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Abstract

Sparse coding consists in representing signals as sparse linear combinations of atoms selected from
a dictionary. We consider an extension of this framework where the atoms are further assumed to
be embedded in a tree. This is achieved using a recently introduced tree-structured sparse regu-
larization norm, which has proven useful in several applications. This norm leads to regularized
problems that are difficult to optimize, and in this paper, wepropose efficient algorithms for solving
them. More precisely, we show that the proximal operator associated with this norm is computable
exactly via a dual approach that can be viewed as the composition of elementary proximal opera-
tors. Our procedure has a complexity linear, or close to linear, in the number of atoms, and allows
the use of accelerated gradient techniques to solve the tree-structured sparse approximation prob-
lem at the same computational cost as traditional ones usingtheℓ1-norm. Our method is efficient
and scales gracefully to millions of variables, which we illustrate in two types of applications:
first, we considerfixedhierarchical dictionaries of wavelets to denoise natural images. Then, we
apply our optimization tools in the context ofdictionary learning, where learned dictionary ele-
ments naturally self-organize in a prespecified arborescent structure, leading to better performance
in reconstruction of natural image patches. When applied to text documents, our method learns
hierarchies of topics, thus providing a competitive alternative to probabilistic topic models.

Keywords: Proximal methods, dictionary learning, structured sparsity, matrix factorization

1. Introduction

Modeling signals as sparse linear combinations of atoms selected from a dictionary has become
a popular paradigm in many fields, including signal processing, statistics, and machine learning.
This line of research, also known assparse coding, has witnessed the development of several well-
founded theoretical frameworks (Tibshirani, 1996; Chen et al., 1998;Mallat, 1999; Tropp, 2004,
2006; Wainwright, 2009; Bickel et al., 2009) and the emergence of many efficient algorithmic tools
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(Efron et al., 2004; Nesterov, 2007; Beck and Teboulle, 2009; Wright et al., 2009; Needell and
Tropp, 2009; Yuan et al., 2010).

In many applied settings, the structure of the problem at hand, such as, for example, the spatial
arrangement of the pixels in an image, or the presence of variables corresponding to several levels
of a given factor, induces relationships between dictionary elements. It isappealing to use this a
priori knowledge about the problemdirectly to constrain the possible sparsity patterns. For instance,
when the dictionary elements are partitioned into predefined groups corresponding to different types
of features, one can enforce a similar block structure in the sparsity pattern—that is, allow only
that either all elements of a group are part of the signal decomposition or that all are dismissed
simultaneously (see Yuan and Lin, 2006; Stojnic et al., 2009).

This example can be viewed as a particular instance ofstructured sparsity, which has been
lately the focus of a large amount of research (Baraniuk et al., 2010; Zhao et al., 2009; Huang et al.,
2009; Jacob et al., 2009; Jenatton et al., 2009; Micchelli et al., 2010). In this paper, we concentrate
on a specific form of structured sparsity, which we callhierarchical sparse coding: the dictionary
elements are assumed to be embedded in a directed treeT , and the sparsity patterns are constrained
to form aconnected and rooted subtreeof T (Donoho, 1997; Baraniuk, 1999; Baraniuk et al., 2002,
2010; Zhao et al., 2009; Huang et al., 2009). This setting extends more generally to a forest of
directed trees.1

In fact, such a hierarchical structure arises in many applications. Wavelet decompositions lend
themselves well to this tree organization because of their multiscale structure, and benefit from it for
image compression and denoising (Shapiro, 1993; Crouse et al., 1998; Baraniuk, 1999; Baraniuk
et al., 2002, 2010; He and Carin, 2009; Zhao et al., 2009; Huang et al.,2009). In the same vein,
edge filters of natural image patches can be represented in an arborescent fashion (Zoran and Weiss,
2009). Imposing these sparsity patterns has further proven useful in the context of hierarchical
variable selection, for example, when applied to kernel methods (Bach, 2008), to log-linear models
for the selection of potential orders (Schmidt and Murphy, 2010), and tobioinformatics, to exploit
the tree structure of gene networks for multi-task regression (Kim and Xing, 2010). Hierarchies of
latent variables, typically used in neural networks and deep learning architectures (see Bengio, 2009,
and references therein) have also emerged as a natural structure in several applications, notably to
model text documents. In particular, in the context oftopic models(Blei et al., 2003), a hierarchical
model of latent variables based on Bayesian non-parametric methods has been proposed by Blei
et al. (2010) to model hierarchies of topics.

To perform hierarchical sparse coding, our work builds upon the approach of Zhao et al. (2009)
who first introduced a sparsity-inducing normΩ leading to this type of tree-structured sparsity
pattern. We tackle the resulting nonsmooth convex optimization problem with proximal methods
(e.g., Nesterov, 2007; Beck and Teboulle, 2009; Wright et al., 2009; Combettes and Pesquet, 2010)
and we show in this paper that its key step, the computation of theproximal operator, can be
solved exactly with a complexity linear, or close to linear, in the number of dictionary elements—
that is, with the same complexity as for classicalℓ1-sparse decomposition problems (Tibshirani,
1996; Chen et al., 1998). Concretely, given anm-dimensional signalx along with a dictionary
D = [d1, . . . ,dp] ∈ R

m×p composed ofp atoms, the optimization problem at the core of our paper
can be written as

min
α∈Rp

1
2
‖x−Dα‖22+λΩ(α), with λ≥ 0.

1. A tree is defined as a connected graph that contains no cycle (see Ahuja et al., 1993).
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In this formulation, the sparsity-inducing normΩ encodes a hierarchical structure among the atoms
of D, where this structure is assumed to be known beforehand. The precise meaning ofhierarchical
structureand the definition ofΩ will be made more formal in the next sections. A particular instance
of this problem—known as theproximal problem—is central to our analysis and concentrates on
the case where the dictionaryD is orthogonal.

In addition to a speed benchmark that evaluates the performance of our proposed approach in
comparison with other convex optimization techniques, two types of applicationsand experiments
are considered. First, we consider settings where the dictionary is fixed and given a priori, corre-
sponding for instance to a basis of wavelets for the denoising of natural images. Second, we show
how one can take advantage of this hierarchical sparse coding in the context of dictionary learn-
ing (Olshausen and Field, 1997; Aharon et al., 2006; Mairal et al., 2010a), where the dictionary is
learned to adapt to the predefined tree structure. This extension of dictionary learning is notably
shown to share interesting connections with hierarchical probabilistic topic models.

To summarize, the contributions of this paper are threefold:

• We show that the proximal operator for a tree-structured sparse regularization can be com-
puted exactly in a finite number of operations using a dual approach. Our approach is equiva-
lent to computing a particular sequence of elementary proximal operators, and has a complex-
ity linear, or close to linear, in the number of variables. Accelerated gradient methods (e.g.,
Nesterov, 2007; Beck and Teboulle, 2009; Combettes and Pesquet, 2010) can then be applied
to solve large-scale tree-structured sparse decomposition problems at thesame computational
cost as traditional ones using theℓ1-norm.

• We propose to use this regularization scheme to learn dictionaries embeddedin a tree, which,
to the best of our knowledge, has not been done before in the context of structured sparsity.

• Our method establishes a bridge between hierarchical dictionary learningand hierarchical
topic models (Blei et al., 2010), which builds upon the interpretation of topic models as
multinomial PCA (Buntine, 2002), and can learn similar hierarchies of topics. This point
is discussed in Sections 5.5 and 6.

Note that this paper extends a shorter version published in the proceedings of the international
conference of machine learning (Jenatton et al., 2010).

1.1 Notation

Vectors are denoted by bold lower case letters and matrices by upper caseones. We define forq≥ 1
theℓq-norm of a vectorx in R

m as‖x‖q △
= (∑m

i=1 |xi |q)1/q, wherexi denotes thei-th coordinate ofx,

and‖x‖∞
△
= maxi=1,...,m|xi | = limq→∞ ‖x‖q. We also define theℓ0-pseudo-norm as the number of

nonzero elements in a vector:2 ‖x‖0 △
= #{i s.t. xi 6= 0} = limq→0+(∑m

i=1 |xi |q). We consider the

Frobenius norm of a matrixX in R
m×n: ‖X‖F △

= (∑m
i=1 ∑n

j=1X2
i j )

1/2, whereX i j denotes the entry

of X at row i and columnj. Finally, for a scalary, we denote(y)+
△
= max(y,0).

The rest of this paper is organized as follows: Section 2 presents relatedwork and the prob-
lem we consider. Section 3 is devoted to the algorithm we propose, and Section 4 introduces the

2. Note that it would be more proper to write‖x‖00 instead of‖x‖0 to be consistent with the traditional notation‖x‖q.
However, for the sake of simplicity, we will keep this notation unchanged in the rest of the paper.

2299



JENATTON, MAIRAL , OBOZINSKI AND BACH

dictionary learning framework and shows how it can be used with tree-structured norms. Section 5
presents several experiments demonstrating the effectiveness of our approach and Section 6 con-
cludes the paper.

2. Problem Statement and Related Work

Let us consider an input signal of dimensionm, typically an image described by itsmpixels, which
we represent by a vectorx in R

m. In traditional sparse coding, we seek to approximate this signal
by a sparse linear combination of atoms, or dictionary elements, representedhere by the columns of
a matrixD △

= [d1, . . . ,dp] in R
m×p. This can equivalently be expressed asx ≈ Dα for some sparse

vectorα in R
p, that is, such that the number of nonzero coefficients‖α‖0 is small compared top.

The vectorα is referred to as the code, or decomposition, of the signalx.

Figure 1: Example of a treeT whenp= 6. With the rule we consider for the nonzero patterns, if
we haveα5 6= 0, we must also haveαk 6= 0 for k in ancestors(5) = {1,3,5}.

In the rest of the paper, we focus on specific sets of nonzero coefficients—or simply, nonzero
patterns—for the decomposition vectorα. In particular, we assume that we are given a tree3 T
whosepnodes are indexed byj in {1, . . . , p}. We want the nonzero patterns ofα to form aconnected
and rooted subtreeof T ; in other words, if ancestors( j) ⊆ {1, . . . , p} denotes the set of indices
corresponding to the ancestors4 of the nodej in T (see Figure 1), the vectorα obeys the following
rule

α j 6= 0⇒ [αk 6= 0 for all k in ancestors( j) ]. (1)

Informally, we want to exploit the structure ofT in the following sense: the decomposition of any
signalx can involve a dictionary elementd j only if the ancestors ofd j in the treeT are themselves
part of the decomposition.

We now review previous work that has considered the sparse approximation problem with tree-
structured constraints (1). Similarly to traditional sparse coding, there arebasically two lines of
research, that either (A) deal with nonconvex and combinatorial formulations that are in general
computationally intractable and addressed with greedy algorithms, or (B) concentrate on convex
relaxations solved with convex programming methods.

3. Our analysis straightforwardly extends to the case of a forest of trees; for simplicity, we consider a single treeT .
4. We consider that the set of ancestors of a node also contains the nodeitself.
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2.1 Nonconvex Approaches

For a given sparsity levels≥ 0 (number of nonzero coefficients), the following nonconvex problem

min
α∈Rp

‖α‖0≤s

1
2
‖x−Dα‖22 such that condition (1) is respected, (2)

has been tackled by Baraniuk (1999); Baraniuk et al. (2002) in the context of wavelet approxima-
tions with a greedy procedure. A penalized version of problem (2) (thataddsλ‖α‖0 to the objec-
tive function in place of the constraint‖α‖0 ≤ s) has been considered by Donoho (1997), while
studying the more general problem of best approximation from dyadic partitions (see Section 6 in
Donoho, 1997). Interestingly, the algorithm we introduce in Section 3 shares conceptual links with
the dynamic-programming approach of Donoho (1997), which was also used by Baraniuk et al.
(2010), in the sense that the same order of traversal of the tree is used inboth procedures. We
investigate more thoroughly the relations between our algorithm and this approach in Appendix A.

Problem (2) has been further studied for structured compressive sensing (Baraniuk et al., 2010),
with a greedy algorithm that builds upon Needell and Tropp (2009). Finally, Huang et al. (2009)
have proposed a formulation related to (2), with a nonconvex penalty based on an information-
theoretic criterion.

2.2 Convex Approach

We now turn to a convex reformulation of the constraint (1), which is the starting point for the
convex optimization tools we develop in Section 3.

2.2.1 HIERARCHICAL SPARSITY-INDUCING NORMS

Condition (1) can be equivalently expressed by its contrapositive, thus leading to an intuitive way
of penalizing the vectorα to obtain tree-structured nonzero patterns. More precisely, defining
descendants( j) ⊆ {1, . . . , p} analogously to ancestors( j) for j in {1, . . . , p}, condition (1) amounts
to saying thatif a dictionary element is not used in the decomposition, its descendants in thetree
should not be used either. Formally, this can be formulated as:

α j = 0⇒ [αk = 0 for all k in descendants( j) ]. (3)

From now on, we denote byG the set defined byG
△
= {descendants( j); j ∈ {1, . . . , p}}, and refer to

each memberg of G as agroup(Figure 2). To obtain a decomposition with the desired property (3),
one can naturally penalize the number of groupsg in G that are “involved” in the decomposition
of x, that is, that record at least one nonzero coefficient ofα:

∑
g∈G

δg, with δg △
=

{

1 if there existsj ∈ g such thatα j 6= 0,

0 otherwise.
(4)

While this intuitive penalization is nonconvex (and not even continuous), a convex proxy has been
introduced by Zhao et al. (2009). It was further considered by Bach(2008); Kim and Xing (2010);
Schmidt and Murphy (2010) in several different contexts. For any vector α ∈ R

p, let us define

Ω(α) △
= ∑

g∈G
ωg‖α|g‖,
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whereα|g is the vector of sizep whose coordinates are equal to those ofα for indices in the setg,
and to 0 otherwise.5 The notation‖.‖ stands in practice either for theℓ2- or ℓ∞-norm, and(ωg)g∈G
denotes some positive weights.6 As analyzed by Zhao et al. (2009) and Jenatton et al. (2009),
when penalizing byΩ, some of the vectorsα|g are set to zero for someg ∈ G .7 Therefore, the
components ofα corresponding to some complete subtrees ofT are set to zero, which exactly
matches condition (3), as illustrated in Figure 2.

Figure 2: Left: example of a tree-structured set of groupsG (dashed contours in red), corresponding
to a treeT with p = 6 nodes represented by black circles. Right: example of a sparsity pattern
induced by the tree-structured norm corresponding toG : the groups{2,4},{4} and{6} are set to
zero, so that the corresponding nodes (in gray) that form subtrees of T are removed. The remaining
nonzero variables{1,3,5} form a rooted and connected subtree ofT . This sparsity pattern obeys
the following equivalent rules: (i) if a node is selected, the same goes for all its ancestors. (ii) if a
node is not selected, then its descendant are not selected.

Note that although we presented for simplicity this hierarchical norm in the context of a single
tree with a single element at each node, it can easily be extended to the case of forests of trees,
and/or trees containing arbitrary numbers of dictionary elements at each node (with nodes possibly
containing no dictionary element). More broadly, this formulation can be extended with the notion
of tree-structuredgroups, which we now present:

Definition 1 (Tree-structured set of groups.)
A set of groupsG

△
={g}g∈G is said to be tree-structured in{1, . . . , p}, if

⋃
g∈Gg= {1, . . . , p} and if

for all g,h∈G , (g∩h 6= /0)⇒ (g⊆ h or h⊆ g). For such a set of groups, there exists a (non-unique)
total order relation� such that:

g� h ⇒
{

g⊆ h or g∩h= /0
}

.

Given such a tree-structured set of groupsG and its associated normΩ, we are interested throughout
the paper in the following hierarchical sparse coding problem,

min
α∈Rp

f (α)+λΩ(α), (5)

5. Note the difference with the notationαg, which is often used in the literature on structured sparsity, whereαg is a
vector of size|g|.

6. For a complete definition ofΩ for any ℓq-norm, a discussion of the choice ofq, and a strategy for choosing the
weightsωg (see Zhao et al., 2009; Kim and Xing, 2010).

7. It has been further shown by Bach (2010) that the convex envelope of the nonconvex function of Equation (4) is in
fact Ω with ‖.‖ being theℓ∞-norm.
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whereΩ is the tree-structured norm we have previously introduced, the non-negative scalarλ is a
regularization parameter controlling the sparsity of the solutions of (5), andf a smooth convex loss
function (see Section 3 for more details about the smoothness assumptions onf ). In the rest of the
paper, we will mostly use the square lossf (α) = 1

2‖x−Dα‖22, with a dictionaryD in R
m×p, but the

formulation of Equation (5) extends beyond this context. In particular one can choosef to be the
logistic loss, which is commonly used for classification problems (e.g., see Hastieet al., 2009).

Before turning to optimization methods for the hierarchical sparse coding problem, we consider
a particular instance. Thesparse group Lassowas recently considered by Sprechmann et al. (2010)
and Friedman et al. (2010) as an extension of the group Lasso of Yuan and Lin (2006). To induce
sparsity both groupwise and within groups, Sprechmann et al. (2010) and Friedman et al. (2010)
add anℓ1 term to the regularization of the group Lasso, which given a partitionP of {1, . . . , p} in
disjoint groups yields a regularized problem of the form

min
α∈Rp

1
2
‖x−Dα‖22+λ ∑

g∈P
‖α|g‖2+λ′‖α‖1.

SinceP is a partition, the set of groups inP and the singletons form together a tree-structured set
of groups according to definition 1 and the algorithm we will develop is therefore applicable to this
problem.

2.2.2 OPTIMIZATION FOR HIERARCHICAL SPARSITY-INDUCING NORMS

While generic approaches like interior-point methods (Boyd and Vandenberghe, 2004) and subgra-
dient descent schemes (Bertsekas, 1999) might be used to deal with the nonsmooth normΩ, several
dedicated procedures have been proposed.

In Zhao et al. (2009), a boosting-like technique is used, with a path-following strategy in the
specific case where‖.‖ is theℓ∞-norm. Based on the variational equality

‖u‖1 = min
z∈Rp

+

1
2

[

p

∑
j=1

u2
j

z j
+z j

]

, (6)

Kim and Xing (2010) follow a reweighted least-square scheme that is well adapted to the square
loss function. To the best of our knowledge, a formulation of this type is however not available
when ‖.‖ is the ℓ∞-norm. In addition it requires an appropriate smoothing to become provably
convergent. The same approach is considered by Bach (2008), but built upon an active-set strategy.
Other proposed methods consist of a projected gradient descent with approximate projections onto
the ball{u ∈ R

p; Ω(u) ≤ λ} (Schmidt and Murphy, 2010), and an augmented-Lagrangian based
technique (Sprechmann et al., 2010) for solving a particular case with two-level hierarchies.

While the previously listed first-order approaches are (1) loss-functiondependent, and/or (2)
not guaranteed to achieve optimal convergence rates, and/or (3) not able to yield sparse solutions
without a somewhat arbitrary post-processing step, we propose to resort to proximal methods8 that
do not suffer from any of these drawbacks.

8. Note that the authors of Chen et al. (2010) have considered proximal methods for general group structureG when
‖.‖ is theℓ2-norm; due to a smoothing of the regularization term, the convergence rate they obtained is suboptimal.
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3. Optimization

We begin with a brief introduction to proximal methods, necessary to presentour contributions.
From now on, we assume thatf is convex and continuously differentiable with Lipschitz-continuous
gradient. It is worth mentioning that there exist various proximal schemes in the literature that differ
in their settings (e.g., batch versus stochastic) and/or the assumptions made onf . For instance, the
material we develop in this paper could also be applied to online/stochastic frameworks (Duchi and
Singer, 2009; Hu et al., 2009; Xiao, 2010) and to possibly nonsmooth functions f (e.g., Duchi and
Singer, 2009; Xiao, 2010; Combettes and Pesquet, 2010, and references therein). Finally, most of
the technical proofs of this section are presented in Appendix B for readability.

3.1 Proximal Operator for the Norm Ω

Proximal methods have drawn increasing attention in the signal processing (e.g., Becker et al., 2009;
Wright et al., 2009; Combettes and Pesquet, 2010, and numerous references therein) and the ma-
chine learning communities (e.g., Bach et al., 2011, and references therein), especially because of
their convergence rates (optimal for the class of first-order techniques) and their ability to deal with
large nonsmooth convex problems (e.g., Nesterov, 2007; Beck and Teboulle, 2009). In a nutshell,
these methods can be seen as a natural extension of gradient-based techniques when the objective
function to minimize has a nonsmooth part. Proximal methods are iterative procedures. The sim-
plest version of this class of methods linearizes at each iteration the functionf around the current
estimateα̂, and this estimate is updated as the (unique by strong convexity) solution of theproximal
problem, defined as follows:

min
α∈Rp

f (α̂)+(α− α̂)⊤∇f (α̂)+λΩ(α)+
L
2
‖α− α̂‖22.

The quadratic term keeps the update in a neighborhood wheref is close to its linear approximation,
andL>0 is a parameter which is an upper bound on the Lipschitz constant of∇ f . This problem
can be equivalently rewritten as:

min
α∈Rp

1
2

∥

∥

∥
α−

(

α̂− 1
L

∇f (α̂)
)

∥

∥

∥

2

2
+

λ
L

Ω(α).

Solvingefficientlyandexactlythis problem is crucial to enjoy the fast convergence rates of proximal
methods. In addition, when the nonsmooth termΩ is not present, the previous proximal problem
exactly leads to the standard gradient update rule. More generally, we define theproximal operator:

Definition 2 (Proximal Operator)
The proximal operator associated with our regularization termλΩ, which we denote by ProxλΩ, is
the function that maps a vectoru ∈ R

p to the unique solution of

min
v∈Rp

1
2
‖u−v‖22+λΩ(v). (7)

This operator was initially introduced by Moreau (1962) to generalize the projection operator onto
a convex set. What makes proximal methods appealing for solving sparse decomposition problems
is that this operator can be often computed in closed-form. For instance,
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• When Ω is the ℓ1-norm—that is,Ω(u) = ‖u‖1, the proximal operator is the well-known
elementwise soft-thresholding operator,

∀ j ∈ {1, . . . , p}, u j 7→ sign(u j)(|u j |−λ)+ =

{

0 if |u j | ≤ λ
sign(u j)(|u j |−λ) otherwise.

• WhenΩ is a group-Lasso penalty withℓ2-norms—that is,Ω(u) = ∑g∈G ‖u|g‖2, with G being
a partition of{1, . . . , p}, the proximal problem isseparablein every group, and the solution
is a generalization of the soft-thresholding operator to groups of variables:

∀g∈ G ,u|g 7→ u|g−Π‖.‖2≤λ[u|g] =

{

0 if ‖u|g‖2≤ λ
‖u|g‖2−λ
‖u|g‖2 u|g otherwise,

whereΠ‖.‖2≤λ denotes the orthogonal projection onto the ball of theℓ2-norm of radiusλ.

• WhenΩ is a group-Lasso penalty withℓ∞-norms—that is,Ω(u) = ∑g∈G ‖u|g‖∞, the solution
is also a group-thresholding operator:

∀g∈ G , u|g 7→ u|g−Π‖.‖1≤λ[u|g],

whereΠ‖.‖1≤λ denotes the orthogonal projection onto theℓ1-ball of radiusλ, which can be
solved inO(p) operations (Brucker, 1984; Maculan and Galdino de Paula, 1989). Note that
when‖u|g‖1≤ λ, we have a group-thresholding effect, withu|g−Π‖.‖1≤λ[u|g] = 0.

More generally, a classical result (see, e.g., Combettes and Pesquet, 2010; Wright et al., 2009) says
that the proximal operator for a norm‖.‖ can be computed as the residual of the projection of a

vector onto a ball of the dual-norm denoted by‖.‖∗, and defined for any vectorκ in R
p by ‖κ‖∗ △

=
max‖z‖≤1z⊤κ.9 This is a classical duality result for proximal operators leading to the different
closed forms we have just presented. We have indeed that Proxλ‖.‖2 = Id−Π‖.‖2≤λ and Proxλ‖.‖∞ =
Id−Π‖.‖1≤λ, where Id stands for the identity operator. Obtaining closed forms is, however, not
possible anymore as soon as some groups inG overlap, which is always the case in our hierarchical
setting with tree-structured groups.

3.2 A Dual Formulation of the Proximal Problem

We now show that Equation (7) can be solved using a dual approach, asdescribed in the following
lemma. The result relies on conic duality (Boyd and Vandenberghe, 2004),and does not make any
assumption on the choice of the norm‖.‖:

Lemma 3 (Dual of the proximal problem)
Letu ∈ R

p and let us consider the problem

max
ξ∈Rp×|G |

−1
2

[∥

∥

∥
u− ∑

g∈G
ξg
∥

∥

∥

2

2
−‖u‖22

]

s.t.∀g∈ G , ‖ξg‖∗ ≤ λωg and ξg
j = 0 if j /∈ g,

(8)

9. It is easy to show that the dual norm of theℓ2-norm is theℓ2-norm itself. The dual norm of theℓ∞ is theℓ1-norm.
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whereξ = (ξg)g∈G and ξg
j denotes the j-th coordinate of the vectorξg in R

p. Then, problems (7)
and (8) are dual to each other and strong duality holds. In addition, the pair of primal-dual vari-
ables{v,ξ} is optimal if and only ifξ is a feasible point of the optimization problem (8), and

v = u−∑g∈G ξg and ∀g∈ G , ξg = Π‖.‖∗≤λωg
(v|g+ξg), (9)

where we denote byΠ‖.‖∗≤λωg
the orthogonal projection onto the ball{κ ∈ R

p; ‖κ‖∗ ≤ λωg}.
Note that we focus here on specific tree-structured groups, but the previous lemma is valid regard-
less of the nature ofG . The rationale of introducing such a dual formulation is to consider an
equivalent problem to (7) that removes the issue of overlapping groupsat the cost of a larger num-
ber of variables. In Equation (7), one is indeed looking for a vectorv of size p, whereas one is
considering a matrixξ in R

p×|G | in Equation (8) with∑g∈G |g| nonzero entries, but with separable
(convex) constraints for each of its columns.

This specific structure makes it possible to use block coordinate ascent (Bertsekas, 1999). Such
a procedure is presented in Algorithm 1. It optimizes sequentially Equation (8) with respect to the
variableξg, while keeping fixed the other variablesξh, for h 6= g. It is easy to see from Equation (8)
that such an update of a columnξg, for a groupg in G , amounts to computing the orthogonal
projection of the vectoru|g−∑h6=g ξh

|g onto the ball of radiusλωg of the dual norm‖.‖∗.

Algorithm 1 Block coordinate ascent in the dual

Inputs:u ∈ R
p and set of groupsG .

Outputs:(v,ξ) (primal-dual solutions).
Initialization: ξ = 0.
while ( maximum number of iterations not reached) do

for g∈ G do
ξg←Π‖.‖∗≤λωg

(
[

u−∑h6=g ξh]

|g).
end for

end while
v← u−∑g∈G ξg.

3.3 Convergence in One Pass

In general, Algorithm 1 is not guaranteed to solve exactly Equation (7) in a finite number of itera-
tions. However, when‖.‖ is theℓ2- or ℓ∞-norm, and provided that the groups inG are appropriately
ordered, we now prove that onlyone passof Algorithm 1, that is, only one iteration over all groups,
is sufficient to obtain the exact solution of Equation (7). This result constitutes the main technical
contribution of the paper and is the key for the efficiency of our procedure.

Before stating this result, we need to introduce a lemma showing that, given two nested groups
g,h such thatg⊆ h⊆ {1, . . . , p}, if ξg is updated beforeξh in Algorithm 1, then the optimality
condition forξg is not perturbed by the update ofξh.

Lemma 4 (Projections with nested groups)
Let ‖.‖ denote either theℓ2- or ℓ∞-norm, and g and h be two nested groups—that is, g⊆ h ⊆
{1, . . . , p}. Letu be a vector inRp, and let us consider the successive projections

ξg △
= Π‖.‖∗≤tg(u|g) and ξh △

= Π‖.‖∗≤th(u|h−ξg),
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with tg, th > 0. Let us introducev = u−ξg−ξh. The following relationships hold

ξg = Π‖.‖∗≤tg(v|g+ξg) and ξh = Π‖.‖∗≤th(v|h+ξh).

The previous lemma establishes the convergence in one pass of Algorithm 1 in the case whereG
only contains two nested groupsg⊆ h, provided thatξg is computed beforeξh. Let us illustrate
this fact more concretely. After initializingξg andξh to zero, Algorithm 1 first updatesξg with
the formulaξg←Π‖.‖∗≤λωg

(u|g), and then performs the following update:ξh←Π‖.‖∗≤λωh
(u|h−ξg)

(where we have used thatξg = ξg
|h sinceg⊆ h). We are now in position to apply Lemma 4 which

states that the primal/dual variables{v,ξg,ξh} satisfy the optimality conditions (9), as described in
Lemma 3. In only one pass over the groups{g,h}, we have in fact reached a solution of the dual
formulation presented in Equation (8), and in particular, the solution of the proximal problem (7).

In the following proposition, this lemma is extended to general tree-structuredsets of groupsG :

Proposition 5 (Convergence in one pass)
Suppose that the groups inG are ordered according to the total order relation� of Definition 1,
and that the norm‖.‖ is either theℓ2- or ℓ∞-norm. Then, after initializingξ to 0, a single pass of
Algorithm 1 overG with the order� yields the solution of the proximal problem (7).

Proof The proof largely relies on Lemma 4 and proceeds by induction. By definitionof Algo-
rithm 1, the feasibility ofξ is always guaranteed. We consider the following induction hypothesis

H (h)
△
=
{

∀g� h, it holds thatξg = Π‖.‖∗≤λωg
([u−∑g′�hξg′ ]|g+ξg)

}

.

Since the dual variablesξ are initially equal to zero, the summation overg′ � h, g′ 6= g is equivalent
to a summation overg′ 6= g. We initialize the induction with the first group inG , that, by definition
of�, does not contain any other group. The first step of Algorithm 1 easily shows that the induction
hypothesisH is satisfied for this first group.

We now assume thatH (h) is true and consider the next grouph′, h� h′, in order to prove that
H (h′) is also satisfied. We have for each groupg⊆ h,

ξg = Π‖.‖∗≤λωg
([u−∑g′�hξg′ ]|g+ξg) = Π‖.‖∗≤λωg

([u−∑g′�hξg′+ξg]|g).

Sinceξg
|h′ = ξg for g⊆ h′, we have

[u−∑g′�hξg′ ]|h′ = [u−∑g′�hξg′ ]|h′+ξg−ξg = [u−∑g′�hξg′+ξg]|h′−ξg,

and following the update rule for the grouph′,

ξh′ = Π‖.‖∗≤λωh′ ([u−∑g′�hξg′ ]|h′) = Π‖.‖∗≤λωh′ ([u−∑g′�hξg′+ξg]|h′−ξg).

At this point, we can apply Lemma 4 for each groupg⊆ h, which proves that the induction hy-
pothesisH (h′) is true. Let us introducev △

= u−∑g∈G ξg. We have shown that for allg in G ,
ξg = Π‖.‖∗≤λωg

(v|g+ξg). As a result, the pair{v,ξ} satisfies the optimality conditions (9) of prob-
lem (8). Therefore, after one complete pass overg∈ G , the primal/dual pair{v,ξ} is optimal, and
in particular,v is the solution of problem (7).
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Using conic duality, we have derived a dual formulation of the proximal operator, leading to Algo-
rithm 1 which is generic and works for any norm‖.‖, as long as one is able to perform projections
onto balls of the dual norm‖.‖∗. We have further shown that when‖.‖ is theℓ2- or theℓ∞-norm, a
single pass provides the exact solution when the groupsG are correctly ordered. We show however
in Appendix C, that, perhaps surprisingly, the conclusions of Proposition5 do not hold for general
ℓq-norms, ifq /∈ {1,2,∞}. Next, we give another interpretation of this result.

3.4 Interpretation in Terms of Composition of Proximal Operators

In Algorithm 1, since all the vectorsξg are initialized to0, when the groupg is considered, we
have by inductionu−∑h6=g ξh = u−∑h�g ξh. Thus, to maintain at each iteration of the inner loop

v = u−∑h6=g ξh one can instead updatev after updatingξg according tov← v− ξg. Moreover,
sinceξg is no longer needed in the algorithm, and since only the entries ofv indexed byg are
updated, we can combine the two updates intov|g← v|g−Π‖.‖∗≤λωg

(v|g), leading to a simplified
Algorithm 2 equivalent to Algorithm 1.

Algorithm 2 Practical Computation of the Proximal Operator forℓ2- or ℓ∞-norms.

Inputs:u ∈ R
p and an ordered tree-structured set of groupsG .

Outputs:v (primal solution).
Initialization: v = u.
for g∈ G , following the order�, do

v|g← v|g−Π‖.‖∗≤λωg
(v|g).

end for

Actually, in light of the classical relationship between proximal operator andprojection (as
discussed in Section 3.1), it is easy to show that each updatev|g← v|g−Π‖.‖∗≤λωg

(v|g) is equivalent
to v|g← Proxλωg‖.‖[v|g]. To simplify the notations, we define the proximal operator for a groupg in

G as Proxg(u) △
= Proxλωg‖.‖(u|g) for every vectoru in R

p.
Thus, Algorithm 2 in fact performs a sequence of|G | proximal operators, and we have shown

the following corollary of Proposition 5:

Corollary 6 (Composition of Proximal Operators)
Let g1 4 . . . 4 gm such thatG = {g1, . . . ,gm}. The proximal operator ProxλΩ associated with the
normΩ can be written as the composition of elementary operators:

ProxλΩ = Proxgm ◦ . . .◦Proxg1.

3.5 Efficient Implementation and Complexity

Since Algorithm 2 involves|G | projections on the dual balls (respectively theℓ2- and theℓ1-balls
for theℓ2- andℓ∞-norms) of vectors inRp, in a first approximation, its complexity is at mostO(p2),
because each of these projections can be computed inO(p) operations (Brucker, 1984; Maculan
and Galdino de Paula, 1989). But in fact, the algorithm performs one projection for each groupg

involving |g| variables, and the total complexity is thereforeO
(

∑g∈G |g|
)

. By noticing that ifg

andh are two groups with the same depth in the tree, theng∩ h = /0, it is easy to show that the
number of variables involved in all the projections is less than or equal todp, whered is the depth
of the tree:
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Algorithm 3 Fast computation of the Proximal operator forℓ2-norm case.

Require: u ∈ R
p (input vector), set of groupsG , (ωg)g∈G (positive weights), andg0 (root of the

tree).
1: Variables:ρ = (ρg)g∈G in R

|G | (scaling factors);v in R
p (output, primal variable).

2: computeSqNorm (g0).
3: recursiveScaling (g0,1).
4: Return v (primal solution).

ProcedurecomputeSqNorm (g)

1: Compute the squared norm of the group:ηg←‖uroot(g)‖22+∑h∈children(g) computeSqNorm (h).
2: Compute the scaling factor of the group:ρg←

(

1−λωg/
√ηg

)

+
.

3: Return ηgρ2
g.

ProcedurerecursiveScaling (g,t)

1: ρg← tρg.
2: vroot(g)← ρguroot(g).
3: for h∈ children(g) do
4: recursiveScaling (h,ρg).
5: end for

Lemma 7 (Complexity of Algorithm 2)
Algorithm 2 gives the solution of the primal problem Equation (7) in O(pd) operations, where d is
the depth of the tree.

Lemma 7 should not suggest that the complexity is linear inp, sinced could depend ofp as well,
and in the worst case the hierarchy is a chain, yieldingd = p− 1. However, in a balanced tree,
d = O(log(p)). In practice, the structures we have considered experimentally are relatively flat,
with a depth not exceedingd = 5, and the complexity is therefore almost linear.

Moreover, in the case of theℓ2-norm, it is actually possible to propose an algorithm with com-
plexity O(p). Indeed, in that case each of the proximal operators Proxg is a scaling operation:
v|g←

(

1−λωg/‖v|g‖2
)

+
v|g. The composition of these operators in Algorithm 1 thus corresponds

to performing sequences of scaling operations. The idea behind Algorithm3 is that the correspond-
ing scaling factors depend only on the norms of the successive residualsof the projections and that
these norms can be computed recursively in one pass through all nodes inO(p) operations; finally,
computing and applying all scalings to each entry takes then againO(p) operations.

To formulate the algorithm, two new notations are used: for a groupg inG , we denote by root(g)
the indices of the variables that are at the root of the subtree corresponding tog,10 and by children(g)
the set of groups that are the children of root(g) in the tree. For example, in the tree presented
in Figure 2, root({3,5,6})={3}, root({1,2,3,4,5,6})={1}, children({3,5,6})={{5},{6}}, and
children({1,2,3,4,5,6})={{2,4},{3,5,6}}. Note that all the groups of children(g) are necessarily
included ing. The next lemma is proved in Appendix B.

Lemma 8 (Correctness and complexity of Algorithm 3)
When‖.‖ is chosen to be theℓ2-norm, Algorithm 3 gives the solution of the primal problem Equa-
tion (7) in O(p) operations.

10. As a reminder, root(g) is not a singleton when several dictionary elements are considered per node.
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So far the dictionaryD was fixed to be for example a wavelet basis. In the next section, we apply
the tools we developed for solving efficiently problem (5) to learn a dictionary D adapted to our
hierarchical sparse coding formulation.

4. Application to Dictionary Learning

We start by briefly describing dictionary learning.

4.1 The Dictionary Learning Framework

Let us consider a setX = [x1, . . . ,xn] in R
m×n of n signals of dimensionm. Dictionary learning is a

matrix factorization problem which aims at representing these signals as linearcombinations of the
dictionary elements, that are the columns of a matrixD = [d1, . . . ,dp] in R

m×p. More precisely, the
dictionaryD is learnedalong with a matrix of decomposition coefficientsA = [α1, . . . ,αn] in R

p×n,
so thatxi ≈ Dαi for every signalxi .

While learning simultaneouslyD and A, one may want to encode specific prior knowledge
about the problem at hand, such as, for example, the positivity of the decomposition (Lee and
Seung, 1999), or the sparsity ofA (Olshausen and Field, 1997; Aharon et al., 2006; Lee et al., 2007;
Mairal et al., 2010a). This leads to penalizing or constraining(D,A) and results in the following
formulation:

min
D∈D,A∈A

1
n

n

∑
i=1

[1
2
‖xi−Dαi‖22+λΨ(αi)

]

, (10)

whereA andD denote two convex sets andΨ is a regularization term, usually a norm or a squared
norm, whose effect is controlled by the regularization parameterλ> 0. Note thatD is assumed to be
bounded to avoid any degenerate solutions of Problem (10). For instance, the standard sparse coding
formulation takesΨ to be theℓ1-norm,D to be the set of matrices inRm×p whose columns have
unit ℓ2-norm, withA = R

p×n (Olshausen and Field, 1997; Lee et al., 2007; Mairal et al., 2010a).
However, this classical setting treats each dictionary element independentlyfrom the others, and

does not exploit possible relationships between them. To embed the dictionaryin a tree structure,
we therefore replace theℓ1-norm by our hierarchical norm and setΨ = Ω in Equation (10).

A question of interest is whether hierarchical priors are more appropriate in supervised settings
or in the matrix-factorization context in which we use it. It is not so common in the supervised
setting to have strong prior information that allows us to organize the featuresin a hierarchy. On
the contrary, in the case of dictionary learning, since the atoms are learned, one can argue that the
dictionary elements learned willhave tomatch well the hierarchical prior that is imposed by the
regularization. In other words, combining structured regularization with dictionary learning has
precisely the advantage that the dictionary elements willself-organizeto match the prior.

4.2 Learning the Dictionary

Optimization for dictionary learning has already been intensively studied. Wechoose in this paper a
typical alternating scheme, which optimizes in turnD andA = [α1, . . . ,αn] while keeping the other
variable fixed (Aharon et al., 2006; Lee et al., 2007; Mairal et al., 2010a).11 Of course, the convex
optimization tools we develop in this paper do not change the intrinsic non-convex nature of the

11. Note that although we use this classical scheme for simplicity, it would also be possible to use the stochastic approach
proposed by Mairal et al. (2010a).
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dictionary learning problem. However, they solve the underlying convex subproblems efficiently,
which is crucial to yield good results in practice. In the next section, we report good performance
on some applied problems, and we show empirically that our algorithm is stable and does not seem
to get trapped in bad local minima. The main difficulty of our problem lies in the optimization of
the vectorsαi , i in {1, . . . ,n}, for the dictionaryD kept fixed. Because ofΩ, the corresponding
convex subproblem is nonsmooth and has to be solved for each of then signals considered. The
optimization of the dictionaryD (for A fixed), which we discuss first, is in general easier.

4.2.1 UPDATING THE DICTIONARY D

We follow the matrix-inversion free procedure of Mairal et al. (2010a) toupdate the dictionary.
This method consists in iterating block-coordinate descent over the columns of D. Specifically, we
assume that the domain setD has the form

Dµ
△
= {D ∈ R

m×p, µ‖d j‖1+(1−µ)‖d j‖22≤ 1, for all j ∈ {1, . . . , p}}, (11)

or D+
µ

△
= Dµ∩Rm×p

+ , with µ ∈ [0,1]. The choice for these particular domain sets is motivated
by the experiments of Section 5. For natural image patches, the dictionary elements are usually
constrained to be in the unitℓ2-norm ball (i.e.,D = D0), while for topic modeling, the dictionary
elements are distributions of words and therefore belong to the simplex (i.e.,D =D+

1 ). The update
of each dictionary element amounts to performing a Euclidean projection, which can be computed
efficiently (Mairal et al., 2010a). Concerning the stopping criterion, we follow the strategy from the
same authors and go over the columns ofD only a few times, typically 5 times in our experiments.
Although we have not explored locality constraints on the dictionary elements,these have been
shown to be particularly relevant to some applications such as patch-basedimage classification (Yu
et al., 2009). Combining tree structure and locality constraints is an interestingfuture research.

4.2.2 UPDATING THE VECTORSαi

The procedure for updating the columns ofA is based on the results derived in Section 3.3. Further-
more, positivity constraints can be added on the domain ofA, by noticing that for our normΩ and
any vectoru in R

p, adding these constraints when computing the proximal operator is equivalent
to solving minv∈Rp

1
2‖[u]+− v‖22 + λΩ(v). This equivalence is proved in Appendix B.6. We will

indeed use positive decompositions to model text corpora in Section 5. Note that by constraining
the decompositionsαi to be nonnegative, some entriesαi

j may be set to zero in addition to those
already zeroed out by the normΩ. As a result, the sparsity patterns obtained in this way might not
satisfy the tree-structured condition (1) anymore.

5. Experiments

We next turn to the experimental validation of our hierarchical sparse coding.

5.1 Implementation Details

In Section 3.3, we have shown that the proximal operator associated toΩ can be computed exactly
and efficiently. The problem is therefore amenable to fast proximal algorithms that are well suited to
nonsmooth convex optimization. Specifically, we tried the accelerated scheme from both Nesterov
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(2007) and Beck and Teboulle (2009), and finally opted for the latter since, for a comparable level of
precision, fewer calls of the proximal operator are required. The basicproximal scheme presented
in Section 3.1 is formalized by Beck and Teboulle (2009) as an algorithm calledISTA; the same
authors propose moreover an accelerated variant, FISTA, which is a similar procedure, except that
the operator is not directly applied on the current estimate, but on an auxiliary sequence of points
that are linear combinations of past estimates. This latter algorithm has an optimalconvergence
rate in the class of first-order techniques, and also allows for warm restarts, which is crucial in the
alternating scheme of dictionary learning.12

Finally, we monitor the convergence of the algorithm by checking the relativedecrease in the
cost function.13 Unless otherwise specified, all the algorithms used in the following experiments
are implemented inC/C++ , with a Matlab interface. Our implementation is freely available at
http://www.di.ens.fr/willow/SPAMS/ .

5.2 Speed Benchmark

To begin with, we conduct speed comparisons between our approach and other convex programming
methods, in the setting whereΩ is chosen to be a linear combination ofℓ2-norms. The algorithms
that take part in the following benchmark are:
• Proximal methods, with ISTA and the accelerated FISTA methods (Beck andTeboulle, 2009).
• A reweighted-least-square scheme (Re-ℓ2), as described by Jenatton et al. (2009); Kim and Xing

(2010). This approach is adapted to the square loss, since closed-form updates can be used.14

• Subgradient descent, whose step size is taken to be equal either toa/(k+b) or a/(
√

k+b) (re-
spectively referred to as SG and SGsqrt), wherek is the iteration number, and(a,b) are the best15

parameters selected on the logarithmic grid(a,b) ∈ {10−4, . . . ,103}×{10−2, . . . ,105}.
• A commercial software (Mosek, available athttp://www.mosek.com/ ) for second-order cone

programming (SOCP).
Moreover, the experiments we carry out cover various settings, with notably different sparsity
regimes, that is, low, medium and high, respectively corresponding to about 50%,10% and 1%
of the total number of dictionary elements. Eventually, all reported results are obtained on a single
core of a 3.07Ghz CPU with 8GB of memory.

5.2.1 HIERARCHICAL DICTIONARY OF NATURAL IMAGE PATCHES

In this first benchmark, we consider a least-squares regression problem regularized byΩ that arises
in the context of denoising of natural image patches, as further exposedin Section 5.4. In particular,
based on a hierarchical dictionary, we seek to reconstruct noisy 16×16-patches. The dictionary we
use is represented on Figure 7. Although the problem involves a small number of variables, that
is, p= 151 dictionary elements, it has to be solved repeatedly for tens of thousands of patches, at
moderate precision. It is therefore crucial to be able to solve this problem quickly and efficiently.

12. Unless otherwise specified, the initial stepsize in ISTA/FISTA is chosenas the maximum eigenvalue of the sampling
covariance matrix divided by 100, while the growth factor in the line searchis set to 1.5.

13. We are currently investigating algorithms for computing duality gaps based on network flow optimization tools
(Mairal et al., 2010b).

14. The computation of the updates related to the variational formulation (6)also benefits from the hierarchical structure
of G , and can be performed inO(p) operations.

15. “The best step size” is understood as being the step size leading to the smallest cost function after 500 iterations.
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Figure 3: Benchmark for solving a least-squares regression problem regularized by the hierarchical
normΩ. The experiment is small scale,m= 256, p= 151, and shows the performances of six opti-
mization methods (see main text for details) for three levels of regularization. The curves represent
the relative value of the objective to the optimal value as a function of the computational time in
second on a log10/ log10 scale. All reported results are obtained by averaging 5 runs.

We can draw several conclusions from the results of the simulations reported in Figure 3. First,
we observe that in most cases, the accelerated proximal scheme performsbetter than the other
approaches. In addition, unlike FISTA, ISTA seems to suffer in non-sparse scenarios. In the least
sparse setting, the reweighted-ℓ2 scheme is the only method that competes with FISTA. It is however
not able to yield truly sparse solutions, and would therefore need a subsequent (somewhat arbitrary)
thresholding operation. As expected, the generic techniques such as SGand SOCP do not compete
with dedicated algorithms.
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Figure 4: Benchmark for solving a large-scale multi-class classification problem for four optimiza-
tion methods (see details about the data sets and the methods in the main text). Three levels of
regularization are considered. The curves represent the relative value of the objective to the optimal
value as a function of the computational time in second on a log10/ log10 scale. In the highly regu-
larized setting, tuning the step-size for the subgradient turned out to be difficult, which explains the
behavior of SG in the first iterations.
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5.2.2 MULTI -CLASS CLASSIFICATION OF CANCER DIAGNOSIS

The second benchmark explores a different supervised learning setting, where f is no longer the
square loss function. The goal is to demonstrate that our optimization tools apply in various scenar-
ios, beyond traditional sparse approximation problems. To this end, we consider a gene expression
data set16 in the context of cancer diagnosis. More precisely, we focus on a multi-class classifica-
tion problem where the numberm of samples to be classified is small compared to the numberp of
gene expressions that characterize these samples. Each atom thus corresponds to a gene expression
across themsamples, whose class labels are recorded in the vectorx in R

m.
The data set containsm= 308 samples,p = 30017 variables and 26 classes. In addition, the

data exhibit highly-correlated dictionary elements. Inspired by Kim and Xing(2010), we build the
tree-structured set of groupsG using Ward’s hierarchical clustering (Johnson, 1967) on the gene
expressions. The normΩ built in this way aims at capturing the hierarchical structure of gene
expression networks (Kim and Xing, 2010).

Instead of the square loss function, we consider the multinomial logistic loss function that is
better suited to deal with multi-class classification problems (see, e.g., Hastie et al., 2009). As
a direct consequence, algorithms whose applicability crucially depends onthe choice of the loss
function f are removed from the benchmark. This is the case with reweighted-ℓ2 schemes that do
not have closed-form updates anymore. Importantly, the choice of the multinomial logistic loss
function leads to an optimization problem over a matrix with dimensionsp times the number of
classes (i.e., a total of 30017× 26≈ 780000 variables). Also, due to scalability issues, generic
interior point solvers could not be considered here.

The results in Figure 4 highlight that the accelerated proximal scheme performs overall better
that the two other methods. Again, it is important to note that both proximal algorithms yield sparse
solutions, which is not the case for SG.

5.3 Denoising with Tree-Structured Wavelets

We demonstrate in this section how a tree-structured sparse regularization can improve classical
wavelet representation, and how our method can be used to efficiently solve the corresponding large-
scale optimization problems. We consider two wavelet orthonormal bases, Haar and Daubechies3
(see Mallat, 1999), and choose a classical quad-tree structure on the coefficients, which has notably
proven to be useful for image compression problems (Baraniuk, 1999).This experiment follows
the approach of Zhao et al. (2009) who used the same tree-structured regularization in the case
of small one-dimensional signals, and the approach of Baraniuk et al. (2010) and Huang et al.
(2009) images where images were reconstructed from compressed sensing measurements with a
hierarchical nonconvex penalty.

We compare the performance for image denoising of both nonconvex and convex approaches.
Specifically, we consider the following formulation

min
α∈Rm

1
2
‖x−Dα‖22+λψ(α) = min

α∈Rm

1
2
‖D⊤x−α‖22+λψ(α),

whereD is one of the orthonormal wavelet basis mentioned above,x is the input noisy image,Dα
is the estimate of the denoised image, andψ is a sparsity-inducing regularization. Note that in this
case,m= p. We first consider classical settings whereψ is either theℓ1-norm— this leads to the

16. The data set we use is14 Tumors, which is freely available athttp://www.gems-system.org/ .
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wavelet soft-thresholding method of Donoho and Johnstone (1995)—ortheℓ0-pseudo-norm, whose
solution can be obtained by hard-thresholding (see Mallat, 1999). Then,we consider the convex
tree-structured regularizationΩ defined as a sum ofℓ2-norms (ℓ∞-norms), which we denote byΩℓ2

(respectivelyΩℓ∞). Since the basis is here orthonormal, solving the corresponding decomposition
problems amounts to computing a single instance of the proximal operator. As a result, whenψ
is Ωℓ2, we use Algorithm 3 and forΩℓ∞ , Algorithm 2 is applied. Finally, we consider the nonconvex
tree-structured regularization used by Baraniuk et al. (2010) denotedhere byℓtree

0 , which we have
presented in Equation (4); the implementation details forℓtree

0 can be found in Appendix A.

Haar
σ ℓ0 [0.0012] ℓtree

0 [0.0098] ℓ1 [0.0016] Ωℓ2 [0.0125] Ωℓ∞ [0.0221]

PSNR

5 34.48 34.78 35.52 35.89 35.79
10 29.63 30.24 30.74 31.40 31.23
25 24.44 25.27 25.30 26.41 26.14
50 21.53 22.37 20.42 23.41 23.05
100 19.27 20.09 19.43 20.97 20.58

IPSNR

5 - .30± .23 1.04± .31 1.41± .45 1.31± .41
10 - .60± .24 1.10± .22 1.76± .26 1.59± .22
25 - .83± .13 .86± .35 1.96± .22 1.69± .21
50 - .84± .18 .46± .28 1.87± .20 1.51± .20
100 - .82± .14 .15± .23 1.69± .19 1.30± .19

Daub3
σ ℓ0 [0.0013] ℓtree

0 [0.0099] ℓ1 [0.0017] Ωℓ2 [0.0129] Ωℓ∞ [0.0204]

PSNR

5 34.64 34.95 35.74 36.14 36.00
10 30.03 30.63 31.10 31.79 31.56
25 25.04 25.84 25.76 26.90 26.54
50 22.09 22.90 22.42 23.90 23.41
100 19.56 20.45 19.67 21.40 20.87

IPSNR

5 - .31± .21 1.10± .23 1.49± .34 1.36± .31
10 - .60± .16 1.06± .25 1.76± .19 1.53± .17
25 - .80± .10 .71± .28 1.85± .17 1.50± .18
50 - .81± .15 .33± .24 1.80± .11 1.33± .12
100 - .89± .13 0.11± .24 1.82± .24 1.30± .17

Table 1: Top part of the tables: Average PSNR measured for the denoising of 12 standard im-
ages, when the wavelets are Haar or Daubechies3 wavelets (see Mallat, 1999), for two nonconvex
approaches (ℓ0 andℓtree

0 ) and three different convex regularizations—that is, theℓ1-norm, the tree-
structured sum ofℓ2-norms (Ωℓ2), and the tree-structured sum ofℓ∞-norms (Ωℓ∞). Best results for
each level of noise and each wavelet type are in bold. Bottom part of the tables: Average improve-
ment in PSNR with respect to theℓ0 nonconvex method (the standard deviations are computed over
the 12 images). CPU times (in second) averaged over all images and noise realizations are reported
in brackets next to the names of the methods they correspond to.

2315



JENATTON, MAIRAL , OBOZINSKI AND BACH

Compared to Zhao et al. (2009), the novelty of our approach is essentiallyto be able to solve
efficiently and exactly large-scale instances of this problem. We use 12 classical standard test im-
ages,17 and generate noisy versions of them corrupted by a white Gaussian noiseof varianceσ. For
each image, we test several values ofλ = 2

i
4 σ
√

logm, with i taken in a specific range.18 We then
keep the parameterλ giving the best reconstruction error. The factorσ

√
logm is a classical heuristic

for choosing a reasonable regularization parameter (see Mallat, 1999).We provide reconstruction
results in terms of PSNR in Table 1.19 We report in this table the results whenΩ is chosen to
be a sum ofℓ2-norms orℓ∞-norms with weightsωg all equal to one. Each experiment was run 5
times with different noise realizations. In every setting, we observe that thetree-structured norm
significantly outperforms theℓ1-norm and the nonconvex approaches. We also present a visual com-
parison on two images on Figure 5, showing that the tree-structured norm reduces visual artefacts
(these artefacts are better seen by zooming on a computer screen). The wavelet transforms in our
experiments are computed with the matlabPyrTools software.20

(a) Lena, σ = 25,ℓ1 (b) Lena, σ = 25,Ωℓ2 (c) Barb., σ = 50,ℓ1 (d) Barb., σ = 50,Ωℓ2

Figure 5: Visual comparison between the wavelet shrinkage model with theℓ1-norm and the tree-
structured model, on cropped versions of the imagesLena andBarb.. Haar wavelets are used.

This experiment does of course not provide state-of-the-art results for image denoising (see
Mairal et al., 2009b, and references therein), but shows that the tree-structured regularization sig-
nificantly improves the reconstruction quality for wavelets. In this experimentthe convex set-
ting Ωℓ2 andΩℓ∞ also outperforms the nonconvex oneℓtree

0 .21 We also note that the speed of our
approach makes it scalable to real-time applications. Solving the proximal problem for an image
with m= 512× 512= 262144 pixels takes approximately 0.013 seconds on a single core of a
3.07GHz CPU ifΩ is a sum ofℓ2-norms, and 0.02 seconds when it is a sum ofℓ∞-norms. By con-
trast, unstructured approaches have a speed-up factor of about 7-8 with respect to the tree-structured
methods.

17. These images are used in classical image denoising benchmarks. See Mairal et al. (2009b).
18. For the convex formulations,i ranges in{−15,−14, . . . ,15}, while in the nonconvex casei ranges in{−24, . . . ,48}.
19. Denoting by MSE the mean-squared-error for images whose intensities are between 0 and 255, the PSNR is defined

as PSNR= 10log10(2552/MSE) and is measured in dB. A gain of 1dB reduces the MSE by approximately 20%.
20. Software available athttp://www.cns.nyu.edu/ ˜ eero/steerpyr/ .
21. It is worth mentioning that comparing convex and nonconvex approaches for sparse regularization is a bit difficult.

This conclusion holds for the classical formulation we have used, but might not hold in other settings such as Coifman
and Donoho (1995).
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5.4 Dictionaries of Natural Image Patches

This experiment studies whether a hierarchical structure can help dictionaries for denoising natural
image patches, and in which noise regime the potential gain is significant. We aim at reconstructing
corruptedpatches from a test set, after having learned dictionaries on a training setof non-corrupted
patches. Though not typical in machine learning, this setting is reasonable inthe context of images,
where lots of non-corrupted patches are easily available.22

noise 50 % 60 % 70 % 80 % 90 %
flat 19.3±0.1 26.8±0.1 36.7±0.1 50.6±0.0 72.1±0.0
tree 18.6±0.1 25.7±0.1 35.0±0.1 48.0±0.0 65.9±0.3

Table 2: Quantitative results of the reconstruction task on natural image patches. First row: percent-
age of missing pixels. Second and third rows: mean square error multiplied by100, respectively for
classical sparse coding, and tree-structured sparse coding.

16 21 31 41 61 81 121 161 181 241 301 321 401
50

60

70

80

Figure 6: Mean square error multiplied by 100 obtained with 13 structures witherror bars, sorted
by number of dictionary elements from 16 to 401. Red plain bars representsthe tree-structured
dictionaries. White bars correspond to the flat dictionary model containing the same number of
dictionary as the tree-structured one. For readability purpose, they-axis of the graph starts at 50.

We extracted 100000 patches of sizem= 8×8 pixels from the Berkeley segmentation database
of natural images (Martin et al., 2001), which contains a high variability of scenes. We then split this
data set into a training setXtr , a validation setXval, and a test setXte, respectively of size 50000,
25000, and 25000 patches. All the patches are centered and normalizedto have unitℓ2-norm.

For the first experiment, the dictionaryD is learned onXtr using the formulation of Equa-
tion (10), withµ= 0 for Dµ as defined in Equation (11). The validation and test sets are corrupted
by removing a certain percentage of pixels, the task being to reconstruct the missing pixels from the
known pixels. We thus introduce for each elementx of the validation/test set, a vectorx̃, equal tox
for the known pixel values and 0 otherwise. Similarly, we defineD̃ as the matrix equal toD, except
for the rows corresponding to missing pixel values, which are set to 0. Bydecomposing̃x on D̃, we
obtain a sparse codeα, and the estimate of the reconstructed patch is defined asDα. Note that this
procedure assumes that we know which pixel is missing and which is not forevery elementx.

The parameters of the experiment are the regularization parameterλtr used during the training
step, the regularization parameterλte used during the validation/test step, and the structure of the

22. Note that we study the ability of the model to reconstruct independent patches, and additional work is required to
apply our framework to a full image processing task, where patches usually overlap (Elad and Aharon, 2006; Mairal
et al., 2009b).
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Figure 7: Learned dictionary with a tree structure of depth 5. The root ofthe tree is in the middle of
the figure. The branching factors arep1 = 10, p2 = 2, p3 = 2, p4 = 2. The dictionary is learned on
50,000 patches of size 16×16 pixels.

tree. For every reported result, these parameters were selected by taking the ones offering the
best performance on thevalidation set, before reporting any result from thetestset. The values
for the regularization parametersλtr ,λte were selected on a logarithmic scale{2−10,2−9, . . . ,22},
and then further refined on a finer logarithmic scale with multiplicative incrementsof 2−1/4. For
simplicity, we chose arbitrarily to use theℓ∞-norm in the structured normΩ, with all the weights
equal to one. We tested 21 balanced tree structures of depth 3 and 4, with different branching
factors p1, p2, . . . , pd−1, whered is the depth of the tree andpk, k ∈ {1, . . . ,d−1} is the number
of children for the nodes at depthk. The branching factors tested for the trees of depth 3 where
p1∈{5,10,20,40,60,80,100}, p2∈{2,3}, and for trees of depth 4,p1∈{5,10,20,40}, p2∈{2,3}
andp3 = 2, giving 21 possible structures associated with dictionaries with at most 401elements. For
each tree structure, we evaluated the performance obtained with the tree-structured dictionary along
with a non-structured dictionary containing the same number of elements. These experiments were
carried out four times, each time with a different initialization, and with a different noise realization.

Quantitative results are reported in Table 2. For all fractions of missing pixels considered, the
tree-structured dictionary outperforms the “unstructured one”, and themost significant improvement
is obtained in the noisiest setting. Note that having more dictionary elements is worthwhile when
using the tree structure. To study the influence of the chosen structure, we report in Figure 6 the
results obtained with the 13 tested structures of depth 3, along with those obtained with unstructured
dictionaries containing the same number of elements, when 90% of the pixels aremissing. For
each dictionary size, the tree-structured dictionary significantly outperforms the unstructured one.
An example of a learned tree-structured dictionary is presented on Figure7. Dictionary elements
naturally organize in groups of patches, often with low frequencies nearthe root of the tree, and
high frequencies near the leaves.
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5.5 Text Documents

This last experimental section shows that our approach can also be applied to model text corpora.
The goal of probabilistic topic models is to find a low-dimensional representation of a collection
of documents, where the representation should provide a semantic description of the collection.
Approaching the problem in a parametric Bayesian framework, latent Dirichlet allocation (LDA)
Blei et al. (2003) model documents, represented as vectors of word counts, as a mixture of a prede-
fined number oflatent topicsthat are distributions over a fixed vocabulary. LDA is fundamentally
a matrix factorization problem: Buntine (2002) shows that LDA can be interpreted as a Dirichlet-
multinomial counterpart of factor analysis. The number of topics is usually small compared to the
size of the vocabulary (e.g., 100 against 10000), so that the topic proportions of each document
provide a compact representation of the corpus. For instance, these new features can be used to feed
a classifier in a subsequent classification task. We similarly use our dictionary learning approach to
find low-dimensional representations of text corpora.

Suppose that the signalsX = [x1, . . . ,xn] in R
m×n are each thebag-of-wordrepresentation of

each ofn documents over a vocabulary ofm words, thek-th component ofxi standing for the
frequency of thek-th word in the documenti. If we further assume that the entries ofD andA
are nonnegative, and that the dictionary elementsd j have unitℓ1-norm, the decomposition(D,A)
can be interpreted as the parameters of a topic-mixture model. The regularization Ω induces the
organization of these topics on a tree, so that, if a document involves a certain topic, then all ancestral
topics in the tree are also present in the topic decomposition. Since the hierarchy is shared by all
documents, the topics at the top of the tree participate in every decomposition, and should therefore
gather the lexicon which is common to all documents. Conversely, the deeper the topics in the tree,
the more specific they should be. An extension of LDA to model topic hierarchies was proposed
by Blei et al. (2010), who introduced a non-parametric Bayesian prior over trees of topics and
modelled documents as convex combinations of topics selected along a path in thehierarchy. We
plan to compare our approach with this model in future work.

5.5.1 VISUALIZATION OF NIPS PROCEEDINGS

We qualitatively illustrate our approach on the NIPS proceedings from 1988 through 1999 (Griffiths
and Steyvers, 2004). After removing words appearing fewer than 10 times, the data set is composed
of 1714 articles, with a vocabulary of 8274 words. As explained above,we considerD+

1 and takeA
to beRp×n

+ . Figure 8 displays an example of a learned dictionary with 13 topics, obtainedby using
theℓ∞-norm inΩ and selecting manuallyλ=2−15. As expected and similarly to Blei et al. (2010),
we capture the stopwords at the root of the tree, and topics reflecting the different subdomains of
the conference such as neurosciences, optimization or learning theory.

5.5.2 POSTING CLASSIFICATION

We now consider a binary classification task ofn postings from the 20 Newsgroups data set.23 We
learn to discriminate between the postings from the two newsgroupsalt.atheismandtalk.religion.misc,
following the setting of Lacoste-Julien et al. (2008) and Zhu et al. (2009). After removing words
appearing fewer than 10 times and standard stopwords, these postings form a data set of 1425
documents over a vocabulary of 13312 words. We compare different dimensionality reduction tech-

23. Available athttp://people.csail.mit.edu/jrennie/20Newsgroups/ .

2319



JENATTON, MAIRAL , OBOZINSKI AND BACH

Figure 8: Example of a topic hierarchy estimated from 1714 NIPS proceedings papers (from 1988
through 1999). Each node corresponds to a topic whose 5 most importantwords are displayed.
Single characters such asn, t, r are part of the vocabulary and often appear in NIPS papers, and their
place in the hierarchy is semantically relevant to children topics.
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Figure 9: Binary classification of two newsgroups: classification accuracy for different dimen-
sionality reduction techniques coupled with a linear SVM classifier. The barsand the errors are
respectively the mean and the standard deviation, based on 10 random splits of the data set. Best
seen in color.

niques that we use to feed a linear SVM classifier, that is, we consider (i) LDA, with the code from
Blei et al. (2003), (ii) principal component analysis (PCA), (iii) nonnegative matrix factorization
(NMF), (iv) standard sparse dictionary learning (denoted by SpDL) and (v) our sparse hierarchical
approach (denoted by SpHDL). Both SpDL and SpHDL are optimized overD+

1 andA =R
p×n
+ ,
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with the weightsωg equal to 1. We proceed as follows: given a random split into a training/testset
of 1000/425 postings, and given a number of topicsp (also the number of components for PCA,
NMF, SpDL and SpHDL), we train an SVM classifier based on the low-dimensional representa-
tion of the postings. This is performed on a training set of 1000 postings, where the parameters,
λ∈{2−26, . . . ,2−5} and/orCsvm∈{4−3, . . . ,41} are selected by 5-fold cross-validation. We report in
Figure 9 the average classification scores on the test set of 425 postings, based on 10 random splits,
for different number of topics. Unlike the experiment on image patches, weconsider only complete
binary trees with depths in{1, . . . ,5}. The results from Figure 9 show that SpDL and SpHDL per-
form better than the other dimensionality reduction techniques on this task. As abaseline, the SVM
classifier applied directly to the raw data (the 13312 words) obtains a scoreof 90.9±1.1, which
is better than all the tested methods, but without dimensionality reduction (as already reported by
Blei et al., 2003). Moreover, the error bars indicate that, though nonconvex, SpDL and SpHDL
do not seem to suffer much from instability issues. Even if SpDL and SpHDLperform similarly,
SpHDL has the advantage to provide a more interpretable topic mixture in terms ofhierarchy, which
standard unstructured sparse coding does not.

6. Discussion

We have applied hierarchical sparse coding in various settings, with fixed/learned dictionaries, and
based on different types of data, namely, natural images and text documents. A line of research to
pursue is to develop other optimization tools for structured norms with generaloverlapping groups.
For instance, Mairal et al. (2010b) have used network flow optimization techniques for that purpose,
and Bach (2010) submodular function optimization. This framework can alsobe used in the context
of hierarchical kernel learning (Bach, 2008), where we believe thatour method can be more efficient
than existing ones.

This work establishes a connection between dictionary learning and probabilistic topic models,
which should prove fruitful as the two lines of work have focused on different aspects of the same
unsupervised learning problem: Our approach is based on convex optimization tools, and provides
experimentally more stable data representations. Moreover, it can be easilyextended with the same
tools to other types of structures corresponding to other norms (Jenatton et al., 2009; Jacob et al.,
2009). It should be noted, however, that, unlike some Bayesian methods,dictionary learning by
itself does not provide mechanisms for the automatic selection of model hyper-parameters (such as
the dictionary size or the topology of the tree). An interesting common line of research to pursue
could be the supervised design of dictionaries, which has been proved useful in the two frameworks
(Mairal et al., 2009a; Bradley and Bagnell, 2009; Blei and McAuliffe, 2008).
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Appendix A. Links with Tree-Structured Nonconvex Regularization

We present in this section an algorithm introduced by Donoho (1997) in the more general context
of approximation from dyadic partitions (see Section 6 in Donoho, 1997). This algorithm solves the
following problem

min
v∈Rp

1
2
‖u−v‖22+λ ∑

g∈G
δg(v), (12)

where theu in R
p is given,λ is a regularization parameter,G is a set of tree-structured groups in

the sense of definition 1, and the functionsδg are defined as in Equation (4)—that is,δg(v) = 1 if
there existsj in g such thatv j 6= 0, and 0 otherwise. This problem can be viewed as a proximal
operator for the nonconvex regularization∑g∈G δg(v). As we will show, it can be solved efficiently,
and in fact it can be used to obtain approximate solutions of the nonconvex problem presented in
Equation (1), or to solve tree-structured wavelet decompositions as doneby Baraniuk et al. (2010).

We now briefly show how to derive the dynamic programming approach introduced by Donoho
(1997). Given a groupg in G , we use the same notations root(g) and children(g) introduced in
Section 3.5. It is relatively easy to show that finding a solution of Equation (12) amounts to finding
the supportS⊆ {1, . . . , p} of its solution and that the problem can be equivalently rewritten

min
S⊆{1,...,p}

−1
2
‖uS‖22+λ ∑

g∈G
δg(S), (13)

with the abusive notationδg(S) = 1 if g∩S 6= /0 and 0 otherwise. We now introduce the quantity

ψg(S)
△
=

{

0 if g∩S= /0
−1

2‖uroot(g)‖22+λ+∑h∈children(g) ψh(S) otherwise.

After a few computations, solving Equation (13) can be shown to be equivalent to minimizing
ψg0(S) whereg0 is the root of the tree. It is then easy to prove that for any groupg in G , we have

min
S⊆{1,...,p}

ψg(S) = min
(

0,−1
2
‖uroot(g)‖22+λ+ ∑

h∈children(g)

min
S′⊆{1,...,p}

ψh(S
′)
)

,

which leads to the following dynamic programming approach presented in Algorithm 4. This al-
gorithm shares several conceptual links with Algorithm 2 and 3. It traverses the tree in the same
order, has a complexity inO(p), and it can be shown that the whole procedure actually performs a
sequence of thresholding operations on the variablev.

Appendix B. Proofs

We gather here the proofs of the technical results of the paper.

B.1 Proof of Lemma 3

Proof The proof relies on tools from conic duality (Boyd and Vandenberghe, 2004). Let us intro-
duce the coneC

△
= {(v,z)∈Rp+1; ‖v‖≤ z} and its dual counterpartC ∗

△
= {(ξ,τ)∈Rp+1; ‖ξ‖∗≤ τ}.

These cones induce generalized inequalities for which Lagrangian dualityalso applies. We refer the
interested readers to Boyd and Vandenberghe (2004) for further details.
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Algorithm 4 Computation of the Proximal Operator for the Nonconvex Approach

Inputs:u ∈ R
p, a tree-structured set of groupsG andg0 (root of the tree).

Outputs:v (primal solution).
Initialization: v← u.
Call recursiveThresholding (g0).

ProcedurerecursiveThresholding (g)

1: η←min
(

0,−1
2‖uroot(g)‖22+λ+∑h∈children(g) recursiveThresholding (h)

)

.

2: if η = 0 then
3: vg← 0.
4: end if
5: Return η.

We can rewrite problem (7) as

min
v∈Rp,z∈R|G |

1
2
‖u−v‖22+λ ∑

g∈G
ωgzg, such that(v|g,zg) ∈ C , ∀g∈ G ,

by introducing the primal variablesz = (zg)g∈G ∈ R
|G |, with the additional|G | conic constraints

(v|g,zg) ∈ C , for g∈ G .
This primal problem is convex and satisfies Slater’s conditions for generalized conic inequalities

(i.e., existence of a feasible point in the interior of the domain), which implies thatstrong duality
holds (Boyd and Vandenberghe, 2004). We now consider the LagrangianL defined as

L(v,z,τ,ξ) =
1
2
‖u−v‖22+λ ∑

g∈G
ωgzg− ∑

g∈G

(

zg

v|g

)⊤(τg

ξg

)

,

with the dual variablesτ = (τg)g∈G in R
|G |, andξ = (ξg)g∈G in R

p×|G |, such that for allg ∈ G ,
ξg

j = 0 if j /∈ g and(ξg,τg) ∈ C ∗.
The dual function is obtained by minimizing out the primal variables. To this end,we take the

derivatives ofL with respect to the primal variablesv andz and set them to zero, which leads to

v−u− ∑
g∈G

ξg = 0 and ∀g∈ G , λωg− τg = 0.

After simplifying the Lagrangian and flipping (without loss of generality) the sign of ξ, we obtain the
dual problem in Equation (8). We derive the optimality conditions from the Karush–Kuhn–Tucker
conditions for generalized conic inequalities (Boyd and Vandenberghe,2004). We have that{v,z,τ,ξ}
are optimal if and only if

∀g∈ G ,zgτg−v⊤|gξg = 0, (Complementary slackness)

∀g∈ G ,(v|g,zg) ∈ C , ∀g∈ G ,λωg− τg = 0,

∀g∈ G ,(ξg,τg) ∈ C ∗, v−u+∑g∈G ξg = 0.

Combining the complementary slackness with the definition of the dual norm, we have

∀g∈ G , zgτg = v⊤|gξg≤ ‖v|g‖‖ξg‖∗.
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Furthermore, using the fact that∀g∈ G , (v|g,zg) ∈ C and(ξg,τg) = (ξg,λωg) ∈ C ∗, we obtain the
following chain of inequalities

∀g∈ G , λzgωg = v⊤|gξg≤ ‖v|g‖‖ξg‖∗ ≤ zg‖ξg‖∗ ≤ λzgωg,

for which equality must hold. In particular, we havev⊤|gξg = ‖v|g‖‖ξg‖∗ and zg‖ξg‖∗ = λzgωg.
If v|g 6= 0, thenzg cannot be equal to zero, which implies in turn that‖ξg‖∗ = λωg. Eventually,
applying Lemma 9 gives the advertised optimality conditions.

Conversely, starting from the optimality conditions of Lemma 3, and making use again of
Lemma 9, we can derive the Karush–Kuhn–Tucker conditions displayed above. More precisely,
we define for allg∈ G ,

τg
△
= λωg and zg

△
= ‖v|g‖.

The only condition that needs to be discussed is the complementary slacknesscondition. Ifv|g = 0,
then it is easily satisfied. Otherwise, combining the definitions ofτg, zg and the fact that

v⊤|gξg = ‖v|g‖‖ξg‖∗ and‖ξg‖∗ = λωg,

we end up with the desired complementary slackness.

B.2 Optimality Condition for the Projection on the Dual Ball

Lemma 9 (Projection on the dual ball)
Letw ∈ R

p and t> 0. We haveκ = Π‖.‖∗≤t(w) if and only if
{

if ‖w‖∗ ≤ t, κ = w,

otherwise, ‖κ‖∗ = t and κ⊤(w−κ) = ‖κ‖∗‖w−κ‖.

Proof When the vectorw is already in the ball of‖.‖∗ with radiust, that is,‖w‖∗ ≤ t, the situation
is simple, since the projectionΠ‖.‖∗≤t(w) obviously givesw itself. On the other hand, a necessary
and sufficient optimality condition for havingκ = Π‖.‖∗≤t(w) = argmin‖y‖∗≤t ‖w− y‖2 is that the
residualw−κ lies in the normal cone of the constraint set (Borwein and Lewis, 2006), that is, for
all y such that‖y‖∗≤ t, (w−κ)⊤(y−κ)≤ 0. The displayed result then follows from the definition
of the dual norm, namely‖κ‖∗=max‖z‖≤1z⊤κ.

B.3 Proof of Lemma 4

Proof First, notice that the conclusionξh = Π‖.‖∗≤λωh
(v|h+ ξh) simply comes from the definition

of ξh andv, along with the fact thatξg = ξg
|h sinceg⊆ h. We now examineξg.

The proof mostly relies on the optimality conditions characterizing the projection onto a ball of
the dual norm‖ · ‖∗. Precisely, by Lemma 9, we need to show that either

ξg = u|g−ξh
|g, if ‖u|g−ξh

|g‖∗ ≤ tg,

or
‖ξg‖∗ = tg and ξg⊤(u|g−ξh

|g−ξg) = ‖ξg‖∗‖u|g−ξh
|g−ξg‖.
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Note that the feasibility ofξg, that is,‖ξg‖∗ ≤ tg, holds by definition ofκg.
Let us first assume that‖ξg‖∗ < tg. We necessarily have thatu|g also lies in the interior of

the ball of‖.‖∗ with radiustg, and it holds thatξg = u|g. Sinceg⊆ h, we have that the vector
u|h−ξg = u|h−u|g has only zero entries ong. As a result,ξh

g = 0 (or equivalently,ξh
|g = 0) and we

obtain
ξg = u|g = u|g−ξh

|g,

which is the desired conclusion. From now on, we assume that‖ξg‖∗ = tg. It then remains to show
that

ξg⊤(u|g−ξh
|g−ξg) = ‖ξg‖∗‖u|g−ξh

|g−ξg‖.
We now distinguish two cases, according to the norm used.

ℓ2-norm: As a consequence of Lemma 9, the optimality condition reduces to the conditions
for equality in the Cauchy-Schwartz inequality, that is, when the vectors have same signs and are
linearly dependent. Applying these conditions to individual projections we get that there exists
ρg,ρh > 0 such that

ρgξg = u|g−ξg and ρhξh = u|h−ξg−ξh. (14)

Note that the caseρh = 0 leads tou|h− ξg− ξh = 0, and thereforeu|g− ξg− ξh
|g = 0 sinceg⊆ h,

which directly yields the result. The caseρg = 0 impliesu|g−ξg = 0 and thereforeξh
|g = 0, yielding

the result as well. Now, we can therefore assumeρh > 0 andρg > 0. From the first equality of (14),
we haveξg = ξg

|g since(ρg+1)ξg = u|g. Further using the fact thatg⊆ h in the second equality of
(14), we obtain

(ρh+1)ξh
|g = u|g−ξg = ρgξg.

This implies thatu|g−ξg−ξh
|g = ρgξg− ρg

ρh+1ξg, which eventually leads to

ξg =
ρh+1
ρgρh

(u|g−ξg−ξh
|g).

The desired conclusion followsξg⊤(u|g−ξg−ξh
|g) = ‖ξg‖2‖u|g−ξg−ξh

|g‖2.

ℓ∞-norm: In this case, the optimality corresponds to the conditions for equality in theℓ∞-ℓ1

Hölder inequality. Specifically,ξg = Π‖.‖∗≤tg(u|g) holds if and only if for allξg
j 6= 0, j ∈ g, we have

u j −ξg
j = ‖u|g−ξg‖∞ sign(ξg

j ).

Looking at the same condition forξh, we have thatξh = Π‖.‖∗≤th

(

u|h− ξg

)

holds if and only if for

all ξh
j 6= 0, j ∈ h, we have

u j −ξg
j −ξh

j = ‖u|h−ξg−ξh‖∞ sign(ξh
j ).

From those relationships we notably deduce that for allj ∈ g such thatξg
j 6= 0, sign(ξg

j ) = sign(u j) =

sign(ξh
j ) = sign(u j − ξg

j ) = sign(u j − ξg
j − ξh

j ). Let j ∈ g such thatξg
j 6= 0. At this point, using the

equalities we have just presented,

|u j −ξg
j −ξh

j |=
{

‖u|g−ξg‖∞ if ξh
j = 0

‖u|h−ξg−ξh‖∞ if ξh
j 6= 0.
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Since‖u|g− ξg‖∞ ≥ ‖u|g− ξg− ξh
|g‖∞ (which can be shown using the sign equalities above), and

‖u|h−ξg−ξh‖∞ ≥ ‖u|g−ξg−ξh
|g‖∞ (sinceg⊆ h), we have

‖u|g−ξg−ξh
|g‖∞ ≥ |u j −ξg

j −ξh
j | ≥ ‖u|g−ξg−ξh

|g‖∞,

and therefore for allξg
j 6= 0, j ∈ g, we haveu j −ξg

j −ξh
j = ‖u|g−ξg−ξh

|g‖∞ sign(ξg
j ), which yields

the result.

B.4 Proof of Lemma 8

Proof Notice first that the procedurecomputeSqNorm is called exactly once for each groupg in G ,
computing a set of scalars(ρg)g∈G in an order which is compatible with the convergence in one
pass of Algorithm 1—that is, the children of a node are processed prior tothe node itself. Following
such an order, the update of the groupg in the original Algorithm 1 computes the variableξg which
updates implicitly the primal variable as follows

v|g←
(

1− λωg

‖v|g‖2
)

+
v|g.

It is now possible to show by induction that for all groupg in G , after a call to the procedure
computeSqNorm (g), the auxiliary variableηg takes the value‖v|g‖22 wherev has the same value as
during the iterationg of Algorithm 1. Therefore, after calling the procedurecomputeSqNorm (g0),
whereg0 is the root of the tree, the valuesρg correspond to the successive scaling factors of the
variablev|g obtained during the execution of Algorithm 1. After having computed all the scaling
factorsρg, g ∈ G , the procedurerecursiveScaling ensures that each variablej in {1, . . . , p} is
scaled by the product of all theρh, whereh is an ancestor of the variablej.

The complexity of the algorithm is easy to characterize: Each procedurecomputeSqNorm and
recursiveScaling is calledp times, each call for a groupg has a constant number of operations
plus as many operations as the number of children ofp. Since each child can be called at most one
time, the total number of operation of the algorithm isO(p).

B.5 Sign Conservation by Projection

The next lemma specifies a property for projections when‖.‖ is further assumed to be aℓq-norm
(with q≥ 1). We recall that in that case,‖.‖∗ is simply theℓq′-norm, withq′ = (1−1/q)−1.

Lemma 10 (Projection on the dual ball and sign property)
Let w ∈ R

p and t> 0. Let us assume that‖.‖ is a ℓq-norm (with q≥ 1). Consider also a diagonal
matrixS∈ R

p×p whose diagonal entries are in{−1,1}. We haveΠ‖.‖∗≤t(w) = SΠ‖.‖∗≤t(Sw).

Proof Let us considerκ = Π‖.‖∗≤t(w). Using essentially the same argument as in the proof of
Lemma 9, we have for ally such that‖y‖q′ ≤ t, (w−κ)⊤(y−κ)≤ 0. Noticing thatS⊤S= I and
‖y‖q′ = ‖Sy‖q′ , we further obtain(Sw−Sκ)⊤(y′−Sκ)≤ 0 for all y′ with ‖y′‖q′≤ t. This implies in
turn thatSΠ‖.‖∗≤t(w) = Π‖.‖∗≤t(Sw), which is equivalent to the advertised conclusion.
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Based on this lemma, note that we can assume without loss of generality that the vector we want to
project (in this case,w) has only nonnegative entries. Indeed, it is sufficient to store beforehand the
signs of that vector, compute the projection of the vector with nonnegative entries, and assign the
stored signs to the result of the projection.

B.6 Non-negativity Constraint for the Proximal Operator

The next lemma shows how we can easily add a non-negativity constraint onthe proximal operator
when the normΩ is absolute(Stewart and Sun, 1990, Definition 1.2), that is, a norm for which the
relationΩ(u)≤Ω(w) holds for any two vectorsw andu ∈ R

p such that|u j | ≤ |w j | for all j.

Lemma 11 (Non-negativity constraint for the proximal operator)
Let κ ∈ R

p andλ > 0. Consider an absolute normΩ. We have

argmin
z∈Rp

[1
2
‖[κ]+−z‖22+λΩ(z)

]

= argmin
z∈Rp

+

[1
2
‖κ−z‖22+λΩ(z)

]

. (15)

Proof Let us denote bŷz+ and ẑ the unique solutions of the left- and right-hand side of (15)
respectively. Consider the normal coneN

R
p
+
(z0) of Rp

+ at the pointz0 (Borwein and Lewis, 2006)
and decomposeκ into its positive and negative parts,κ = [κ]+ + [κ]−. We can now write down
the optimality conditions for the two convex problems above (Borwein and Lewis, 2006): ẑ+ is
optimal if and only if there existsw ∈ ∂Ω(ẑ+) such that̂z+− [κ]++λw = 0. Similarly, ẑ is optimal
if and only if there exists(s,u) ∈ ∂Ω(ẑ)×N

R
p
+
(ẑ) such thatẑ− κ+ λs+ u = 0. We now prove

that [κ]− = κ− [κ]+ belongs toN
R

p
+
(ẑ+). We proceed by contradiction. Let us assume that there

existsz ∈ R
p
+ such that[κ]⊤−(z− ẑ+) > 0. This implies that there existsj ∈ {1, . . . , p} for which

[κ j ]− < 0 andz j − ẑ+j < 0. In other words, we have 0≤ z j = z j − [κ j ]+ < ẑ+j = ẑ+j − [κ j ]+. With
the assumption made onΩ and replacinĝz+j by z j , we have found a solution to the left-hand side
of (15) with a stricly smaller cost function than the one evaluated atẑ+, hence the contradiction.
Putting the pieces together, we now have

ẑ+− [κ]++λw = ẑ+−κ+λw+[κ]− = 0, with (w, [κ]−) ∈ ∂Ω(ẑ+)×N
R

p
+
(ẑ+),

which shows that̂z+ is the solution of the right-hand side of (15).

Appendix C. Counterexample forℓq-norms, with q /∈ {1,2,∞}.
The result we have proved in Proposition 5 in the specific setting where‖.‖ is theℓ2- or ℓ∞-norm
does not hold more generally forℓq-norms, whenq is not in {1,2,∞}. Let q > 1 satisfying this

condition. We denote byq′
△
= (1−q−1)−1 the norm parameter dual toq. We keep the same notation

as in Lemma 4 and assume from now on that‖u|g‖q′ > tg and‖u|h‖q′ > tg+th. These two inequalities
guarantee that the vectorsu|g andu|h−ξg do not lie in the interior of theℓq′-norm balls, of respective
radiustg andth.

We show in this section that there exists a setting for which the conclusion of Lemma 4 does not
hold anymore. We first focus on a necessary condition of Lemma 4:
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Lemma 12 (Necessary condition of Lemma 4)
Let ‖.‖ be aℓq-norm, with q/∈ {1,2,∞}. If the conclusion of Lemma 4 holds, then the vectorsξg

|g

andξh
|g are linearly dependent.

Proof According to our assumptions onu|g andu|h−ξg, we have that‖ξg‖q′ = tg and‖ξh‖q′ = th.
In this case, we can apply the second optimality conditions of Lemma 9, which states that equality
holds in theℓq-ℓq′ Hölder inequality. As a result, there existsρg,ρh > 0 such that for allj in g:

|ξg
j |q
′
= ρg|u j −ξg

j |q and |ξh
j |q
′
= ρh|u j −ξg

j −ξh
j |q.

If the conclusion of Lemma 4 holds—that is, we haveξg = Π‖.‖∗≤tg(u|g− ξh
|g), notice that it is not

possible to have the following scenarios, as proved below by contradiction:

• If ‖u|g−ξh
|g‖q′ < tg, then we would haveξg = u|g−ξh

|g, which is impossible since‖ξg‖q′ = tg.

• If ‖u|g− ξh
|g‖q′ = tg, then we would have for allj in g, |ξh

j |q
′
= ρh|u j − ξg

j − ξh
j |q = 0, which

implies thatξh
|g = 0 and‖u|g‖q′ = tg. This is impossible since we assumed‖u|g‖q′ > tg.

We therefore have‖u|g−ξh
|g‖q′ > tg and using again the second optimality conditions of Lemma 9,

there existsρ > 0 such that for allj in g, |ξg
j |q
′
= ρ|u j − ξg

j − ξh
j |q. Combined with the previous

relation onξh
|g, we obtain for all j in g, |ξg

j |q
′
= ρ

ρh
|ξh

j |q
′
. Since we can assume without loss of

generality thatu only has nonnegative entries (see Lemma 10), the vectorsξg andξh can also be
assumed to have nonnegative entries, hence the desired conclusion.

We need another intuitive property of the projectionΠ‖.‖∗≤t to derive our counterexample:

Lemma 13 (Order-preservation by projection)
Let ‖.‖ be aℓq-norm, with q/∈ {1,∞} and q′

△
= 1/(1−q−1). Let us consider the vectorsκ,w ∈ R

p

such thatκ = Π‖.‖∗≤t(w) = argmin‖y‖q′≤t ‖y−w‖2, with the radius t satisfying‖w‖q′ > t. If we

havewi < w j for some(i, j) in {1, . . . , p}2, then it also holds thatκi < κ j .

Proof Let us first notice that given the assumption ont, we have‖κ‖q′ = t. The LagrangianL
associated with the convex minimization problem underlying the definition ofΠ‖.‖∗≤t can be written
as

L(y,α) =
1
2
‖y−w‖22+α

[

‖y‖q
′

q′− tq′], with the Lagrangian parameterα≥ 0.

At optimality, the stationarity condition forκ leads to

∀ j ∈ {1, . . . , p}, κ j −w j +αq′|κ j |q
′−1 = 0.

We can assume without loss of generality thatw only has nonnegative entries (see Lemma 10). Since
the components ofκ andw have the same signs (see Lemma 10), we therefore have|κ j |= κ j ≥ 0,
for all j in {1, . . . , p}. Note thatα cannot be equal to zero because of‖κ‖q′ = t < ‖w‖q′ .

Let us consider the continuously differentiable functionϕw : κ 7→ κ−w+αq′κq′−1 defined on
(0,∞). Sinceϕw(0) = −w< 0, limκ→∞ ϕw(κ) = ∞ andϕw is strictly nondecreasing, there exists a
uniqueκ∗w > 0 such thatϕw(κ∗w) = 0. If we now takew< v, we have

ϕv(κ∗w) = ϕw(κ∗w)+w−v= w−v< 0= ϕv(κ∗v).
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With ϕv being strictly nondecreasing, we thus obtainκ∗w < κ∗v. The desired conclusion stems from
the application of the previous result to the stationarity condition ofκ.

Based on the two previous lemmas, we are now in position to present our counterexample:

Proposition 14 (Counterexample)
Let ‖.‖ be aℓq-norm, with q/∈ {1,2,∞} and q′

△
= 1/(1−q−1). Let us considerG = {g,h}, with

g⊆ h⊆ {1, . . . , p} and|g|> 1. Letu be a vector inRp that has at least two different nonzero entries
in g, that is, there exists(i, j) in g× g such that0 < |ui | < |u j |. Let us consider the successive
projections

ξg △
= Π‖.‖∗≤tg(u|g) and ξh △

= Π‖.‖∗≤th(u|h−ξg)

with tg, th > 0 satisfying‖u|g‖q′ > tg and‖u|h‖q′ > tg+ th. Then, the conclusion of Lemma 4 does
not hold.

Proof We apply the same rationale as in the proof of Lemma 13. Writing the stationarity conditions
for ξg andξh, we have for allj in g

ξg
j +αq′(ξg

j )
q′−1−u j = 0, and ξh

j +βq′(ξh
j )

q′−1− (u j −ξg
j ) = 0,

with Lagrangian parametersα,β > 0. We now proceed by contradiction and assume thatξg =
Π‖.‖∗≤tg(u|g−ξh

|g). According to Lemma 12, there existsρ > 0 such that for allj in g, ξh
j = ρξg

j . If

we combine the previous relations onξg andξh, we obtain for allj in g,

ξg
j =C(ξg

j )
q′−1, with C

△
=

q′(α−βρq′−1)

ρ
.

If C< 0, then we have a contradiction, since the entries ofξg andu|g have the same signs. Similarly,
the caseC = 0 leads a contradiction, since we would haveu|g = 0 and‖u|g‖q′ > tg. As a conse-

quence, it follows thatC > 0 and for all j in g, ξg
j = exp

{ log(C)
2−q′

}

, which means that all the entries
of the vectorξg

g are identical. Using Lemma 13, since there exists(i, j) ∈ g×g such thatui < u j ,
we also haveξg

i < ξg
j , which leads to a contradiction.
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