
Journal of Machine Learning Research 11 (2010) 1145-1200 Submitted 11/08; Revised 11/09; Published 3/10

A Quasi-Newton Approach to Nonsmooth
Convex Optimization Problems in Machine Learning

Jin Yu JIN.YU@ADELAIDE .EDU.AU

School of Computer Science
The University of Adelaide
Adelaide SA 5005, Australia

S.V. N. Vishwanathan VISHY@STAT.PURDUE.EDU

Departments of Statistics and Computer Science
Purdue University
West Lafayette, IN 47907-2066 USA

Simon Günter GUENTER SIMON@HOTMAIL .COM

DV Bern AG
Nussbaumstrasse 21, CH-3000 Bern 22, Switzerland

Nicol N. Schraudolph JMLR@SCHRAUDOLPH.ORG

adaptive tools AG
Canberra ACT 2602, Australia

Editor: Sathiya Keerthi

Abstract

We extend the well-known BFGS quasi-Newton method and its memory-limited variant LBFGS to
the optimization of nonsmooth convex objectives. This is done in a rigorous fashion by generalizing
three components of BFGS to subdifferentials: the local quadratic model, the identification of
a descent direction, and the Wolfe line search conditions. We prove that under some technical
conditions, the resulting subBFGS algorithm is globally convergent in objective function value.
We apply its memory-limited variant (subLBFGS) toL2-regularized risk minimization with the
binary hinge loss. To extend our algorithm to the multiclassand multilabel settings, we develop a
new, efficient, exact line search algorithm. We prove its worst-case time complexity bounds, and
show that our line search can also be used to extend a recentlydeveloped bundle method to the
multiclass and multilabel settings. We also apply the direction-finding component of our algorithm
to L1-regularized risk minimization with logistic loss. In all these contexts our methods perform
comparable to or better than specialized state-of-the-artsolvers on a number of publicly available
data sets. An open source implementation of our algorithms is freely available.

Keywords: BFGS, variable metric methods, Wolfe conditions, subgradient, risk minimization,
hinge loss, multiclass, multilabel, bundle methods, BMRM,OCAS, OWL-QN

1. Introduction

The BFGS quasi-Newton method (Nocedal and Wright, 1999) and its memory-limited LBFGS vari-
ant are widely regarded as the workhorses of smooth nonlinear optimizationdue to their combi-
nation of computational efficiency and good asymptotic convergence. Given a smooth objective

c©2010 Jin Yu, S.V.N. Vishwanathan, Simon G̈unter and Nicol N. Schraudolph.

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

!

"(!)

0
acceptable interval

∇J(wt)
⊤pt c2∇J(wt)

⊤pt

c1∇J(wt)
⊤pt

Figure 1: Geometric illustration of the Wolfe conditions (4) and (5).

functionJ : R
d → R and a current iteratewt ∈ R

d, BFGS forms a local quadratic model ofJ:

Qt(p) := J(wt)+ 1
2p

⊤B−1
t p+∇J(wt)

⊤
p , (1)

whereBt ≻ 0 is a positive-definite estimate of the inverse Hessian ofJ, and∇J denotes the gradient.
Minimizing Qt(p) gives the quasi-Newton direction

pt := −Bt∇J(wt), (2)

which is used for the parameter update:

wt+1 =wt +ηtpt . (3)

The step sizeηt > 0 is normally determined by a line search obeying the Wolfe (1969) conditions:

J(wt+1) ≤ J(wt)+c1ηt∇J(wt)
⊤
pt (sufficient decrease) (4)

and ∇J(wt+1)
⊤
pt ≥ c2∇J(wt)

⊤
pt (curvature) (5)

with 0 < c1 < c2 < 1. Figure 1 illustrates these conditions geometrically. The matrixBt is then
modified via the incremental rank-two update

Bt+1 = (I−ρtsty
⊤
t)Bt(I−ρtyts

⊤
t)+ρtsts

⊤
t , (6)

wherest :=wt+1−wt andyt := ∇J(wt+1)−∇J(wt) denote the most recent step along the opti-
mization trajectory in parameter and gradient space, respectively, andρt := (yt

⊤st)
−1. The BFGS

update (6) enforces the secant equationBt+1yt = st . Given a descent directionpt , the Wolfe con-
ditions ensure that(∀t) s⊤t yt > 0 and henceB0 ≻ 0 =⇒ (∀t)Bt ≻ 0.

Limited-memory BFGS (LBFGS, Liu and Nocedal, 1989) is a variant of BFGS designed for
high-dimensional optimization problems where theO(d2) cost of storing and updatingBt would be
prohibitive. LBFGS approximates the quasi-Newton direction (2) directly from the lastm pairs of

1146

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

st andyt via a matrix-free approach, reducing the cost toO(md) space and time per iteration, with
m freely chosen.

There have been some attempts to apply (L)BFGS directly to nonsmooth optimizationproblems,
in the hope that they would perform well on nonsmooth functions that are convex and differentiable
almost everywhere. Indeed, it has been noted that in cases where BFGS (resp., LBFGS) does not
encounter any nonsmooth point, it often converges to the optimum (Lemarechal, 1982; Lewis and
Overton, 2008a). However, Lukšan and Vľcek (1999), Haarala (2004), and Lewis and Overton
(2008b) also report catastrophic failures of (L)BFGS on nonsmooth functions. Various fixes can be
used to avoid this problem, but only in an ad-hoc manner. Therefore, subgradient-based approaches
such as subgradient descent (Nedić and Bertsekas, 2000) or bundle methods (Joachims, 2006; Franc
and Sonnenburg, 2008; Teo et al., 2010) have gained considerable attention for minimizing nons-
mooth objectives.

Although a convex function might not be differentiable everywhere, a subgradient always exists
(Hiriart-Urruty and Lemaŕechal, 1993). Letw be a point where a convex functionJ is finite. Then
a subgradient is the normal vector of any tangential supporting hyperplane ofJ atw. Formally,g
is called a subgradient ofJ atw if and only if (Hiriart-Urruty and Lemaŕechal, 1993, Definition
VI.1.2.1)

(∀w′) J(w′) ≥ J(w)+(w′−w)⊤g. (7)

The set of all subgradients at a point is called the subdifferential, and is denoted∂J(w). If this set
is not empty thenJ is said to besubdifferentiable atw. If it contains exactly one element, that is,
∂J(w) = {∇J(w)}, thenJ is differentiableatw. Figure 2 provides the geometric interpretation of
(7).

The aim of this paper is to develop principled and robust quasi-Newton methods that are amenable
to subgradients. This results in subBFGS and its memory-limited variant subLBFGS, two new sub-
gradient quasi-Newton methods that are applicable to nonsmooth convex optimization problems. In
particular, we apply our algorithms to a variety of machine learning problems, exploiting knowl-
edge about the subdifferential of the binary hinge loss and its generalizations to the multiclass and
multilabel settings.

In the next section we motivate our work by illustrating the difficulties of LBFGSon nonsmooth
functions, and the advantage of incorporating BFGS’ curvature estimate into the parameter update.
In Section 3 we develop our optimization algorithms generically, before discussing their application
to L2-regularized risk minimization with the hinge loss in Section 4. We describe a new efficient
algorithm to identify the nonsmooth points of a one-dimensional pointwise maximum of linear
functions in Section 5, then use it to develop an exact line search that extends our optimization
algorithms to the multiclass and multilabel settings (Section 6). Section 7 compares and contrasts
our work with other recent efforts in this area. We report our experimental results on a number of
public data sets in Section 8, and conclude with a discussion and outlook in Section 9.

2. Motivation

The application of standard (L)BFGS to nonsmooth optimization is problematic since the quasi-
Newton direction generated at a nonsmooth point is not necessarily a descent direction. Never-
theless, BFGS’ inverse Hessian estimate can provide an effective model of the overall shape of a
nonsmooth objective; incorporating it into the parameter update can therefore be beneficial. We

1147

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

-4 -3 -2 -1 0 1 2 3 4
-1

0

1

2

3

4

5

Figure 2: Geometric interpretation of subgradients. The dashed lines are tangential to the hinge
function (solid blue line); the slopes of these lines are subgradients.

discuss these two aspects of (L)BFGS to motivate our work on developing new quasi-Newton meth-
ods that are amenable to subgradients while preserving the fast convergence properties of standard
(L)BFGS.

2.1 Problems of (L)BFGS on Nonsmooth Objectives

Smoothness of the objective function is essential for classical (L)BFGS because both the local
quadratic model (1) and the Wolfe conditions (4, 5) require the existence of the gradient∇J at every
point. As pointed out by Hiriart-Urruty and Lemaréchal (1993, Remark VIII.2.1.3), even though
nonsmooth convex functions are differentiable everywhere except ona set of Lebesgue measure
zero, it is unwise to just use a smooth optimizer on a nonsmooth convex problemunder the as-
sumption that “it should work almost surely.” Below we illustrate this on both a toyexample and
real-world machine learning problems.

2.1.1 A TOY EXAMPLE

The following simple example demonstrates the problems faced by BFGS when working with a
nonsmooth objective function, and how our subgradient BFGS (subBFGS) method (to be introduced
in Section 3) with exact line search overcomes these problems. Consider thetask of minimizing

f (x,y) = 10|x|+ |y| (8)

with respect tox andy. Clearly, f (x,y) is convex but nonsmooth, with the minimum located at(0,0)
(Figure 3, left). It is subdifferentiable wheneverx or y is zero:

∂x f (0, ·) = [−10,10] and ∂y f (·,0) = [−1,1].

We call such lines of subdifferentiability in parameter spacehinges.
We can minimize (8) with the standard BFGS algorithm, employing a backtracking linesearch

(Nocedal and Wright, 1999, Procedure 3.1) that starts with a step size that obeys the curvature

1148

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

-1
-0.5

1

0

2

0

4

6

y
0.5

8

10

x

0
0.5

-0.5 -1
1

-1.0 -0.5 0.0 0.5 1.0
x

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

BFGS

-0.01 0.00 0.01
-0.04

0.00

0.04

-1.0 -0.5 0.0 0.5 1.0
x

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

subBFGS

Figure 3: Left: the nonsmooth convex function (8); optimization trajectory ofBFGS with inexact
line search (center) and subBFGS (right) on this function.

condition (5), then exponentially decays it until both Wolfe conditions (4, 5)are satisfied.1 The
curvature condition forces BFGS to jump across at least one hinge, thus ensuring that the gradient
displacement vectoryt in (6) is non-zero; this prevents BFGS from diverging. Moreover, withsuch
an inexact line search BFGS will generally not step on any hinges directly, thus avoiding (in an
ad-hoc manner) the problem of non-differentiability. Although this algorithmquickly decreases the
objective from the starting point(1,1), it is then slowed down by heavy oscillations around the
optimum (Figure 3, center), caused by the utter mismatch between BFGS’ quadratic model and the
actual function.

A generally sensible strategy is to use an exact line search that finds the optimum along a given
descent direction (cf. Section 4.2.1). However, this line optimum will often lie on a hinge (as it does
in our toy example), where the function is not differentiable. If an arbitrary subgradient is supplied
instead, the BFGS update (6) can produce a search direction which is nota descent direction, causing
the next line search to fail. In our toy example, standard BFGS with exact linesearch consistently
fails after the first step, which takes it to the hinge atx = 0.

Unlike standard BFGS, our subBFGS method can handle hinges and thus reap the benefits of
an exact line search. As Figure 3 (right) shows, once the first iteration of subBFGS lands it on the
hinge atx = 0, its direction-finding routine (Algorithm 2) finds a descent direction for the next step.
In fact, on this simple example Algorithm 2 yields a vector with zerox component, which takes
subBFGS straight to the optimum at the second step.2

2.1.2 TYPICAL NONSMOOTHOPTIMIZATION PROBLEMS IN MACHINE LEARNING

The problems faced by smooth quasi-Newton methods on nonsmooth objectives are not only en-
countered in cleverly constructed toy examples, but also in real-world applications. To show this,
we apply LBFGS toL2-regularized risk minimization problems (30) with binary hinge loss (31), a
typical nonsmooth optimization problem encountered in machine learning. For this particular ob-
jective function, an exact line search is cheap and easy to compute (see Section 4.2.1 for details).
Figure 4 (left & center) shows the behavior of LBFGS with this exact line search (LBFGS-LS)

1. We setc1 = 10−3 in (4) andc2 = 0.8 in (5), and used a decay factor of 0.9.
2. This is achieved for any choice of initial subgradientg(1) (Line 3 of Algorithm 2).

1149

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

10

0

10

1

10

2

CPU Seconds

0.6

1.5

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Letter (

=10

!6
)

LBFGS-LS

LBFGS-ILS

subLBFGS

J(0)

Figure 4: Performance of subLBFGS (solid) and standard LBFGS with exact (dashed) and inexact
(dotted) line search methods on sampleL2-regularized risk minimization problems with
the binary (left and center) and multiclass hinge losses (right). LBFGS with exact line
search (dashed) fails after 3 iterations (marked as×) on the Leukemia data set (left).

on two data sets, namely Leukemia and Real-sim.3 It can be seen that LBFGS-LS converges on
Real-sim but diverges on the Leukemia data set. This is because using an exact line search on a
nonsmooth objective function increases the chance of landing on nonsmooth points, a situation that
standard BFGS (resp., LBFGS) is not designed to deal with. To prevent(L)BFGS’ sudden break-
down, a scheme that actively avoids nonsmooth points must be used. One such possibility is to
use an inexact line search that obeys the Wolfe conditions. Here we usedan efficient inexact line
search that uses a caching scheme specifically designed forL2-regularized hinge loss (cf. end of
Section 4.2). This implementation of LBFGS (LBFGS-ILS) converges on bothdata sets shown
here but may fail on others. It is also slower, due to the inexactness of its line search.

For the multiclass hinge loss (42) we encounter another problem: if we follow the usual practice
of initializing w = 0, which happens to be a non-differentiable point, then LBFGS stalls. One way
to get around this is to force LBFGS to take a unit step along its search direction to escape this
nonsmooth point. However, as can be seen on the Letter data set3 in Figure 4 (right), such an ad-hoc
fix increases the value of the objective aboveJ(0) (solid horizontal line), and it takes several CPU
seconds for the optimizers to recover from this. In all cases shown in Figure 4, our subgradient
LBFGS (subLBFGS) method (as will be introduced later) performs comparable to or better than the
best implementation of LBFGS.

2.2 Advantage of Incorporating BFGS’ Curvature Estimate

In machine learning one often encountersL2-regularized risk minimization problems (30) with var-
ious hinge losses (31, 42, 55). Since the Hessian of those objective functions at differentiable points
equalsλI (whereλ is the regularization constant), one might be tempted to argue that for such
problems, BFGS’ approximationBt to the inverse Hessian should be simply set toλ−1I. This
would reduce the quasi-Newton directionpt = −Btgt , gt ∈ ∂J(wt) to simply a scaled subgradient
direction.

To check if doing so is beneficial, we compared the performance of our subLBFGS method with
two implementations of subgradient descent: a vanilla gradient descent method (denoted GD) that

3. Descriptions of these data sets can be found in Section 8.

1150

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

10

0

10

1

10

2

10

3

CPU Seconds

1.2

2

3

4

O
b
j
e
c
t
i
v
e

V
a
l
u
e

CCAT (

=10

!6
)

GD

subGD

subLBFGS

x10

"1

10

1

10

2

10

3

CPU Seconds

0.3

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

INEX (

=10

!6
)

GD

subGD

subLBFGS

10

1

10

2

10

3

10

4

CPU Seconds

0.4

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

TMC2007 (

=10

!5
)

GD

subGD

subLBFGS

Figure 5: Performance of subLBFGS, GD, and subGD on sampleL2-regularized risk minimization
problems with binary (left), multiclass (center), and multilabel (right) hinge losses.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
BFGS Quadratic Model
Piecewise Linear Function

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
Gradient of BFGS Model
Piecewise Constant Gradient

Figure 6: BFGS’ quadratic approximation to a piecewise linear function (left), and its estimate of
the gradient of this function (right).

uses a random subgradient for its parameter update, and an improved subgradient descent method
(denoted subGD) whose parameter is updated in the direction produced byour direction-finding
routine (Algorithm 2) withBt = I. All algorithms used exact line search, except that GD took
a unit step for the first update in order to avoid the nonsmooth pointw0 = 0 (cf. the discussion
in Section 2.1). As can be seen in Figure 5, on all sampleL2-regularized hinge loss minimization
problems, subLBFGS (solid) converges significantly faster than GD (dotted) and subGD (dashed).
This indicates that BFGS’Bt matrix is able to model the objective function, including its hinges,
better than simply settingBt to a scaled identity matrix.

We believe that BFGS’ curvature update (6) plays an important role in the performance of
subLBFGS seen in Figure 5. Recall that (6) satisfies the secant conditionBt+1yt = st , wherest and
yt are displacement vectors in parameter and gradient space, respectively. The secant condition in
fact implements afinite differencingscheme: for a one-dimensional objective functionJ : R → R,

1151

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

we have

Bt+1 =
(w+ p)−w

∇J(w+ p)−∇J(w)
. (9)

Although the original motivation behind the secant condition was to approximatethe inverse Hes-
sian, the finite differencing scheme (9) allows BFGS to model the global curvature (i.e., overall
shape) of the objective function from first-order information. For instance, Figure 6 (left) shows
that the BFGS quadratic model4 (1) fits a piecewise linear function quite well despite the fact that
the actual Hessian in this case is zero almost everywhere, and infinite (in thelimit) at nonsmooth
points. Figure 6 (right) reveals that BFGS captures the global trend of thegradient rather than its in-
finitesimal variation, that is, the Hessian. This is beneficial for nonsmooth problems, where Hessian
does not fully represent the overall curvature of the objective function.

3. Subgradient BFGS Method

We modify the standard BFGS algorithm to derive our new algorithm (subBFGS, Algorithm 1) for
nonsmooth convex optimization, and its memory-limited variant (subLBFGS). Ourmodifications
can be grouped into three areas, which we elaborate on in turn: generalizing the local quadratic
model, finding a descent direction, and finding a step size that obeys a subgradient reformulation
of the Wolfe conditions. We then show that our algorithm’s estimate of the inverse Hessian has a
bounded spectrum, which allows us to prove its convergence.

Algorithm 1 Subgradient BFGS (subBFGS)
1: Initialize: t := 0,w0 = 0,B0 = I
2: Set: direction-finding toleranceε ≥ 0, iteration limitkmax > 0,

lower boundh > 0 on s⊤
t yt

y⊤
t yt

(cf. discussion in Section 3.4)

3: Compute subgradientg0 ∈ ∂J(w0)
4: while not convergeddo
5: pt = descentDirection(gt ,ε,kmax) (Algorithm 2)
6: if pt = failure then
7: Returnwt

8: end if
9: Find ηt that obeys (23) and (24) (e.g., Algorithm 3 or 5)

10: st = ηtpt

11: wt+1 =wt +st

12: Choose subgradientgt+1 ∈ ∂J(wt+1) : s⊤t (gt+1−gt) > 0
13: yt := gt+1−gt

14: st := st +max
(

0, h− s⊤
t yt

y⊤
t yt

)

yt (ensures⊤
t yt

y⊤
t yt

≥ h)

15: UpdateBt+1 via (6)
16: t := t +1
17: end while

4. For ease of exposition, the model was constructed at a differentiablepoint.

1152

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

-4 -3 -2 -1 0 1 2 3 4
-1

0

1

2

3

4

5

-4 -3 -2 -1 0 1 2 3 4
-1

0

1

2

3

4

5

Figure 7: Left: selecting arbitrary subgradients yields many possible quadratic models (dotted
lines) for the objective (solid blue line) at a subdifferentiable point. The models were
built by keepingBt fixed, but selecting random subgradients. Right: the tightest pseudo-
quadratic fit (10) (bold red dashes); note that it is not a quadratic.

3.1 Generalizing the Local Quadratic Model

Recall that BFGS assumes that the objective functionJ is differentiable everywhere so that at the
current iteratewt it can construct a local quadratic model (1) ofJ(wt). For a nonsmooth objective
function, such a model becomes ambiguous at non-differentiable points (Figure 7, left). To resolve
the ambiguity, we could simply replace the gradient∇J(wt) in (1) with an arbitrary subgradient
gt ∈ ∂J(wt). However, as will be discussed later, the resulting quasi-Newton directionpt :=−Btgt

is not necessarily a descent direction. To address this fundamental modeling problem, we first
generalize the local quadratic model (1) as follows:

Qt(p) := J(wt)+Mt(p), where

Mt(p) := 1
2p

⊤B−1
t p + sup

g∈∂J(wt)

g⊤p. (10)

Note that whereJ is differentiable, (10) reduces to the familiar BFGS quadratic model (1). Atnon-
differentiable points, however, the model is no longer quadratic, as the supremum may be attained
at different elements of∂J(wt) for different directionsp. Instead it can be viewed as the tightest
pseudo-quadratic fit toJ at wt (Figure 7, right). Although the local model (10) of subBFGS is
nonsmooth, it only incorporates non-differential points present at the current location; all others are
smoothly approximated by the quasi-Newton mechanism.

Having constructed the model (10), we can minimizeQt(p), or equivalentlyMt(p):

min
p∈R

d

(

1
2p

⊤B−1
t p + sup

g∈∂J(wt)

g⊤p

)

(11)

to obtain a search direction. We now show that solving (11) is closely relatedto the problem of
finding anormalized steepest descentdirection. A normalized steepest descent direction is defined

1153

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

as the solution to the following problem (Hiriart-Urruty and Lemaréchal, 1993, Chapter VIII):

min
p∈R

d
J′(wt , p) s.t. |||p||| ≤ 1, (12)

where

J′(wt , p) := lim
η↓0

J(wt +ηp)−J(wt)

η

is the directional derivative ofJ atwt in directionp, and||| · ||| is a norm defined onRd. In other
words, the normalized steepest descent direction is the direction of bounded norm along which
the maximum rate of decrease in the objective function value is achieved. Using the property:
J′(wt , p) = supg∈∂J(wt)g

⊤p (Bertsekas, 1999, Proposition B.24.b), we can rewrite (12) as:

min
p∈R

d
sup

g∈∂J(wt)

g⊤p s.t. |||p||| ≤ 1. (13)

If the matrixBt ≻ 0 as in (11) is used to define the norm||| · ||| as

|||p|||2 := p⊤B−1
t p, (14)

then the solution to (13) points to the same direction as that obtained by minimizing ourpseudo-
quadratic model (11). To see this, we write the Lagrangian of the constrained minimization problem
(13):

L(p,α) := α p⊤B−1
t p −α + sup

g∈∂J(wt)

g⊤p

= 1
2p

⊤(2αB−1
t)p −α + sup

g∈∂J(wt)

g⊤p, (15)

whereα > 0 is a Lagrangian multiplier. It is easy to see from (15) that minimizing the Lagrangian
functionL with respect top is equivalent to solving (11) withB−1

t scaled by a scalar 2α, implying
that the steepest descent direction obtained by solving (13) with the weighted norm (14) only differs
in length from the search direction obtained by solving (11). Therefore,our search direction is
essentially an unnomalized steepest descent direction with respect to the weighted norm (14).

Ideally, we would like to solve (11) to obtain the best search direction. This isgenerally in-
tractable due to the presence a supremum over the entire subdifferential set ∂J(wt). In many ma-
chine learning problems, however,∂J(wt) has some special structure that simplifies the calculation
of that supremum. In particular, the subdifferential of all the problems considered in this paper is
a convex and compact polyhedron characterised as the convex hull ofits extreme points. This dra-
matically reduces the cost of calculating supg∈∂J(wt)g

⊤p since the supremum can only be attained
at an extreme point of the polyhedral set∂J(wt) (Bertsekas, 1999, Proposition B.21c). In what fol-
lows, we develop an iterative procedure that is guaranteed to find a quasi-Newton descent direction,
assuming an oracle that supplies argsupg∈∂J(wt)g

⊤p for a given directionp ∈ R
d. Efficient oracles

for this purpose can be derived for many machine learning settings; we provides such oracles for
L2-regularized risk minimization with the binary hinge loss (Section 4.1), multiclass and multilabel
hinge losses (Section 6), andL1-regularized logistic loss (Section 8.4).

1154

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

Algorithm 2 pt = descentDirection(g(1),ε,kmax)

1: input (sub)gradientg(1) ∈ ∂J(wt), toleranceε ≥ 0, iteration limitkmax > 0,
and an oracle to calculate argsupg∈∂J(w) g

⊤p for any givenw andp
2: output descent directionpt

3: Initialize: i = 1, ḡ(1) = g(1), p(1) = −Btg
(1)

4: g(2) = argsupg∈∂J(wt)g
⊤p(1)

5: ε(1) := p(1)⊤g(2)−p(1)⊤ḡ(1)

6: while (g(i+1)⊤p(i) > 0 or ε(i) > ε) andε(i) > 0 andi < kmax do

7: µ∗ := min
[

1, (ḡ(i)−g(i+1))⊤Bt ḡ
(i)

(ḡ(i)−g(i+1))⊤Bt(ḡ(i)−g(i+1))

]

; see (97)

8: ḡ(i+1) = (1−µ∗)ḡ(i) +µ∗g(i+1)

9: p(i+1) = (1−µ∗)p(i)−µ∗Btg
(i+1); see (76)

10: g(i+2) = argsupg∈∂J(wt)g
⊤p(i+1)

11: ε(i+1) := min j≤(i+1)

[
p(j)⊤g(j+1)− 1

2(p(j)⊤ḡ(j) +p(i+1)⊤ḡ(i+1))
]

12: i := i +1
13: end while
14: pt = argminj≤i Mt(p

(j))

15: if supg∈∂J(wt)g
⊤pt ≥ 0 then

16: return failure;
17: else
18: return pt .
19: end if

3.2 Finding a Descent Direction

A direction pt is a descent direction if and only ifg⊤pt < 0 ∀g ∈ ∂J(wt) (Hiriart-Urruty and
Lemaŕechal, 1993, Theorem VIII.1.1.2), or equivalently

sup
g∈∂J(wt)

g⊤pt < 0. (16)

For a smooth convex function, the quasi-Newton direction (2) is always a descent direction because

∇J(wt)
⊤pt = −∇J(wt)

⊤Bt∇J(wt) < 0

holds due to the positivity ofBt .
For nonsmooth functions, however, the quasi-Newton directionpt := −Btgt for a givengt ∈

∂J(wt) may not fulfill the descent condition (16), making it impossible to find a step sizeη > 0
that obeys the Wolfe conditions (4, 5), thus causing a failure of the line search. We now present an
iterative approach to finding a quasi-Newtondescentdirection.

Our goal is to minimize the pseudo-quadratic model (10), or equivalently minimizeMt(p).
Inspired by bundle methods (Teo et al., 2010), we achieve this by minimizing convex lower bounds
of Mt(p) that are designed to progressively approachMt(p) over iterations. At iterationi we build
the following convex lower bound onMt(p):

M(i)
t (p) := 1

2p
⊤B−1

t p + sup
j≤i
g(j)⊤p, (17)

1155

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

wherei, j ∈ N andg(j) ∈ ∂J(wt) ∀ j ≤ i. Given ap(i) ∈ R
d the lower bound (17) is successively

tightened by computing

g(i+1) := argsup
g∈∂J(wt)

g⊤p(i), (18)

such thatM(i)
t (p)≤ M(i+1)

t (p)≤ Mt(p) ∀p ∈ R
d. Here we setg(1) ∈ ∂J(wt) arbitrarily, and assume

that (18) is provided by an oracle (e.g., as described in Section 4.1). To solve minp∈R
d M(i)

t (p), we
rewrite it as a constrained optimization problem:

min
p,ξ

(
1
2p

⊤B−1
t p+ξ

)

s.t. g(j)⊤p≤ ξ ∀ j ≤ i. (19)

This problem can be solved exactly via quadratic programming, but doing somay incur substantial
computational expense. Instead we adopt an alternative approach (Algorithm 2) which does not
solve (19) to optimality. The key idea is to write the proposed descent directionat iterationi + 1
as a convex combination ofp(i) and−Btg

(i+1) (Line 9 of Algorithm 2); and as will be shown in
Appendix B, the returned search direction takes the form

pt = −Bt ḡt ,

whereḡt is a subgradient in∂J(wt) that allowspt to satisfy the descent condition (16). The opti-
mal convex combination coefficientµ∗ can be computed exactly (Line 7 of Algorithm 2) using an
argument based on maximizing the dual objective ofMt(p); see Appendix A for details.

The weak duality theorem (Hiriart-Urruty and Lemaréchal, 1993, Theorem XII.2.1.5) states that
the optimal primal value is no less than any dual value, that is, ifDt(α) is the dual ofMt(p), then
minp∈R

d Mt(p) ≥ Dt(α) holds for all feasible dual solutionsα. Therefore, by iteratively increasing
the value of the dual objective we close the gap to optimality in the primal. Based onthis argument,
we use the following upper bound on the duality gap as our measure of progress:

ε(i) := min
j≤i

[

p(j)⊤g(j+1)− 1
2(p(j)⊤ḡ(j) +p(i)⊤ḡ(i))

]

≥ min
p∈R

d
Mt(p)−Dt(α

∗), (20)

whereḡ(i) is an aggregated subgradient (Line 8 of Algorithm 2) which lies in the convex hull of
g(j) ∈ ∂J(wt) ∀ j ≤ i, andα∗ is the optimal dual solution; Equations 77–79 in Appendix A provide
intermediate steps that lead to the inequality in (20). Theorem 7 (Appendix B) shows thatε(i) is
monotonically decreasing, leading us to a practical stopping criterion (Line 6of Algorithm 2) for
our direction-finding procedure.

A detailed derivation of Algorithm 2 is given in Appendix A, where we also prove that at a non-
optimal iterate a direction-finding toleranceε ≥ 0 exists such that the search direction produced by
Algorithm 2 is a descent direction; in Appendix B we prove that Algorithm 2 converges to a solution
with precisionε in O(1/ε) iterations. Our proofs are based on the assumption that the spectrum
(eigenvalues) of BFGS’ approximationBt to the inverse Hessian is bounded from above and below.
This is a reasonable assumption if simple safeguards such as those described in Section 3.4 are
employed in the practical implementation.

1156

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

3.3 Subgradient Line Search

Given the current iteratewt and a search directionpt , the task of a line search is to find a step size
η > 0 which reduces the objective function value along the linewt +ηpt :

minimize Φ(η) := J(wt +ηpt). (21)

Using the chain rule, we can write

∂Φ(η) := {g⊤pt : g ∈ ∂J(wt +ηpt)}. (22)

Exact line search finds the optimal step sizeη∗ by minimizingΦ(η), such that 0∈ ∂Φ(η∗); inexact
line searches solve (21) approximately while enforcing conditions designed to ensure convergence.
The Wolfe conditions (4) and (5), for instance, achieve this by guaranteeing a sufficient decrease in
the value of the objective and excluding pathologically small step sizes, respectively (Wolfe, 1969;
Nocedal and Wright, 1999). The original Wolfe conditions, however, require the objective function
to be smooth; to extend them to nonsmooth convex problems, we propose the following subgradient
reformulation:

J(wt+1) ≤ J(wt) + c1ηt sup
g∈∂J(wt)

g⊤pt (sufficient decrease) (23)

and sup
g′∈∂J(wt+1)

g′⊤pt ≥ c2 sup
g∈∂J(wt)

g⊤pt , (curvature) (24)

where 0< c1 < c2 < 1. Figure 8 illustrates how these conditions enforce acceptance of non-trivial
step sizes that decrease the objective function value. In Appendix C we formally show that for any
given descent direction we can always find a positive step size that satisfies (23) and (24). Moreover,
Appendix D shows that the sufficient decrease condition (23) providesa necessary condition for the
global convergence of subBFGS.

Employing an exact line search is a common strategy to speed up convergence, but it drastically
increases the probability of landing on a non-differentiable point (as in Figure 4, left). In order to
leverage the fast convergence provided by an exact line search, one must therefore use an optimizer
that can handle subgradients, like our subBFGS.

A natural question to ask is whether the optimal step sizeη∗ obtained by an exact line search
satisfies the reformulated Wolfe conditions (resp., the standard Wolfe conditions whenJ is smooth).
The answer is no: depending on the choice ofc1, η∗ may violate the sufficient decrease condition
(23). For the function shown in Figure 8, for instance, we can increasethe value ofc1 such that
the acceptable interval for the step size excludesη∗. In practice one can setc1 to a small value, for
example, 10−4, to prevent this from happening.

The curvature condition (24), on the other hand, is always satisfied byη∗, as long aspt is a
descent direction (16):

sup
g′∈J(wt+η∗pt)

g′⊤pt = sup
g∈∂Φ(η∗)

g ≥ 0 > sup
g∈∂J(wt)

g⊤pt

because 0∈ ∂Φ(η∗).

1157

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

!

"(!)

0
acceptable interval

c1 sup

g∈∂J(wt)

g
⊤

pt

c2 sup

g∈∂J(wt)

g
⊤

pt

inf
g∈∂J(wt)

g
⊤

pt

sup

g∈∂J(wt)

g
⊤

pt

Figure 8: Geometric illustration of the subgradient Wolfe conditions (23) and(24). Solid disks are
subdifferentiable points; the slopes of dashed lines are indicated.

3.4 Bounded Spectrum of SubBFGS’ Inverse Hessian Estimate

Recall from Section 1 that to ensure positivity of BFGS’ estimateBt of the inverse Hessian, we
must have(∀t) s⊤t yt > 0. Extending this condition to nonsmooth functions, we require

(wt+1−wt)
⊤(gt+1−gt) > 0, where gt+1 ∈ ∂J(wt+1) and gt ∈ ∂J(wt). (25)

If J is strongly convex,5 andwt+1 6=wt , then (25) holds for any choice ofgt+1 andgt .6 For general
convex functions,gt+1 need to be chosen (Line 12 of Algorithm 1) to satisfy (25). The existence of
such a subgradient is guaranteed by the convexity of the objective function. To see this, we first use
the fact thatηtpt =wt+1−wt andηt > 0 to rewrite (25) as

p⊤t gt+1 > p⊤t gt , where gt+1 ∈ ∂J(wt+1) and gt ∈ ∂J(wt). (26)

It follows from (22) that both sides of inequality (26) are subgradients of Φ(η) at ηt and 0, respec-
tively. The monotonic property of∂Φ(η) given in Theorem 1 (below) ensures thatp⊤t gt+1 is no less
thanp⊤t gt for any choice ofgt+1 andgt , that is,

inf
g∈∂J(wt+1)

p⊤t g ≥ sup
g∈∂J(wt)

p⊤t g. (27)

This means that the only case where inequality (26) is violated is when both termsof (27) are equal,
and

gt+1 = arg inf
g∈∂J(wt+1)

g⊤pt and gt = argsup
g∈∂J(wt)

g⊤pt ,

that is, in this casep⊤t gt+1 = p⊤t gt . To avoid this, we simply need to setgt+1 to a different subgra-
dient in∂J(wt+1).

5. If J is strongly convex, then(g2−g1)
⊤(w2−w1) ≥ c‖w2−w1‖

2, with c > 0, gi ∈ ∂J(wi), i = 1,2.
6. We found empirically that no qualitative difference between using random subgradients versus choosing a particular

subgradient when updating theBt matrix.

1158

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

Theorem 1 (Hiriart-Urruty and Lemaŕechal, 1993, Theorem I.4.2.1)
Let Φ be a one-dimensional convex function on its domain, then∂Φ(η) is increasing in the sense
that g1 ≤ g2 whenever g1 ∈ ∂Φ(η1), g2 ∈ ∂Φ(η2), andη1 < η2.

Our convergence analysis for the direction-finding procedure (Algorithm 2) as well as the global
convergence proof of subBFGS in Appendix D require the spectrum ofBt to be bounded from above
and below by a positive scalar:

∃(h,H : 0 < h≤ H < ∞) : (∀t) h�Bt � H. (28)

From a theoretical point of view it is difficult to guarantee (28) (Nocedaland Wright, 1999, page
212), but based on the fact thatBt is an approximation to the inverse HessianH−1

t , it is reasonable
to expect (28) to be true if

(∀t) 1/H �Ht � 1/h.

Since BFGS “senses” the Hessian via (6) only through the parameter and gradient displacementsst

andyt , we can translate the bounds on the spectrum ofHt into conditions that only involvest and
yt :

(∀t)
s⊤t yt

s⊤t st
≥

1
H

and
y⊤t yt

s⊤t yt
≤

1
h
, with 0 < h≤ H < ∞. (29)

This technique is used in Nocedal and Wright (1999, Theorem 8.5). IfJ is strongly convex5 and
st 6=0, then there exists anH such that the left inequality in (29) holds. On general convex functions,
one can skip BFGS’ curvature update if(s⊤t yt/s

⊤
t st) falls below a threshold. To establish the

second inequality, we add a fraction ofyt to st at Line 14 of Algorithm 1 (though this modification
is never actually invoked in our experiments of Section 8, where we seth = 10−8).

3.5 Limited-Memory Subgradient BFGS

It is straightforward to implement an LBFGS variant of our subBFGS algorithm: we simply modify
Algorithms 1 and 2 to compute all products betweenBt and a vector by means of the standard
LBFGS matrix-free scheme (Nocedal and Wright, 1999, Algorithm 9.1). Wecall the resulting
algorithm subLBFGS.

3.6 Convergence of Subgradient (L)BFGS

In Section 3.4 we have shown that the spectrum of subBFGS’ inverse Hessian estimate is bounded.
From this and other technical assumptions, we prove in Appendix D that subBFGS is globally con-
vergent in objective function value, that is,J(w) → infw J(w). Moreover, in Appendix E we show
that subBFGS converges for all counterexamples we could find in the literature used to illustrate the
non-convergence of existing optimization methods on nonsmooth problems.

We have also examined the convergence of subLBFGS empirically. In most of our experiments
of Section 8, we observe that after an initial transient, subLBFGS observes a period of linear con-
vergence, until close to the optimum it exhibits superlinear convergence behavior. This is illustrated

1159

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

0 200 400 600 800 1000 1200 1400 1600

Iterations

10

-10

10

-9

10

-8

10

-7

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

J
(
w

t

)

 J!
CCAT (

"
=10

#6
)

0 500 1000 1500 2000 2500 3000 3500 4000

Iterations

10

-9

10

-8

10

-7

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

J
(
w

t

)

 J!
INEX (

"
=10

#6
)

Figure 9: Convergence of subLBFGS in objective function value on sample L2-regularized risk
minimization problems with binary (left) and multiclass (right) hinge losses.

in Figure 9, where we plot (on a log scale) the excess objective function valueJ(wt) over its “opti-
mum” J∗7 against the iteration number in two typical runs. The same kind of convergence behavior
was observed by Lewis and Overton (2008a, Figure 5.7), who applied the classical BFGS algorithm
with a specially designed line search to nonsmooth functions. They caution that the apparent super-
linear convergence may be an artifact caused by the inaccuracy of the estimated optimal value of
the objective.

4. SubBFGS forL2-Regularized Binary Hinge Loss

Many machine learning algorithms can be viewed as minimizing theL2-regularized risk

J(w) :=
λ
2
‖w‖2 +

1
n

n

∑
i=1

l(xi ,zi ,w), (30)

whereλ > 0 is a regularization constant,xi ∈ X ⊆ R
d are the input features,zi ∈ Z ⊆ Z the cor-

responding labels, and the lossl is a non-negative convex function ofw which measures the dis-
crepancy betweenzi and the predictions arising from usingw. A loss function commonly used for
binary classification is the binary hinge loss

l(x,z,w) := max(0,1−zw⊤x), (31)

wherez∈ {±1}. L2-regularized risk minimization with the binary hinge loss is a convex but nons-
mooth optimization problem; in this section we show how subBFGS (Algorithm 1) canbe applied
to this problem.

7. Estimated empirically by running subLBFGS for 104 seconds, or until the relative improvement over 5 iterations was
less than 10−8.

1160

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

LetE , M , andW index the set of points which are in error, on the margin, and well-classified,
respectively:

E := {i ∈ {1,2, . . . ,n} : 1−ziw
⊤xi > 0},

M := {i ∈ {1,2, . . . ,n} : 1−ziw
⊤xi = 0},

W := {i ∈ {1,2, . . . ,n} : 1−ziw
⊤xi < 0}.

Differentiating (30) after plugging in (31) then yields

∂J(w) = λw−
1
n

n

∑
i=1

βizixi = w̄−
1
n ∑

i∈M

βizixi , (32)

where w̄ := λw−
1
n ∑

i∈E

zixi and βi :=

1 if i ∈ E ,
[0,1] if i ∈M ,

0 if i ∈W .

4.1 Efficient Oracle for the Direction-Finding Method

Recall that subBFGS requires an oracle that provides argsupg∈∂J(wt)g
⊤p for a given directionp.

For L2-regularized risk minimization with the binary hinge loss we can implement such an oracle
at a computational cost ofO(d |M t |), whered is the dimensionality ofp and|M t | the number of
current margin points, which is normally much less thann. Towards this end, we use (32) to obtain

sup
g∈∂J(wt)

g⊤p = sup
βi ,i∈M t

(

w̄t −
1
n ∑

i∈M t

βizixi

)⊤

p

= w̄⊤
t p −

1
n ∑

i∈M t

inf
βi∈[0,1]

(βizix
⊤
i p). (33)

Since for a givenp the first term of the right-hand side of (33) is a constant, the supremum is attained
when we setβi ∀i ∈M t via the following strategy:

βi :=

{

0 if zix
⊤
i pt ≥ 0,

1 if zix
⊤
i pt < 0.

4.2 Implementing the Line Search

The one-dimensional convex functionΦ(η) := J(w+ ηp) (Figure 10, left) obtained by restricting
(30) to a line can be evaluated efficiently. To see this, rewrite (30) as

J(w) :=
λ
2
‖w‖2 +

1
n
1
⊤max(0, 1−z ·Xw), (34)

where0 and1 are column vectors of zeros and ones, respectively,· denotes the Hadamard (component-
wise) product, andz ∈ R

n collects correct labels corresponding to each row of data inX :=
[x1,x2, · · · ,xn]

⊤ ∈ R
n×d. Given a search directionp at a pointw, (34) allows us to write

Φ(η) =
λ
2
‖w‖2 + ληw⊤p +

λη2

2
‖p‖2 +

1
n
1
⊤max[0, (1− (f +η∆f))] , (35)

1161

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

´

)
´(

©

´

S
u
b
g
ra
d
ie
n
t

Figure 10: Left: Piecewise quadratic convex functionΦ of step sizeη; solid disks in the zoomed
inset are subdifferentiable points. Right: The subgradient ofΦ(η) increases monotoni-
cally with η, and jumps discontinuously at subdifferentiable points.

wheref := z ·Xw and∆f := z ·Xp. Differentiating (35) with respect toη gives the subdifferential
of Φ:

∂Φ(η) = λw⊤p+ηλ‖p‖2−
1
n
δ(η)⊤∆f , (36)

whereδ : R → R
n outputs a column vector[δ1(η),δ2(η), · · · ,δn(η)]⊤ with

δi(η) :=

1 if fi +η∆ fi < 1,
[0,1] if fi +η∆ fi = 1,

0 if fi +η∆ fi > 1.
(37)

We cachef and∆f , expendingO(nd) computational effort and usingO(n) storage. We also
cache the scalarsλ2‖w‖2, λw⊤p, andλ

2‖p‖
2, each of which requiresO(d) work. The evaluation of

1− (f +η∆f), δ(η), and the inner products in the final terms of (35) and (36) all takeO(n) effort.
Given the cached terms, all other terms in (35) can be computed in constant time, thus reducing the
cost of evaluatingΦ(η) (resp., its subgradient) toO(n). Furthermore, from (37) we see thatΦ(η) is
differentiable everywhere except at

ηi := (1− fi)/∆ fi with ∆ fi 6= 0, (38)

where it becomes subdifferentiable. At these points an element of the indicator vector (37) changes
from 0 to 1 or vice versa (causing the subgradient to jump, as shown in Figure 10, right); otherwise
δ(η) remains constant. Using this property ofδ(η), we can update the last term of (36) in constant
time when passing a hinge point (Line 25 of Algorithm 3). We are now in a position to introduce an
exact line search which takes advantage of this scheme.

1162

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

!! !

"(!)

0

target segment

step size search direction

!! !

"(!)

0

target segment

step size search direction

Figure 11: Nonsmooth convex functionΦ of step sizeη. Solid disks are subdifferentiable points;
the optimal stepη∗ either falls on such a point (left), or lies between two such points
(right).

4.2.1 EXACT L INE SEARCH

Given a directionp, exact line search finds the optimal step sizeη∗ := argminη≥0 Φ(η) that satisfies
0∈ ∂Φ(η∗), or equivalently

inf ∂Φ(η∗) ≤ 0≤ sup∂Φ(η∗).

By Theorem 1, sup∂Φ(η) is monotonically increasing withη. Based on this property, our algorithm
first builds a list of all possible subdifferentiable points andη = 0, sorted by non-descending value
of η (Lines 4–5 of Algorithm 3). Then, it starts withη = 0, and walks through the sorted list
until it locates the “target segment”, an interval[ηa,ηb] between two subdifferential points with
sup∂Φ(ηa) ≤ 0 and sup∂Φ(ηb) ≥ 0. We now know that the optimal step size either coincides with
ηb (Figure 11, left), or lies in(ηa,ηb) (Figure 11, right). Ifη∗ lies in the smooth interval(ηa,ηb),
then setting (36) to zero gives

η∗ =
δ(η′)⊤∆f/n−λw⊤p

λ‖p‖2 , ∀η′ ∈ (ηa,ηb). (39)

Otherwise,η∗ = ηb. See Algorithm 3 for the detailed implementation.

5. Segmenting the Pointwise Maximum of 1-D Linear Functions

The line search of Algorithm 3 requires a vectorη listing the subdifferentiable points along the line
w+ ηp, and sorts it in non-descending order (Line 5). For an objective function like (30) whose
nonsmooth component is just a sum of hinge losses (31), this vector is veryeasy to compute (cf.
(38)). In order to apply our line search approach to multiclass and multilabellosses, however, we
must solve a more general problem: we need to efficiently find the subdifferentiable points of a

1163

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

Algorithm 3 Exact Line Search forL2-Regularized Binary Hinge Loss
1: input w,p,λ,f , and∆f as in (35)
2: output optimal step size
3: h = λ‖p‖2, j := 1
4: η := [(1−f)./∆f ,0] (vector of subdifferentiable points & zero)
5: π = argsort(η) (indices sorted by non-descending value ofη)
6: while ηπ j ≤ 0 do
7: j := j +1
8: end while
9: η := ηπ j /2

10: for i := 1 tof .size do

11: δi :=

{
1 if fi +η∆ fi < 1
0 otherwise

(value ofδ(η) (37) for anyη ∈ (0,ηπ j))

12: end for
13: ρ := δ⊤∆f/n−λw⊤p

14: η := 0, ρ′ := 0
15: g := −ρ (value of sup∂Φ(0))
16: while g < 0 do
17: ρ′ := ρ
18: if j > π.size then
19: η := ∞ (no more subdifferentiable points)
20: break
21: else
22: η := ηπ j

23: end if
24: repeat

25: ρ :=

{
ρ−∆ fπ j /n if δπ j = 1 (move to next subdifferentiable
ρ+∆ fπ j /n otherwise point and updateρ accordingly)

26: j := j +1
27: until ηπ j 6= ηπ j−1 and j ≤ π.size
28: g := ηh−ρ (value of sup∂Φ(ηπ j−1))
29: end while
30: return min(η, ρ′/h) (cf. equation 39)

one-dimensional piecewise linear functionρ : R → R defined to be the pointwise maximum ofr
lines:

ρ(η) = max
1≤p≤r

(bp +ηap), (40)

whereap andbp denote the slope and offset of thepth line, respectively. Clearly,ρ is convex since
it is the pointwise maximum of linear functions (Boyd and Vandenberghe, 2004, Section 3.2.3), see
Figure 12(a). The difficulty here is that althoughρ consists of at mostr line segments bounded by
at mostr −1 subdifferentiable points, there arer(r −1)/2 candidates for these points, namely all
intersections between any two of ther lines. A naive algorithm to find the subdifferentiable points
of ρ would therefore takeO(r2) time. In what follows, however, we show how this can be done in
just O(r logr) time. In Section 6 we will then use this technique (Algorithm 4) to perform efficient
exact line search in the multiclass and multilabel settings.

1164

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

����� �����

(a) Pointwise maximum of lines

����� �����

�

(b) Case 1

�

����������

(c) Case 2

Figure 12: (a) Convex piecewise linear function defined as the maximum of 5lines, but comprising
only 4 active line segments (bold) separated by 3 subdifferentiable points (black dots).
(b, c) Two cases encountered by our algorithm: (b) The new intersection(black cross)
lies to the right of the previous one (red dot) and is therefore pushed ontothe stack; (c)
The new intersection lies to the left of the previous one. In this case the latter ispopped
from the stack, and a third intersection (blue square) is computed and pushed onto it.

Algorithm 4 Segmenting a Pointwise Maximum of 1-D Linear Functions
1: input vectorsa andb of slopes and offsets

lower boundL, upper boundU , with 0≤ L < U < ∞
2: output sorted stack of subdifferentiable pointsη

and corresponding active line indicesξ
3: y := b+La
4: π := argsort(−y) (indices sorted by non-ascending value ofy)
5: S.push (L,π1) (initialize stack)
6: for q := 2 to y.size do
7: while notS.empty do
8: (η,ξ) := S.top

9: η′ :=
bπq −bξ
aξ −aπq

(intersection of two lines)

10: if L < η′ ≤ η or (η′ = L andaπq > aξ) then
11: S.pop (cf. Figure 12(c))
12: else
13: break
14: end if
15: end while
16: if L < η′ ≤U or (η′ = L andaπq > aξ) then
17: S.push (η′,πq) (cf. Figure 12(b))
18: end if
19: end for
20: return S

We begin by specifying an interval[L,U] (0≤ L <U < ∞) in which to find the subdifferentiable
points ofρ, and sety := b+La, wherea= [a1,a2, · · · ,ar] andb= [b1,b2, · · · ,br]. In other words,
y contains the intersections of ther lines definingρ(η) with the vertical lineη = L. Letπ denote
the permutation that sortsy in non-ascending order, that is,p< q =⇒ yπp ≥ yπq, and letρ(q) be the

1165

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

function obtained by considering only the topq≤ r lines atη = L, that is, the firstq lines inπ:

ρ(q)(η) = max
1≤p≤q

(bπp +ηaπp). (41)

It is clear thatρ(r) = ρ. Let η contain allq′ ≤ q− 1 subdifferentiable points ofρ(q) in [L,U] in
ascending order, andξ the indices of the correspondingactive lines, that is, the maximum in (41)
is attained for lineξ j−1 over the interval[η j−1,η j]: ξ j−1 := πp∗ , wherep∗ = argmax1≤p≤q(bπp +
ηaπp) for η ∈ [η j−1,η j], and linesξ j−1 andξ j intersect atη j .

Initially we setη0 := L andξ0 := π1, the leftmost bold segment in Figure 12(a). Algorithm 4
goes through lines inπ sequentially, and maintains a Last-In-First-Out stackSwhich at the end of
theqth iteration consists of the tuples

(η0,ξ0),(η1,ξ1), . . . ,(ηq′ ,ξq′)

in order of ascendingηi , with (ηq′ ,ξq′) at the top. Afterr iterationsS contains a sorted list of all
subdifferentiable points (and the corresponding active lines) ofρ = ρ(r) in [L,U], as required by our
line searches.

In iterationq+1 Algorithm 4 examines the intersectionη′ between linesξq′ andπq+1: If η′ >U ,
line πq+1 is irrelevant, and we proceed to the next iteration. Ifηq′ < η′ ≤U as in Figure 12(b), then
line πq+1 is becoming active atη′, and we simply push(η′,πq+1) onto the stack. Ifη′ ≤ ηq′ as in
Figure 12(c), on the other hand, then lineπq+1 dominates lineξq′ over the interval(η′,∞) and hence
over(ηq′ ,U] ⊂ (η′,∞), so we pop(ηq′ ,ξq′) from the stack (deactivating lineξq′), decrementq′, and
repeat the comparison.

Theorem 2 The total running time of Algorithm 4 is O(r logr).

Proof Computing intersections of lines as well as pushing and popping from the stack requireO(1)
time. Each of ther lines can be pushed onto and popped from the stack at most once; amortized
over r iterations the running time is thereforeO(r). The time complexity of Algorithm 4 is thus
dominated by the initial sorting ofy (i.e., the computation ofπ), which takesO(r logr) time.

6. SubBFGS for Multiclass and Multilabel Hinge Losses

We now use the algorithm developed in Section 5 to generalize the subBFGS method of Section 4 to
the multiclass and multilabel settings with finite label setZ. We assume that given a feature vector
x our classifier predicts the label

z∗ = argmax
z∈Z

f (w,x,z),

where f is a linear function ofw, that is, f (w,x,z) =w⊤φ(x,z) for some feature mapφ(x,z).

6.1 Multiclass Hinge Loss

A variety of multiclass hinge losses have been proposed in the literature that generalize the binary
hinge loss, and enforce a margin of separation between the true labelzi and every other label. We

1166

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

focus on the following rather general variant (Taskar et al., 2004):8

l(xi ,zi ,w) := max
z∈Z

[∆(z,zi)+ f (w,xi,z)− f (w,xi,zi)], (42)

where∆(z,zi) ≥ 0 is the label lossspecifying the margin required between labelsz and zi . For
instance, a uniform margin of separation is achieved by setting∆(z,z′) := τ > 0 ∀z 6= z′ (Crammer
and Singer, 2003a). By requiring that∀z∈ Z : ∆(z,z) = 0 we ensure that (42) always remains
non-negative. Adapting (30) to the multiclass hinge loss (42) we obtain

J(w) :=
λ
2
‖w‖2 +

1
n

n

∑
i=1

max
z∈Z

[∆(z,zi)+ f (w,xi,z)− f (w,xi,zi)]. (43)

For a givenw, consider the set

Z
∗
i := argmax

z∈Z
[∆(z,zi)+ f (w,xi,z)− f (w,xi,zi)]

of maximum-loss labels (possibly more than one) for theith training instance. Sincef (w,x,z) =
w⊤φ(x,z), the subdifferential of (43) can then be written as

∂J(w) = λw+
1
n

n

∑
i=1

∑
z∈Z

βi,zφ(xi ,z) (44)

with βi,z =

{
[0,1] if z∈ Z

∗
i

0 otherwise

}

− δz,zi s.t. ∑
z∈Z

βi,z = 0, (45)

whereδ is the Kronecker delta:δa,b = 1 if a = b, and 0 otherwise.9

6.2 Efficient Multiclass Direction-Finding Oracle

For L2-regularized risk minimization with multiclass hinge loss, we can use a similar scheme as
described in Section 4.1 to implement an efficient oracle that provides argsupg∈∂J(w)g

⊤p for the
direction-finding procedure (Algorithm 2). Using (44), we can write

sup
g∈∂J(w)

g⊤p = λw⊤p +
1
n

n

∑
i=1

∑
z∈Z

sup
βi,z

(

βi,zφ(xi ,z)
⊤p
)

. (46)

The supremum in (46) is attained when we pick, from the choices offered by (45),

βi,z := δz,z∗i −δz,zi , where z∗i := argmax
z∈Z∗

i

φ(xi ,z)
⊤p.

8. Our algorithm can also deal with the slack-rescaled variant of Tsochantaridis et al. (2005).
9. Let l∗i := maxz6=zi

[∆(z,zi)+ f (w,xi ,z)− f (w,xi ,zi)]. Definition (45) allows the following values ofβi,z:

z= zi z∈ Z
∗
i \{zi} otherwise

l∗i < 0 0 0 0
l∗i = 0 [−1,0] [0,1] 0
l∗i > 0 −1 [0,1] 0

s.t. ∑
z∈Z

βi,z = 0.

1167

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

6.3 Implementing the Multiclass Line Search

Let Φ(η) := J(w+ ηp) be the one-dimensional convex function obtained by restricting (43) to a
line along directionp. Lettingρi(η) := l(xi ,zi ,w+ηp), we can write

Φ(η) =
λ
2
‖w‖2 + ληw⊤p +

λη2

2
‖p‖2 +

1
n

n

∑
i=1

ρi(η). (47)

Eachρi(η) is a piecewise linear convex function. To see this, observe that

f (w+ηp,x,z) := (w+ηp)⊤φ(x,z) = f (w,x,z)+η f (p,x,z)

and hence

ρi(η) := max
z∈Z

[∆(z,zi)+ f (w,xi,z)− f (w,xi,zi)
︸ ︷︷ ︸

=:b(i)
z

+ η(f (p,xi ,z)− f (p,xi,zi))
︸ ︷︷ ︸

=:a(i)
z

], (48)

which has the functional form of (40) withr = |Z|. Algorithm 4 can therefore be used to compute
a sorted vectorη(i) of all subdifferentiable points ofρi(η) and corresponding active linesξ(i) in the
interval[0,∞) in O(|Z| log|Z|) time. With some abuse of notation, we now have

η ∈ [η(i)
j ,η(i)

j+1] =⇒ ρi(η) = bξ(i)
j

+ ηaξ(i)
j
. (49)

The first three terms of (47) are constant, linear, and quadratic (with non-negative coefficient)
in η, respectively. The remaining sum of piecewise linear convex functionsρi(η) is also piecewise
linear and convex, and soΦ(η) is a piecewise quadratic convex function.

6.3.1 EXACT MULTICLASS L INE SEARCH

Our exact line search employs a similar two-stage strategy as discussed in Section 4.2.1 for locat-
ing its minimumη∗ := argminη>0 Φ(η): we first find the firstsubdifferentiablepoint η̌ past the
minimum, then locateη∗ within the differentiable region to its left. We precompute and cache a
vectora(i) of all the slopesa(i)

z (offsetsb(i)
z are not needed), the subdifferentiable pointsη(i) (sorted

in ascending order via Algorithm 4), and the corresponding indicesξ(i) of active lines ofρi for all
training instancesi, as well as‖w‖2,w⊤p, andλ‖p‖2.

SinceΦ(η) is convex, any pointη < η∗ cannot have a non-negative subgradient.10 The first
subdifferentiable poinťη ≥ η∗ therefore obeys

η̌ := minη ∈ {η(i), i = 1,2, . . . ,n} : η ≥ η∗

= minη ∈ {η(i), i = 1,2, . . . ,n} : sup∂Φ(η) ≥ 0. (50)

We solve (50) via a simple linear search: Starting fromη = 0, we walk from one subdifferentiable
point to the next until sup∂Φ(η) ≥ 0. To perform this walk efficiently, define a vectorψ ∈ N

n of

indices into the sorted vectorη(i) resp.ξ(i); initially ψ := 0, indicating that(∀i) η(i)
0 = 0. Given the

current index vectorψ, the next subdifferentiable point is then

η′ := η(i′)
(ψi′+1), where i′ = argmin

1≤i≤n
η(i)

(ψi+1); (51)

10. If Φ(η) has a flat optimal region, we defineη∗ to be the infimum of that region.

1168

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

Algorithm 5 Exact Line Search forL2-Regularized Multiclass Hinge Loss
1: input base pointw, descent directionp, regularization parameterλ, vectora of

all slopes as defined in (48), for each training instancei: sorted stackSi of
subdifferentiable points and active lines, as produced by Algorithm 4

2: output optimal step size
3: a := a/n, h := λ‖p‖2

4: ρ := λw⊤p

5: for i := 1 ton do
6: while notSi .empty do
7: Ri .push Si .pop (reverse the stacks)
8: end while
9: (·,ξi) := Ri .pop

10: ρ := ρ+aξi

11: end for
12: η := 0, ρ′ = 0
13: g := ρ (value of sup∂Φ(0))
14: while g < 0 do
15: ρ′ := ρ
16: if ∀i : Ri .empty then
17: η := ∞ (no more subdifferentiable points)
18: break
19: end if
20: I := argmin1≤i≤n η′ : (η′, ·) = Ri .top (find the next subdifferentiable point)
21: ρ := ρ−∑i∈I aξi

22: Ξ := {ξi : (η,ξi) := Ri .pop, i ∈ I}
23: ρ := ρ+∑ξi∈Ξ aξi

24: g := ρ+ηh (value of sup∂Φ(η))
25: end while
26: return min(η, −ρ′/h)

the step is completed by incrementingψi′ , that is,ψi′ := ψi′ + 1 so as to removeη(i′)
ψi′

from future
consideration.11 Note that computing the argmin in (51) takesO(logn) time (e.g., using a priority
queue). Inserting (49) into (47) and differentiating, we find that

sup∂Φ(η′) = λw⊤p+λη′‖p‖2 +
1
n

n

∑
i=1

aξ(i)
ψi

. (52)

The key observation here is that after the initial calculation of sup∂Φ(0) = λw⊤p+ 1
n ∑n

i=1aξ(i)
0

for η = 0, the sum in (52) can be updated incrementally in constant time through the addition of
a

ξ(i′)
ψi′

−a
ξ(i′)
(ψi′ −1)

(Lines 20–23 of Algorithm 5).

Suppose we finďη = η(i′)
ψi′

for somei′. We then know that the minimumη∗ is either equal tǒη
(Figure 11, left), or found within the quadratic segment immediately to its left (Figure 11, right).

11. For ease of exposition, we assumei′ in (51) is unique, and deal with multiple choices ofi′ in Algorithm 5.

1169

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

We thus decrementψi′ (i.e., take one step back) so as to index the segment in question, set the
right-hand side of (52) to zero, and solve forη′ to obtain

η∗ = min

η̌,
λw⊤p+ 1

n ∑n
i=1aξ(i)

ψi

−λ‖p‖2

 . (53)

This only takes constant time: we have cachedw⊤p andλ‖p‖2, and the sum in (53) can be obtained
incrementally by addinga

ξ(i′)
ψi′

−a
ξ(i′)
(ψi′+1)

to its last value in (52).

To locateη̌ we have to walk at mostO(n|Z|) steps, each requiringO(logn) computation of
argmin as in (51). Giveňη, the exact minimumη∗ can be obtained inO(1). Including the prepro-
cessing cost ofO(n|Z| log|Z|) (for invoking Algorithm 4), our exact multiclass line search therefore
takesO(n|Z|(logn|Z|)) time in the worst case. Algorithm 5 provides an implementation which in-
stead of an index vectorψ directly uses the sorted stacks of subdifferentiable points and active lines
produced by Algorithm 4. (The cost of reversing those stacks in Lines 6–8 of Algorithm 5 can easily
be avoided through the use of double-ended queues.)

6.4 Multilabel Hinge Loss

Recently, there has been interest in extending the concept of the hinge loss to multilabel problems.
Multilabel problems generalize the multiclass setting in that each training instancexi is associated
with a set of labelsZ i ⊆ Z (Crammer and Singer, 2003b). For a uniform margin of separationτ, a
hinge loss can be defined in this setting as follows:

l(xi ,Z i ,w) := max[0, τ+max
z′ /∈Z i

f (w,xi ,z
′)−min

z∈Z i

f (w,xi ,z)]. (54)

We can generalize this to a not necessarily uniform label loss∆(z′,z) ≥ 0 as follows:

l(xi ,Z i ,w) := max
(z,z′):z∈Z i
z′ /∈Z i\{z}

[∆(z′,z)+ f (w,xi,z
′)− f (w,xi,z)], (55)

where as before we require that∆(z,z) = 0∀z∈Z so that by explicitly allowingz′ = zwe can ensure
that (55) remains non-negative. For a uniform margin∆(z′,z) = τ ∀z′ 6= z our multilabel hinge loss
(55) reduces to the decoupled version (54), which in turn reduces to themulticlass hinge loss (42)
if Z i := {zi} for all i.

For a givenw, let

Z
∗
i := argmax

(z,z′):z∈Z i
z′ /∈Z i\{z}

[∆(z′,z)+ f (w,xi,z
′)− f (w,xi,z)]

be the set of worst label pairs (possibly more than one) for theith training instance. The subdiffer-
ential of the multilabel analogue ofL2-regularized multiclass objective (43) can then be written just
as in (44), with coefficients

βi,z := ∑
z′:(z′,z)∈Z∗

i

γ(i)
z′,z − ∑

z′:(z,z′)∈Z∗
i

γ(i)
z,z′ , where (∀i) ∑

(z,z′)∈Z∗
i

γ(i)
z,z′ = 1 and γ(i)

z,z′ ≥ 0. (56)

1170

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

Now let (zi ,z′i) := argmax(z,z′)∈Z∗
i
[φ(xi ,z′)−φ(xi ,z)]⊤p be a single steepest worst label pair in

directionp. We obtain argsupg∈∂J(w)g
⊤p for our direction-finding procedure by picking, from the

choices offered by (56),γ(i)

z,z′ := δz,zi δz′,z′i
.

Finally, the line search we described in Section 6.3 for the multiclass hinge loss can be ex-
tended in a straightforward manner to our multilabel setting. The only caveat isthat nowρi(η) :=
l(xi ,Z i ,w+ηp) must be written as

ρi(η) := max
(z,z′):z∈Z i
z′ /∈Z i\{z}

[∆(z′,z)+ f (w,xi,z
′)− f (w,xi ,z)

︸ ︷︷ ︸

=:b(i)
z,z′

+η(f (p,xi,z
′)− f (p,xi ,z))

︸ ︷︷ ︸

=:a(i)
z,z′

] . (57)

In the worst case, (57) could be the piecewise maximum ofO(|Z|2) lines, thus increasing the overall
complexity of the line search. In practice, however, the set of true labelsZ i is usually small, typically
of size 2 or 3 (cf. Crammer and Singer, 2003b, Figure 3). As long as∀i : |Z i |= O(1), our complexity
estimates of Section 6.3.1 still apply.

7. Related Work

We discuss related work in two areas: nonsmooth convex optimization, and theproblem of seg-
menting the pointwise maximum of a set of one-dimensional linear functions.

7.1 Nonsmooth Convex Optimization

There are four main approaches to nonsmooth convex optimization: quasi-Newton methods, bundle
methods, stochastic dual methods, and smooth approximation. We discuss each of these briefly, and
compare and contrast our work with the state of the art.

7.1.1 NONSMOOTHQUASI-NEWTON METHODS

These methods try to find a descent quasi-Newton direction at every iteration, and invoke a line
search to minimize the one-dimensional convex function along that direction. We note that the line
search routines we describe in Sections 4–6 are applicable to all such methods. An example of this
class of algorithms is the work of Lukšan and Vľcek (1999), who propose an extension of BFGS
to nonsmooth convex problems. Their algorithm samples subgradients around non-differentiable
points in order to obtain a descent direction. In many machine learning problems evaluating the
objective function and its (sub)gradient is very expensive, making such an approach inefficient. In
contrast, given a current iteratewt , our direction-finding routine (Algorithm 2) samples subgra-
dients from the set∂J(wt) via the oracle. Since this avoids the cost of explicitly evaluating new
(sub)gradients, it is computationally more efficient.

Recently, Andrew and Gao (2007) introduced a variant of LBFGS, the Orthant-Wise Limited-
memory Quasi-Newton (OWL-QN) algorithm, suitable for optimizingL1-regularized log-linear
models:

J(w) := λ‖w‖1 +
1
n

n

∑
i=1

ln(1+e−ziw
⊤xi)

︸ ︷︷ ︸

logistic loss

, (58)

1171

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

where the logistic loss is smooth, but the regularizer is only subdifferentiableat points wherew
has zero elements. From the optimization viewpoint this objective is very similar toL2-regularized
hinge loss; the direction finding and line search methods that we discussed inSections 3.2 and 3.3,
respectively, can be applied to this problem with slight modifications.

OWL-QN is based on the observation that theL1 regularizer is linear within any given orthant.
Therefore, it maintains an approximationBow to the inverse Hessian of the logistic loss, and uses
an efficient scheme to select orthants for optimization. In fact, its success greatly depends on its
direction-finding subroutine, which demands a specially chosen subgradientgow (Andrew and Gao,
2007, Equation 4) to produce the quasi-Newton direction,pow = π(p,gow), wherep := −Bowgow

and the projectionπ returns a search direction by setting theith element ofp to zero whenever
pigow

i > 0. As shown in Section 8.4, the direction-finding subroutine of OWL-QN canbe replaced
by our Algorithm 2, which makes OWL-QN more robust to the choice of subgradients.

7.1.2 BUNDLE METHODS

Bundle method solvers (Hiriart-Urruty and Lemaréchal, 1993) use past (sub)gradients to build a
model of the objective function. The (sub)gradients are used to lower-bound the objective by a
piecewise linear function which is minimized to obtain the next iterate. This fundamentally dif-
fers from the BFGS approach of using past gradients to approximate the (inverse) Hessian, hence
building a quadratic model of the objective function.

Bundle methods have recently been adapted to the machine learning context, where they are
known as SVMStruct (Tsochantaridis et al., 2005)resp.BMRM (Smola et al., 2007). One notable
feature of these variants is that they do not employ a line search. This is justified by noting that
a line search involves computing the value of the objective function multiple times, a potentially
expensive operation in machine learning applications.

Franc and Sonnenburg (2008) speed up the convergence of SVMStruct forL2-regularized binary
hinge loss. The main idea of their optimized cutting plane algorithm, OCAS, is to perform a line
search along the line connecting two successive iterates of a bundle method solver. Recently they
have extended OCAS to multiclass classification (Franc and Sonnenburg, 2009). Although devel-
oped independently, their line search methods for both settings are very similar to the methods we
describe in Sections 4.2.1 and 6.3.1, respectively. In particular, their line search for multiclass clas-
sification also involves segmenting the pointwise maximum ofr 1-D linear functions (cf. Section 5),
though theO(r2) time complexity of their method is worse than ourO(r logr).

7.1.3 STOCHASTIC DUAL METHODS

Distinct from the above two classes of primal algorithms are methods which work in the dual do-
main. A prominent member of this class is the LaRank algorithm of Bordes et al. (2007), which
achieves state-of-the-art results on multiclass classification problems. Whiledual algorithms are
very competitive on clean data sets, they tend to be slow when given noisy data.

7.1.4 SMOOTH APPROXIMATION

Another possible way to bypass the complications caused by the nonsmoothness of an objective
function is to work on a smooth approximation instead—see for instance the recent work of Nes-
terov (2005) and Nemirovski (2005). Some machine learning applications have also been pursued
along these lines (Lee and Mangasarian, 2001; Zhang and Oles, 2001). Although this approach can

1172

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

be effective, it is unclear how to build a smooth approximation in general. Furthermore, smooth
approximations often sacrifice dual sparsity, which often leads to better generalization performance
on the test data, and also may be needed to prove generalization bounds.

7.2 Segmenting the Pointwise Maximum of 1-D Linear Functions

The problem of computing the line segments that comprise the pointwise maximum of agiven set of
line segments has received attention in the area of computational geometry; see Agarwal and Sharir
(2000) for a survey. Hershberger (1989) for instance proposeda divide-and-conquer algorithm for
this problem with the same time complexity as our Algorithm 4. The Hershberger (1989) algo-
rithm solves a slightly harder problem—his function is the pointwise maximum of line segments,
as opposed to our lines—but our algorithm is conceptually simpler and easierto implement.

A similar problem has also been studied under the banner of kinetic data structures by Basch
(1999), who proposed a heap-based algorithm for this problem and proved a worst-caseO(r log2 r)
bound, wherer is the number of line segments. Basch (1999) also claims that the lower bound is
O(r logr); our Algorithm 4 achieves this bound.

8. Experiments

We evaluated the performance of our subLBFGS algorithm with, and compared it to other state-of-
the-art nonsmooth optimization methods onL2-regularized binary, multiclass, and multilabel hinge
loss minimization problems. We also compared OWL-QN with a variant that uses our direction-
finding routine onL1-regularized logistic loss minimization tasks. On strictly convex problems
such as these every convergent optimizer will reach the same solution; comparing generalisation
performance is therefore pointless. Hence we concentrate on empirically evaluating the convergence
behavior (objective function valuevs. CPU seconds). All experiments were carried out on a Linux
machine with dual 2.4 GHz Intel Core 2 processors and 4 GB of RAM.

In all experiments the regularization parameter was chosen from the set 10{−6,−5,··· ,−1} so as to
achieve the highest prediction accuracy on the test data set, while convergence behavior (objective
function valuevs. CPU seconds) is reported on the training data set. To see the influence of the
regularization parameterλ, we also compared the time required by each algorithm to reduce the
objective function value to within 2% of the optimal value.12 For all algorithms the initial iterate
w0 was set to0. Open source C++ code implementing our algorithms and experiments is available
for download fromhttp://www.cs.adelaide.edu.au/ ˜ jinyu/Code/nonsmoothOpt.tar.gz .

The subgradient for the construction of the subLBFGS search direction(cf. Line 12 of Algo-
rithm 1) was chosen arbitrarily from the subdifferential. For the binary hinge loss minimization
(Section 8.3), for instance, we picked an arbitrary subgradient by randomly setting the coefficient
βi ∀i ∈M in (32) to either 0 or 1.

8.1 Convergence Tolerance of the Direction-Finding Procedure

The convergence toleranceε of Algorithm 2 controls the precision of the solution to the direction-
finding problem (11): lower tolerance may yield a better search direction. Figure 13 (left) shows

12. ForL1-regularized logistic loss minimization, the “optimal” value was the final objective function value achieved by
the OWL-QN∗ algorithm (cf. Section 8.4). In all other experiments, it was found by running subLBFGS for 104

seconds, or until its relative improvement over 5 iterations was less than 10−8.

1173

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

10

0

10

1

10

2

Iterations

1.2

2

3

4

O
b
j
e
c
t
i
v
e

V
a
l
u
e

CCAT (

=10

!6
)"=100"=10#10"=10#5

x10

$1

10

0

10

1

10

2

Iterations

0.3

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

INEX (

=10

!6
)"=10

0"=10

#10"=10

#5

10

0

10

1

10

2

10

3

10

4

Iterations

0.4

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

TMC2007 (

=10

!5
)"=100"=10#10"=10#5

10

0

10

1

10

2

10

3

CPU Seconds

1.2

2

3

4

O
b
j
e
c
t
i
v
e

V
a
l
u
e

CCAT (

=10

!6
)"=100"=10#10"=10#5

x10

$1

10

1

10

2

10

3

CPU Seconds

0.3

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

INEX (

=10

!6
)"=10

0"=10

#10"=10

#5

10

1

10

2

10

3

10

4

CPU Seconds

0.4

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

TMC2007 (

=10

!5
)"=100"=10#10"=10#5

Figure 13: Performance of subLBFGS with varying direction-finding toleranceε in terms of ob-
jective function valuevs. number of iterations (top row)resp.CPU seconds (bottom
row) on sampleL2-regularized risk minimization problems with binary (left), multiclass
(center), and multilabel (right) hinge losses.

that on binary classification problems, subLBFGS is not sensitive to the choice ofε (i.e., the quality
of the search direction). This is due to the fact that∂J(w) as defined in (32) is usually dominated by
its constant component ¯w; search directions that correspond to different choices ofε therefore can
not differ too much from each other. In the case of multiclass and multilabel classification, where
the structure of∂J(w) is more complicated, we can see from Figure 13 (top center and right) that
a better search direction can lead to faster convergence in terms of iterationnumbers. However,
this is achieved at the cost of more CPU time spent in the direction-finding routine. As shown in
Figure 13 (bottom center and right), extensively optimizing the search direction actually slows down
convergence in terms of CPU seconds. We therefore used an intermediatevalue ofε = 10−5 for all
our experiments, except that for multiclass and multilabel classification problems we relaxed the
tolerance to 1.0 at the initial iteratew = 0, where the direction-finding oracle argsupg∈∂J(0)g

⊤p is
expensive to compute, due to the large number of extreme points in∂J(0).

8.2 Size of SubLBFGS Buffer

The sizemof the subLBFGS buffer determines the number of parameter and gradientdisplacement
vectorsst andyt used in the construction of the quasi-Newton direction. Figure 14 shows that the
performance of subLBFGS is not sensitive to the particular value ofmwithin the range 5≤ m≤ 25.

1174

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

10

0

10

1

10

2

10

3

CPU Seconds

1.2

2

3

4

O
b
j
e
c
t
i
v
e

V
a
l
u
e

CCAT (

=10

!6
)

m=15

m=25

m=5

x10

"1

10

1

10

2

10

3

CPU Seconds

0.3

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

INEX (

=10

!6
)

m=15

m=25

m=5

10

1

10

2

10

3

10

4

CPU Seconds

0.4

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

TMC2007 (

=10

!5
)

m=15

m=25

m=5

Figure 14: Performance of subLBFGS with varying buffer size on sampleL2-regularized risk min-
imization problems with binary (left), multiclass (center), and multilabel hinge losses
(right).

Data Set Train/Test Set Size Dimensionality Sparsity

Covertype 522911/58101 54 77.8%
CCAT 781265/23149 47236 99.8%
Astro-physics 29882/32487 99757 99.9%
MNIST-binary 60000/10000 780 80.8%
Adult9 32561/16281 123 88.7%
Real-sim 57763/14438 20958 99.8%
Leukemia 38/34 7129 00.0%

Table 1: The binary data sets used in our experiments of Sections 2, 8.3, and 8.4.

We therefore simply setm= 15 a priori for all subsequent experiments; this is a typical value for
LBFGS (Nocedal and Wright, 1999).

8.3 L2-Regularized Binary Hinge Loss

For our first set of experiments, we applied subLBFGS with exact line search (Algorithm 3) to the
task ofL2-regularized binary hinge loss minimization. Our control methods are the bundlemethod
solver BMRM (Teo et al., 2010) and the optimized cutting plane algorithm OCAS (Franc and Son-
nenburg, 2008),13 both of which were shown to perform competitively on this task. SVMStruct
(Tsochantaridis et al., 2005) is another well-known bundle method solver that is widely used in
the machine learning community. ForL2-regularized optimization problems BMRM is identical to
SVMStruct, hence we omit comparisons with SVMStruct.

Table 1 lists the six data sets we used: The Covertype data set of Blackard,Jock & Dean,14

CCAT from the Reuters RCV1 collection,15 the Astro-physics data set of abstracts of scientific
papers from the Physics ArXiv (Joachims, 2006), the MNIST data set of handwritten digits16 with

13. The source code of OCAS (version 0.6.0) was obtained fromhttp://www.shogun-toolbox.org .
14. Data set can be found athttp://kdd.ics.uci.edu/databases/covertype/covertyp e.html .
15. Data set can be found athttp://www.daviddlewis.com/resources/testcollection s/rcv1 .
16. Data set can be found athttp://yann.lecun.com/exdb/mnist .

1175

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

L1-reg. logistic loss L2-reg. binary loss
Data Set λL1 kL1 kL1r λL2 kL2

Covertype 10−5 1 2 10−6 0
CCAT 10−6 284 406 10−6 0
Astro-physics 10−5 1702 1902 10−4 0
MNIST-binary 10−4 55 77 10−6 0
Adult9 10−4 2 6 10−5 1
Real-sim 10−6 1017 1274 10−5 1

Table 2: Regularization parameterλ and overall numberk of direction-finding iterations in our
experiments of Sections 8.3 and 8.4, respectively.

10

-1

10

0

10

1

CPU Seconds

5.3

6.2

7.2

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Covertype (

=10

!6
)

BMRM

OCAS

subLBFGS

x10

"1

10

0

10

1

10

2

CPU Seconds

1.2

2

3

4

O
b
j
e
c
t
i
v
e

V
a
l
u
e

CCAT (

=10

!6
)

BMRM

OCAS

subLBFGS

x10

"1

10

-1

10

0

CPU Seconds

1.2

2

3

4

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Astro

physics (

!
=10

"4
)

BMRM

OCAS

subLBFGS

x10

#1

10

-1

10

0

10

1

10

2

10

3

CPU Seconds

2.5

3.3

4.5

6.0

7.5

O
b
j
e
c
t
i
v
e

V
a
l
u
e

MNIST

Binary (

!
=10

"6
)

BMRM

OCAS

subLBFGS

x10

#1

10

-2

10

-1

10

0

10

1

CPU Seconds

3.5

4

5

6

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Adult9 (

=10

!5
)

BMRM

OCAS

subLBFGS

x10

"1

10

-1

10

0

CPU Seconds

0.6

1

2

4

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Real

sim (

!
=10

"5
)

BMRM

OCAS

subLBFGS

x10

#1

Figure 15: Objective function valuevs.CPU seconds onL2-regularized binary hinge loss minimiza-
tion tasks.

two classes: even and odd digits, the Adult9 data set of census income data,17 and the Real-sim data
set of realvs.simulated data.17 Table 2 lists our parameter settings, and reports the overall number
kL2 of iterations through the direction-finding loop (Lines 6–13 of Algorithm 2) for each data set.
The very small values ofkL2 indicate that on these problems subLBFGS only rarely needs to correct
its initial guess of a descent direction.

It can be seen from Figure 15 that subLBFGS (solid) reduces the valueof the objective con-
siderably faster than BMRM (dashed). On the binary MNIST data set, forinstance, the objective

17. Data set can be found athttp://www.csie.ntu.edu.tw/ ˜ cjlin/libsvmtools/datasets/binary.html .

1176

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

-1

10

0

10

1

C
P
U

S
e
c
o
n
d
s

Covertype

BMRM

OCAS

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

10

2

C
P
U

S
e
c
o
n
d
s

CCAT

BMRM

OCAS

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

-2

10

-1

10

0

10

1

10

2

10

3

C
P
U

S
e
c
o
n
d
s

Astro-physics

BMRM

OCAS

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

-1

10

0

10

1

10

2

10

3

C
P
U

S
e
c
o
n
d
s

MNIST-Binary

BMRM

OCAS

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

-2

10

-1

10

0

10

1

C
P
U

S
e
c
o
n
d
s

Adult9

BMRM

OCAS

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

-2

10

-1

10

0

10

1

C
P
U

S
e
c
o
n
d
s

Real-sim

BMRM

OCAS

subLBFGS

Figure 16: Regularization parameterλ ∈ {10−6, · · · ,10−1} vs. CPU seconds taken to reduce the
objective function to within 2% of the optimal value onL2-regularized binary hinge loss
minimization tasks.

function value of subLBFGS after 10 CPU seconds is 25% lower than that of BMRM. In this set of
experiments the performance of subLBFGS and OCAS (dotted) is very similar.

Figure 16 shows that all algorithms generally converge faster for largervalues of the regular-
ization constantλ. However, in most cases subLBFGS converges faster than BMRM across a wide
range ofλ values, exhibiting a speedup of up to more than two orders of magnitude. SubLBFGS
and OCAS show similar performance here: for small values ofλ, OCAS converges slightly faster
than subLBFGS on the Astro-physics and Real-sim data sets but is outperformed by subLBFGS on
the Covertype, CCAT, and binary MNIST data sets.

8.4 L1-Regularized Logistic Loss

To demonstrate the utility of our direction-finding routine (Algorithm 2) in its own right, we plugged
it into the OWL-QN algorithm (Andrew and Gao, 2007)18 as an alternative direction-finding method
such thatpow = descentDirection(gow,ε,kmax), and compared this variant (denoted OWL-QN*)
with the original (cf. Section 7.1) onL1-regularized minimization of the logistic loss (58), on the
same data sets as in Section 8.3.

An oracle that supplies argsupg∈∂J(w)g
⊤p for this objective is easily constructed by noting

that (58) is nonsmooth whenever at least one component of the parametervectorw is zero. Let
wi = 0 be such a component; the corresponding component of the subdifferential ∂λ‖w‖1 of theL1

18. The source code of OWL-QN (original release) was obtained fromMicrosoft Research throughhttp://tinyurl.
com/p774cx .

1177

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

10

1

10

2

10

3

CPU Seconds

4.5

5.0

6.0

7.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Covertype (

=10

!5
)

OWL-QN

OWL-QN*

OWL-QNr

OWL-QN*r

x10

"1

10

2

10

3

10

4

CPU Seconds

0.1

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

CCAT (

=10

!6
)

OWL-QN

OWL-QN*

OWL-QN*r

10

1

10

2

10

3

CPU Seconds

0.1

0.7

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Astro

physics (

!
=10

"5
)

OWL-QN

OWL-QN*

OWL-QN*r

10

1

10

2

10

3

CPU Seconds

2.8

4.0

6.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

MNIST

Binary (

!
=10

"4
)

OWL-QN

OWL-QN*

OWL-QN*r

x10

#1

10

0

10

1

CPU Seconds

3.2

4.0

5.0

6.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Adult9 (

=10

!4
)

OWL-QN

OWL-QN*

OWL-QN*r

x10

"1

10

0

10

1

10

2

10

3

CPU Seconds

0.4

2.0

6.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Real

sim (

!
=10

"6
)

OWL-QN

OWL-QN*

OWL-QN*r

x10

#1

Figure 17: Objective function valuevs.CPU seconds onL1-regularized logistic loss minimization
tasks.

regularizer is the interval[−λ,λ]. The supremum ofg⊤p is attained at the interval boundary whose
sign matches that of the corresponding component of the direction vectorp, that is, atλsign(pi).

Using the stopping criterion suggested by Andrew and Gao (2007), we ran experiments until
the averaged relative change in objective function value over the previous 5 iterations fell below
10−5. As shown in Figure 17, the only clear difference in convergence between the two algorithms
is found on the Astro-physics data set where OWL-QN∗ is outperformed by the original OWL-QN
method. This is because finding a descent direction via Algorithm 2 is particularly difficult on the
Astro-physics data set (as indicated by the large inner loop iteration numberkL1 in Table 2); the
slowdown on this data set can also be found in Figure 18 for other values of λ. Although finding a
descent direction can be challenging for the generic direction-finding routine of OWL-QN∗, in the
following experiment we show that this routine is very robust to the choice ofinitial subgradients.

To examine the algorithms’ sensitivity to the choice of subgradients, we also ran them with
subgradients randomly chosen from the set∂J(w) (as opposed to the specially chosen subgradient
gow used in the previous set of experiments) fed to their corresponding direction-finding routines.
OWL-QN relies heavily on its particular choice of subgradients, hence breaks down completely
under these conditions: the only data set where we could even plot its (poor) performance was
Covertype (dotted “OWL-QNr” line in Figure 17). Our direction-finding routine, by contrast, is self-
correcting and thus not affected by this manipulation: the curves for OWL-QN*r lie on top of those
for OWL-QN*. Table 2 shows that in this case more direction-finding iterations are needed though:
kL1r > kL1. This empirically confirms that as long as argsupg∈∂J(w)g

⊤p is given, Algorithm 2 can

1178

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

1

10

2

C
P
U

S
e
c
o
n
d
s

Covertype

OWL-QN

OWL-QN*

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

2

10

3

C
P
U

S
e
c
o
n
d
s

CCAT

OWL-QN

OWL-QN*

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

10

2

10

3

C
P
U

S
e
c
o
n
d
s

Astro-physics

OWL-QN

OWL-QN*

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

1

10

2

10

3

C
P
U

S
e
c
o
n
d
s

MNIST-Binary

OWL-QN

OWL-QN*

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

C
P
U

S
e
c
o
n
d
s

Adult9

OWL-QN

OWL-QN*

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

10

2

10

3

C
P
U

S
e
c
o
n
d
s

Real-sim

OWL-QN

OWL-QN*

Figure 18: Regularization parameterλ ∈ {10−6, · · · ,10−1} vs. CPU seconds taken to reduce the
objective function to within 2% of the optimal value onL1-regularized logistic loss min-
imization tasks. (No point is plotted if the initial parameterw0 = 0 is already optimal.)

indeed be used as a generic quasi-Newton direction-finding routine that isable to recover from a
poor initial choice of subgradients.

8.5 L2-Regularized Multiclass and Multilabel Hinge Loss

We incorporated our exact line search of Section 6.3.1 into both subLBFGSand OCAS (Franc and
Sonnenburg, 2008), thus enabling them to deal with multiclass and multilabel losses. We refer
to our generalized version of OCAS as line search BMRM (ls-BMRM). Using the variant of the
multiclass and multilabel hinge loss which enforces a uniform margin of separation (∆(z,z′) =
1 ∀z 6= z′), we experimentally evaluated both algorithms on a number of publicly available data sets
(Table 3). All multiclass data sets except INEX were downloaded fromhttp://www.csie.ntu.
edu.tw/ ˜ cjlin/libsvmtools/datasets/multiclass.html , while the multilabel data sets were
obtained fromhttp://www.csie.ntu.edu.tw/ ˜ cjlin/libsvmtools/datasets/multilabel.
html . INEX (Maes et al., 2007) is available fromhttp://webia.lip6.fr/ ˜ bordes/mywiki/
doku.php?id=multiclass_data . The original RCV1 data set consists of 23149 training instances,
of which we used 21149 instances for training and the remaining 2000 for testing.

8.5.1 PERFORMANCE ONMULTICLASS PROBLEMS

This set of experiments is designed to demonstrate the convergence properties of multiclass sub-
LBFGS, compared to the BMRM bundle method (Teo et al., 2010) and ls-BMRM. Figure 19 shows

1179

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

Data Set Train/Test Set Size Dimensionality |Z| Sparsity λ k

Letter 16000/4000 16 26 0.0% 10−6 65
USPS 7291/2007 256 10 3.3% 10−3 14
Protein 14895/6621 357 3 70.7% 10−2 1
MNIST 60000/10000 780 10 80.8% 10−3 1
INEX 6053/6054 167295 18 99.5% 10−6 5
News20 15935/3993 62061 20 99.9% 10−2 12

Scene 1211/1196 294 6 0.0% 10−1 14
TMC2007 21519/7077 30438 22 99.7% 10−5 19
RCV1 21149/2000 47236 103 99.8% 10−5 4

Table 3: The multiclass (top 6 rows) and multilabel (bottom 3 rows) data sets used, values of the
regularization parameter, and overall numberk of direction-finding iterations in our exper-
iments of Section 8.5.

10

0

10

1

10

2

CPU Seconds

0.6

0.8

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Letter (

=10

!6
)

BMRM

ls-BMRM

subLBFGS

10

0

10

1

10

2

CPU Seconds

0.1

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

USPS (

=10

!3
)

BMRM

ls-BMRM

subLBFGS

10

0

10

1

CPU Seconds

0.8

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Protein (

=10

!2
)

BMRM

ls-BMRM

subLBFGS

10

1

10

2

CPU Seconds

0.2

0.3

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

MNIST (

=10

!3
)

BMRM

ls-BMRM

subLBFGS

10

1

10

2

10

3

CPU Seconds

0.3

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

INEX (

=10

!6
)

BMRM

ls-BMRM

subLBFGS

10

0

10

1

10

2

CPU Seconds

0.4

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

News20 (

=10

!2
)

BMRM

ls-BMRM

subLBFGS

Figure 19: Objective function valuevs.CPU seconds onL2-regularized multiclass hinge loss mini-
mization tasks.

that subLBFGS outperforms BMRM on all data sets. On 4 out of 6 data sets,subLBFGS outper-
forms ls-BMRM as well early on but slows down later, for an overall performance comparable to
ls-BMRM. On the MNIST data set, for instance, subLBFGS takes only about half as much CPU
time as ls-BMRM to reduce the objective function value to 0.3 (about 50% above the optimal value),

1180

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

10

2

10

3

10

4

C
P
U

S
e
c
o
n
d
s

Letter

BMRM

ls-BMRM

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

10

2

10

3

10

4

C
P
U

S
e
c
o
n
d
s

USPS

BMRM

ls-BMRM

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

10

2

10

3

C
P
U

S
e
c
o
n
d
s

Protein

BMRM

ls-BMRM

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

1

10

2

10

3

10

4

C
P
U

S
e
c
o
n
d
s

MNIST

BMRM

ls-BMRM

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

10

2

10

3

C
P
U

S
e
c
o
n
d
s

INEX

BMRM

ls-BMRM

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

1

10

2

10

3

10

4

C
P
U

S
e
c
o
n
d
s

News20

BMRM

ls-BMRM

subLBFGS

Figure 20: Regularization parameterλ ∈ {10−6, · · · ,10−1} vs. CPU seconds taken to reduce the
objective function to within 2% of the optimal value. (No point is plotted if an algorithm
failed to reach the threshold value within 104 seconds.)

yet both algorithms reach within 2% of the optimal value at about the same time (Figure 20, bottom
left). We hypothesize that subLBFGS’ local model (10) of the objective function facilitates rapid
early improvement but is less appropriate for final convergence to the optimum (cf. the discussion in
Section 9). Bundle methods, on the other hand, are slower initially because they need to accumulate
a sufficient number of gradients to build a faithful piecewise linear model ofthe objective function.
These results suggest that a hybrid approach that first runs subLBFGS then switches to ls-BMRM
may be promising.

Similar to what we saw in the binary setting (Figure 16), Figure 20 shows that all algorithms
tend to converge faster for large values ofλ. Generally, subLBFGS converges faster than BMRM
across a wide range ofλ values; for small values ofλ it can greatly outperform BMRM (as seen on
Letter, Protein, and News20). The performance of subLBFGS is worsethan that of BMRM in two
instances: on USPS for small values ofλ, and on INEX for large values ofλ. The poor performance
on USPS may be caused by a limitation of subLBFGS’ local model (10) that causes it to slow down
on final convergence. On the INEX data set, the initial pointw0 = 0 is nearly optimal for large
values ofλ; in this situation there is no advantage in using subLBFGS.

Leveraging its exact line search (Algorithm 5), ls-BMRM is competitive on alldata sets and
across allλ values, exhibiting performance comparable to subLBFGS in many cases. From Fig-
ure 20 we find that BMRM never outperforms both subLBFGS and ls-BMRM.

1181

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

0.3 1.0 3.0

CPU Seconds

0.8

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

Scene (

=10

!1
)

BMRM

ls-BMRM

subLBFGS

10

1

10

2

10

3

10

4

CPU Seconds

0.4

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

TMC2007 (

=10

!5
)

BMRM

ls-BMRM

subLBFGS

10

1

10

2

10

3

CPU Seconds

0.1

1.0

O
b
j
e
c
t
i
v
e

V
a
l
u
e

RCV1 (

=10

!5
)

BMRM

ls-BMRM

subLBFGS

Figure 21: Objective function valuevs.CPU seconds inL2-regularized multilabel hinge loss mini-
mization tasks.

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

-1

10

0

10

1

10

2

10

3

C
P
U

S
e
c
o
n
d
s

Scene

BMRM

ls-BMRM

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

10

2

10

3

10

4

C
P
U

S
e
c
o
n
d
s

TMC2007

BMRM

ls-BMRM

subLBFGS

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1 10

0

10

1

10

2

10

3

10

4

C
P
U

S
e
c
o
n
d
s

RCV1

BMRM

ls-BMRM

subLBFGS

Figure 22: Regularization parameterλ ∈ {10−6, · · · ,10−1} vs. CPU seconds taken to reduce the
objective function to within 2% of the optimal value. (No point is plotted if an algorithm
failed to reach the threshold value within 104 seconds.)

8.5.2 PERFORMANCE ONMULTILABEL PROBLEMS

For our final set of experiments we turn to the multilabel setting. Figure 21 shows that on the Scene
data set the performance of subLBFGS is similar to that of BMRM, while on the larger TMC2007
and RCV1 sets, subLBFGS outperforms both of its competitors initially but slowsdown later on,
resulting in performance no better than BMRM. Comparing performance across different values of
λ (Figure 22), we find that in many cases subLBFGS requires more time than its competitors to
reach within 2% of the optimal value, and in contrast to the multiclass setting, herels-BMRM only
performs marginally better than BMRM. The primary reason for this is that the exact line search
used by ls-BMRM and subLBFGS requires substantially more computational effort in the multilabel
than in the multiclass setting. There is an inherent trade-off here: subLBFGS and ls-BMRM expend
computation in an exact line search, while BMRM focuses on improving its localmodel of the
objective function instead. In situations where the line search is very expensive, the latter strategy
seems to pay off.

1182

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

9. Discussion and Outlook

We proposed subBFGS (resp., subLBFGS), an extension of the BFGS quasi-Newton method (resp.,
its limited-memory variant), for handling nonsmooth convex optimization problems, and proved its
global convergence in objective function value. We applied our algorithmto a variety of machine
learning problems employing theL2-regularized binary hinge loss and its multiclass and multilabel
generalizations, as well asL1-regularized risk minimization with logistic loss. Our experiments
show that our algorithm is versatile, applicable to many problems, and often outperforms specialized
solvers.

Our solver is easy to parallelize: The master node computes the search direction and transmits
it to the slaves. The slaves compute the (sub)gradient and loss value on subsets of data, which is
aggregated at the master node. This information is used to compute the next search direction, and
the process repeats. Similarly, the line search, which is the expensive part of the computation on
multiclass and multilabel problems, is easy to parallelize: The slaves run Algorithm4 on subsets of
the data; the results are fed back to the master which can then run Algorithm 5 tocompute the step
size.

In many of our experiments we observe that subLBFGS decreases the objective function rapidly
at the beginning but slows down closer to the optimum. We hypothesize that this isdue to an
averaging effect: Initially (i.e., when sampled sparsely at a coarse scale)a superposition of many
hinges looks sufficiently similar to a smooth function for optimization of a quadraticlocal model
to work well (cf. Figure 6). Later on, when the objective is sampled at finer resolution near the
optimum, the few nearest hinges begin to dominate the picture, making a smooth local model less
appropriate.

Even though the local model (10) of sub(L)BFGS is nonsmooth, it only explicitly models the
hinges at its present location—all others are subject to smooth quadratic approximation. Apparently
this strategy works sufficiently well during early iterations to provide for rapid improvement on
multiclass problems, which typically comprise a large number of hinges. The exact location of
the optimum, however, may depend on individual nearby hinges which are not represented in (10),
resulting in the observed slowdown.

Bundle method solvers, by contrast, exhibit slow initial progress but tend tobe competitive
asymptotically. This is because they build a piecewise linear lower bound of theobjective func-
tion, which initially is not very good but through successive tightening eventually becomes a faith-
ful model. To take advantage of this we are contemplating hybrid solvers thatswitch over from
sub(L)BFGS to a bundle method as appropriate.

While bundle methods like BMRM have an exact, implementable stopping criterion based on
the duality gap, no such stopping criterion exists for BFGS and other quasi-Newton algorithms.
Therefore, it is customary to use the relative change in function value as an implementable stopping
criterion. Developing a stopping criterion for sub(L)BFGS based on duality arguments remains an
important open question.

sub(L)BFGS relies on an efficient exact line search. We proposed such line searches for the
multiclass hinge loss and its extension to the multilabel setting, based on a conceptually simple yet
optimal algorithm to segment the pointwise maximum of lines. A crucial assumption wehad to
make is that the number|Z| of labels is manageable, as it takesO(|Z| log|Z|) time to identify the
hinges associated with each training instance. In certain structured prediction problems (Tsochan-
taridis et al., 2005) which have recently gained prominence in machine learning, the setZ could

1183

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

be exponentially large—for instance, predicting binary labels on a chain oflengthn produces 2n

possible labellings. Clearly our line searches are not efficient in such cases; we are investigating
trust region variants of sub(L)BFGS to bridge this gap.

Finally, to put our contributions in perspective, recall that we modified threeaspects of the
standard BFGS algorithm, namely the quadratic model (Section 3.1), the descent direction find-
ing (Section 3.2), and the Wolfe conditions (Section 3.3). Each of these modifications is versatile
enough to be used as a component in other nonsmooth optimization algorithms. This not only offers
the promise of improving existing algorithms, but may also help clarify connections between them.
We hope that our research will focus attention on the core subroutines that need to be made more
efficient in order to handle larger and larger data sets.

Acknowledgments

A short version of this paper was presented at the 2008 ICML conference (Yu et al., 2008). We
thank Choon Hui Teo for many useful discussions and help with implementationissues, Xinhua
Zhang for proofreading our manuscript, and the anonymous reviewersof both ICML and JMLR for
their useful feedback which helped improve this paper. We thank John R.Birge for pointing us to
his work (Birge et al., 1998) which led us to the convergence proof in Appendix D.

This publication only reflects the authors’ views. All authors were with NICTA and the Aus-
tralian National University for parts of their work on it. NICTA is funded bythe Australian Gov-
ernment’s Backing Australia’s Ability and Centre of Excellence programs. This work was also
supported in part by the IST Programme of the European Community, under the PASCAL2 Net-
work of Excellence, IST-2007-216886.

Appendix A. Bundle Search for a Descent Direction

Recall from Section 3.2 that at a subdifferential pointw our goal is to find a descent directionp∗

which minimizes the pseudo-quadratic model:19

M(p) := 1
2p

⊤B−1p+ sup
g∈∂J(w)

g⊤p. (59)

This is generally intractable due to the presence of a supremum over the entire subdifferential
∂J(w). We therefore propose a bundle-based descent direction finding procedure (Algorithm 2)
which progressively approachesM(p) from below via a series of convex functionsM(1)(p), · · · ,M(i)(p),
each taking the same form asM(p) but with the supremum defined over a countable subset of∂J(w).
At iteration i our convex lower boundM(i)(p) takes the form

M(i)(p) := 1
2p

⊤B−1p+ sup
g∈V

(i)

g⊤p, where

V
(i) := {g(j) : j ≤ i, i, j ∈ N} ⊆ ∂J(w). (60)

Given an iteratep(j−1) ∈ R
d we find aviolating subgradientg(j) via

g(j) := argsup
g∈∂J(w)

g⊤p(j−1). (61)

19. For ease of exposition we are suppressing the iteration indext here.

1184

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

Violating subgradients recover the true objectiveM(p) at the iteratesp(j−1):

M(p(j−1)) = M(j)(p(j−1)) = 1
2p

(j−1)⊤B−1p(j−1) +g(j)⊤p(j−1). (62)

To produce the iteratesp(i), we rewrite minp∈R
d M(i)(p) as a constrained optimization problem

(19), which allows us to write the Lagrangian of (60) as

L(i)(p,ξ,α) := 1
2p

⊤B−1p+ξ−α⊤(ξ1−G(i)⊤p), (63)

whereG(i) := [g(1), g(2), . . . , g(i)] ∈ R
d×i collects past violating subgradients, andα is a column

vector of non-negative Lagrange multipliers. Setting the derivative of (63) with respect to the primal
variablesξ andp to zero yields, respectively,

α⊤
1 = 1 and (64)

p= −BG(i)α. (65)

The primal variablep and the dual variableα are related via the dual connection (65). To eliminate
the primal variablesξ andp, we plug (64) and (65) back into the Lagrangian to obtain the dual of
M(i)(p):

D(i)(α) := − 1
2(G(i)α)⊤B(G(i)α), (66)

s.t.α ∈ [0,1]i , ‖α‖1 = 1.

The dual objectiveD(i)(α) (resp., primal objectiveM(i)(p)) can be maximized (resp., minimized)
exactly via quadratic programming. However, doing so may incur substantialcomputational ex-
pense. Instead we adopt an iterative scheme which is cheap and easy to implement yet guarantees
dual improvement.

Letα(i) ∈ [0,1]i be a feasible solution forD(i)(α).20 The corresponding primal solutionp(i) can
be found by using (65). This in turn allows us to compute the next violating subgradientg(i+1) via
(61). With the new violating subgradient the dual becomes

D(i+1)(α) := − 1
2(G(i+1)α)⊤B(G(i+1)α),

s.t. α ∈ [0,1]i+1, ‖α‖1 = 1, (67)

where the subgradient matrix is now extended:

G(i+1) = [G(i), g(i+1)]. (68)

Our iterative strategy constructs a new feasible solutionα ∈ [0,1]i+1 for (67) by constraining it to
take the following form:

α=

[
(1−µ)α(i)

µ

]

, where µ∈ [0,1]. (69)

20. Note thatα(1) = 1 is a feasible solution forD(1)(α).

1185

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

In other words, we maximize a one-dimensional functionD̄(i+1) : [0,1] → R:

D̄(i+1)(µ) := − 1
2

(

G(i+1)α
)⊤
B
(

G(i+1)α
)

(70)

= − 1
2

(

(1−µ)ḡ(i) +µg(i+1)
)⊤
B
(

(1−µ)ḡ(i) +µg(i+1)
)

,

where

ḡ(i) :=G(i)α(i) ∈ ∂J(w) (71)

lies in the convex hull ofg(j) ∈ ∂J(w) ∀ j ≤ i (and hence in the convex set∂J(w)) becauseα(i) ∈
[0,1]i and‖α(i)‖1 = 1. Moreover,µ∈ [0,1] ensures the feasibility of the dual solution. Noting that
D̄(i+1)(µ) is a concave quadratic function, we set

∂D̄(i+1)(µ) =
(

ḡ(i)−g(i+1)
)⊤
B
(

(1−η)ḡ(i) +ηg(i+1)
)

= 0 (72)

to obtain the optimum

µ∗ := argmax
µ∈[0,1]

D̄(i+1)(µ) = min

(

1,max

(

0,
(ḡ(i)−g(i+1))⊤Bḡ(i)

(ḡ(i)−g(i+1))⊤B(ḡ(i)−g(i+1))

))

. (73)

Our dual solution at stepi +1 then becomes

α(i+1) :=

[
(1−µ∗)α(i)

µ∗

]

. (74)

Furthermore, from (68), (69), and (71) it follows that ¯g(i) can be maintained via an incremental
update (Line 8 of Algorithm 2):

ḡ(i+1) :=G(i+1)α(i+1) = (1−µ∗)ḡ(i) +µ∗g(i+1), (75)

which combined with the dual connection (65) yields an incremental update for the primal solution
(Line 9 of Algorithm 2):

p(i+1) := −Bḡ(i+1) = −(1−µ∗)Bḡ(i)−µ∗Bg(i+1)

= (1−µ∗)p(i)−µ∗Bg(i+1). (76)

Using (75) and (76), computing a primal solution (Lines 7–9 of Algorithm 2) costs a total ofO(d2)
time (resp.,O(md) time for LBFGS with buffer sizem), whered is the dimensionality of the opti-
mization problem. Note that maximizingD(i+1)(α) directly via quadratic programming generally
results in a larger progress than that obtained by our approach.

In order to measure the quality of our solution at iterationi, we define the quantity

ε(i) := min
j≤i

M(j+1)(p(j))−D(i)(α(i)) = min
j≤i

M(p(j))−D(i)(α(i)), (77)

where the second equality follows directly from (62). LetD(α) be the corresponding dual prob-

lem of M(p), with the propertyD
([

α(i)

0

])

= D(i)(α(i)), and letα∗ be the optimal solution to

1186

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

argmaxα∈A D(α) in some domainA of interest. As a consequence of the weak duality theorem
(Hiriart-Urruty and Lemaŕechal, 1993, Theorem XII.2.1.5), minp∈R

d M(p) ≥ D(α∗). Therefore
(77) implies that

ε(i) ≥ min
p∈R

d
M(p)−D(i)(α(i)) ≥ min

p∈R
d
M(p)−D(α∗) ≥ 0. (78)

The second inequality essentially says thatε(i) is an upper bound on the duality gap. In fact, The-
orem 7 below shows that(ε(i) − ε(i+1)) is bounded away from 0, that is,ε(i) is monotonically de-
creasing. This guides us to design a practical stopping criterion (Line 6 ofAlgorithm 2) for our
direction-finding procedure. Furthermore, using the dual connection (65), we can derive an imple-
mentable formula forε(i):

ε(i) = min
j≤i

[
1
2p

(j)⊤B−1p(j) +p(j)⊤g(j+1) + 1
2(G(i)α(i))⊤B(G(i)α(i))

]

= min
j≤i

[

− 1
2p

(j)⊤ḡ(j) +p(j)⊤g(j+1)− 1
2p

(i)⊤ḡ(i)
]

= min
j≤i

[

p(j)⊤g(j+1)− 1
2(p(j)⊤ḡ(j) +p(i)⊤ḡ(i))

]

, (79)

where g(j+1) := argsup
g∈∂J(w)

g⊤p(j) and ḡ(j) :=G(j)α(j) ∀ j ≤ i.

It is worth noting that continuous progress in the dual objective value does not necessarily prevent
an increase in the primal objective value, that is, it is possible thatM(p(i+1)) ≥ M(p(i)). Therefore,
we choose the best primal solution so far,

p := argmin
j≤i

M(p(j)), (80)

as the search direction (Line 18 of Algorithm 2) for the parameter update (3). This direction is a
direction of descent as long as the last iteratep(i) fulfills the descent condition (16). To see this, we
use (88–90) below to get supg∈∂J(w)g

⊤p(i) = M(p(i))+D(i)(α(i)), and since

M(p(i)) ≥ min
j≤i

M(p(j)) and D(i)(α(i)) ≥ D(j)(α(j)) ∀ j ≤ i,

definition (80) immediately gives supg∈∂J(w)g
⊤p(i) ≥ supg∈∂J(w)g

⊤p. Hence ifp(i) is a descent
direction, then so isp.

We now show that if the current parameter vectorw is not optimal, then a direction-finding
toleranceε≥ 0 exists for Algorithm 2 such that the returned search directionp is a descent direction,
that is, supg∈∂J(w)g

⊤p< 0.

Lemma 3 LetB be the current approximation to the inverse Hessian maintained by Algorithm1,
and h> 0 a lower bound on the eigenvalues ofB. If the current iteratew is not optimal: 0 /∈
∂J(w), and the number of direction-finding iterations is unlimited (kmax = ∞), then there exists a
direction-finding toleranceε ≥ 0 such that the descent directionp= −Bḡ, ḡ ∈ ∂J(w) returned by
Algorithm 2 atw satisfiessupg∈∂J(w)g

⊤p< 0.

1187

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

Proof Algorithm 2 returnsp after i iterations whenε(i) ≤ ε, whereε(i) = M(p)−D(i)(α(i)) by
definitions (77) and (80). Using definition (66) ofD(i)(α(i)), we have

−D(i)(α(i)) = 1
2(G(i)α(i))⊤B(G(i)α(i)) = 1

2 ḡ
(i)⊤Bḡ(i), (81)

whereḡ(i) =G(i)α(i) is a subgradient in∂J(w). On the other hand, using (59) and (76), one can
write

M(p) = sup
g∈∂J(w)

g⊤p + 1
2p

⊤B−1p

= sup
g∈∂J(w)

g⊤p + 1
2 ḡ

⊤Bḡ, where ḡ ∈ ∂J(w). (82)

Putting together (81) and (82), and usingB ≻ h, one obtains

ε(i) = sup
g∈∂J(w)

g⊤p + 1
2 ḡ

⊤Bḡ + 1
2 ḡ

(i)⊤Bḡ(i) ≥ sup
g∈∂J(w)

g⊤p +
h
2
‖ḡ‖2 +

h
2
‖ḡ(i)‖2. (83)

Since0 /∈ ∂J(w), the last two terms of (83) are strictly positive; and by (78),ε(i) ≥ 0 . The claim
follows by choosing anε such that(∀i) h

2(‖ḡ‖2 +‖ḡ(i)‖2) > ε ≥ ε(i) ≥ 0.

Using the notation from Lemma 3, we show in the following corollary that a stricterupper
bound onε allows us to bound supg∈∂J(w)g

⊤p in terms ofḡ⊤Bḡ and‖ḡ‖. This will be used in
Appendix D to establish the global convergence of the subBFGS algorithm.

Corollary 4 Under the conditions of Lemma 3, there exists anε ≥ 0 for Algorithm 2 such that the
search directionp generated by Algorithm 2 satisfies

sup
g∈∂J(w)

g⊤p ≤− 1
2 ḡ

⊤Bḡ ≤−
h
2
‖ḡ‖2 < 0. (84)

Proof Using (83), we have

(∀i) ε(i) ≥ sup
g∈∂J(w)

g⊤p + 1
2 ḡ

⊤Bḡ +
h
2
‖ḡ(i)‖2.

The first inequality in (84) results from choosing anε such that

(∀i)
h
2
‖ḡ(i)‖2 ≥ ε ≥ ε(i) ≥ 0. (85)

The lower boundh > 0 on the spectrum ofB yields the second inequality in (84), and the third
follows from the fact that‖ḡ‖ > 0 at non-optimal iterates.

1188

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

Appendix B. Convergence of the Descent Direction Search

Using the notation established in Appendix A, we now prove the convergence of Algorithm 2 via
several technical intermediate steps. The proof shares similarities with the proofs found in Smola
et al. (2007), Shalev-Shwartz and Singer (2008), and Warmuth et al. (2008). The key idea is that at
each iterate Algorithm 2 decreases the upper boundε(i) on the distance from the optimality, and the
decrease inε(i) is characterized by the recurrenceε(i) − ε(i+1) ≥ c(ε(i))2 with c > 0 (Theorem 7).
Analysing this recurrence then gives the convergence rate of the algorithm (Theorem 9).

We first provide two technical lemmas (Lemma 5 and 6) that are needed to prove Theorem 7.

Lemma 5 Let D̄(i+1)(µ) be the one-dimensional function defined in(70), andε(i) the positive mea-
sure defined in(77). Thenε(i) ≤ ∂D̄(i+1)(0).

Proof Let p(i) be our primal solution at iterationi, derived from the dual solutionα(i) using the
dual connection (65). We then have

p(i) = −Bḡ(i), where ḡ(i) := G(i)α(i). (86)

Definition (59) ofM(p) implies that

M(p(i)) = 1
2p

(i)⊤B−1p(i) +p(i)⊤g(i+1), (87)

where

g(i+1) := argsup
g∈∂J(w)

g⊤p(i). (88)

Using (86), we haveB−1p(i) = −B−1Bḡ(i) = −ḡ(i), and hence (87) becomes

M(p(i)) = p(i)⊤g(i+1)− 1
2p

(i)⊤ḡ(i). (89)

Similarly, we have

D(i)(α(i)) = − 1
2(G(i)α(i))⊤B(G(i)α(i)) = 1

2p
(i)⊤ḡ(i). (90)

From (72) and (86) it follows that

∂D̄(i+1)(0) = (ḡ(i)−g(i+1))⊤Bḡ(i) = (g(i+1)− ḡ(i))⊤p(i), (91)

whereg(i+1) is a violating subgradient chosen via (61), and hence coincides with (88). Using (89)–
(91), we obtain

M(p(i))−D(i)(α(i)) =
(

g(i+1)− ḡ(i)
)⊤
p(i) = ∂D̄(i+1)(0). (92)

Together with definition (77) ofε(i), (92) implies that

ε(i) = min
j≤i

M(p(j))−D(i)
(

α(i)
)

≤ M(p(i))−D(i)(α(i)) = ∂D̄(i+1)(0).

1189

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

Lemma 6 Let f : [0,1] → R be a concave quadratic function with f(0) = 0, ∂ f (0) ∈ [0,a], and

∂ f 2(x) ≥−a for some a≥ 0. Thenmaxx∈[0,1] f (x) ≥ (∂ f (0))2

2a .

Proof Using a second-order Taylor expansion around 0, we havef (x) ≥ ∂ f (0)x− a
2x2. x∗ =

∂ f (0)/a is the unconstrained maximum of the lower bound. Since∂ f (0)∈ [0,a], we havex∗ ∈ [0,1].
Pluggingx∗ into the lower bound yields(∂ f (0))2/(2a).

Theorem 7 Assume that atw the convex objective function J: R
d → R has bounded subgradient:

‖∂J(w)‖ ≤ G, and that the approximationB to the inverse Hessian has bounded eigenvalues:
B � H. Then

ε(i)− ε(i+1) ≥
(ε(i))2

8G2H
.

Proof Recall that we constrain the form of feasible dual solutions forD(i+1)(α) as in (69). Instead
of D(i+1)(α), we thus work with the one-dimensional concave quadratic functionD̄(i+1)(µ) (70). It

is obvious that
[

α(i)

0

]

is a feasible solution forD(i+1)(α). In this case,̄D(i+1)(0) = D(i)(α(i)). (74)

implies thatD̄(i+1)(µ∗) = D(i+1)(α(i+1)). Using the definition (77) ofε(i), we thus have

ε(i)− ε(i+1) ≥ D(i+1)(α(i+1))−D(i)(α(i)) = D̄(i+1)(µ∗)− D̄(i+1)(0). (93)

It is easy to see from (93) thatε(i) − ε(i+1) are upper bounds on the maximal value of the concave
quadratic functionf (µ) := D̄(i+1)(µ)− D̄(i+1)(0) with µ ∈ [0,1] and f (0) = 0. Furthermore, the
definitions ofD̄(i+1)(µ) and f (µ) imply that

∂ f (0) = ∂D̄(i+1)(0) = (ḡ(i)−g(i+1))⊤Bḡ(i) and (94)

∂2 f (µ) = ∂2D̄(i+1)(µ) = − (ḡ(i)−g(i+1))⊤B(ḡ(i)−g(i+1)).

Since‖∂J(w)‖ ≤ G andḡ(i) ∈ ∂J(w) (71), we have‖ḡ(i) −g(i+1)‖ ≤ 2G. Our upper bound on the
spectrum ofB then gives|∂ f (0)| ≤ 2G2H and

∣
∣∂2 f (µ)

∣
∣ ≤ 4G2H. Additionally, Lemma 5 and the

fact thatB � 0 imply that

∂ f (0) = ∂D̄(i+1)(0) ≥ 0 and ∂2 f (µ) = ∂2D̄(i+1)(µ) ≤ 0, (95)

which means that

∂ f (0) ∈ [0,2G2H] ⊂ [0,4G2H] and ∂2 f (µ) ≥ −4G2H.

Invoking Lemma 6, we immediately get

ε(i)− ε(i+1) ≥
(∂ f (0))2

8G2H
=

(∂D̄(i+1)(0))2

8G2H
. (96)

Sinceε(i) ≤ ∂D̄(i+1)(0) by Lemma 5, the inequality (96) still holds when∂D̄(i+1)(0) is replaced with
ε(i).

1190

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

(94) and (95) imply that the optimal combination coefficientµ∗ (73) has the property

µ∗ = min

[

1,
∂D̄(i+1)(0)

−∂2D̄(i+1)(µ)

]

.

Moreover, we can use (65) to reduce the cost of computingµ∗ by settingBḡ(i) in (73) to be−p(i)

(Line 7 of Algorithm 2), and calculate

µ∗ = min

[

1,
g(i+1)⊤p(i)− ḡ(i)⊤p(i)

g(i+1)⊤Btg(i+1) +2 g(i+1)⊤p(i)− ḡ(i)⊤p(i)

]

, (97)

whereBtg
(i+1) can be cached for the update of the primal solution at Line 9 of Algorithm 2.

To prove Theorem 9, we use the following lemma proven by induction by Abe et al. (2001,
Sublemma 5.4):

Lemma 8 Let {ε(1), ε(2), · · ·} be a sequence of non-negative numbers satisfying∀i ∈ N the recur-
rence

ε(i)− ε(i+1) ≥ c(ε(i))2,

where c∈ R+ is a positive constant. Then∀i ∈ N we have

ε(i) ≤
1

c
(

i + 1
ε(1)c

) .

We now show that Algorithm 2 decreasesε(i) to a pre-defined toleranceε in O(1/ε) steps:

Theorem 9 Under the assumptions of Theorem 7, Algorithm 2 converges to the desired precisionε
after

1 ≤ t ≤
8G2H

ε
−4

steps for anyε < 2G2H.

Proof Theorem 7 states that

ε(i)− ε(i+1) ≥
(ε(i))2

8G2H
,

whereε(i) is non-negative∀i ∈ N by (78). Applying Lemma 8 we thus obtain

ε(i) ≤
1

c
(

i + 1
ε(1)c

) , where c :=
1

8G2H
. (98)

Our assumptions on‖∂J(w)‖ and the spectrum ofB imply that

D̄(i+1)(0) = (ḡ(i)−g(i+1))⊤Bḡ(i) ≤ 2G2H.

1191

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

Henceε(i) ≤ 2G2H by Lemma 5. This means that (98) holds withε(1) = 2G2H. Therefore we can
solve

ε ≤
1

c
(

t + 1
ε(1)c

) with c :=
1

8G2H
and ε(1) := 2G2H (99)

to obtain an upper bound ont such that(∀i ≥ t) ε(i) ≤ ε < 2G2H. The solution to (99) ist ≤ 8G2H
ε −4.

Appendix C. Satisfiability of the Subgradient Wolfe Conditions

To formally show that there always is a positive step size that satisfies the subgradient Wolfe con-
ditions (23, 24), we restate a result of Hiriart-Urruty and Lemaréchal (1993, Theorem VI.2.3.3) in
slightly modified form:

Lemma 10 Given two pointsw 6= w′ in R
d, definewη = ηw′ + (1−η)w. Let J : R

d → R be
convex. There existsη ∈ (0,1) andg̃ ∈ ∂J(wη) such that

J(w′)−J(w) = g̃⊤(w′−w) ≤ ĝ⊤(w′−w),

whereĝ := argsupg∈∂J(wη) g
⊤(w′−w).

Theorem 11 Letp be a descent direction at an iteratew. If Φ(η) := J(w+ηp) is bounded below,
then there exists a step sizeη > 0 which satisfies the subgradient Wolfe conditions (23, 24).

Proof Sincep is a descent direction, the lineJ(w) + c1ηsupg∈∂J(w)g
⊤p with c1 ∈ (0,1) must

intersectΦ(η) at least once at someη > 0 (see Figure 1 for geometric intuition). Letη′ be the
smallest such intersection point; then

J(w+η′p) = J(w) + c1η′ sup
g∈∂J(w)

g⊤p. (100)

SinceΦ(η) is lower bounded, the sufficient decrease condition (23) holds for allη′′ ∈ [0,η′]. Setting
w′ =w+η′p in Lemma 10 implies that there exists anη′′ ∈ (0,η′) such that

J(w+η′p) − J(w) ≤ η′ sup
g∈∂J(w+η′′p)

g⊤p. (101)

Plugging (100) into (101) and simplifying it yields

c1 sup
g∈∂J(w)

g⊤p ≤ sup
g∈∂J(w+η′′p)

g⊤p. (102)

Sincep is a descent direction, supg∈∂J(w)g
⊤p < 0, and thus (102) also holds whenc1 is replaced

by c2 ∈ (c1,1).

1192

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

Algorithm 6 Algorithm 1 of Birge et al. (1998)
1: Initialize: t := 0 andw0

2: while not convergeddo
3: Findwt+1 that obeys

J(wt+1) ≤ J(wt) − at ‖gε′t‖
2 + εt (104)

where gε′t ∈ ∂ε′t J(wt+1), at > 0, εt ,ε′t ≥ 0.

4: t := t +1
5: end while

Appendix D. Global Convergence of SubBFGS

There are technical difficulties in extending the classical BFGS convergence proof to the nonsmooth
case. This route was taken by Andrew and Gao (2007), which unfortunately left their proof critically
flawed: In a key step (Andrew and Gao, 2007, Equation 7) they seek to establish the non-negativity
of the directional derivativef ′(x̄; q̄) of a convex functionf at a point ¯x in the direction ¯q, where
x̄ andq̄ are the limit points of convergent sequences{xk} and{q̂k}κ, respectively. They do so by
taking the limit fork∈ κ of

f ′(xk + α̃kq̂k; q̂k) > γ f ′(xk; q̂k), where {α̃k}→ 0 and γ ∈ (0,1) ,

which leads them to claim that

f ′(x̄; q̄) ≥ γ f ′(x̄; q̄) , (103)

which would imply f ′(x̄; q̄) ≥ 0 becauseγ ∈ (0,1). However, f ′(xk, q̂k) does not necessarily con-
verge to f ′(x̄; q̄) because the directional derivative of a nonsmooth convex function is not continu-
ous, onlyupper semi-continuous(Bertsekas, 1999, Proposition B.23). Instead of (103) we thus only
have

f ′(x̄; q̄) ≥ γ limsup
k→∞,k∈κ

f ′(xk; q̂k) ,

which does not suffice to establish the desired result:f ′(x̄; q̄) ≥ 0. A similar mistake is also found
in the reasoning of Andrew and Gao (2007) just after Equation 7.

Instead of this flawed approach, we use the technique introduced by Birge et al. (1998) to prove
the global convergence of subBFGS (Algorithm 1) in objective function value, that is,J(wt) →
infw J(w), provided that the spectrum of BFGS’ inverse Hessian approximationBt is bounded from
above and below for allt, and the step sizeηt (obtained at Line 9) is not summable:∑∞

t=0 ηt = ∞.
Birge et al. (1998) provide a unified framework for convergence analysis of optimization algo-

rithms for nonsmooth convex optimization, based on the notion ofε-subgradients. Formally,g is
called anε-subgradient ofJ atw iff (Hiriart-Urruty and Lemaŕechal, 1993, Definition XI.1.1.1)

(∀w′) J(w′) ≥ J(w)+(w′−w)
⊤
g− ε, where ε ≥ 0. (105)

The set of allε-subgradients at a pointw is called theε-subdifferential, and denoted∂εJ(w). From
the definition of subgradient (7), it is easy to see that∂J(w) = ∂0J(w) ⊆ ∂εJ(w). Birge et al.
(1998) propose anε-subgradient-based algorithm (Algorithm 6) and provide sufficient conditions
for its global convergence:

1193

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

Theorem 12 (Birge et al., 1998, Theorem 2.1(iv), first sentence)
Let J : R

d → R∪{∞} be a proper lower semi-continuous21 extended-valued convex function, and
let {(εt ,ε′t ,at ,wt+1,gε′t)} be any sequence generated by Algorithm 6 satisfying

∞

∑
t=0

εt < ∞ and
∞

∑
t=0

at = ∞. (106)

If ε′t → 0, and there exists a positive numberβ > 0 such that, for all large t,

β‖wt+1−wt‖ ≤ at‖gε′t‖, (107)

then J(wt) → infw J(w).

We will use this result to establish the global convergence of subBFGS in Theorem 14. Towards
this end, we first show that subBFGS is a special case of Algorithm 6:

Lemma 13 Let pt = −Bt ḡt be the descent direction produced by Algorithm 2 at a non-optimal
iteratewt , whereBt � h > 0 and ḡt ∈ ∂J(wt), and letwt+1 = wt + ηtpt , whereηt > 0 satisfies
sufficient decrease(23) with free parameter c1 ∈ (0,1). Thenwt+1 obeys(104)of Algorithm 6 for
at := c1ηth

2 , εt = 0, andε′t := ηt(1−
c1
2) ḡ⊤t Bt ḡt .

Proof Our sufficient decrease condition (23) and Corollary 4 imply that

J(wt+1) ≤ J(wt) −
c1ηt

2
ḡ⊤t Bt ḡt (108)

≤ J(wt) − at‖ḡt‖
2, where at :=

c1ηth
2

.

What is left to prove is that ¯gt ∈ ∂ε′t J(wt+1) for anε′t ≥ 0. Usingḡt ∈ ∂J(wt) and the definition (7)
of subgradient, we have

(∀w) J(w) ≥ J(wt) + (w−wt)
⊤
ḡt

= J(wt+1) + (w−wt+1)
⊤
ḡt + J(wt)−J(wt+1) + (wt+1−wt)

⊤
ḡt .

Usingwt+1−wt = −ηtBt ḡt and (108) gives

(∀w) J(w) ≥ J(wt+1) + (w−wt+1)
⊤
ḡt +

c1ηt

2
ḡ⊤t Bt ḡt − ηt ḡ

⊤
t Bt ḡt

= J(wt+1) + (w−wt+1)
⊤
ḡt − ε′t ,

whereε′t := ηt(1−
c1
2) ḡ⊤t Bt ḡt . Sinceηt > 0, c1 < 1, andBt � h > 0, ε′t is non-negative. By the

definition (105) ofε-subgradient, ¯gt ∈ ∂ε′t J(wt+1).

21. This means that there exists at least onew ∈ R
d such thatJ(w) < ∞, and that for allw ∈ R

d, J(w) > −∞ and
J(w) ≤ liminf t→∞ J(wt) for any sequence{wt} converging tow. All objective functions considered in this paper
fulfill these conditions.

1194

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

Theorem 14 Let J : R
d → R∪{∞} be a proper lower semi-continuous21 extended-valued convex

function. Algorithm 1 with a line search that satisfies the sufficient decreasecondition (23) with
c1 ∈ (0,1) converges globally to the minimal value of J, provided that:

1. the spectrum of its approximation to the inverse Hessian is bounded above and below:∃(h,H :
0 < h≤ H < ∞) : (∀t) h�Bt � H

2. the step sizeηt > 0 satisfies∑∞
t=0 ηt = ∞, and

3. the direction-finding toleranceε for Algorithm 2 satisfies(85).

Proof We have already shown in Lemma 13 that subBFGS is a special case of Algorithm 6. Thus if
we can show that the technical conditions of Theorem 12 are met, it directly establishes the global
convergence of subBFGS.

Recall that for subBFGSat := c1ηth
2 , εt = 0, ε′t := ηt(1−

c1
2) ḡ⊤t Bt ḡt , andḡt = gε′t . Our assump-

tion onηt implies that∑∞
t=0at = c1h

2 ∑∞
t=0 ηt = ∞, thus establishing (106). We now show thatε′t → 0.

Under the third condition of Theorem 14, it follows from the first inequality in(84) in Corollary 4
that

sup
g∈∂J(wt)

g⊤pt ≤ − 1
2 ḡ

⊤
t Bt ḡt , (109)

wherept = −Bt ḡt , ḡt ∈ ∂J(wt) is the search direction returned by Algorithm 2. Together with the
sufficient decrease condition (23), (109) implies (108). Now use (108) recursively to obtain

J(wt+1) ≤ J(w0) −
c1

2

t

∑
i=0

ηi ḡ
⊤
i Bi ḡi .

SinceJ is proper (hence bounded from below), we have
∞

∑
t=0

ηi ḡ
⊤
i Bi ḡi =

1
1− c1

2

∞

∑
t=0

ε′i < ∞ . (110)

Recall thatε′i ≥ 0. The bounded sum of non-negative terms in (110) implies that the terms in the
sum must converge to zero.

Finally, to show (107) we usewt+1−wt =−ηtBt ḡt , the definition of the matrix norm:‖B‖ :=
maxx6=0

‖Bx‖
‖x‖ , and the upper bound on the spectrum ofBt to write:

‖wt+1−wt‖ = ηt‖Bt ḡt‖ ≤ ηt‖Bt‖‖ḡt‖ ≤ ηtH‖ḡt‖. (111)

Recall that ¯gt = gε′t andat = c1ηth
2 , and multiply both sides of (111) byc1h

2H to obtain (107) with
β := c1h

2H .

Appendix E. SubBFGS Converges on Various Counterexamples

We demonstrate the global convergence of subBFGS22 with an exact line search on various coun-
terexamples from the literature, designed to show the failure to converge ofother gradient-based
algorithms.

22. We run Algorithm 1 withh = 10−8 andε = 10−5.

1195

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

-3 -2 -1 0 1 2 3
x

-3

-2

-1

0

1

2

3

y

-1
5

0

15

30

45

45

60

60

GD

-3 -2 -1 0 1 2 3
x

-3

-2

-1

0

1

2

3

y

-1
5

0

15

30

45

45

60

60

subBFGS

Figure 23: Optimization trajectory of steepest descent (left) and subBFGS(right) on counterexam-
ple (112).

E.1 Counterexample for Steepest Descent

The first counterexample (112) is given by Wolfe (1975) to show the non-convergent behaviour of
the steepest descent method with an exact line search (denoted GD):

f (x,y) :=

{

5
√

(9x2 +16y2) if x≥ |y|,

9x+16|y| otherwise.
(112)

This function is subdifferentiable alongx≤ 0, y = 0 (dashed line in Figure 23); its minimal value
(−∞) is attained forx = −∞. As can be seen in Figure 23 (left), starting from a differentiable
point (2,1), GD follows successively orthogonal directions, that is,−∇ f (x,y), and converges to
the non-optimal point(0,0). As pointed out by Wolfe (1975), the failure of GD here is due to the
fact that GD does not have a global view off , specifically, it is because the gradient evaluated
at each iterate (solid disk) is not informative about∂ f (0,0), which contains subgradients (e.g.,
(9,0)), whose negative directions point toward the minimum. SubBFGS overcomes this “short-
sightedness” by incorporating into the parameter update (3) an estimateBt of the inverse Hessian,
whose information about the shape off prevents subBFGS from zigzagging to a non-optimal point.
Figure 23 (right) shows that subBFGS moves to the correct region (x< 0) at the second step. In fact,
the second step of subBFGS lands exactly on the hingex≤ 0,y = 0, where a subgradient pointing
to the optimum is available.

E.2 Counterexample for Steepest Subgradient Descent

The second counterexample (113), due to Hiriart-Urruty and Lemaréchal (1993, Section VIII.2.2),
is a piecewise linear function which is subdifferentiable along 0≤ y = ±3x andx = 0 (dashed lines
in Figure 24):

f (x,y) := max{−100, ±2x+3y, ±5x+2y}. (113)

This example shows that steepest subgradient descent with an exact linesearch (denoted subGD)
may not converge to the optimum of a nonsmooth function. Steepest subgradient descent updates

1196

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

-6 -4 -2 0 2 4 6
x

-6

-4

-2

0

2

4

6
y

-8
08

1
6

2
4 2

4

3
2

3
2

4
0

4
0

subGD

-6 -4 -2 0 2 4 6
x

-6

-4

-2

0

2

4

6

y

-8
08

1
6

2
4 2

4

3
2

3
2

4
0

4
0

subBFGS

Figure 24: Optimization trajectory of steepest subgradient descent (left)and subBFGS (right) on
counterexample (113).

-10 -5 0 5 10
x

-10

-5

0

5

10

y

0

5

1
0

1
5

20

25

30

BFGS

-10 -5 0 5 10
x

-10

-5

0

5

10

y

0

5
1
0

1
5

20

25

30

subBFGS

Figure 25: Optimization trajectory of standard BFGS (left) and subBFGS (right) on counterexam-
ple (114).

parameters along thesteepest descentsubgradient direction, which is obtained by solving the min-
sup problem (13) with respect to the Euclidean norm. Clearly, the minimal valueof f (−100) is
attained for sufficiently negative values ofy. However, subGD oscillates between two hinges 0≤
y = ±3x, converging to the non-optimal point(0,0), as shown in Figure 24 (left). The zigzagging
optimization trajectory of subGD does not allow it to land on any informative position such as the
hingey = 0, where the steepest subgradient descent direction points to the desired region (y < 0);
Hiriart-Urruty and Lemaŕechal (1993, Section VIII.2.2) provide a detailed discussion. By contrast,
subBFGS moves to they < 0 region at the second step (Figure 24, right), which ends at the point
(100,−300) (not shown in the figure) where the minimal value off is attained .

1197

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

E.3 Counterexample for BFGS

The final counterexample (114) is given by Lewis and Overton (2008b)to show that the standard
BFGS algorithm with an exact line search can break down when encountering a nonsmooth point:

f (x,y) := max{2|x|+y, 3y}. (114)

This function is subdifferentiable alongx = 0, y≤ 0 andy = |x| (dashed lines in Figure 25). Figure
25 (left) shows that after the first step, BFGS lands on a nonsmooth point, where it fails to find a
descent direction. This is not surprising because at a nonsmooth pointw the quasi-Newton direction
p := −Bg for a given subgradientg ∈ ∂J(w) is not necessarily a direction of descent. SubBFGS
fixes this problem by using a direction-finding procedure (Algorithm 2), which is guaranteed to
generate a descent quasi-Newton direction. Here subBFGS converges to f = −∞ in three iterations
(Figure 25, right).

References

N. Abe, J. Takeuchi, and M. K. Warmuth. Polynomial Learnability of Stochastic Rules with Respect
to the KL-Divergence and Quadratic Distance.IEICE Transactions on Information and Systems,
84(3):299–316, 2001.

P. K. Agarwal and M. Sharir. Davenport-Schinzel sequences and their geometric applications.
In J. Sack and J. Urrutia, editors,Handbook of Computational Geometry, pages 1–47. North-
Holland, New York, 2000.

G. Andrew and J. Gao. Scalable training ofL1-regularized log-linear models. InProc. Intl. Conf.
Machine Learning, pages 33–40, New York, NY, USA, 2007. ACM.

J. Basch.Kinetic Data Structures. PhD thesis, Stanford University, June 1999.

D. P. Bertsekas.Nonlinear Programming. Athena Scientific, Belmont, MA, 1999.

J. R. Birge, L. Qi, and Z. Wei. A general approach to convergence properties of some methods for
nonsmooth convex optimization.Applied Mathematics and Optimization, 38(2):141–158, 1998.

A. Bordes, L. Bottou, P. Gallinari, and J. Weston. Solving multiclass support vector machines with
LaRank. InProc. Intl. Conf. Machine Learning, pages 89–96, New York, NY, USA, 2007. ACM.

S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge University Press, Cambridge,
England, 2004.

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems. Journal
of Machine Learning Research, 3:951–991, January 2003a.

K. Crammer and Y. Singer. A family of additive online algorithms for category ranking. J. Mach.
Learn. Res., 3:1025–1058, February 2003b.

V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for support vector machines. In
A. McCallum and S. Roweis, editors,ICML, pages 320–327. Omnipress, 2008.

1198

QUASI-NEWTON APPROACH TONONSMOOTHCONVEX OPTIMIZATION

V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for large-scale risk minimization.
Journal of Machine Learning Research, 10:2157–2192, 2009.

M. Haarala.Large-Scale Nonsmooth Optimization. PhD thesis, University of Jyväskyl̈a, 2004.

J. Hershberger. Finding the upper envelope ofn line segments inO(nlogn) time. Information
Processing Letters, 33(4):169–174, December 1989.

J. B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms, I and II,
volume 305 and 306. Springer-Verlag, 1993.

T. Joachims. Training linear SVMs in linear time. InProc. ACM Conf. Knowledge Discovery and
Data Mining (KDD). ACM, 2006.

Y. J. Lee and O. L. Mangasarian. SSVM: A smooth support vector machine for classification.
Computational optimization and Applications, 20(1):5–22, 2001.

C. Lemarechal. Numerical experiments in nonsmooth optimization.Progress in Nondifferentiable
Optimization, 82:61–84, 1982.

A. S. Lewis and M. L. Overton. Nonsmooth optimization via BFGS. Technical report, Opti-
mization Online, 2008a. URLhttp://www.optimization-online.org/DB_FILE/2008/12/
2172.pdf . Submitted to SIAM J. Optimization.

A. S. Lewis and M. L. Overton. Behavior of BFGS with an exact line search on non-
smooth examples. Technical report, Optimization Online, 2008b. URLhttp://www.
optimization-online.org/DB_FILE/2008/12/2173.pdf . Submitted to SIAM J. Optimiza-
tion.

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45(3):503–528, 1989.

L. Lukšan and J. Vľcek. Globally convergent variable metric method for convex nonsmooth un-
constrained minimization.Journal of Optimization Theory and Applications, 102(3):593–613,
1999.

F. Maes, L. Denoyer, and P. Gallinari. XML structure mapping application tothe PASCAL/INEX
2006 XML document mining track. InAdvances in XML Information Retrieval and Evalua-
tion: Fifth Workshop of the INitiative for the Evaluation of XML Retrieval (INEX’06), Dagstuhl,
Germany, 2007.

A. Nedić and D. P. Bertsekas. Convergence rate of incremental subgradientalgorithms. In S. Urya-
sev and P. M. Pardalos, editors,Stochastic Optimization: Algorithms and Applications, pages
263–304. Kluwer Academic Publishers, 2000.

A. Nemirovski. Prox-method with rate of convergenceO(1/t) for variational inequalities with
Lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
SIAM J. on Optimization, 15(1):229–251, 2005. ISSN 1052-6234.

Y. Nesterov. Smooth minimization of non-smooth functions.Math. Program., 103(1):127–152,
2005.

1199

YU, V ISHWANATHAN , GÜNTER AND SCHRAUDOLPH

J. Nocedal and S. J. Wright.Numerical Optimization. Springer Series in Operations Research.
Springer, 1999.

S. Shalev-Shwartz and Y. Singer. On the equivalence of weak learnability and linear separability:
New relaxations and efficient boosting algorithms. InProceedings of COLT, 2008.

A. J. Smola, S. V. N. Vishwanathan, and Q. V. Le. Bundle methods for machine learning. In
D. Koller and Y. Singer, editors,Advances in Neural Information Processing Systems 20, Cam-
bridge MA, 2007. MIT Press.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In S. Thrun, L. Saul, and
B. Scḧolkopf, editors,Advances in Neural Information Processing Systems 16, pages 25–32,
Cambridge, MA, 2004. MIT Press.

C.-H. Teo, S. V. N. Vishwanthan, A. J. Smola, and Q. V. Le. Bundle methods for regularized risk
minimization.Journal of Machine Learning Research, 11:311–365, 2010.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and
interdependent output variables.Journal of Machine Learning Research, 6:1453–1484, 2005.

M. K. Warmuth, K. A. Glocer, and S. V. N. Vishwanathan. Entropy regularized LPBoost. In
Y. Freund, Y. L̀aszl̀o Györfi, and G. Tur̀an, editors,Proc. Intl. Conf. Algorithmic Learning Theory,
number 5254 in Lecture Notes in Artificial Intelligence, pages 256 – 271, Budapest, October
2008. Springer-Verlag.

P. Wolfe. Convergence conditions for ascent methods.SIAM Review, 11(2):226–235, 1969.

P. Wolfe. A method of conjugate subgradients for minimizing nondifferentiablefunctions.Mathe-
matical Programming Study, 3:145–173, 1975.

J. Yu, S. V. N. Vishwanathan, S. Günter, and N. N. Schraudolph. A quasi-Newton approach to
nonsmooth convex optimization. In A. McCallum and S. Roweis, editors,ICML, pages 1216–
1223. Omnipress, 2008.

T. Zhang and F. J. Oles. Text categorization based on regularized linear classification methods.
Information Retrieval, 4:5–31, 2001.

1200

