benign (BIRADS=2) or malignant (BIRADS=5).

3 Probably Benign, 4 Suspicious abnormality, and 5 Highly suggestive of malignancy. Our data set
comprises of 75 lesions with annotations from four radiologists, and the truelabels from biopsy.
Based on eight morphological features, we have to predict whether a lesion is malignant or not.

For the first experiment we reduce the BIRADS scale to a binary one: anylesion with a BIRADS
> 3 is considered malignant and benign otherwise. The set included 28 malignant and 47 benign
lesions. Figure 4 summarizes the results. We show the leave-one-out cross validated ROC for the
classifier. The cross-validated AUC of the proposed method is approximately 6% better than the
majority voting baseline.

We also consider the BIRADS labels as a set of ordinal measurements sincethere is an order-
ing among the BIRADS label. The confusion matrix in Table 1 shows that the EM algorithm is
significantly superior than the majority voting in estimating the true BIRADS.

6.1.3 RECOGNIZING TEXTUAL ENTAILMENT

Finally we report results on Recognizing Textual Entailment data collected bySnow et al. (2008)
using the Amazon’s Mechanical Turk. In this task, the annotator is presented with two sentences
and given a choice of whether the second sentence can be inferred from the first. The data has 800
tasks and 164 distinct readers, with 10 annotations per task along with the golden ground truth. The
majority of the entries (94 %) in the 800x164 matrix are missing. There is one annotator who has
labeled all the tasks. We use this data set to obtain an estimate of the actual ground truth. Figure 5
plots the accuracy of the estimated ground truth as a function of the number ofannotators. The
proposed EM algorithm achieves a higher accuracy than majority voting. Inother words to achieve
a desired accuracy the proposed algorithm needs fewer annotators than the majority voting scheme.
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Figure 1: Results for the digital mammography data set with annotations from 5 simulated radiol-
ogists. (a) The ROC curve of the learnt classifier using the golden ground truth (dotted
black line), the majority voting scheme (dashed blue line), and the proposed EM algo-
rithm (solid red line). (b) The ROC curve for the estimated ground truth. Theactual
sensitivity and specificity of each of the radiologists is marked as a×. The end of the
dashed blue line shows the estimates of the sensitivity and specificity obtained from the
majority voting algorithm. The end of the solid red line shows the estimates from the
proposed method. The ellipse plots the contour of one standard deviation.
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Figure 2: Same as Figure 1 except with 8 different radiologist annotations.
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Figure 3: ROC curves comparing the proposed algorithm (solid red line) withtheDecoupled Esti-
mationprocedure (dotted blue line), which refers to the algorithm where the ground truth
is first estimated using just the labels from the five radiologists and then a logisticregres-
sion classifier is trained using the soft probabilistic labels. In contrast the proposed EM
algorithm estimates the ground truth and learns the classifier simultaneously during the
EM algorithm.

1315



RAYKAR , YU, ZHAO, VALADEZ , FLORIN, BOGONI AND MOY

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate (1−specifcity)

Tr
ue

 P
os

iti
ve

 R
at

e 
 (s

en
si

tiv
ity

)

Leave−One−Out ROC Curve for the classifier

 

 

Golden ground truth AUC=0.909
Majority voting baseline AUC=0.828
Proposed EM algorithm AUC=0.879

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate (1−specifcity)

Tr
ue

 P
os

iti
ve

 R
at

e 
 (s

en
si

tiv
ity

)

ROC Curve for the estimated true labels

Proposed EM algorithm AUC=0.944
Majority voting baseline AUC=0.937

(b)

Figure 4: Breast MRI results. (a) The leave-one-out cross validatedROC. (b) ROC for the estimated
ground truth.
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Figure 5: The mean and the one standard deviation error bars for the accuracy of the estimated
ground truth for the Recognizing Textual Entailment task as a function of thenumber of
annotators. The plot was generated by randomly sampling the annotators 100 times.

6.2 Regression Experiments

We first illustrate the algorithm on a toy dataset and then present a case study for automated polyp
measurements.

6.2.1 ILLUSTRATION

Figure 6 illustrates the the proposed algorithm for regression on a one-dimensional toy data set with
three annotators. The actual regression model (shown as a blue dotted line) is given byy = 5x−2.
We simulate 20 samples from three annotators with precisions 0.01, 0.1, and 1.0. The data are
shown by the annotators’s number. While we can fit a regression model using each annotators’s
response, we see that only the model for annotator three (with highest precision) is close to the true
regression model. The green dashed line shows the model learnt using theaverage response from
all the three annotators. The red line shows the model learnt by the proposed algorithm.

6.2.2 AUTOMATED POLYP MEASUREMENTS

Colorectal polyps are small colonic findings that may develop into cancer ata later stage. The
diameter of the polyp is one of the key factors which decides the malignancy ofa suspicious polyp.
Hence accurate size estimation is crucial to decide the action to be taken on a polyp. We have
developed various algorithms to segment a polyp. Multiple segmentation algorithmsgive rise to a
set of features which are correlated with the diameter of the polyp. We wantto learn a regression
function which can predict the diameter of a polyp as a function of these features. In order to learn
a regression function we collect our ground truth by asking many radiologists to manually measure
the the diameter of the polyps from the three-dimensional images. In practice there is a lot of
disagreement among the radiologists as to the actual size of the polyp.
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Figure 6: Illustration of the proposed algorithm on a one-dimensional toy data set. The actual
regression model (shown as a blue dotted line) is given byy = 5x−2. We simulate 50
samples from three annotators with precisions 0.01, 0.1, and 1.0. The data are shown
by the annotators’s number. While we can fit a regression model using each annotators’s
response, we see that only the model for annotator three (with highest precision) is close
to the true regression model. The green dashed line shows the model learntusing the
average response from all the three annotators. The red line shows themodel learnt by
the proposed algorithm.
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Figure 7: Scatter plot of the actual polyp diameter vs the diameter predicted bythe models learnt
using (a) the actual gold standard, (b) the proposed algorithm with annotations from five
radiologists, and (c) the average of the radiologist’s annotations. (See §6.2.2 for a de-
scription of the experimental setup.)

1318



LEARNING FROM CROWDS

We use a proprietary data set containing 393 examples (which point to 285 distinct polyps—
the segmentation algorithms generally return multiple marks on the same polyp.) alongwith the
measured diameter (ranging from 2mm to 15mm) as our training set. Each exampleis described
by a set of 60 morphological features which are correlated to the diameter of the polyp. In order
to validate the feasibility of our proposed algorithm, we simulate five radiologists according to the
noisy model described in § 5.1 withτ = [0.001 0.01 0.1 1 10]. This corresponds to a situation where
the first three radiologists are extremely noisy and the last two are quite accurate. Based on the
measurements from multiple radiologists, we can simultaneously (1) learn a linearregressor and (2)
estimate the precision of each radiologist. We compare the results with the classifier trained using
the actual golden ground truth as well as the regressor learnt using the average of the radiologists
measurements. The results are validated on an independent test set containing 397 examples (which
point to 298 distinct polyps).

Figure 7 shows the scatter plot of the actual polyp diameter vs the diameter predicted by the three
different models. We compare the performance based on the root mean squared error (RMSE) and
also the Pearson’s correlation coefficient. The regressor learnt using the proposed iterative algorithm
(Figure 7(b)) is almost as good as the one learnt using the golden groundtruth (Figure 7(a)). The
correlation coefficient for the proposed algorithm is significantly larger than that learnt using the
average of the radiologists response. The estimate obtained by averagingis closer to the novices
since they form a majority (3/5). The proposed algorithm appropriately weights each radiologist
based on their estimated precisions.

7. Conclusions and Future Work

In this paper we proposed a probabilistic framework for supervised learning with multiple annota-
tors providing labels but no absolute gold standard. The proposed algorithm iteratively establishes
a particular gold standard, measures the performance of the annotators given that gold standard,
and then refines the gold standard based on the performance measures.We specifically discussed
binary/categorical/ordinal classification and regression problems.

We made two key assumptions: (1) the performance of each annotator does not depend on the
feature vector for a given instance and (2) conditional on the truth the experts are independent, that
is, they make their errors independently. As we pointed out earlier these assumptions are not true
in practice. The annotator performance depends on the instance he is labeling and there is some
degree of correlation among the annotators. We briefly discuss some strategies to relax these two
assumptions.

7.1 Instance Difficulty

One drawback of the current model is that it doesn’t estimate difficulty of items. It is often observed
that for the easy instances all the annotators agree on the labels—thus violating our conditional
independence assumption. The difficulty of annotating an item can be captured by another latent
variableγi for each instance—which modulates the annotators performance. Models for this have
been developed in the area of item-response theory (Baker and Kim, 2004) and also in epidemiol-
ogy (Uebersax and Grove, 1993)—see also Whitehill et al. (2009) fora recent paper in the machine
learning community. While these models do not take into account the available features our pro-
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posed model for sensitivity and specificity can be extended as follows (in place of (1) and (2)):

α j(γi) := Pr[y j
i = 1|yi = 1,γi ] = σ(a j1 +b j1γi).

β j(γi) := Pr[y j
i = 0|yi = 0,γi ] = σ(a j0 +b j0γi).

Here the parametersa j1 anda j0 are related to the sensitivity and specificity of thej th annotator,
while the latent termγi captures the difficulty of the instance. The key assumption here is that the
annotators are independent conditional on bothyi andγi . Various assumptions can be made on two
parametersb j1 andb j0 to simplify these models further—for example we could setb j1 = b1 and
b j0 = b0 for all the annotators.

7.2 Annotators Actually Look at the Data

In our model we made the assumption that the sensitivityα j and the specificityβ j of the j th annota-
tor does not depend on the feature vectorxi . For example, in the CAD domain, this meant that the
radiologist’s performance is consistent across different sub-groups of data—which is not entirely
true. It is known that some radiologists are good at detecting certain kinds of malignant lesions
based on their training and experience. We can extend the previous modelsuch that the sensitivity
and the specificity depends on the feature vectorxi explicitly as follows

α j(γi ,xi) := Pr[y j
i = 1|yi = 1,γi ,xi ] = σ(a j1 +b j1γi +w

j
α
⊤
xi).

α j(γi ,xi) := Pr[y j
i = 0|yi = 0,γi ,xi ] = σ(a j0 +b j0γi +w

j
β
⊤
xi).

However this change increases the number of parameters to be learned.
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