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Abstract
A non-parametric hierarchical Bayesian framework is developed for designing a classifier, based
on a mixture of simple (linear) classifiers. Each simple classifier is termed a local “expert”, and the
number of experts and their construction are manifested viaa Dirichlet process formulation. The
simple form of the “experts” allows analytical handling of incomplete data. The model is extended
to allow simultaneous design of classifiers on multiple datasets, termed multi-task learning, with
this also performed non-parametrically via the Dirichlet process. Fast inference is performed using
variational Bayesian (VB) analysis, and example results are presented for several data sets. We also
perform inference via Gibbs sampling, to which we compare the VB results.
Keywords: classification, incomplete data, expert, Dirichlet process, variational Bayesian, multi-
task learning

1. Introduction

In many applications one must deal with data that have been collected incompletely. For example,
in censuses and surveys, some participants may not respond to certain questions (Rubin, 1987); in
email spam filtering, server information may be unavailable for emails from external sources (Dick
et al., 2008); in medical studies, measurements on some subjects may be partiallylost at certain
stages of the treatment (Ibrahim, 1990); in DNA analysis, gene-expression microarrays may be
incomplete due to insufficient resolution, image corruption, or simply dust or scratches on the slide
(Wang et al., 2006); in sensing applications, a subset of sensors may beabsent or fail to operate at
certain regions (Williams and Carin, 2005). Unlike in semi-supervised learning (Ando and Zhang,
2005) where missing labels (responses) must be addressed, features(inputs) are partially missing in
the aforementioned incomplete-data problems. Since most data analysis procedures (for example,
regression and classification) are designed for complete data, and cannot be directly applied to
incomplete data, the appropriate handling of missing data is challenging.

Traditionally, data are often “completed” byad hocediting, such as case deletion and sin-
gle imputation, where feature vectors with missing values are simply discarded or completed with
specific values in the initial stage of analysis, before the main inference (for example, mean im-
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putation and regression imputation see Schafer and Graham, 2002). Although analysis procedures
designed for complete data become applicable after these edits, shortcomingsare clear. For case
deletion, discarding information is generally inefficient, especially when dataare scarce. Secondly,
the remaining complete data may be statistically unrepresentative. More importantly, even if the
incomplete-data problem is eliminated by ignoring data with missing features in the training phase,
it is still inevitable in the test stage since test data cannot be ignored simply because a portion of
features are missing. For single imputation, the main concern is that the uncertainty of the missing
features is ignored by imputing fixed values.

The work of Rubin (1976) developed a theoretical framework for incomplete-data problems,
where widely-cited terminology for missing patterns was first defined. It was proven that ignoring
themissing mechanismis appropriate (Rubin, 1976) under themissing at random(MAR) assump-
tion, meaning that themissing mechanismis conditionally independent of the missing features given
the observed data. As elaborated later, given the MAR assumption (Dick etal., 2008; Ibrahim, 1990;
Williams and Carin, 2005), incomplete data can generally be handled by full maximum likelihood
and Bayesian approaches; however, when themissing mechanismdoes depend on the missing values
(missing not at randomor MNAR), a problem-specific model is necessary to describe themissing
mechanism, and no general approach exists. In this paper, we address missing features under the
MAR assumption. Previous work in this setting may be placed into two groups, depending on
whether the missing data are handled before algorithm learning or within the algorithm.

For the former, an extra step is required to estimatep(xm|xo), conditional distributions of miss-
ing values given observed ones, with this step distinct from the main inference algorithm. After
p(xm|xo) is learned, various imputation methods may be performed. As a Monte Carlo approach,
Bayesian multiple imputation (MI) (Rubin, 1987) is widely used, where multiple (M > 1) samples
from p(xm|xo) are imputed to formM “complete” data sets, with the complete-data algorithm ap-
plied on each, and results of those imputed data sets combined to yield a final result. The MI method
“completes” data sets so that algorithms designed for complete data become applicable. Further-
more, Rubin (1987) showed that MI does not require as many samples as Monte Carlo methods
usually do. With a mild Gaussian mixture model (GMM) assumption for the joint distribution of
observed and missing data, Williams et al. (2007) managed to analytically integrate out missing
values overp(xm|xo) and performed essentially infinite imputations. Since explicit imputations
are avoided, this method is more efficient than the MI method, as suggested byempirical results
(Williams et al., 2007). Other examples of these two-step methods include Williams and Carin
(2005), Smola et al. (2005) and Shivaswamy et al. (2006).

The other class of methods explicitly addresses missing values during the model-learning pro-
cedure. The work proposed by Chechik et al. (2008) represents a special case, in which no model
is assumed forstructurally absentvalues; the margin for the support vector machine (SVM) is
re-scaled according to the observed features for each instance. Empirical results (Chechik et al.,
2008) show that this procedure is comparable to several single-imputation methods when values
aremissing at random. Another recent work (Dick et al., 2008) handles the missing features inside
the procedure of learning a support vector machine (SVM), without constraining the distribution of
missing features to any specific class. The main concern is that this method can only handle miss-
ing features in the training data; however, in many applications one cannot control whether missing
values occur in the training or test data.

A widely employed approach for handling missing values within the algorithm involves maxi-
mum likelihood (ML) estimation via expectation maximization (EM) (Dempster et al., 1977). Be-
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sides the latent variables (e.g., mixture component indicators), the missing features are also inte-
grated out in the E-step so that the likelihood is maximized with respect to model parameters in the
M-step. The main difficulty is that the integral in the E-step is analytically tractableonly when an
assumption is made on the distribution of the missing features. For example, the intractable integral
is avoided by requiring the features to be discrete (Ibrahim, 1990), or assuming a Gaussian mixture
model (GMM) for the features (Ghahramani and Jordan, 1994; Liao etal., 2007). The discreteness
requirement is often too restrictive, while the GMM assumption is mild since it is wellknown that
a GMM can approximate arbitrary continuous distributions.

In Liao et al. (2007) the authors proposed a quadratically gated mixture ofexperts (QGME)
where the GMM is used to form the gating network, statistically partitioning the feature space into
quadratic subregions. In each subregion, one linear classifier worksas a local “expert”. As a mixture
of experts (Jacobs et al., 1991), the QGME is capable of addressing a classification problem with a
nonlinear decision boundary in terms of multiple local experts; the simple form of this model makes
it straightforward to handle incomplete data without completing kernel functions (Graepel, 2002;
Williams and Carin, 2005). However, as in many mixture-of-expert models (Jacobs et al., 1991;
Waterhouse and Robinson, 1994; Xu et al., 1995), the number of local experts in the QGME must
be specified initially, and thus a model-selection stage is in general necessary. Moreover, since the
expectation-maximization method renders a point (single) solution that maximizes the likelihood,
over-fitting may occur when data are scarce relative to the model complexity.

In this paper, we first extend the finite QGME (Liao et al., 2007) to an infinite QGME (iQGME),
with theoretically an infinite number of experts realized via a Dirichlet process(DP) (Ferguson,
1973) prior; this yields a fully Bayesian solution, rather than a point estimate.In this manner model
selection is avoided and the uncertainty on the number of experts is capturedin the posterior density
function.

The Dirichlet process (Ferguson, 1973) has been an active topic in many applications since the
middle 1990s, for example, density estimation (Escobar and West, 1995; MacEachern and M̈uller,
1998; Dunson et al., 2007) and regression/curve fitting (Müller et al., 1996; Rasmussen and Ghahra-
mani, 2002; Meeds and Osindero, 2006; Shahbaba and Neal, 2009; Rodŕıguez et al., 2009; Hannah
et al., 2010). The latter group is relevant to classification problems of interest in this paper. The
work in Müller et al. (1996) jointly modeled inputs and responses as a Dirichlet process mixture
of multivariate normals, while Rodrı́guez et al. (2009) extended this model to simultaneously esti-
mate multiple curves using dependent DP. In Rasmussen and Ghahramani (2002) and Meeds and
Osindero (2006) two approaches to constructing infinite mixtures of Gaussian Process (GP) experts
were proposed. The difference is that Meeds and Osindero (2006) specified the gating network
using a multivariate Gaussian mixture instead of a (fixed) input-dependent Dirichlet Process. In
Shahbaba and Neal (2009) another form of infinite mixtures of experts was proposed, where experts
are specified by a multinomial logit (MNL) model (also called softmax) and the gating network is
Gaussian mixture model with independent covariates. Further, Hannah etal. (2010) generalized
existing DP-based nonparametric regression models to accommodate different types of covariates
and responses, and further gave theoretical guarantees for this class of models.

Our focus in this paper is on developing classification models that handle incomplete
inputs/covariates efficiently using Dirichlet process. Some of the above Dirichlet process regres-
sion models are potentially capable of handling incomplete inputs/features; however, none of them
actually deal with such problems. In M̈uller et al. (1996), although the joint multivariate normal
assumption over inputs and responses endow this approach with the potential of handling missing
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features and/or missing responses naturally, a good estimation for the joint distribution does not
guarantee a good estimation for classification boundaries. Other than a fulljoint Gaussian distri-
bution assumption, explicit classifiers were used to model the conditional distribution of responses
given covariates in the models proposed in Meeds and Osindero (2006) and Shahbaba and Neal
(2009). These two models are highly related to the iQGME proposed here. The independence
assumption of covariates in Shahbaba and Neal (2009) leads to efficientcomputation but is not ap-
pealing for handling missing features. With Gaussian process experts (Meeds and Osindero, 2006),
the inference for missing features is not analytical for fast inference algorithms such as variational
Bayesian (Beal, 2003) and EM, and the computation could be prohibitive for large data sets. The
iQGME seeks a balance between the ease of inference, computational burden and the ability of han-
dling missing features. For high-dimensional data sets, we develop a variant of our model based on
mixtures of factor analyzers (MFA) (Ghahramani and Hinton, 1996; Ghahramani and Beal, 2000),
where a low-rank assumption is made for the covariance matrices of high-dimensional inputs in
each cluster.

In addition to challenges with incomplete data, one must often address an insufficient quantity of
labeled data. In Williams et al. (2007) the authors employed semi-supervised learning (Zhu, 2005) to
address this challenge, using the contextual information in the unlabeled datato augment the limited
labeled data, all done in the presence of missing/incomplete data. Another form of context one may
employ to address limited labeled data is multi-task learning (MTL) (Caruana, 1997; Ando and
Zhang, 2005), which allows the learning of multiple tasks simultaneously to improve generalization
performance. The work of Caruana (1997) provided an overview ofMTL and demonstrated it
on multiple problems. In recent research, a hierarchical statistical structure has been favored for
such models, where information is transferred via a common prior within a hierarchical Bayesian
model (Yu et al., 2003; Zhang et al., 2006). Specifically, information may betransferred among
related tasks (Xue et al., 2007) when the Dirichlet process (DP) (Ferguson, 1973) is introduced as a
common prior. To the best of our knowledge, there is no previous example of addressing incomplete
data in a multi-task setting, this problem constituting an important aspect of this paper.

The main contributions of this paper may be summarized as follows. The problemof missing
data in classifier design is addressed by extending QGME (Liao et al., 2007) to a fully Bayesian
setting, with the number of local experts inferred automatically via a DP prior. The algorithm is fur-
ther extended to a multi-task setting, again using a non-parametric Bayesian model, simultaneously
learningJ missing-data classification problems, with appropriate sharing (could be global or local).
Throughout, efficient inference is implemented via the variational Bayesian(VB) method (Beal,
2003). To quantify the accuracy of the VB results, we also perform comparative studies based on
Gibbs sampling.

The remainder of the paper is organized as follows. In Section 2 we extendthe finite QGME
(Liao et al., 2007) to an infinite QGME via a Dirichlet process prior. The incomplete-data problem is
defined and discussed in Section 3. Extension to the multi-task learning case isconsidered in Section
4, and variational Bayesian inference is developed in Section 5. Experimental results for synthetic
data and multiple real data sets are presented in Section 6, followed in Section 7by conclusions and
a discussions of future research directions.
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2. Infinite Quadratically Gated Mixture of Experts

In this section, we first provide a brief review of the quadratically gated mixture of experts (QGME)
(Liao et al., 2007) and Dirichlet process (DP) (Ferguson, 1973), and then extend the number of
experts to be infinite via DP.

2.1 Quadratically Gated Mixture of Experts

Consider a binary classification problem with real-valuedP-dimensional column feature vectors
xi and corresponding class labelsyi ∈ {1,−1}. We assume binary labels for simplicity, while the
proposed method may be directly extended to cases with more than two classes.Latent variablesti
are introduced as “soft labels” associated withyi , as in probit models (Albert and Chib, 1993), where
yi = 1 if ti > 0 andyi =−1 if ti ≤ 0. The finite quadratically gated mixture of experts (QGME) (Liao
et al., 2007) is defined as

(ti |zi = h) ∼ N (wT
hx

b
i ,1), (1)

(xi |zi = h) ∼ NP(µh,Λ
−1
h ), (2)

(zi |π) ∼
K

∑
h=1

πhδh, (3)

with ∑K
h=1 πh = 1, and whereδh is a point measure concentrated ath (with probability one, a draw

from δh will be h). The (P+1)×K matrix W has columnswh, where eachwh are the weights
on a local linear classifier, and thexb

i are feature vectors with an intercept, that is,xb
i = [xT

i ,1]
T .

A total of K groups ofwh are introduced to parameterize theK experts. With probabilityπh the
indicator for theith data point satisfieszi = h, which means thehth local expert is selected, andxi

is distributed according to aP-variate Gaussian distribution with meanµh and precisionΛh.
It can be seen that the QGME is highly related to the mixture of experts (ME) (Jacobs et al.,

1991) and the hierarchical mixture of experts (HME) (Jordan and Jacobs, 1994) if we write the
conditional distribution of labels as

p(yi |xi) =
K

∑
h=1

p(zi = h|xi)p(yi |zi = h,xi), (4)

where

p(yi |zi = h,xi) =
∫

tiyi>0
N (ti |w

T
hx

b
i ,1)dti , (5)

p(zi = h|xi) =
πhNP(xi |µh,Λ

−1
h )

∑K
k=1 πkNP(xi |µk,Λ

−1
k )

. (6)

From (4), as a special case of the ME, the QGME is capable of handling nonlinear problems with
linear experts characterized in (5). However, unlike other ME models, theQGME probabilistically
partitions the feature space through a mixture ofK Gaussian distributions forxi as in (6). This
assumption on the distribution ofxi is mild since it is well known that a Gaussian mixture model
(GMM) is general enough to approximate any continuous distribution. In theQGME,xi as well as
yi are treated as random variables (generative model) and we consider a joint probability p(yi ,xi)
instead of a conditional probabilityp(yi |xi) for fixedxi as in most ME models (which are typically
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discriminative). Previous work on the comparison between discriminative and generative models
may be found in Ng and Jordan (2002) and Liang and Jordan (2008). In the QGME, the GMM
of the inputsxi plays two important roles: (i) as a gating network, while (ii ) enabling analytic
incorporation of incomplete data during classifier inference (as discussed further below).

The QGME (Liao et al., 2007) is inferred via the expectation-maximization (EM)method, which
renders a point-estimate solution for an initially specified model (1)-(3), with afixed numberK of
local experts. Since learning the correct model requires model selection, and moreover in many
applications there may exist no such fixed “correct” model, in the work reported here we infer the
full posterior for a QGME model with the number of experts data-driven. The objective can be
achieved by imposing a nonparametric Dirichlet process (DP) prior.

2.2 Dirichlet Process

The Dirichlet process (DP) (Ferguson, 1973) is a random measure defined on measures of random
variables, denoted asDP (αG0), with a real scaling parameterα ≥ 0 and a base measureG0. As-
suming that a measure is drawnG∼DP (αG0), the base measureG0 reflects the prior expectation
of G and the scaling parameterα controls how muchG is allowed to deviate fromG0. In the limit
α → ∞, G goes toG0; in the limit α → 0, G reduces to a delta function at a random point in the
support ofG0.

The stick-breaking construction (Sethuraman, 1994) provides an explicit form of a draw from a
DP prior. Specifically, it has been proven that a drawG may be constructed as

G=
∞

∑
h=1

πhδθ∗
h
, (7)

with 0≤ πh ≤ 1 and∑∞
h=1 πh = 1, and

πh =Vh

h−1

∏
l=1

(1−Vl ), Vh
iid
∼ Be(1,α), θ∗

h
iid
∼ G0.

From (7), it is clear thatG is discrete (with probability one) with an infinite set of weightsπh

at atomsθ∗
h. Since the weightsπh decrease stochastically withh, the summation in (7) may be

truncated withN terms, yielding anN-level truncated approximation to a draw from the Dirichlet
process (Ishwaran and James, 2001).

Assuming that underlying variablesθi are drawn i.i.d. fromG, the associated dataχi ∼ F(θi)
will naturally cluster withθi taking distinct valuesθ∗

h, where the functionF(θ) represents an arbi-
trary parametric model for the observed data, with hidden parametersθ. Therefore, the number of
clusters is automatically determined by the data and could be “infinite” in principle.Sinceθi take
distinct valuesθ∗

h with probabilitiesπh, this clustering is a statistical procedure instead of a hard
partition, and thus we only have a belief on the number of clusters, which is affected by the scaling
parameterα. As the value ofα influences the prior belief on the clustering, a gamma hyper-prior is
usually employed onα.

2.3 Infinite QGME via DP

Consider a classification task with a training data setD = {(xi ,yi) : i = 1, . . . ,n}, wherexi ∈ R
P

andyi ∈ {−1,1}. With soft labelsti introduced as in Section 2.1, the infinite QGME (iQGME)
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model is achieved via a DP prior imposed on the measureG of (µi ,Λi ,wi), the hidden variables
characterizing the density function of each data point(xi , ti). For simplicity, the same symbols are
used to denote parameters associated with each data point and the distinct values, with subscriptsi
andh indexing data points and unique values, respectively:

(xi , ti) ∼ NP(xi |µi ,Λ
−1
i )N (ti |w

T
i x

b
i ,1),

(µi ,Λi ,wi)
iid
∼ G,

G ∼ DP (αG0), (8)

where the base measureG0 is factorized as the product of a normal-Wishart prior for(µh,Λh) and
a normal prior forwh, for the sake of conjugacy. As discussed in Section 2.2, data samples cluster
automatically, and the same meanµh, covariance matrixΛh and regression coefficients (expert)wh

are shared for a given clusterh. Using the stick-breaking construction, we elaborate (8) as follows
for i = 1, . . . ,n andh= 1, . . . ,∞:

Data generation:

(ti |zi = h) ∼ N (wT
hx

b
i ,1),

(xi |zi = h) ∼ NP(µh,Λ
−1
h ),

Drawing indicators:

zi ∼
∞

∑
h=1

πhδh, where πh =Vh∏
l<h

(1−Vl ),

Vh ∼ Be(1,α),
Drawing parameters fromG0 :

(µh,Λh) ∼ NP(µh|m0,u
−1
0 Λ

−1
h )W (Λh|B0,ν0),

wh ∼ NP+1(ζ, [diag(λ)]−1), where λ= [λ1, . . . ,λP+1].

Furthermore, to achieve a more robust algorithm, we assign diffuse hyper-priors on several crucial
parameters. As discussed in Section 2.2, the scaling parameterα reflects our prior belief on the
number of clusters. For the sake of conjugacy, a diffuse Gamma prior is usually assumed forα as
suggested by West et al. (1994). In addition, parametersζ,λ characterizing the prior of the distinct
local classifierswh are another set of important parameters, since we focus on classificationtasks.
Normal-Gamma priors are the conjugate priors for the mean and precision of anormal density.
Therefore,

α ∼ Ga(τ10,τ20),

(ζ|λ) ∼ NP+1(0,γ−1
0 [diag(λ)]−1),

λp ∼ Ga(a0,b0), p= 1, . . . ,P+1,

whereτ10,τ20,a0,b0 are usually set to be much less than one and of about the same magnitude, so
that the constructed Gamma distributions with means about one and large variances are diffuse;γ0

is usually set to be around one.
The graphical representation of the iQGME for single-task learning is shown in Figure 1. We

notice that a possible variant with sparse local classifiers could be obtained if we impose zero mean
for the local classifierswh, that is,ζ = 0, and retain the Gamma hyper-prior for the precisionλ, as
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Figure 1: Graphical representation of the iQGME for single-task leaning.All circles denote ran-
dom variables, with shaded ones indicating observable data, and bright ones representing
hidden variables. Diamonds denote fixed hyper-parameters, boxes represent independent
replicates with numbers at the lower right corner indicating the numbers of i.i.d.copies,
and arrows indicate the dependence between variables (pointing from parents to children).

in the relevance vector machine (RVM) (Tipping, 2000), which employs a corresponding Student-t
sparseness prior on the weights. Although this sparseness prior is useful for seeking relevant features
in many applications, imposing the same sparse pattern for all the local expertsis not desirable.

2.4 Variant for High-Dimensional Problems

For the classification problem, we assume access to a training data setD = {(xi ,yi) : i = 1, . . . ,n},
where feature vectorsxi ∈ R

P and labelsyi ∈ {−1,1}. We have assumed that the feature vectors of
objects in clusterh are generated from aP-variate normal distribution with meanµh and covariance
matrixΛ−1

h , that is,

(xi |zi = h) ∼ NP(µh,Λ
−1
h ) (9)

It is well known that each covariance matrix hasP(P+1)/2 parameters to be estimated. Without
any further assumption, the estimation of these parameters could be computationally prohibitive for
largeP, especially when the number of available training datan is small, which is common for clas-
sification applications. By imposing an approximately low-rank constraint on the covariances, as in
well-studied mixtures of factor analyzers (MFA) models (Ghahramani and Hinton, 1996; Ghahra-
mani and Beal, 2000), the number of unknowns could be significantly reduced. Specifically, assume
a vector of standard normal latent factorssi ∈R

T×1 for dataxi , a factor loading matrixAh ∈R
P×T

for clusterh, and Gaussian residuesǫi with diagonal covariance matrixψhIP, then

(xi |zi = h) ∼ NP(Ahsi +µh,ψ−1
h IP).

Marginalizingsi with si ∼NT(0,IT), we recover (9), withΛ−1
h =AhA

T
h +ψ−1

h IP. The number of
free parameters is significantly reduced ifT << P .
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In this paper, we modify the MFA model for classification applications with scarce samples.
First, we consider a common loading matrixA for all the clusters, and introduce a binary vectorbh

for each cluster to select which columns ofA are used, that is,

(xi |zi = h) ∼ NP(Adiag(d◦bh)si +µh,ψ−1
h IP),

where each column ofA, Al ∼NP(0,P−1IP), si ∼NL(0,IL) , d is a vector responsible for scale,
and◦ is a component-wise (Hadamard) product. Ford we employ the priordl ∼ N (0,β−1

l ) with
βl ∼ Ga(c0,d0). Furthermore, we let the algorithm infer the intrinsic number of factors by imposing
a low-rank belief for each cluster through the prior ofbh, that is,

bhl ∼ Bern(πhl), πhl ∼ Be(a0/L,b0(L−1)/L), l = 1, . . . ,L,

whereL is a large number, which defines the largest possible dimensionality the algorithm may infer.
Through the choice ofa0 andb0 we impose our prior belief about the intrinsic dimensionality of
clusterh (upon integrating out the drawπh, the number of non-zero components ofbh is drawn from
Binomial[L,a0/(a0+b0(L−1))]). As a result, both the number of clusters and the dimensionality
of each cluster is inferred by this variant of iQGME.

With this form of iQGME, we could build local linear classifiers in either the original feature
space or the (low-dimensional) space of latent factorssi . For the sake of computational simplicity,
we choose to classify in the low-dimensional factor space.

3. Incomplete Data Problem

In the above discussion it was assumed that all components of the feature vectors were available (no
missing data). In this section, we consider the situation for which feature vectorsxi are partially
observed. We partition each feature vectorxi into observed and missing parts,xi = [xoi

i ;xmi
i ],

wherexoi
i = {xip : p ∈ oi} denotes the subvector of observed features andx

mi
i = {xip : p ∈ mi}

represents the subvector of missing features, withoi andmi denoting the set of indices for observed
and missing features, respectively. Eachxi has its own observed setoi and missing setmi , which
may be different for eachi. Following a generic notation (Schafer and Graham, 2002), we refer
to R as the missingness. For an arbitrary missing pattern,R could be defined as a missing data
indicator matrix, that is,

Rip =

{

1, xip observed,
0, xip missing.

We useξ to denote parameters characterizing the distribution ofR, which is usually called the
missing mechanism. In the classification context, the joint distribution of class labels, observed
features and the missingnessR may be given by integrating out the missing featuresxm,

p(y,xo,R|θ,ξ) =
∫

p(y,x|θ)p(R|x,ξ)dxm. (10)

To handle such a problem analytically, assumptions must be made on the distribution of R. If the
missing mechanismis conditionally independent of missing valuesxm given the observed data, that
is, p(R|x,ξ) = p(R|xo,ξ), the missing data are defined to bemissing at random(MAR) (Rubin,
1976). Consequently, (10) reduces to

p(y,xo,R|θ,ξ) = p(R|xo,ξ)
∫

p(y,x|θ)dxm = p(R|xo,ξ)p(y,xo|θ). (11)
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According to (11), the likelihood is factorizable under the assumption of MAR. As long as the prior
p(θ,ξ) = p(θ)p(ξ) (factorizable), the posterior

p(θ,ξ|y,xo,R) ∝ p(y,xo,R|θ,ξ)p(θ,ξ) = p(R|xo,ξ)p(ξ)p(y,xo|θ)p(θ)

is also factorizable. For the purpose of inferring model parametersθ, no explicit specification is
necessary on the distribution of the missingness. As an important special case of MAR,missing
completely at random(MCAR) occurs if we can further assume thatp(R|x,ξ) = p(R|ξ), which
means the distribution of missingness is independent of observed valuesxo as well. When the
missing mechanismdepends on missing valuesxm, the data are termed to bemissing not at random
(MNAR). From (10), an explicit form has to be assumed for the distribution of the missingness, and
both the accuracy and the computational efficiency should be concerned.

When missingness is not totally controlled, as in most realistic applications, we cannot tell
from the data alone whether the MCAR or MAR assumption is valid. Since the MCAR or MAR
assumption is unlikely to be precisely satisfied in practice, inference based on these assumptions
may lead to a bias. However, as demonstrated in many cases, it is believed thatfor realistic problems
departures from MAR are usually not large enough to significantly impact the analysis (Collins
et al., 2001). On the other hand, without the MAR assumption, one must explicitly specify a model
for the missingnessR, which is a difficult task in most cases. As a result, the data are typically
assumed to be either MCAR or MAR in the literature, unless significant correlations between the
missing values and the distribution of the missingness are suspected.

In this work we make the MAR assumption, and thus expression (11) applies.In the iQGME
framework, the joint likelihood may be further expanded as

p(y,xo|θ) =
∫

p(y,x|θ)dxm =
∫

ty>0

∫
p(t|x,θ2)p(x|θ1)dx

mdt. (12)

The solution to such a problem with incomplete dataxm is analytical since the distributions oft and
x are assumed to be a Gaussian and a Gaussian mixture model, respectively. Naturally, the missing
features could be regarded as hidden variables to be inferred and the graphical representation of
the iQGME with incomplete data remains the same as in Figure 1, except that the node presenting
features are partially observed now. As elaborated below, the important but mild assumption that
the features are distributed as a GMM enables us to analytically infer the variational distributions
associated with the missing values in a procedure of variational Bayesian inference.

As in many models (Williams et al., 2007), estimating the distribution of the missing values
first and learning the classifier at a second step gives the flexibility of selecting the classifier for
the second step. However, (12) suggests that the classifier and the datadistribution are coupled,
provided that partial data are missing and thus have to be integrated out. Therefore, a joint estimation
of missing features and classifiers (searching in the space of (θ1,θ2)) is more desirable than a two-
step process (searching in the space ofθ1 for the distribution of the data, and then in the space of
θ2 for the classifier).

4. Extension to Multi-Task Learning

Assume we haveJ data sets, with thejth represented asD j = {(x ji ,y ji ) : i = 1, . . . ,n j}; our goal is to
design a classifier for each data set, with the design of each classifier termed a “task”. One may learn
separate classifiers for each of theJ data sets (single-task learning) by ignoring connections between
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the data sets, or a single classifier may be learned based on the union of all data (pooling) by ignoring
differences between the data sets. More appropriately, in a hierarchical Bayesian frameworkJ task-
dependent classifiers may be learned jointly, with information borrowed via ahigher-level prior
(multi-task learning). In some previous research all tasks are assumed to be equally related to each
other (Yu et al., 2003; Zhang et al., 2006), or related tasks share exactly the same task-dependent
classifier (Xue et al., 2007). With multiple local experts, the proposed iQGMEmodel for a particular
task is relatively flexible, enabling the borrowing of information across theJ tasks (two data sets
may sharepartsof the respective classifiers, without requiring sharing of all classifiercomponents).

As discussed in Section 2.2, a DP prior encourages clustering (each cluster corresponds to a local
expert). Now considering multiple tasks, a hierarchical Dirichlet process(HDP) (Teh et al., 2006)
may be considered to solve the problem of sharing clusters (local experts) across multiple tasks.
Assume a random measureG j is associated with each taskj, where eachG j is an independent
draw from Dirichlet processDP (αG0) with a base measureG0 drawn from an upper-level Dirichlet
processDP (βH), that is,

G j ∼ DP (αG0), for j = 1, . . . ,J,

G0 ∼ DP (βH).

As a draw from a Dirichlet process,G0 is discrete with probability one and has a stick-breaking
representation as in (7). With such a base measure, the task-dependentDPs reuse the atomsθ∗

h
defined inG0, yielding the desired sharing of atoms among tasks.

With the task-dependent iQGME defined in (8), we consider allJ tasks jointly:

(x ji , t ji ) ∼ NP(x ji |µ ji ,Λ
−1
ji )N (t ji |w

T
jix

b
ji ,1),

(µ ji ,Λ ji ,w ji )
iid
∼ G j ,

G j ∼ DP (αG0),

G0 ∼ DP (βH).

In this form of borrowing information, experts with associated means and precision matrices
are shared across tasks as distinct atoms. Since means and precision matrices statistically define
local regions in feature space, sharing is encouraged locally. We explicitly write the stick-breaking
representations forG j and G0, with zji and c jh introduced as the indicators for each data point
and each distinct atom ofG j , respectively. By factorizing the base measureH as a product of a
normal-Wishart prior for(µs,Λs) and a normal prior forws, the hierarchical model of the multi-
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task iQGME via the HDP is represented as

Data Generation:

(t ji |c jh = s,zji = h) ∼ N (wT
s x

b
ji ,1),

(x ji |c jh = s,zji = h) ∼ NP(µs,Λ
−1
s ),

Drawing lower-level indicators:

zji ∼
∞

∑
h=1

π jhδh, where π jh =Vjh ∏
l<h

(1−Vjl ),

Vjh ∼ Be(1,α),
Drawing upper-level indicators:

c jh ∼
∞

∑
s=1

ηsδs, where ηs =Us∏
l<s

(1−Ul ),

Us ∼ Be(1,β),
Drawing parameters fromH :

(µs,Λs) ∼ NP(µs|m0,u
−1
0 Λ

−1
s )W (Λs|B0,ν0),

ws ∼ NP+1(ζ, [diag(λ)]−1).

where j = 1, . . . ,J and i = 1, . . . ,n j index tasks and data points in each tasks, respectively;h =
1, . . . ,∞ ands= 1, . . . ,∞ index atoms for task-dependentG j and the globally shared baseG0, re-
spectively. Hyper-priors are imposed similarly as in the single-task case:

α ∼ Ga(τ10,τ20),

β ∼ Ga(τ30,τ40),

(ζ|λ) ∼ NP+1(0,γ−1
0 [diag(λ)]−1),

λp ∼ Ga(a0,b0), p= 1, . . . ,P+1,

The graphical representation of the iQGME for multi-task learning via the HDPis shown in Figure
2.

5. Variational Bayesian Inference

We initially present the inference formalism for single-task learning, and then discuss the (relatively
modest) extensions required for the multi-task case.

5.1 Basic Construction

For simplicity we denote the collection of hidden variables and model parametersasΘ and specified
hyper-parameters asΨ. In a Bayesian framework we are interested inp(Θ|D,Ψ), the joint posterior
distribution of the unknowns given observed data and hyper-parameters. From Bayes’ rule,

p(Θ|D,Ψ) =
p(D|Θ)p(Θ|Ψ)

p(D|Ψ)
,

wherep(D|Ψ)=
∫

p(D|Θ)p(Θ|Ψ)dΘ is the marginal likelihood that often involves multi-dimensional
integrals. Since these integrals are nonanalytical in most cases, the computation of the marginal like-
lihood is the principal challenge in Bayesian inference. These integrals are circumvented if only a
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Figure 2: Graphical representation of the iQGME for multi-task leaning via thehierarchical Dirich-
let process (HDP). Refer to Figure 1 for additional information.

point estimatêΘ is pursued, as in the expectation-maximization algorithm (Dempster et al., 1977).
Markov chain Monte Carlo (MCMC) sampling methods (Gelfand et al., 1990; Neal, 1993) provide
one class of approximations for the full posterior, based on samples froma Markov chain whose
stationary distribution is the posterior of interest. As a Markov chain is guaranteed to converge
to its true posterior theoretically as long as the chain is long enough, MCMC samples constitute
an unbiased estimation for the posterior. Most previous applications with a Dirichlet process prior
(Ishwaran and James, 2001; West et al., 1994), including the related papers we reviewed in Section
1, have been implemented with various MCMC methods. The main concerns of MCMC methods
are associated with computational costs for computation of sufficient collection samples, and that
diagnosis of convergence is often difficult.

As an efficient alternative, the variational Bayesian (VB) method (Beal, 2003) approximates the
true posteriorp(Θ|D,Ψ) with a variational distributionq(Θ) with free variational parameters. The
problem of computing the posterior is reformulated as an optimization problem ofminimizing the
Kullback-Leibler (KL) divergence betweenq(Θ) andp(Θ|D,Ψ), which is equivalent to maximiz-
ing a lower bound of logp(D|Ψ), the log marginal likelihood. This optimization problem can be
solved iteratively with two assumptions onq(Θ): (i) q(Θ) is factorized; (ii ) the factorized compo-
nents ofq(Θ) come from the same exponential family as the corresponding priors do. Since the
lower bound cannot achieve the true log marginal likelihood in general, the approximation given by
the variational Bayesian method is biased. Another issue concerning the VBalgorithm is that the
solution may be trapped at local optima since the optimization problem is not convex. The main
advantages of VB include the ease of convergence diagnosis and computational efficiency. As the
VB is solving an optimization problem, the objective function—the lower bound ofthe log marginal
likelihood—is a natural criterion for convergence diagnosis. Therefore, VB is a good alternative to
MCMC when conjugacy is achieved and computational efficiency is desired. In recent publications
(Blei and Jordan, 2006; Kurihara et al., 2007), discussions on the implementation of the variational
Bayesian inference are given for Dirichlet process mixtures.

We implement the variational Bayesian inference throughout this paper, withcomparisons made
to Gibbs sampling. Since it is desirable to maintain the dependencies among random variables (e.g.,
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shown in the graphical models Figure 1) in the variational distributionq(Θ), one typically only
breaks those dependencies that bring difficulty to computation. In the subsequent inference for the
iQGME, we retain some dependencies as unbroken. Following Blei and Jordan (2006), we employ
stick-breaking representations with a truncation levelN as variational distributions to approximate
the infinite-dimensional random measuresG.

We detail the variational Bayesian inference for the case of incomplete data. The inference for
the complete-data case is similar, except that all feature vectors are fully observed and thus the step
of learning missing values is skipped. To avoid repetition, a thorough procedure for the complete-
data case is not included, with differences from the incomplete-data case indicated.

5.2 Single-task Learning

For single-task iQGME the unknowns areΘ= {t,xm,z,V ,α,µ,Λ,W ,ζ,λ}, with hyper-parameters
Ψ = {m0,u0,B0,ν0,τ10,τ20,γ0,a0,b0}. We specify the factorized variational distributions as

q(t,xm,z,V ,α,µ,Λ,W ,ζ,λ)

=
n

∏
i=1

[qti (ti)qxmi
i ,zi

(xmi
i ,zi)]

N−1

∏
h=1

qVh(Vh)
N

∏
h=1

[qµh,Λh(µh,Λh)qwh(wh)
P+1

∏
p=1

qζp,λp
(ζp,λp)qα(α)

where

• qti (ti) is a truncated normal distribution,

ti ∼ T N (µt
i ,1,yiti > 0), i = 1, . . . ,n,

which means the density function ofti is assumed to be normal with meanµt
i and unit variance

for thoseti satisfyingyiti > 0.

• qxmi
i ,zi

(xmi
i ,zi) = qxmi

i
(xmi

i |zi)qzi (zi), whereqzi (zi) is a multinomial distribution with proba-

bilities ρi , and there areN possible outcomes,zi ∼MN(1,ρi1, . . . ,ρiN), i = 1, . . . ,n. Given
the associated indicatorszi , since features are assumed to be distributed as a multivariate
Gaussian, the distributions of missing valuesx

mi
i are still Gaussian according to conditional

properties of multivariate Gaussian distributions:

(xmi
i |zi = h)∼N|mi |(m

mi |oi
h ,Σ

mi |oi
h ), i = 1, . . . ,n, h= 1, . . . ,N.

We retain the dependency betweenx
mi
i andzi in the variational distribution since the inference

is still tractable; for complete data, the variation distribution for(xmi
i |zi = h) is not necessary.

• qVh(Vh) is a beta distribution,

Vh ∼ Be(vh1,vh2), h= 1, . . . ,N−1.

Recall that we have a truncation level ofN, which implies that the mixture proportionsπh(V )
are equal to zero forh> N. Therefore,qVh(Vh) = δ1 for h= N, andqVh(Vh) = δ0 for h> N.
For h< N, Vh has a variational Beta posterior.

• qµh,Λh(µh,Λh) is a normal-Wishart distribution,

(µh,Λh)∼NP(mh,u
−1
h Λ

−1
h )W (Bh,νh), h= 1, . . . ,N.
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• qwh(wh) is a normal distribution,

wh ∼NP+1(µ
w
h ,Σ

w
h ), h= 1, . . . ,N.

• qζp,λp
(ζp,λp) is a normal-gamma distribution,

(ζp,λp)∼N (φp,γ−1λ−1
p )Ga(ap,bp), p= 1, . . . ,P+1.

• qα(α) is a Gamma distribution,
α ∼ Ga(τ1,τ2).

Given the specifications on the variational distributions, a mean-field variational algorithm (Beal,
2003) is developed for the iQGME model. All update equations and derivations forq(xmi

i ,zi) are
included in the Appendix; similar derivations for other random variables are found elsewhere (Xue
et al., 2007; Williams et al., 2007). Each variational parameter is re-estimated iteratively condi-
tioned on the current estimate of the others until the lower bound of the log marginal likelihood
converges. Although the algorithm yields a bound for any initialization of the variational parame-
ters, different initializations may lead to different bounds. To alleviate this local-maxima problem,
one may perform multiple independent runs with random initializations, and choose the run that
produces the highest bound on the marginal likelihood. We will elaborate onour initializations in
the experiment section.

For simplicity, we omit the subscripts on the variational distributions and henceforth useq to
denote any variational distributions. In the following derivations and update equations, we use
generic notation〈 f 〉q(·) to denote Eq(·)[ f ], the expectation of a functionf with respect to variational
distributionsq(·). The subscriptq(·) is dropped when it shares the same arguments withf .

5.3 Multi-task Learning

For multi-task learning much of the inference is highly related to that of single-task learning, as
discussed above; in the following we focus only on differences. In the multi-task learning model,
the latent variables areΘ= {t,xm,z,V ,α,c,U ,β,µ,Λ,W ,ζ,λ}, and hyper-parameters areΨ=
{m0,u0,B0,ν0,τ10,τ20,τ30,τ40,γ0,a0,b0}. We specify the factorized variational distributions as

q(t,xm,z,V ,α,c,U ,β,µ,Λ,W ,ζ,λ)

=
J

∏
j=1

{
n j

∏
i=1

[q(t ji )q(x
mji
ji )q(zji )]

N−1

∏
h=1

q(Vjh)
N

∏
h=1

q(c jh)}
S−1

∏
s=1

q(Us)

S

∏
s=1

[q(µs,Λs)q(ws)]
P+1

∏
p=1

q(ζp,λp)q(α)q(β)

where the variational distributions of(t ji ,Vjh,α,µs,Λs,ws,ζp,λp) are assumed to be the same as in
the single-task learning, while the variational distributions of hidden variables newly introduced for
the upper-level Dirichlet process are specified as

• q(c jh) for each indicatorc jh is a multinomial distribution with probabilitiesσ jh,

c jh ∼MS(1,σ jh1, . . . ,σ jhS), j = 1, . . . ,J, h= 1, . . . ,N.
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• q(Us) for each weightUs is a Beta distribution,

Us ∼ Be(κs1,κs2), s= 1, . . . ,S−1.

Here we have a truncation level ofS for the upper-lever DP, which implies that the mixture
proportionsηs(U) are equal to zero fors>S. Therefore,q(Us) = δ1 for s=S, andq(Us) = δ0

for s> S. Fors< S, Us has a variational Beta posterior.

• q(β) for the scaling parameterβ is a Gamma distribution,

β ∼ Ga(τ3,τ4).

We also note that with a higher-level of hierarchy, the dependency between the missing values
x

mji
ji and the associated indicatorzji has to be broken so that the inference becomes tractable. The

variational distribution ofzji is still assumed to be multinomial distributed, whilex
mji
ji is assumed

to be normally distributed but no longer dependent onzji . All update equations are included in the
Appendix.

5.4 Prediction

For a new observed feature vectorxo⋆
⋆ , the prediction on the associated class labely⋆ is given by

integrating out the missing values.

P(y⋆ = 1|xo⋆
⋆ ,D) =

p(y⋆ = 1,xo⋆
⋆ |D)

p(xo⋆
⋆ |D)

=

∫
p(y⋆ = 1,x⋆|D)dxm⋆

⋆∫
p(x⋆|D)dxm⋆

⋆

=

∫
∑N

h=1P(z⋆ = h|D)p(x⋆|z⋆ = h,D)P(y⋆ = 1|x⋆,z⋆ = h,D)dxm⋆
⋆∫

∑N
k=1P(z⋆ = k|D)p(x⋆|z⋆ = k,D)dxm⋆

⋆
.

We marginalize the hidden variables over their variational distributions to compute the predictive
probability of the class label

P(y⋆ = 1|xo⋆
⋆ ,D) =

∑N
h=1EV [πh]

∫ ∞
0

∫
EµhΛh[NP(x⋆|µh,Λ

−1
h )]Ewh

[

N (t⋆|wT
hx

b
⋆,1)

]

dxm⋆
⋆ dt⋆

∑N
k=1EV [πk]

∫
EµkΛk[NP(x⋆|µk,Λ

−1
k )]dxm⋆

⋆

where

EV [πh] = EV [Vh∏
l<h

(1−Vl )] = 〈Vh〉∏
l<h

〈1−Vl 〉=

[

vh1

vh1+vh2

]1(h<N)

∏
l<h

[

vl2

vl1+vl2

]1(h>1)

.

The expectation Eµh,Λh[NP(x
⋆|µh,Λ

−1
h )] is a multivariate Student-t distribution (Attias, 2000).

However, for the incomplete-data situation, the integral over the missing values is tractable only
when the two terms in the integral are both normal. To retain the form of norm distributions, we use
the posterior means ofµh,Λh andwh to approximate the variables:

P(y⋆ = 1|xo⋆
⋆ ,D) ≈

∑N
h=1EV [πh]

∫ ∞
0

∫
NP(x⋆|mh,(νhBh)

−1)N (t⋆|(µw
h )

T
xb
⋆,1)dx

m⋆
⋆ dt⋆

∑N
k=1EV [πk]

∫
NP(x⋆|mk,(νkBk)−1)dxm⋆

⋆

=
∑N

h=1EV [πh]N|o⋆|(x
o⋆
⋆ |mo⋆

h ,(νhBh)
−1,o⋆o⋆)

∫ ∞
0 N (t⋆|ϕ⋆h,g⋆h)dt⋆

∑N
k=1EV [πk]N|o⋆|(x

o⋆
⋆ |mo⋆

k ,(νkBk)−1,o⋆o⋆)
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where

ϕ⋆h = [mT
h ,1]µ

w
h +Γ

T
⋆h(∆

o⋆o⋆
h )−1(xo⋆

⋆ −mo⋆
h ),

g⋆h = 1+(µ̄w
h )

T
∆hµ̄

w
h −Γ

T
⋆h(∆

o⋆o⋆
h )−1

Γ⋆h,

Γ⋆h = ∆
o⋆o⋆
h (µw

h )
o⋆ +∆

o⋆m⋆
h (µw

h )
m⋆ ,

µ̄w
h = (µw

h )1:P,

∆h = (νhBh)
−1.

For complete data the integral of missing features is absent, so we take advantage of the full varia-
tional posteriors for prediction.

5.5 Computational Complexity

Given the truncation level (or the number of clusters)N, the data dimensionalityP, and the num-
ber of data pointsn, we compare the iQGME to closely related DP regression models (Meeds and
Osindero, 2006; Shahbaba and Neal, 2009), in terms of the time and memory complexity. The in-
ference of the iQGME with complete data requires inversion of twoP×P matrices (the covariance
matrices for the inputs and the local expert) associated with each cluster. Therefore, the time and
memory complexity areO(2NP3) andO(2NP2), respectively. With incomplete data, since the miss-
ing pattern is unique for each data point, the time and memory complexity increase with number of
data points, that is,O(nNP3) andO(nNP2), respectively. The mixture of Gaussian process experts
(Meeds and Osindero, 2006) requiresO(NP3+n3/N) computations for each MCMC iteration if the
N experts equally divide the data, and the memory complexity isO(NP2+n2/N). In the model pro-
posed by Shahbaba and Neal (2009), no matrix inversion is needed since the covariates are assumed
to be independent. The time and memory complexity areO(NP) andO(NP), respectively.

From the aspect of computational complexity, the model in Meeds and Osindero (2006) is re-
stricted by the increase of both dimensionality and data size; while the model proposed in Shahbaba
and Neal (2009) is more efficient. Although the proposed model requiresmore computations for
each MCMC iteration than the latter one, we are able to handle missing values naturally, and much
more efficiently compared to the former one. Considering the usual number of iterations required
by VB (several dozens) and MCMC (thousands or even tens of thousands), our model is even more
efficient.

6. Experimental Results

In all the following experiments the hyper-parameters are set as follows:a0 = 0.01, b0 = 0.01,
γ0 = 0.1, τ10 = 0.05,τ20 = 0.05,τ30 = 0.05,τ40 = 0.05,u0 = 0.1, ν0 = P+2, andm0 andB0 are
set according to sample mean and sample precision, respectively. These parameters have not been
optimized for any particular data set (which are all different in form), andthe results are relatively
insensitive to “reasonable” settings. The truncation levels for the variational distributions are set to
beN = 20 andS= 50. We have found the results insensitive to the truncation level, for valueslarger
than those considered here.

Because of the local-maxima issue associated with VB, initialization of the inferred VB hyper-
parameters is often important. We initialize most variational hyper-parameters using the corre-
sponding prior hyper-parameters, which are data-independent. The precision/covariance matrices
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Bh andΣw
h are simply initialized as identity matrices. However, for several other hyper-parameters,

we may obtain information for good start points from the data. Specifically, thevariational mean
of the soft labelµt

i is initialized by the associated labelyi . A K-means clustering algorithm is im-
plemented on the feature vectors, and the cluster means and identifications for objects are used to
initialize the variational mean of the Gaussian meansmh and the indicator probabilitiesρi , respec-
tively. As an alternative, one may randomly initializemh andρi multiple times, and select the
solution that produces the highest lower bound on the log marginal likelihood. The two approaches
work almost equivalently for low-dimensional problems; however, for problems with moderate to
high dimensionality, it could be fairly difficult to get a satisfying initialization by making several
random trials.

6.1 Synthetic Data

We first demonstrate the proposed iQGME single-task learning model on a synthetic data set, for il-
lustrative purposes. The data are generated according to a GMM modelp(x)=∑3

k=1 πkN2(x|µk,Σk)
with the following parameters:

π =
[

1/3 1/3 1/3
]

, µ1 =

[

−3
0

]

, µ2 =

[

1
0

]

, µ3 =

[

5
0

]

Σ1 =

[

0.52 −0.36
−0.36 0.73

]

, Σ2 =

[

0.47 0.19
0.19 0.7

]

, Σ3 =

[

0.52 −0.36
−0.36 0.73

]

.

The class boundary for each Gaussian component is given by three lines x2 = wkx1 + bk for k =
1,2,3, wherew1 = 0.75,b1 = 2.25,w2 =−0.58,b2 = 0.58, andw3 = 0.75,b3 =−3.75. The simu-
lated data are shown in Figure 3(a), where black dots and dashed ellipsesrepresent the true means
and covariance matrices of the Gaussian components, respectively.
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Figure 3: Synthetic three-Gaussian single-task data with inferred components. (a) Data in feature
space with true labels and true Gaussian components indicated; (b) inferred posterior ex-
pectation of weights on components, with standard deviations depicted as error bars; (c)
ground truth with posterior means of dominant components indicated (the linearclassi-
fiers and Gaussian ellipses are inferred from the data).

The inferred mean mixture weights with standard deviations are depicted in Figure 3(b), and
it is observed that three dominant mixture components (local “experts”) are inferred. The domi-
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nant components (those with mean weight larger than 0.005) are characterized by Gaussian means,
covariance matrices and local experts, as depicted in Figure 3(c). FromFigure 3(c), the nonlinear
classification is manifested by using three dominantlocal linear classifiers, with a GMM defining
the effective regions stochastically.
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Figure 4: Synthetic three-Gaussian single-task data: (a) prior and posterior beliefs on the number
of dominant components; (b) prior and posterior beliefs onα.

An important point is that we are not selecting a “correct” number of mixture components as
in most mixture-of-expert models, including the finite QGME model (Liao et al., 2007). Instead,
there exists uncertainty on the number of components in our posterior belief.Since this uncertainty
is not inferred directly, we obtain samples for the number of dominant components by calculating
πh based onVh sampled from their probability density functions (prior or variational posterior), and
the probability mass functions given by histogram are shown in Figure 4(a). As discussed, the scale
parameterα is highly related to the number of clusters, so we depict the prior and the variational
posterior onα in Figure 4(b).

The predictions in feature space are presented in Figure 5, where the prediction in sub-figure (a)
is given by integrating over the full posteriors of local experts and parameters (means and covari-
ance matrices) of Gaussian components; while the prediction in sub-figure (b) is given by posterior
means. We examine these two cases since the analytical integrals over the fullposteriors may be un-
available sometimes in practice (for example, for cases with incomplete data as discussed in Section
5). From Figures 5(a) and 5(b), we observe that these two predictionsare fairly similar, except that
(a) allows more uncertainty on regions with scarce data. The reason for this is that the posteriors
are often peaked and thus posterior means are usually representative.As an example, we plot the
broad common prior imposed for local experts in Figure 5(c) and the peaked variational posteriors
for three dominant experts in Figure 5(d). According to Figure 5, we suggest the usage of full pos-
teriors for prediction whenever integrals are analytical, that is, for experiments with complete data.
It also empirically justifies the use of posterior means as an approximation. These results have been
computed using VB inference, with MCMC-based results presented below,as a comparison.
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Figure 5: Synthetic three-Gauss single-task data: (a) prediction in feature space using the full pos-
teriors; (b) prediction in feature space using the posterior means; (c) a common broad
prior on local experts; (d) variational posteriors on local experts.

6.2 Benchmark Data

To further evaluate the proposed iQGME, we compare it with other models, using benchmark data
sets available from the UCI machine learning repository (Newman et al., 1998). Specifically, we
consider Wisconsin Diagnostic Breast Cancer (WDBC) and the Johns Hopkins University Iono-
sphere database (Ionosphere) data sets, which have been studied in the literature (Williams et al.,
2007; Liao et al., 2007). These two data sets are summarized in Table 1.

The models we compare to include:

• State-of-the-art classification algorithms: Support Vector Machines (SVM) (Vapnik, 1995)
and Relevance Vector Machines (RVM) (Tipping, 2000). We consider both linear models
(Linear) and non-linear models with radial basis function (RBF) for both algorithms. For
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Data set Dimension Number of positive instancesNumber of negative instances
Ionosphere 34 126 225

WDBC 30 212 357

Table 1: Details of Ionosphere and WDBC data sets

each data set, the kernel parameter is selected for one training/test/validationseparation, and
then fixed for all the other experimental settings. The RVM models are implemented with
Tipping’s Matlab code available athttp://www.miketipping.com/index.php?page=rvm .

Since those SVM and RVM algorithms are not directly applicable to problems with missing
features, we use two methods to impute the missing values before the implementation.One is
using the mean of observed values (unconditional mean) for the given feature, referred to as
Uncond; the other is using the posterior mean conditional on observed features (conditional
mean), referred to as Cond (Schafer and Graham, 2002).

• Classifiers handling missing values: the finite QGME inferred by expectation-maximization
(EM) (Liao et al., 2007), referred to as QGME-EM, and a two-stage algorithm (Williams
et al., 2007) where the parameters of the GMM for the covariates are estimated first given the
observed features, and then a marginalized linear logistic regression (LR) classifier is learned,
referred to as LR-Integration. Results are cited from Liao et al. (2007)and Williams et al.
(2007), respectively.

In order to simulate themissing at randomsetting, we randomly remove a fraction of feature
values according to a uniform distribution, and assume the rest are observed. Any instance with all
feature values missing is deleted. After that, we randomly split each data set into training and test
subsets, imposing that each subset encompasses at least one instance from each of the classes. Note
that the random pattern of missing features and the random partition of training and test subsets
are independent of each other. By performing multiple trials we consider thegeneral (average)
performance for various data settings. For convenient comparison with Williams et al. (2007) and
Liao et al. (2007), the performance of algorithms is evaluated in terms of the area under a receiver
operating characteristic (ROC) curve (AUC) (Hanley and McNeil, 1982).

The results on the Ionosphere and WDBC data sets are summarized in Figures 6 and 7, respec-
tively, where we consider 25% and 50% of the feature values missing. Given a portion of missing
values, each curve is a function of the fraction of data used in training. For a given size of training
data, we perform ten independent trials for the SVM and RVM models and theproposed iQGME.

From both Figures 6 and 7, the proposed iQGME-VB is robust for all the experimental settings,
and its overall performance is the best among all algorithms considered. Although the RVM-RBF-
Cond and the SVM-RBF-Cond perform well for the Ionosphere data set, especially when the train-
ing data is limited, their performance on the WDBC data set is not as good. The kernel methods
benefit from the introduction of the RBF kernel for the Ionosphere dataset; however, the perfor-
mance is inferior for the WDBC data set. We also note that the one-step iQGME and the finite
QGME outperform the two-step LR-integration. The proposed iQGME consistently performs bet-
ter than the finite QGME (where, for the latter, in all cases we show results for the best/optimized
choice of number of expertsK), which reveals the advantage of retaining the uncertainty on the
model structure (number of experts) and model parameters. As shown in Figure 7, the advantage of
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Figure 6: Results on Ionosphere data set for (a)(b) 25%, and (c)(d) 50% of the feature values miss-
ing. For legibility, we only report the standard deviation for the proposed iQGME-VB
algorithm as error bars, and present the compared algorithms in two figures for each case.
The results of the finite QGME solved with an expectation-maximization method are
cited from Liao et al. (2007), and those of LR-Integration are cited fromWilliams et al.
(2007). Since the performance of the QGME-EM is affected by the choiceof number of
expertsK, the overall best results amongK = 1,3,5,10,20 are cited for comparison in
each case (no such selection ofK is required for the proposed iQGME-VB algorithm).

considering the uncertainty on the model parameters is fairly pronounced for the WDBC data set,
especially when training examples are relatively scarce and thus the point-estimation EM method
suffers from over-fitting issues. A more detailed examination on the model uncertainty is shown in
Figures 8 and 9.

In Figure 8, the influence of the preset value forK on the QGME-EM model is examined on the
Ionosphere data. We observe that with different fractions of missing values and training samples,
the values forK which achieve the best performance may be different; asK goes to a large number
(e.g., 20 here), the performance gets worse due to over-fitting. In contrast, we do not need to set the
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Figure 7: Results on WDBC data set for cases when (a)(b) 25%, and (c)(d) 50% of the feature
values are missing. Refer to Figure 6 for additional information.

number of clusters for the proposed iQGME-VB model. As long as the truncation levelN is large
enough (N = 20 for all the experiments), the number of clusters is inferred by the algorithm. We
give an example for the posterior on the number of clusters inferred by theproposed iQGME-VB
model, and report the statistics for the most probable number of experts given each missing fraction
and training fraction in Figure 9, which suggests that the number of clustersmay vary significantly
even for the trials with the same fraction of feature values missing and the same fraction of samples
for training. Therefore, it may be not appropriate to set a fixed value for the number of clusters for
all the experimental settings as one has to do for the QGME-EM.

Although our main purpose is classification, one may also be interested in how well the algo-
rithm can estimate the missing values while pursuing the main purpose. In Figure 10, we show
the ratio of correctly estimated missing values for the Ionosphere data set with25% feature values
missing, where two criteria are considered: true values are one standarddeviation (red circles) or
two standard deviations (blue squares) away from the posterior means. This figure suggests that
the algorithm estimates most of the missing values in a reasonable range away from the true val-
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Figure 8: The comparison on the Ionosphere data set between QGME-EMwith different preset
number of clustersK and the proposed iQGME-VB, when (a)(b)(c) 25%, and (d)(e)(f)
50% of the features are missing. In each row, 10%, 50%, and 90% of samples are used
for training, respectively. Results of QGME-EM are cited from Liao et al.(2007).

ues when the training size is large enough; even with not so satisfying estimations (as for limited
training data), the classification results are still relatively robust as shownin Figure 6.

We have discussed the advantages and disadvantages for the inferencewith MCMC and VB
in Section 5.1. Here we take the Ionosphere data with 25% features missing asan example to
compare these two inference techniques, as shown in Figure 11. It can be seen that they achieve
similar performance for the particular iQGME model proposed in this paper. The time consumed
for each iteration is also comparable, and increases almost linearly with the training size, as dis-
cussed in Section 5.5. The VB inference takes a little bit longer per iteration, probably due to the
extra computation for the lower bound of the log marginal likelihood, which serves as convergence
criterion. Significant differences occur on the number of iterations we have to take. In the experi-
ment, even though we set a very strict threshold (10−6) for the relative change of the lower bound,
the VB algorithm converges at about 50 iterations for most cases exceptwhen training data are very
scarce (10%). For the MCMC inference, we discard the initial samples from the first 1000 iterations
(burn-in), and collect the next 500 samples to present the posterior. Itis far from enough to claim
convergence; however, we consider it a fair comparison for computation as the two methods yield
similar results under this setting. Given the fact that the VB algorithm only takesabout 1/30 the
CPU time, and VB and MCMC performance are similar, in the following examples weonly present
results based on VB inference. However, in all the examples below we alsoperformed Gibbs sam-
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Figure 9: Number of clusters for the Ionosphere data set inferred by iQGME-VB. (a) Prior and
inferred posterior on the number of clusters for one trial given 10% samples for training,
the number of clusters for the case when (b) 25%, and (c) 50% of features are missing.
The most probable value of clusters number is used for each trial to generate (b) and (c)
(e.g., the most probable value of clusters number is two for the trial shown in (a)). In
(b) and (c), the distribution of number of clusters for the ten trials given each missing
fraction and training fraction is presented as a box-plot, where the red linerepresents the
median; the bottom and top of the blue box are the 25th and 75th percentile, respectively;
the bottom and top black lines are the end of the whiskers, which could be the minimum
and maximum, respectively; if some data are beyond 1.5 times of the length of the blue
box (interquartile range), they are outliers, indicated by a red ‘+’.
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Figure 10: Ratio of missing values whose true values are one standard deviation (red circles) or two
standard deviations (blue squares) away from the posterior means for the Ionosphere
data set with 25% feature values missing. One trial for each training size is considered.

pling, and the relative inference consistency and computational costs relative to VB were found to
be as summarized here (i.e., in all cases there was close agreement betweenthe VB and MCMC
inferences, and considerable computational acceleration manifested by VB).
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Figure 11: Comparison between VB and MCMC inferred iQGME on the Ionosphere data with 25%
features missing in terms of (a) performance, (b) time consumed for each iteration, (c)
number of iterations. For the VB inference, we set a threshold (10−6) for the relative
change of lower bound in two consecutive iterations as the convergencecriterion; for the
MCMC inference, we discard the initial samples from the first 1000 iterations(burn-in),
and collect the next 500 samples to present the posterior.

6.3 Unexploded Ordnance Data

We now consider an unexploded ordnance (UXO) detection problem (Zhang et al., 2003), where
two types of sensors are used to collect data, but one of them may be absent for particular targets.
Specifically, one sensor is a magnetometer (MAG) and the other an electromagnetic induction (EMI)
sensor; these sensors are deployed separately to interrogate buried targets, and for some targets both
sensors are deployed and for others only one sensor is deployed. This is a real sensing problem for
which missing data occurs naturally. The data considered were made available to the authors by the
US Army (and were collected from a real former bombing range in the US); the data are available
to other researchers upon request. The total number of targets are 146, where 79 of them UXO and
the rest are non-UXO (i.e., non-explosives). A six-dimensional feature vector is extracted from the
raw signals to represent each target, with the first three components corresponding to MAG features
and the rest as EMI features (details on feature extraction is provided in Zhang et al., 2003). Figure
12 shows the missing patterns for this data set.

We compare the proposed iQGME-VB algorithm with the SVM, RVM and LR-Integration as
detailed in Section 6.2. In order to evaluate the overall performance of classifiers, we randomly
partition the training and test subsets, and change the training size. Results are shown in Figure 13,
where only performance means are reported for the legibility of the figures.From this figure, the
proposed iQGME-VB method is robust for all the experimental settings under both performance
criteria.

6.4 Sepsis Classification Data

In Sections 6.2 and 6.3, we have demonstrated the proposed iQGME-VB on data sets with low to
moderate dimensionality. A high-dimensional data set with natural missing valuesis considered
in this subsection. These data were made available to the authors from the National Center for
Genomic Research in the US, and will be made available upon request. This is another example
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Figure 12: Missing pattern for the unexploded ordnance data set, whereblack and white indicate
observed and missing, respectively.
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Figure 13: Mean performance over 100 random training/test partitions for each training fraction on
the unexploded ordnance data set, in terms of (a) area under the ROC curve, and (b)
classification accuracy.

for which missing data are a natural consequence of the sensing modality. There are 121 patients
who are infected by sepsis, with 90 of them surviving (label -1) and 31 of them who die (label
1). For each patient, we have 521 metabolic features and 100 protein features. The purpose is to
predict whether a patient infected by sepsis will die given his/her features. The missing pattern
of feature values is shown in Figure 14(a), where black indicates observed (this missingness is a
natural consequence of the sensing device).

As the data are in a 621-dimensional feature space, with only 121 samples available, we use the
MFA-based variant of the iQGME (Section 2.4). To impose the low-rank belief for each cluster, we
setc0 = d0 = 1, and the largest possible dimensionality for clusters is set to beL = 50.
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We compare to the same algorithms considered in Section 6.3, except the LR-Integration al-
gorithm since it is not capable of handling such a high-dimensional data set.Mean AUC over ten
random partitions are reported in Figure 14(b). Here we report the SVMand RVM results on the
original data since they are able to classify the data in the original 621-dimensional space after miss-
ing values are imputed; we also examined SVM and RVM results on the data in a lower-dimensional
latent space, after first performing factor analysis on the data, and these results were very similar
to the SVM/RVM results in the original 621-dimensional space. From Figure 14(b), our method
provides improvement by handling missing values analytically in the procedureof model inference
and performing a dimensionality reduction jointly with local classifiers learning.
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Figure 14: Sepsis data set. (a) Missing pattern, where black and white indicate observed and miss-
ing, respectively, (b) mean performance over 100 random training/testpartitions for each
training fraction.

6.5 Multi-Task Learning with Landmine Detection Data

We now consider a multi-task-learning example. In an application of landmine detection (available
at http://www.ee.duke.edu/ ˜ lcarin/LandmineData.zip ), data collected from 19 landmine
fields are treated as 19 subtasks. Among them, subtasks 1-10 correspondto regions that are rel-
atively highly foliated and subtasks 11-19 correspond to regions that are bare earth or desert. In
all subtasks, each target is characterized by a 9-dimensional feature vectorx with corresponding
binary labely (1 for landmines and -1 for clutter). The number of landmines and clutter in each task
is summarized in Figure 15. The feature vectors are extracted from images measured with airborne
radar systems. A detailed description of this landmine data set has been presented elsewhere (Xue
et al., 2007).

Although our main objective is to simultaneously learn classifiers for multiple taskswith in-
complete data, we first demonstrate the proposed iQGME-based multi-task learning (MTL) model
on the complete data, comparing it to two multi-task learning algorithms designed forthe situation
with all the features observed. One is based on task-specific logistic regression (LR) models, with
the DP as a hierarchical prior across all the tasks (Xue et al., 2007); theother assumes an underlying
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Figure 15: Number of landmines and clutter in each task for the landmine-detection data set (Xue
et al., 2007).

structure, which is shared by all the tasks (Ando and Zhang, 2005). For the LR-MTL algorithm,
we cite results on complete data from Xue et al. (2007), and implement the authors’ Matlab code
with default hyper-parameters on the cases with incomplete data. The Matlab implementation for
the Structure-MTL algorithm is included in the “Transfer Learning Toolkit for Matlab” available at
http://multitask.cs.berkeley.edu/ . The dimension of the underlying structure is a user-set
parameter, and it should be smaller than the feature dimension in the original space. As the dimen-
sion of the landmine detection data is 9, we set the hidden dimension as 5. We alsotried 6, 7, and
8, and did not observe big differences in performance. Single-task learning (STL) iQGME and LR
models are also included for comparison.

Each task is divided into training and test subsets randomly. Since the numberof elements in the
two classes is highly unbalanced, as shown in Figure 15, we impose that there is at least one instance
from each class in each subset. Following Xue et al. (2007), the size of the training subset in each
task varies from 20 to 300 in increments of 20, and 100 independent trials are performed for each
size of data set. An average AUC (Hanley and McNeil, 1982) over all the 19 tasks is calculated as
the performance representation for one trial of a given training size. Results are reported in Figure
16.

The first observation from Figure 16 is that we obtain a significant performance improvement
for single-task learning by using the iQGME-VB instead of the linear logistic regression model (Xue
et al., 2007). We also notice that the multi-task algorithm based on iQGME-VB further improves
the performance when the training data are scarce, and yields comparableoverall results as the LR-
MTL does. The structure-MTL does not perform well on this data set. Wesuspect that a hidden
structure in such a 9-dimensional space does not necessarily exist. Another possible reason may be
that the minimization of empirical risk is sensitive for the cases with highly unbalanced labels, as
for this data set.
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Figure 16: Average AUC over 19 tasks of landmine detection with complete data. Error bars reflect
the standard deviation across 100 random partitions of training and test subsets. Results
of logistic regression based algorithms are cited from Xue et al. (2007), where LR-MTL
and LR-STL respectively correspond to SMTL-2 and STL in Figure 3 ofXue et al.
(2007).

It is also interesting to explore the similarity among tasks. The similarity defined by different
algorithms may be different. In Xue et al. (2007), two tasks are defined to be similar if they share
the same linear classifier. However, with the joint distribution of covariates and the response, the
iQGME-MTL requires both the data distributions and the classification boundaries to be similar if
two tasks are deemed to be similar. Another difference is that two tasks could be partially similar
since sharing between tasks is encouraged at the cluster-level instead of at the task-level (Xue et al.
2007 employs task-level clustering). We generate the similarity matrices between tasks as follows:
In each random trial, there are in totalShigher-level items shared among tasks. For each task, we
can find the task-specific probability mass function (pmf) over all the higher-level items. Using these
pmfs as the characteristics for tasks in the current trial, we calculate the pair-wise Kullback-Leibler
(KL) distances and convert them to similarity measures through a minus exponential function. Re-
sults of multiple trials are summed over and normalized as shown in Figure 17. It can be seen that
the similarity structure among tasks becomes clearer when we have more trainingdata available. As
discovered by Xue et al. (2007), we also find two big clusters correspond to two different vegetation
conditions of the landmine fields (task 1-10 and task 11-19). Further sub-structures among tasks are
also explored by the iQGME-MTL model, which may suggest other unknown difference among the
landmine fields.

After yielding competitive results on the landmine-detection data set with complete data, the
iQGME-based algorithms are evaluated on incomplete data, which are simulated by randomly re-
moving a portion of feature values for each task as in Section 6.2. We consider three different
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Figure 17: Similarity between tasks in the landmine detection problem with complete data given
(a) 20, (b) 100, and (c) 300 training samples from each task. The size of green blocks
represent the value of the corresponding matrix element.

portions of missing values: 25%, 50% and 75%. As in the experiments above on benchmark data
sets, we perform ten independent random trials for each setting of missingfraction and training size.

To the best of our knowledge, there exists no previous work in the literature on multi-task
learning with missing data. As presented in Figure 18, we use the LR-MTL (Xue et al., 2007) and
the Structure-MTL (Ando and Zhang, 2005) with missing values imputed as baseline algorithms.
Results of the two-step LR with integration (Williams et al., 2007) and the LR-STL with single
imputations are also included for comparison. Imputations using both unconditional-means and
conditional-means are considered. From Figure 18, iQGME-STL consistently performs best among
single-task learning methods and even better than LR-MTL-Uncond when the size of the training set
is relatively large. The imputations using conditional-means yields consistently better results for the
LR-based models on this data set. The iQGME-MTL outperforms the baselinesand all the single-
task learning methods overall. Furthermore, the improvement of iQGME-MTL ismore pronounced
when there are more features missing. These observations underscorethe advantage of handling
missing data in a principled manner and at the same time learning multiple tasks simultaneously.

The task-similarity matrices for the incomplete-data cases are shown in Figure 19. It can be seen
that when a small fraction (e.g., 25%) of the feature values are missing and training data are rich
(e.g., 300 samples from each task), the similarity pattern among tasks is similar to what we have
seen for the complete-data case. As the fraction of missing values becomes larger, tasks appear
more different from each other in terms of the usage of the higher-level items. Considering that the
missing pattern for each task is unique, it is probable that tasks look quite different from each other
after a large fraction of feature values are missing. However, the fact that tasks tend to use different
subsets of higher-level items does not mean it is equivalent to learning themseparately (STL), as
parameters of the common base measures are inferred based on all the tasks.

6.6 Multi-Task Learning with Handwritten Letters Data

The final example corresponds to multi-task learning of classifiers for handwritten letters, this data
set included in the “Transfer Learning Toolkit for Matlab” available athttp://multitask.cs.
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Figure 18: Average AUC over 19 tasks of landmine detection for the caseswhen (a) 25%, (b) 50%,
and (c) 75% of the features are missing. Mean values of performance across 10 random
partitions of training and test subsets are reported. Error bars are omittedfor legibility.

berkeley.edu/ . The objective of each task is to distinguish two letters which are easily confused.
The number of samples for all the letters considered in the total eight tasks is summarized in Table
2. Each sample is a 16×8 image as shown in Figure 20. We use the 128 pixel values of each sample
directly as its feature vector.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8
‘c’: 2107 ‘g’: 2460 ‘m’: 1596 ‘a’: 4016 ‘i’: 4895 ‘a’: 4016 ‘f’: 918 ‘h’: 858
‘e’: 4928 ‘y’: 1218 ‘n’: 5004 ‘g’: 2460 ‘j’: 188 ‘o’: 3880 ‘t’: 2131 ‘n’: 5004

Table 2: Handwritten letters classification data set.

We compare the proposed iQGME-MTL algorithm to the LR-MTL (Xue et al., 2007) and the
Structure-MTL (Ando and Zhang, 2005) mentioned in Section 6.5. For the non-parametric Bayesian
methods (iQGME-MTL and LR-MTL), we use the same parameter setting as before. The dimension
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Figure 19: Similarity between tasks in the landmine detection problem with incomplete data. Row
1, 2 and 3 corresponds to the cases with 25%, 50% and 75% features missing, respec-
tively; column 1, 2 and 3 corresponds to the cases with 20, 100 and 300 training samples
from each task, respectively.

of the underlying structure for the Structure-MTL is set to be 50 in the results shown in Figure 21.
We also tried 10, 20, 40, 60, 80 and 100, and did not observe big difference. From Figure 21, the
iQGME-MTL performs significantly better than the baselines on this data set for all the missing
fractions and training fractions under consideration. As we expected, the Structure-MTL yields
comparable results as the LR-MTL on this data set.
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Figure 20: Sample images of the handwritten letters. The two images in each columnrepresents
the two classes in the corresponding task described in Table 2.
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Figure 21: Average AUC over eight tasks of handwriting letters classification for the cases when
(a) none, (b) 25%, (c) 50%, and (d) 75% of the features are missing. Mean values of
performance with one standard deviation across 10 random partitions of training and
test subsets are reported.

7. Conclusion and Future Work

In this paper we have introduced three new concepts, summarized as follows. First, we have em-
ployed non-parametric Bayesian techniques to develop a mixture-of-experts algorithm for classifier
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design, which employs a set of localized (in feature space) linear classifiers as experts. The Dirich-
let process is employed to allow the model to infer automatically the proper numberof experts and
their characteristics; in fact, since a Bayesian formulation is employed, a fullposterior distribution is
manifested on the properties of the local experts, including their number. Secondly, the classifier is
endowed with the ability to naturally address missing data, without the need for an imputation step.
Finally, the whole framework has been placed within the context of a multi-task learning, allow-
ing one to jointly infer classifiers for multiple data sets with missing data. The multi-task-learning
component has also been implemented with the general tools associated with the Dirichlet process,
with specific implementations manifested via the hierarchical Dirichlet process.Because of the hi-
erarchical form of the model, in terms of a sequence of distributions in the conjugate-exponential
family, all inference has been manifested efficiently via variational Bayesian (VB) analysis. The
VB results have been compared to those computed via Gibbs sampling; the VB results have been
found to be consistent with those inferred via Gibbs sampling, while requiringa small fraction of the
computational costs. Results have been presented for single-task and multi-task learning on various
data sets with the same hyper-parameters setting (no model-parameter tuning),and encouraging
algorithm performance has been demonstrated.

Concerning future research, we note that the use of multi-task learning provides an important
class of contextual information, and therefore is particularly useful when one has limited labeled
data and when the data are incomplete (missing features). Another form of context that has received
significant recent attention is semi-supervised learning (Zhu, 2005). There has been recent work on
integrating multi-task learning with semi-supervised learning (Liu et al., 2007).An important new
research direction includes extending semi-supervised multi-task learning torealistic problems for
which the data are incomplete.

Appendix A.

The update equations of single-task learning with incomplete data are summarized as follows:

1. q(ti |µt
i )

µt
i =

N

∑
h=1

ρih〈wh〉
Tx̂b

i,h where x̂b
i,h = [xoi

i ;mmi |oi
h ;1].

The expectation ofti andt2
i may be derived according to properties of truncated normal dis-

tributions:

〈ti〉 = µt
i +

φ(−µt
i)

1(yi = 1)−Φ(−µt
i)
,

〈t2
i 〉 = 1+(µt

i )
2
+

µt
i φ(−µt

i)

1(yi = 1)−Φ(−µt
i)
,

whereφ(·) andΦ(·) denote the probability density function and the cumulative density func-
tion of the standard normal distribution, respectively.

2. q(xmi
i ,zi |m

mi |oi
ih ,Σ

mi |oi
ih ,ρih)

A related derivation for a GMM model with incomplete data could be found in Williamset al.
(2007), where no classifier terms appear.
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First, we explicitly write the interceptwb
h , that is,wh = [(wx

h)
T ,wb

h]
T :

q(xmi
i ,zi = h)

∝ exp{〈ln[p(ti |zi = h,xi ,W )p(zi = h|V)p(xi |zi = h,µ,Λ)]〉q(ti)q(wh)q(V)q(µh,Λh)}

∝ AihNP(xi |µ̃ih,Σ̃ih),

where

Σ̃ih = [〈wx
h(w

x
h)

T〉+νhBh]
−1

µ̃ih = Σ̃ih[〈ti〉〈w
x
h〉+νhBhmh−〈wx

hwb
h〉]

Aih = exp{〈lnVh〉+∑
l<h

〈ln(1−Vl )〉+ 〈ti〉〈w
b
h〉

+
1
2
[〈ln |Λh|〉+ µ̃T

ihΣ̃
−1
ih µ̃ih + ln |Σ̃ih|−

P
uh

−mT
h νhBhmh−〈(wb

h)
2
〉]}.

Since
[

x
oi
i

x
mi
i

]

∼NP

([

µ̃
oi
ih

µ̃
mi
ih

]

,

[

Σ̃
oioi
ih Σ̃

oimi
ih

Σ̃
mioi
ih Σ̃

mimi
ih

])

,

the conditional distribution of missing featuresxmi
i given observable featuresxoi

i is also a

normal distribution, that is,xmi
i |xoi

i ∼N|mi |(m
mi |oi
h ,Σ

mi |oi
h ) with

m
mi |oi
h = µ̃

mi
ih + Σ̃

mioi
ih (Σ̃oioi

ih )−1(xoi
i − µ̃

oi
ih),

Σ
mi |oi
h = Σ̃

mimi
ih − Σ̃

mioi
ih (Σ̃oioi

ih )−1
Σ̃

oimi
ih .

Therefore,q(xmi
i ,zi = h) could be factorized as the product of a factor independent ofx

mi
i and

the variational posterior ofxmi
i , that is,

q(xmi
i ,zi = h) ∝ AihN|oi |(x

oi
i |µ̃

oi
ih,Σ̃

oioi
ih )N|mi |(x

mi
i |m

mi |oi
h ,Σ

mi |oi
h )

ρih ∝ AihN|oi |(x
oi
i |µ̃

oi
ih,Σ̃

oioi
ih )

For complete data, no factorization for the distribution forx
mi
i is necessary:

ρih ∝ exp{〈ti〉〈wh〉
Txi −

1
2
xT

i 〈whw
T
h 〉xi + 〈lnVh〉

+∑
l<h

〈ln(1−Vl )〉+
1
2
〈ln |Λh|〉−

1
2
〈(xi −µh)

T
Λh(xi −µh)〉}

3. q(Vh|vh1,vh2)

Similar updating could be found in Blei and Jordan (2006), except that weput a prior belief
on α here instead of setting a fixed number.

vh1 = 1+
n

∑
i=1

ρih, vh2 = 〈α〉+
n

∑
i=1

∑
l>h

ρil ;

〈lnVh〉= ψ(vh1)−ψ(vh1+vh2), 〈ln(1−Vl )〉= ψ(vl2)−ψ(vl1+vl2).
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4. q(µh,Λh|mh,uh,Bh,νh)

Similar updating could be found in Williams et al. (2007).

νh = ν0+Nh, uh = u0+Nh, mh =
u0m0+Nhx̄h

uh
,

B−1
h =B−1

0 +
n

∑
i=1

ρihΩ̂i,h+NhS̄h+
u0Nh

uh
(x̄h−m0)(x̄h−m0)

T ,

where

Nh =
n

∑
i=1

ρih, x̄h =
n

∑
i=1

ρihxi/Nh, S̄h =
n

∑
i=1

ρih(x̂i,h− x̄h)(x̂i,h− x̄h)
T/Nh.

x̂i,h =

[

x
oi
i

m
mi |oi
h

]

, Ω̂i,h =

[

0 0

0 Σ
mi |oi
h

]

.

〈ln |Λh|〉=
P

∑
p=1

ψ((νh− p+1)/2)+Pln2+ ln |Bh|,

〈(xi −µh)
T
Λh(xi −µh)〉= (x̂i,h−mh)

TνhBh(x̂i,h−mh)+P/uh+ tr(νhBhΩ̂i,h).

5. q(wh|µ
w
h ,Σ

w
h ), 〈wh〉= µw

h , 〈whw
T
h 〉=Σ

w
h +µw

h (µ
w
h )

T .

Σ
w
h =

(

n

∑
i=1

ρih(Ω̂i,h+ x̂b
i,hx̂b

T
i,h)+diag(〈λ〉)

)−1

,

µw
h =Σ

w
h

(

n

∑
i=1

ρihx̂b
i,h〈ti〉+diag(〈λ〉)φ

)

.

6. q(ζp,λp|φp,γ,ap,bp), 〈λp〉= ap/bp.

Similar updating could be found in Xue et al. (2007).

φp =
N

∑
h=1

〈whp〉/γ, γ = γ0+N

ap = a0+
N
2
, bp = b0+

1
2

N

∑
h=1

〈w2
hp〉−

1
2

γφ2
p.

7. q(α|τ1,τ2), 〈α〉= τ1/τ2.

Similar updating could be found in any VB-inferred DP model with a Gamma prior on α
(Xue et al., 2007).

τ1 = N−1+ τ10, τ2 = τ20−
N−1

∑
h=1

〈ln(1−Vh)〉.
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The update equations of multi-task learning with incomplete data are summarized asfollows:

1. q(t ji |µt
ji )

µt
ji =

S

∑
s=1

Eσ jis〈ws〉
Tx̂b

ji where Eσ jis =
N

∑
h=1

ρ jihσ jhs, x̂b
ji = [x

o ji
ji ;m

mji |o ji
ji ;1].

2. q(x
mji
ji |m

mji |o ji
ji ,Σ

mji |o ji
ji )

m
mji |o ji
ji = µ̃

mji
ji + Σ̃

mji o ji
ji (Σ̃

o ji o ji
ji )−1(x

o ji
ji − µ̃

o ji
ji ),

Σ
mji |o ji
ji = Σ̃

mji mji
ji − Σ̃

mji o ji
ji (Σ̃

o ji o ji
ji )−1

Σ̃
o ji mji
ji ,

where

Σ̃ ji =

(

S

∑
s=1

Eσ jis(〈w
x
s(w

x
s)

T〉+νsBs)

)−1

,

µ̃ ji = Σ̃ ji

S

∑
s=1

Eσ jis(〈t ji 〉〈w
x
s〉+νsBsms−〈wx

swb
s〉).

x̂ ji =

[

x
o ji
ji

m
mji |o ji
ji

]

, Ω̂ ji =

[

0 0

0 Σ
mji |o ji
ji

]

, 〈x jix
T
ji 〉= x̂ ji x̂

T
ji + Ω̂ ji .

3. q(zji |ρ ji )

ρ jih = q(zji = h)

∝ exp{
S

∑
s=1

σ jhs[〈t ji 〉〈ws〉
Tx̂b

ji −
1
2

tr(〈wsw
T
s 〉〈x

b
ji (x

b
ji )

T
〉)]

+〈lnVjh〉+∑
l<h

〈ln(1−Vjl )〉

+
1
2

S

∑
s=1

σ jhs[〈ln |Λs|〉− (x̂ ji −ms)
TνsBs(x̂ ji −ms)−P/us− tr(νsBsΩ̂ ji )]}.

4. q(V |v)

v jh1 = 1+
n j

∑
i=1

ρ jih , v jh2 = 〈α〉+∑
l>h

n j

∑
i=1

ρ jil .

〈lnVjh〉= ψ(v jh1)−ψ(v jh1+v jh2), 〈ln(1−Vjl )〉= ψ(v jl 2)−ψ(v jl 1+v jl 2).

5. q(α|τ1,τ2), 〈α〉= τ1/τ2.

τ1 = J(N−1)+ τ10, τ2 = τ20−
J

∑
j=1

N−1

∑
h=1

〈ln(1−Vjh)〉.
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6. q(c|σ)

σ jhs ∝ exp{
n j

∑
i=1

ρ jih [〈t ji 〉〈ws〉
Tx̂b

ji −
1
2

tr(〈wsw
T
s 〉〈x

b
ji (x

b
ji )

T
〉)]

+〈lnUs〉+∑
l<s

〈ln(1−Us)〉

+
1
2

n j

∑
i=1

ρ jih [〈ln |Λs|〉− (x̂ ji −ms)
TνsBs(x̂ ji −ms)−P/us− tr(νsBsΩ̂ ji )]}.

7. q(Us|κs1,κs2)

κs1 = 1+
J

∑
j=1

N

∑
h=1

σ jhs, κs2 = 〈β〉+
J

∑
j=1

N

∑
h=1

∑
l>s

σ jhl .

〈lnUs〉= ψ(κs1)−ψ(κs1+κs2), 〈ln(1−Us)〉= ψ(κs2)−ψ(κs1+κs2).

8. q(β|τ3,τ4), 〈β〉= τ3/τ4.

τ3 = S−1+ τ30, τ4 = τ40−
S−1

∑
s=1

〈ln(1−Us)〉.

9. q(µs,Λs|ms,us,Bs,νs)

νs = ν0+Ns, us = u0+Ns, ms =
u0m0+Nsx̄s

us
,

B−1
s =B−1

0 +
J

∑
j=1

n j

∑
i=1

Eσ jisΩ̂ ji +NsS̄s+
u0Ns

us
(x̄s−m0)(x̄s−m0)

T ,

whereEσ jis = ∑N
h=1 ρ jihσ jhs, and

Ns =
J

∑
j=1

n j

∑
i=1

Eσ jis, x̄s =
J

∑
j=1

n j

∑
i=1

Eσ jisx̂ ji/Ns,

S̄s =
J

∑
j=1

n j

∑
i=1

Eσ jis(x̂ ji − x̄s)(x̂ ji − x̄s)
T/Ns.

〈ln |Λs|〉=
P

∑
p=1

ψ((νs− p+1)/2)+Pln2+ ln |Bs|,

〈(x ji −µs)
T
Λs(x ji −µs)〉= (x̂ ji −ms)

TνsBs(x̂ ji −ms)+P/us+ tr(νsBsΩ̂ ji ).

10. q(ws|µ
w
s ,Σ

w
s )

Σ
w
s =

(

J

∑
j=1

n j

∑
i=1

Eσ jis(x̂b
ji x̂b

T
ji + Ω̂ ji )+diag(〈λ〉)

)−1

,

µw
s = Σ

w
s

(

J

∑
j=1

n j

∑
i=1

Eσ jisx̂b
ji 〈t ji 〉+diag(〈λ〉)φ

)

.

〈ws〉= µw
s , 〈wsw

T
s 〉=Σ

w
s +µw

s (µ
w
s )

T .
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11. q(λp|ap,bp), 〈λp〉= ap/bp.

φp =
S

∑
s=1

〈wsp〉/γ, γ = γ0+S,

ap = a0+
S
2
, bp = b0+

1
2

S

∑
s=1

〈W2
sp〉−

1
2

γφ2
p.

References

J. H. Albert and S. Chib. Bayesian analysis of binary and polychotomousresponse data.Journal of
the American Statistical Association, 88:669–679, 1993.

R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and
unlabeled data.Journal of Machine Learning Research, 6:1817–1853, 2005.

H. Attias. A variational Bayesian framework for graphical models. InAdvances in Neural Informa-
tion Processing Systems (NIPS), 2000.

M. J. Beal.Variational Algorithms for Approximate Bayesian Inference. PhD dissertation, Univer-
sity College London, Gatsby Computational Neuroscience Unit, 2003.

D. M. Blei and M. I. Jordan. Variational inference for Dirichlet process mixtures.Bayesian Analysis,
1(1):121–144, 2006.

R. Caruana. Multitask learning.Machine Learning, 28:41–75, 1997.

G. Chechik, G. Heitz, G. Elidan, P. Abbeel, and D. Koller. Max-margin classification of data with
absent features.Journal of Machine Learning Research, 9:1–21, 2008.

L. M. Collins, J. L. Schafer, and C. M. Kam. A comparison of inclusive and restrictive strategies in
modern missing data procedures.Psychological Methods, 6(4):330–351, 2001.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM
algorithm.Journal of Royal Statistical Society B, 39:1–38, 1977.

U. Dick, P. Haider, and T. Scheffer. Learning from incomplete data with infinite imputations. In
International Conference on Machine Learning (ICML), 2008.

D. B. Dunson, N. Pillai, and J.-H. Park. Bayesian density regression.Journal of the Royal Statistical
Society: Series B, 69, 2007.

M. D. Escobar and M. West. Bayesian density estimation and inference using mixtures.Journal of
the American Statistical Association, 90:577–588, 1995.

T. Ferguson. A Bayesian analysis of some nonparametric problems.The Annals of Statistics, 1:
209–230, 1973.

A. E. Gelfand, S. E. Hills, A. Racine-Poon, and A. F. M. Smith. Illustration of Bayesian inference
in normal data models using Gibbs sampling.Journal of American Statistical Association, 85:
972–985, 1990.

3308



MULTI -TASK CLASSIFICATION FOR INCOMPLETEDATA

Z. Ghahramani and M. J. Beal. Variational inference for Bayesian mixtures of factor analysers.
In Advances in Neural Information Processing Systems (NIPS) 12, pages 449–455. MIT Press,
2000.

Z. Ghahramani and G. E. Hinton. The EM algorithm for mixtures of factor analyzers. Technical
Report CRG-TR-96-1, Department of Computer Science, University ofToronto, 1996.

Z. Ghahramani and M. I. Jordan. Learning from incomplete data. Technical report, Massachusetts
Institute of Technology, 1994.

T. Graepel. Kernel matrix completion by semidefinite programming. InProceedings of the Interna-
tional Conference on Artificial Neural Networks, pages 694–699, 2002.

J. Hanley and B. McNeil. The meaning and use of the area under a receiver operating characteristic
(ROC) curve.Radiology, 143:29–36, 1982.

L. Hannah, D. Blei, and W. Powell. Dirichlet process mixtures of generalized linear models. In
Artificial Intelligence and Statistics (AISTATS), pages 313–320, 2010.

J. Ibrahim. Incomplete data in generalized linear models.Journal of the American Statistical
Association, 85:765–769, 1990.

H. Ishwaran and L. F. James. Gibbs sampling methods for stick-breaking priors. Journal of the
American Statistical Association, 96:161–173, 2001.

R. A. Jacobs, M. I. Jordon, S. J. Nowlan, and G. E. Hinton. Adaptivemixtures of local experts.
Neural Computation, 3:79–87, 1991.

M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural
Computation, 6:181–214, 1994.

K. Kurihara, M. Welling, and Y. W. Teh. Collapsed variational Dirichlet process mixture models.
In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages
2796–2801, 2007.

Percy Liang and Michael I. Jordan. An asymptotic analysis of generative, discriminative, and pseu-
dolikelihood estimators. InProceedings of the International Conference on Machine Learning
(ICML), pages 584–591, 2008.

X. Liao, H. Li, and L. Carin. Quadratically gated mixture of experts for incomplete data classi-
fication. InProceedings of the International Conference on Machine Learning (ICML), pages
553–560, 2007.

Q. Liu, X. Liao, and L. Carin. Semi-supervised multitask learning. InNeural Information Process-
ing Systems, 2007.

S. N. MacEachern and P. M̈uller. Estimating mixture of Dirichlet process models.Journal of
Computational and Graphical Statistics, 7, 1998.

E. Meeds and S. Osindero. An alternative infinite mixture of Gaussian process experts. InNIPS 18,
pages 883–890. MIT Press, 2006.

3309



WANG, L IAO , CARIN AND DUNSON

P. Müller, A. Erkanli, and M. West. Bayesian curve fitting using multivariate normal mixtures.
Biometrika, 83:67–79, 1996.

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical report,
Department of Computer Science, University of Toronto, 1993.

D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository ofmachine learning
databases.http://www.ics.uci.edu/∼mlearn/MLRepository.html, 1998.

A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison of logistic
regression and naive Bayes. InAdvances in Neural Information Processing Systems (NIPS), 2002.

C. E. Rasmussen and Z. Ghahramani. Infinite mixtures of Gaussian process experts. InNIPS 14.
MIT Press, 2002.
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