
Journal of Machine Learning Research 13 (2012) 1333-1371 Submitted 10/09; Revised 6/11; Published 5/12

Transfer in Reinforcement Learning via Shared Features

George Konidaris GDK@CSAIL.MIT.EDU

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
32 Vassar Street
Cambridge MA 02139

Ilya Scheidwasser SCHEIDWASSER.I@HUSKY.NEU.EDU

Department of Mathematics
Northeastern University
360 Huntington Avenue
Boston MA 02115

Andrew G. Barto BARTO@CS.UMASS.EDU

Department of Computer Science
University of Massachusetts Amherst
140 Governors Drive
Amherst MA 01003

Editor: Ronald Parr

Abstract
We present a framework for transfer in reinforcement learning based on the idea that related tasks
share some common features, and that transfer can be achieved via those shared features. The
framework attempts to capture the notion of tasks that are related but distinct, and provides some
insight into when transfer can be usefully applied to a problem sequence and when it cannot. We
apply the framework to the knowledge transfer problem, and show that an agent can learn a portable
shaping function from experience in a sequence of tasks to significantly improve performance in
a later related task, even given a very brief training period. We also apply the framework to skill
transfer, to show that agents can learn portable skills across a sequence of tasks that significantly
improve performance on later related tasks, approaching the performance of agents given perfectly
learned problem-specific skills.

Keywords: reinforcement learning, transfer, shaping, skills

1. Introduction

One aspect of human problem-solving that remains poorly understood is theability to appropriately
generalize knowledge and skills learned in one task and apply them to improveperformance in
another. This effective use of prior experience is one of the reasonsthat humans are effective
learners, and is therefore an aspect of human learning that we would liketo replicate when designing
machine learning algorithms.

Although reinforcement learning researchers study algorithms for improving task performance
with experience, we do not yet understand how to effectivelytransferlearned skills and knowledge
from one problem setting to another. It is not even clear which problem sequences allow transfer,
which do not, and which do not need to. Although the idea behind transfer inreinforcement learning

c©2012 George Konidaris, Ilya Scheidwasser and Andrew Barto.

KONIDARIS, SCHEIDWASSER ANDBARTO

seems intuitively clear, no definition or framework exists that usefully formalises the notion of
“related but distinct” tasks—tasks that are similar enough to allow transfer but different enough to
require it.

In this paper we present a framework for transfer in reinforcement learning based on the idea
that related tasks share some common features and that transfer can take place through functions
defined only over those shared features. The framework attempts to capture the notion of tasks that
are related but distinct, and it provides some insight into when transfer canbe usefully applied to a
problem sequence and when it cannot. We then demonstrate the framework’s use in producing algo-
rithms for knowledge and skill transfer, and we empirically demonstrate the resulting performance
benefits.

This paper proceeds as follows. Section 2 briefly introduces reinforcement learning, hierarchi-
cal reinforcement learning methods, and the notion of transfer. Section 3introduces our framework
for transfer, which is applied in Section 4 to transfer knowledge learned from earlier tasks to im-
prove performance on later tasks, and in Section 5 to learn transferrablehigh-level skills. Section 7
discusses the implications and limitations of this work, and Section 8 concludes.

2. Background

The following sections briefly introduce the reinforcement learning problem, hierarchical reinforce-
ment learning methods, and the transfer problem.

2.1 Reinforcement Learning

Reinforcement learning (Sutton and Barto, 1998) is a machine learning paradigm where an agent
attempts to learn how to maximize a numerical reward signal over time in a given environment. As
a reinforcement learning agent interacts with its environment, it receives areward (or sometimes
incurs a cost) for each action taken. The agent’s goal is to use this information to learn to act so as
to maximize the cumulative reward it receives over the future.

When the agent’s environment is characterized by a finite number of distinctstates, it is usually
modeled as a finite Markov Decision Process (Puterman, 1994) describedby a tupleM = 〈S,A,P,R〉,
whereSis the finite set of environmentstatesthat the agent may encounter;A is a finite set ofactions
that the agent may execute;P(s′|s,a) is the probability of moving to states′ ∈ S from states∈ S
given actiona ∈ A; andR is a reward function, which given statess ands′ and actiona returns a
scalar reward signal to the agent for executing actiona in sand moving tos′.

The agent’s objective is to maximize its cumulative reward. If the reward received by the agent
at time k is denotedrk, we denote this cumulative reward (termedreturn) from time t as Rt =

∑∞
i=0 γirt+i+1, where 0< γ ≤ 1 is a discount factorthat expresses the extent to which the agent

prefers immediate reward over delayed reward.
Given apolicy π mapping states to actions, a reinforcement learning agent may learn avalue

function, V, mapping states to expected return. If the agent is given or learns models of P andR,
then it may update its policy as follows:

π(s) = argmax
a

∑
s′

P(s′|s,a)[R(s,a,s′)+ γV(s′)],∀s∈ S. (1)

Once the agent has updated its policy, it must learn a new estimate ofV. The repeated execution
these two steps (value function learning and policy updates) is known aspolicy iteration. Under

1334

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

certain conditions (Sutton and Barto, 1998), policy iteration is guaranteed toconverge to anoptimal
policy π∗ that maximizes return from every state. Policy iteration is usually performed implicitly:
the agent simply defines its policy as Equation 1, effectively performing policy iteration after each
value function update.

In some applications, states are described by vectors of real-valued features, making the state
set a multidimensional continuous state space. (Hereafter we use the termstate spaceto refer to
both discrete state sets and continuous state spaces.) This creates two problems. First, one must find
a way to compactly represent a value function defined on a multi-dimensional real-valued feature
space. Second, that representation must facilitategeneralization: in a continuous state space the
agent may never encounter the same state twice and must instead generalize from experiences in
nearby states when encountering a novel one.

The most common approximation scheme islinear function approximation(Sutton and Barto,
1998). Here,V is approximated by the weighted sum of a vectorΦ of basis functions:

V̄(s) = w ·Φ(s) =
n

∑
i=1

wiφi(s), (2)

whereφi is the ith basis function. Thus learning entails obtaining a weight vectorw such that
the weighted sum in Equation 2 accurately approximatesV. SinceV̄ is linear in w, whenV ’s
approximation as a weighted sum is not degenerate there is exactly one suchoptimalw; however,
we may represent complex value functions this way because each basis function φi may be an
arbitrarily complex function ofs.

The most common family of reinforcement learning methods, and the methods used in this
work, aretemporal difference methods(Sutton and Barto, 1998). Temporal difference methods
perform value function learning (and hence policy learning) online, through direct interaction with
the environment. For more details see Sutton and Barto (1998).

2.2 Hierarchical Reinforcement Learning and the Options Framework

Much recent research has focused on hierarchical reinforcementlearning (Barto and Mahadevan,
2003), where, apart from a given set of primitive actions, an agent can acquire and use higher-level
macro actions built out of primitive actions. This paper adopts the options framework (Sutton et al.,
1999) for hierarchical reinforcement learning; however, our approach could also be applied in other
frameworks, for example the MAXQ (Dietterich, 2000) or Hierarchy of Abstract Machines (HAM)
(Parr and Russell, 1997) formulations.

An optiono consists of three components:

πo : (s,a) 7→ [0,1],
Io : s 7→ {0,1},
βo : s 7→ [0,1],

whereπo is theoption policy(which describes the probability of the agent executing actiona in state
s, for all states in which the option is defined),Io is theinitiation setindicator function, which is 1 for
states where the option can be executed and 0 elsewhere, andβo is thetermination condition, giving
the probability of the option terminating in each state (Sutton et al., 1999). The options framework
provides methods for learning and planning using options as temporally extended actions in the
standard reinforcement learning framework (Sutton and Barto, 1998).

1335

KONIDARIS, SCHEIDWASSER ANDBARTO

Algorithms for learning new options must include a method for determining when tocreate an
option or alter its initiation set, how to define its termination condition, and how to learnits policy.
Policy learning is usually performed by an off-policy reinforcement learning algorithm so that the
agent can update many options simultaneously after taking an action (Sutton etal., 1998).

Creation and termination are usually performed by the identification of goal states, with an op-
tion created to reach a goal state and terminate when it does so. The initiation set is then the set of
states from which the goal is reachable. Previous research has selected goal states by a variety of
methods, for example: visit frequency and reward gradient (Digney, 1998), visit frequency on suc-
cessful trajectories (McGovern and Barto, 2001), variable change frequency (Hengst, 2002), relative
novelty (Şimşek and Barto, 2004), clustering algorithms and value gradients (Mannor et al., 2004),
local graph partitioning (Şimşek et al., 2005), salience (Singh et al., 2004), causal decomposition
(Jonsson and Barto, 2005), and causal analysis of expert trajectories (Mehta et al., 2008). Other
research has focused on extracting options by exploiting commonalities in collections of policies
over a single state space (Thrun and Schwartz, 1995; Bernstein, 1999; Perkins and Precup, 1999;
Pickett and Barto, 2002).

2.3 Transfer

Consider an agent solving a sequence ofn problems, in the form of a sequence of Markov Decision
ProcessesM1, ...,Mn. If these problems are somehow “related”, and the agent has solved problems
M1, ...,Mn−1, then it seems intuitively reasonable that the agent should be able to use knowledge
gained in their solutions to solveMn faster than it would be able to otherwise. The transfer problem
is the problem of how to obtain, represent and apply such knowledge.

Since transfer hinges on the tasks being related, the nature of that relationship will define how
transfer can take place. For example, it is common to assume that all of the tasks have the same
state space, action set and transition probabilities but differing reward functions, so that for anyi,
Mi = 〈S,A,P,Ri〉. In that case, skills learned in the state space and knowledge about the structure
of the state space from previous tasks can be transferred, but knowledge about the optimal policy
cannot.

In many transfer settings, however, each task in the sequence has a distinct state space, but
the tasks nevertheless seem intuitively related. In the next section, we introduce a framework for
describing the commonalities between tasks that have different state spacesand action sets.

3. Related Tasks Share Common Features

Successful transfer requires an agent that must solve a sequence of tasks that are related but distinct—
different, but not so different that experience in one is irrelevant to experience in another. How can
we define such a sequence? How can we use such a definition to performtransfer?

Consider the illustrative example of an indoor mobile robot required to perform many learning
tasks over its lifetime. Although the robot might be equipped with a very rich setof sensors—for
example, laser range finders, temperature and pressure gauges—when facing a particular task it
will construct a task-specific representation that captures that task’s essential features. Such a task-
specific representation ensures that the resulting learning task is no more difficult than necessary,
and depends on the complexity of the problem rather than the robot (addingmore sensors or actu-
ators should not make an easy task hard). In the reinforcement learningsetting, a plausible design
for such a robot would use a task-specific MDP, most likely designed to beas small as possible

1336

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

(without discarding information necessary for a solution), and discrete (so that the task does not
require function approximation).

Thus, a robot given the tasks of searching for a particular type of object in two different buildings
B1 andB2 might form two completely distinct discrete MDPs,M1 andM2, most likely as topological
maps of the two buildings. Then even though the robot should be able to share information between
the two problems, without further knowledge there is no way to transfer information between them
based only on their description as MDPs, because the state labels and transition probabilities ofM1

andM2 need have no relation at all.
We argue that finding relationships between pairs of arbitrary MDPs is bothunnecessarily dif-

ficult and misses the connection between these problems. The problems that such a robot might
encounter are all relatedbecause they are faced by the same agent, and therefore the same sensor
features are present in each, even if those shared features are abstracted away when the problems are
framed as MDPs. If the robot is seeking a heat-emitting object in bothB1 andB2, it should be able
to learn after solvingB1 that its temperature gauge is a good predictor of the object’s location, and
use it to better searchB2, even though its temperature gauge reading does not appear as a feature in
either MDP.

When trying to solve a single problem, we aim to create a minimal problem-specific repre-
sentation. When trying to transfer information across a sequence of problems, we should instead
concentrate on what is common across the sequence. We therefore propose thatwhat makes tasks
related is the existence of a feature set that is shared and retains the same semantics across tasks.
To define what we mean by a feature having the same semantics across tasks, we define the notion
of asensor.

Consider a parametrized class of tasksΓ(θ), whereΓ returns a task instance given parameter
θ ∈ Θ. For example,Γ might be the class of square gridworlds, andθ might fix obstacle and goal
locations and size. We can obtain a sequence of tasksM1, ...,Mn via a sequence of task parameters
θ1, ...,θn.

Definition 1 A sensorξ is a function mapping a task instance parameterθ ∈ Θ and state sθ ∈ SΘ
of the task obtained usingθ to a real number f :

ξ : (θ,sθ) 7→ f .

The important property ofξ is that it is a function defined over all tasks inΓ: it produces a
feature,f , that describes some property of an environment given that environment’s parameters and
current state. For example,f might describe the distance from a robot in a building to the nearest
wall; this requires both the position of the robot in the building (the problem state) and the layout
of the building (the environment parameters). The featuref has the same semantics across tasks
because it is generated by the same function in each task instance.1

An agent may in general be equipped with a suite of such sensors, from which it can read at
any point to obtain a feature vector. We call the space generated by the resulting features anagent-
space, because it is a property of the agent rather than any of the tasks individually, as opposed to
the problem-specific state space used to solve each problem (which we callaproblem-space).

We note that in some cases the agent-space and problem-spaces used fora sequence of tasks may
be related, for example, each problem-space might be formed by appending a task-specific amount

1. We exclude degenerate cases, for example whereξ simply usesθ as an index and produces completely different
outputs for different values ofθ, or whereξ returns a constant, or completely random, value.

1337

KONIDARIS, SCHEIDWASSER ANDBARTO

of memory to agent-space. However, in general it may not be possible to recover an agent-space
descriptor from a problem-space descriptor, or vice versa. The functions mapping the environment
to each descriptor are distinct and must be designed (or learned outside of the reinforcement learning
process) with different objectives.

We now model each problem in a sequence as an MDP augmented with an agent-space, writing
the augmented MDP corresponding to theith problem as:

Mi = 〈Si ,Ai ,Pi ,Ri ,D〉,

whereD (the agent-space) is a feature space defined across all tasks. For any state in any of the
environments, the agent also obtains an observation (ordescriptor) d ∈ D, the features of which
have the same semantics across all tasks.

The core idea of our framework is that task learning occurs in problem-space, and transfer can
occur via agent-space. If we have an MDP augmented with features that are known to be shared,
we can use those shared features as a bridge across which knowledgecan be transferred. This leads
to the following definition:

Definition 2 A sequence of tasks isrelatedif that sequence has a non-empty agent-space—that is,
if a set of shared features exist in all of the tasks.

A further definition will prove useful in understanding when the transferof information about
the value function is useful:

Definition 3 We define a sequence of related tasks to bereward-linkedif the reward function for
all tasks is the same sensor, so that rewards are allocated the same way for all tasks (for example,
reward is always x for finding food).

A sequence of tasks must be (at least approximately) reward-linked if weaim to transfer infor-
mation about the optimal value function: if the reward functions in two tasks usedifferent sensors
then there is no reason to hope that their value functions contain useful information about each other.

If a sequence of tasks is related, we may be able to perform effective transfer by taking advantage
of the shared space. If no such space exists, we cannot transfer across the sequence because there
is no view (however abstract or lossy) in which the tasks share common features. If we can find
an agent-space that is also usable as a problem-space for every task in the sequence, then we can
treat the sequence as a set of tasks in the same space (by usingD directly as a state space) and
perform transfer directly by learning about the structure of this space.If in addition the sequence
is reward-linked, then the tasks are not distinct and transfer is trivial because we can view them as
a single problem. However, there may be cases where a shared problem-space exists but results in
slow learning, and using task-specific problem-spaces coupled with a transfer mechanism is more
practical.

We can therefore define the working hypothesis of this paper as follows:

We can usefully describe two tasks as related when they share a common feature space,
which we term anagent-space. If learning to solve each individual task is possible and
feasible in agent-space, then transfer is trivial: the tasks are effectively a single task
and we can learn a single policy in agent-space for all tasks. If it is not, then transfer
between two tasks can nevertheless be effected through agent-space,either through the

1338

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

transfer of knowledge about the value function (when the tasks are reward-linked), or
through the transfer of skills defined in agent-space.

In the following sections we use this framework to build agents that perform these two different
types of transfer. Section 4 shows that an agent can transfer value-functions learned in agent-space
to significantly decrease the time taken to find an initial solution to a task, given experience in a
sequence of related and reward-linked tasks. In Section 5 we show thatan agent can learn portable
high-level skills directly in agent-space which can dramatically improve task performance, given
experience in a sequence of related tasks.

4. Knowledge Transfer

In this section, we show that agents that must repeatedly solve the same type of task (in the form of
a sequence of related, reward-linked tasks) can transfer useful knowledge in the form of aportable
shaping functionthat acts as an initial value function and thereby endows the agent with an initial
policy. This significantly improves initial performance in later tasks, resulting inagents that can,
for example, learn to solve difficult tasks quickly after being given a set of relatively easy training
tasks.

We empirically demonstrate the effects of knowledge transfer using a relatively simple demon-
stration domain (a rod positioning task with an artificial agent space) and a more challenging domain
(Keepaway). We argue (in Section 4.5) that this has the effect of creating agents which can learn
their own heuristic functions.

4.1 Shaping

Shaping is a popular method for speeding up reinforcement learning in general, and goal-directed
exploration in particular (Dorigo and Colombetti, 1998). Although this term hasbeen applied to
a variety of different methods within the reinforcement learning community, only two are relevant
here. The first is the gradual increase in complexity of a single task towardsome given final level
(for example, Randløv and Alstrøm 1998; Selfridge et al. 1985), so thatthe agent can safely learn
easier versions of the same task and use the resulting policy to speed learning as the task becomes
more complex.2 Unfortunately, this type of shaping does not generally transfer betweentasks—
it can only be used to gently introduce an agent to a single task, and is therefore not suited to a
sequence of distinct tasks.

Alternatively, the agent’s reward function could be augmented through theuse of intermediate
shaping rewards or “progress indicators” (Matarić, 1997) that provide an augmented (and hopefully
more informative) reinforcement signal to the agent. This has the effect of shortening the reward
horizon of the problem—the number of correct actions the agent must execute before receiving a
useful reward signal (Laud and DeJong, 2003). Ng et al. (1999) proved that an arbitrary externally
specified reward function could be included as a potential-based shapingfunction in a reinforce-
ment learning system without modifying its optimal policy. Wiewiora (2003) showed that this is
equivalent to using the same reward function as a non-uniform initial state value function, or with

2. We note that this definition of shaping is closest to its original meaning in the psychology literature, where it refers
to a process by which an experimenter rewards an animal for behaviorthat progresses toward the completion of
a complex task, and thereby guides the animal’s learning process. As such it refers to a training technique, not a
learning mechanism (see Skinner, 1938).

1339

KONIDARIS, SCHEIDWASSER ANDBARTO

a small change in action selection, as an initial state-action value function (Wiewiora et al., 2003).
Thus, we can use any function we like as an initial value function for the agent, even if (as is often
the case in function approximation) it is not possible to directly initialize the value function. The
major drawback is that designing such a shaping function requires significant engineering effort. In
the following sections we show that an agent can learn its own shaping function from experience
across several related, reward-linked tasks without having it specified in advance.

4.2 Learning Portable Shaping Functions

As before, consider an agent solvingn problems with MDPsM1, ...,Mn, each with their own state
space, denotedS1, ...,Sn and augmented with agent-space features. We associate a four-tupleσ j

i
with the ith state inM j :

σ j
i = 〈sj

i ,d
j
i , r

j
i ,v

j
i 〉,

wheresj
i is the usual problem-space state descriptor (sufficient to distinguish this state from the

others inSj), d j
i is the agent-space descriptor,r j

i is the reward obtained at the state andv j
i is the

state’s value (expected total reward for action starting from the state). The goal of value-function
based reinforcement learning is to obtain thev j

i values for each state in the form of a value function
Vj :

Vj : sj
i 7→ v j

i .

Vj maps problem-specific state descriptors to expected return, but it is not portable between
tasks, because the form and meaning ofsj

i (as a problem-space descriptor) may change from one task
to another. However, the form and meaning ofd j

i (as an agent-space descriptor) does not change.
Since we want an estimator of return that is portable across tasks, we introduce a new functionL
that is similar to eachVj , but that estimates expected return given an agent-space descriptor:

L : d j
i 7→ v j

i .

L is also a value function, but it is defined over portable agent-space descriptors rather than
problem-specific state space descriptors. As such, we could consider ita form of feature-based value
function approximation and update it online (using a suitable reinforcement learning algorithm)
during each task. Alternatively, once an agent has completed some taskSj and has learned a good
approximation of the value of each state usingVj , it can use its(d j

i ,v
j
i) pairs as training examples

for a supervised learning algorithm to learnL. SinceL is portable, we can in addition use samples
from multiple related, reward-linked tasks.

After a reasonable amount of training,L can be used to estimate a value for newly observed
states in any future related and reward-linked tasks. Thus, when facinga new taskMk, the agent
can useL to provide a good initial estimate forVk that can be refined using a standard reinforcement
learning algorithm. Alternatively (and equivalently),L could be used as an external shaping reward
function.

4.3 A Rod Positioning Experiment

In this section we empirically evaluate the potential benefits of a learned shaping function in a rod
positioning task (Moore and Atkeson, 1993), where we add a simple artificial agent space that can
be easily manipulated for experimental purposes.

1340

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

Each task consists of a square workspace that contains a rod, some obstacles, and a target. The
agent is required to maneuver the rod so that its tip touches the target (by moving its base coordinate
or its angle of orientation) while avoiding obstacles. An example 20x20 unit task and solution path
are shown in Figure 1.

Figure 1: A 20x20 rod positioning task and one possible solution path.

Following Moore and Atkeson (1993), we discretize the state space into unitx andy coordi-
nates and 10◦ angle increments. Thus, each state in the problem-space can be describedby two
coordinates and one angle, and the actions available to the agent are movement of one unit in either
direction along the rod’s axis, or a 10o rotation in either direction. If a movement causes the rod to
collide with an obstacle, it results in no change in state, so the portions of the state space where any
part of the rod would be interior to an obstacle are not reachable. The agent receives a reward of−1
for each action, and a reward of 1000 when reaching the goal (whereupon the current episode ends).

We augment the task environment with five beacons, each of which emits a signal that drops
off with the square of the Euclidean distance from a strength of 1 at the beacon to 0 at a distance
of 60 units. The tip of the rod has a sensor array that can detect the values of each of these signals
separately at the adjacent state in each action direction. Since these beacons are present in every
task, the sensor readings are an agent-space and we include an elementin the agent that learnsL
and uses it to predict reward for each adjacent state given the five signal levels present there.

The usefulness ofL as a reward predictor will depend on the relationship between beacon place-
ment and reward across a sequence of individual rod positioning tasks. Thus we can consider the
beacons as simple abstract signals present in the environment, and by manipulating their placement
(and therefore their relationship to reward) across the sequence of tasks, we can experimentally
evaluate the usefulness of various forms ofL.

4.3.1 EXPERIMENTAL STRUCTURE

In each experiment, the agent is exposed to a sequence of training experiences, during which it is
allowed to updateL. After each training experience, it is evaluated in a large test case, during which
it is not allowed to updateL.

Each individual training experience places the agent in a small task, randomly selected from a
randomly generated set of 100 such tasks, where it is given sufficienttime to learn a good solution.
Once this time is up, the agent updatesL using the value of each visited state and the sensory signal

1341

KONIDARIS, SCHEIDWASSER ANDBARTO

present at it, before it is tested on the much larger test task. All state value tables are cleared between
training episodes.

Each agent performed reinforcement learning using Sarsa(λ) (λ = 0.9,α = 0.1,γ = 0.99,
ε = 0.01) in problem-space and used training tasks that were either 10x10 (where it was given 100
episodes to converge in each training task), or 15x15 (when it was given 150 episodes to converge),
and tested in a 40x40 task.3 L was a linear estimator of reward, using either the five beacon signal
levels and a constant as features (requiring 6 parameters, and referred to as the linear model) or using
those with five additional features for the square of each beacon value (requiring 11 parameters,
referred to as the quadratic model). All parameters were initialized to 0, and learning forL was
accomplished using gradient descent withα = 0.001. We used two experiments with different
beacon placement schemes.

4.3.2 FOLLOWING A HOMING BEACON

In the first experiment, we always placed the first beacon at the target location, and randomly dis-
tributed the remainder throughout the workspace. Thus a high signal level from the first beacon
predicts high reward, and the others should be ignored. This is a very informative indication of
reward that should be easy to learn, and can be well approximated even with a linearL. Figure 2
shows the 40x40 test task used to evaluate the performance of each agent, and four sample 10x10
training tasks.

Figure 3(a) shows the number of steps (averaged over 50 runs) required to first reach the goal
in the test task, against the number of training tasks completed by the agent for the four types of
learned shaping elements (linear and quadraticL, and either 10x10 or 15x15 training tasks). It also
shows the average number of steps required by an agent with a uniform initial value of 0 (agents
with a uniform initial value of 500 performed similarly while first finding the goal). Note that there
is just a single data point for the uniform initial value agents (in the upper leftcorner) because their
performance does not vary with the number of training experiences.

Figure 3(a) shows that training significantly lowers the number of steps required to initially find
the goal in the test task in all cases, reducing it after one training experience from over 100,000 steps
to at most just over 70,000, and by six episodes to between 20,000 and 40,000 steps. This difference
is statistically significant (by a t-test,p < 0.01) for all combinations ofL and training task sizes,
even after just a single training experience. Figure 3(a) also shows thatthe complexity ofL does
not appear to make a significant difference to the long-term benefit of training (probably because
of the simplicity of the reward indicator), but training task size does. The difference between the
number of steps required to first find the goal for 10x10 and 15x15 training task sizes is statistically
significant (p< 0.01) after 20 training experiences for both linear and quadratic forms ofL, although
this difference is clearer for the quadratic form, where it is significant after 6 training experiences.

Figure 3(b) shows the number of steps (averaged over 50 runs) required to reach the goal as
the agents repeat episodes in the test task, after completing 20 training experiences (note thatL is
never updated in the test task), compared to the number of steps required by agents with value tables
uniformly initialized to 0 and 500. This illustrates the difference in overall learning performance
on a single new task between agents that have had many training experiences and agents that have

3. We note that in general the tasks used to train the agent need not be smaller than the task used to test it. We used
small training tasks in this experiment to highlight the fact that the size of problem-space may differ between related
tasks.

1342

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

a b

Figure 2: The homing experiment 40x40 test task (a) and four sample 10x10 training tasks (b).
Beacon locations are shown as crosses, and the goal is shown as a large dot. Note that the
first beacon is on the target in each task. The optimal solution for the test task requires 69
steps.

not. Figure 3(b) shows that the learned shaping function significantly improves performance during
the first few episodes of learning, as expected. It also shows that the number of episodes required
for convergence is roughly the same as that of an agent using a uniformlyoptimistic value table
initialization of 500, and slightly longer than that of an agent using a uniformly pessimistic value
table initialization of 0. This suggests that once a solution is found the agent must “unlearn” some of
its overly optimistic estimates to achieve convergence. Note that a uniform initial value of 0 works
well here because it discourages extended exploration, which is unnecessary in this domain.

4.3.3 FINDING THE CENTER OF ABEACON TRIANGLE

In the second experiment, we arranged the first three beacons in a triangle at the edges of the task
workspace, so that the first beacon lay to the left of the target, the second directly above it, and
the third to its right. The remaining two were randomly distributed throughout the workspace.
This provides a more informative signal, but results in a shaping function that is harder to learn.
Figure 4 shows the 10x10 sample training tasks given in Figure 2 after modification for the triangle
experiment. The test task was similarly modified.

Figure 5(a) shows the number of steps initially required to reach the goal for the triangle exper-
iment, again showing that completing even a single training task results in a statistically significant
(p< 0.01 in all cases) reduction from the number required by an agent using uniform initial values,
from just over 100,000 steps to at most just over 25,000 steps after a single training episode. Figure

1343

KONIDARIS, SCHEIDWASSER ANDBARTO

 20000

 40000

 60000

 80000

 100000

 120000

 2 4 6 8 10 12 14 16 18 20

S
te

ps
 to

 G
oa

l

Training Episodes

Uniform
10Lin

10Quad
15Lin

15Quad

(a) The average number of steps required to first reach the goal in thehoming test task, for agents
that have completed varying numbers of training task episodes.

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

Episodes in the Test Task

S
te

ps
 to

 G
oa

l

Uni0
Uni500
10Lin
10Quad
15Lin
15Quad

(b) Steps to reward against episodes in the homing test task for agents that have completed 20 training tasks.

Figure 3: Results for the homing task.

1344

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

Figure 4: Sample 10x10 training tasks for the triangle experiment. The three beacons surrounding
the goal in a triangle are shown in gray.

5(a) also shows that there is no significant difference between forms ofL and size of training task.
This suggests that extra information in the agent-space more than makes up for a shaping function
being difficult to accurately represent—in all cases the performance of agents learning using the
triangle beacon arrangement is better than that of those learning using the homing beacon arrange-
ment. Figure 5(b) shows again that the initial few episodes of repeated learning in the test task
are much faster, and again that the total number of episodes required to converge lies somewhere
between the number required by an agent initializing its value table pessimistically to0 and one
initializing it optimistically to 500.

4.3.4 SENSITIVITY ANALYSIS

So far, we have used shared features that are accurate in the sense that they provide a signal that
is uncorrupted by noise and that has exactly the same semantics across tasks. In this section, we
empirically examine how sensitive a learned shaping reward might be to the presence of noise, both
in the features and in their role across tasks.

To do so, we repeat the above experiments (using training tasks of size 15, and a quadratic
approximator) but with only a single beacon whose position is given by the following formula:

b = (1−η)g+ηr ,

whereg is the coordinate vector of the target,η ∈ [0,1] is a noise parameter, andr is a co-ordinate
vector generated uniformly at random. Thus, whenη= 0 we have no noise and the beacon is always
placed directly over the goal; whenη = 1, the beacon is placed randomly in the environment.
Varying η between 0 and 1 allows us to manipulate the amount of noise present in the beacon’s
placement, and hence in the shared feature used to learn a portable shaping function. We consider
two scenarios.

In the first scenario, the sameη value is used to place the beacon in both the training and the
test problem. This corresponds to a signal that is perturbed by noise, but whose semantics remain
the same in both source and target tasks. This measures how sensitive learned shaping rewards are
to feature noise, and so we call this thenoisy-signaltask. The results are shown in Figure 6(a) and
6(b).

Figure 6(a) measures the number of steps required to complete the first episode in the large test
problem, given experience in various numbers of training problems and varying levels of noise. The
results show that transfer is fairly robust to noise, resulting in an improvement over starting from

1345

KONIDARIS, SCHEIDWASSER ANDBARTO

 0

 20000

 40000

 60000

 80000

 100000

 120000

 2 4 6 8 10 12 14 16 18 20

S
te

ps
 to

 G
oa

l

Training Episodes

Uniform
10Lin

10Quad
15Lin

15Quad

(a) The average number of steps required to first reach the goal in thetriangle test task, for agents
that have completed varying number of training task episodes.

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

Episodes in the Test Task

S
te

ps
 to

 G
oa

l

Uni0
Uni500
10Lin
10Quad
15Lin
15Quad

(b) Steps to reward against episodes in the triangle test task for agents that have completed 20 training tasks.

Figure 5: Results for the triangle task.

1346

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
x 10

5

Noise Level

S
te

ps
 to

 G
oa

l (
F

irs
t E

pi
so

de
)

1 Episode
5 Episodes
10 Episodes
20 Episodes
No Transfer

(a) The average number of steps required to first reach the test task goal given a predictor
learned using a noisy signal.

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

x 10
5

Episodes in the Test Task

S
te

ps
 to

 G
oa

l

Noise=0.4
Noise=0.6
Noise=0.8
Noise=1.0
Uniform 0
Uniform 500

(b) Steps to reward against episodes in the test task for agents that havecompleted 20 training task episodes
using a noisy signal.

Figure 6: Results for thenoisy-signaltask.

1347

KONIDARIS, SCHEIDWASSER ANDBARTO

scratch that drops with increased noise but still does better untilη > 0.6, when the feature has more
noise than signal.

Higher levels of noise more severely affects agents that have seen higher numbers of training
problems, until a performance floor is reached between 5 and 10 training problems. This reflects
the training procedure used to learnL, whereby each training problem results in a small adjustment
of L’s parameters and those adjustments accumulate over several training episodes.

Similarly, Figure 6(b) shows learning curves in the test problem for agentsthat have experienced
20 test problems, with varying amounts of noise. We see that, although these agents often do worse
than learning from scratch in the first episode, they subsequently do better whenη < 1, and again
converge at roughly the same rate as agents that use an optimistic initial value function.

In the second scenario,η is zero in the training problems, but non-zero in the test problem.
This corresponds to a feature which has slightly different semantics in the source and target tasks,
and thus measures how learning is affected by an imperfect or approximatechoice of agent space
features. We call this thenoisy-semanticstask.

Results for the noisy-semantics task are given in Figures 7(a) and 7(b).These two graphs show
that transfer achieves a performance benefit whenη < 0.5—when there is at least as much signal
as noise—and the more training problems the agent has solved, the worse its performance will be
whenη = 1. However, the possible performance penalty for highη is more severe—an agent using
a learned shaping function that rewards it for following a beacon signalmay take nearly four times
as long to first solve the test problem when that feature becomes random (atη= 1). Again, however,
whenη < 1 the agents recover after their first episode to outperform agents that learn from scratch
within the first few episodes.

4.3.5 SUMMARY

The first two experiments above show that an agent able to learn its own shaping rewards through
training can use even a few training experiences to significantly improve its initial policy in a novel
task. They also show that such training results in agents with convergencecharacteristics similar
to that of agents using uniformly optimistic initial value functions. Thus, an agent that learns its
own shaping rewards can improve its initial speed at solving a task when compared to an agent that
cannot, but it will not converge to an approximately optimal policy in less time (asmeasured in
episodes).

The results also seem to suggest that a better training environment is helpful but that its useful-
ness decreases as the signal predicting reward becomes more informative, and that increasing the
complexity of the shaping function estimator does not appear to significantly improve the agent’s
performance. Although this is a very simple domain, this suggests that given arich signal from
which to predict reward, even a weak estimator of reward can greatly improve performance.

Finally, our third pair of experiments suggest that transfer is relatively robust to noise, both
in the features themselves and in their relationship across tasks, resulting in performance benefits
provided there is at least as much useful information in the features as there is noise. Beyond that,
however, agents may experience negative transfer where either noisyfeatures or an imperfect or
approximate set of agent-space features result in poor learned shaping functions.

1348

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Noise Level

S
te

ps
 to

 G
oa

l (
F

irs
t E

pi
so

de
)

1 Episode
5 Episodes
10 Episodes
20 Episodes
No Transfer

(a) The average number of steps required to first reach the test task goal given a predictor
learned using features with imperfectly preserved semantics.

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

3

3.5

x 10
5

Episodes in the Test Task

S
te

ps
 to

 G
oa

l

Noise=0.4
Noise=0.6
Noise=0.8
Noise=1.0
Uniform 0
Uniform 500

(b) Steps to reward against episodes in the test task for agents that havecompleted 20 training task episodes
using features with imperfectly preserved semantics.

Figure 7: Results for thenoisy-semanticstask.

1349

KONIDARIS, SCHEIDWASSER ANDBARTO

4.4 Keepaway

In this section we evaluate knowledge transfer using common features in Keepaway (Stone et al.,
2005), a robot soccer domain implemented in the RoboCup soccer simulator. Keepaway is a chal-
lenging domain for reinforcement learning because it is multi-agent and hasa high-dimensional
continuous state space. We use Keepaway to illustrate the use of learned shaping rewards on a stan-
dard but challenging benchmark that has been used in other transfer studies (Taylor et al., 2007).

Keepaway has a square field of a given size, which contains players and a ball. Players are
divided into two groups: keepers, who are originally in possession of theball and try to stay in
control of it, and takers, who attempt to capture the ball from the keepers.This arrangement is
depicted in Figure 8.

Figure 8: The Keepaway Task. The keepers (white circles) must keep possession of the ball and
not allow the takers (gray octagons) to take it away. This diagram depicts 3v2 Keepaway,
where there are 3 keepers and 2 takers.

Each episode begins with the takers in one corner of the field and the keepers randomly dis-
tributed. The episode ends when the ball goes out of bounds, or when ataker ends up in possession
of the ball (i.e., within a small distance of the ball for a specified period of time).The goal of the
keepers is then to maximize the duration of the episode. At each time step, the objective of learning
is to modify the behavior of the keeper currently in possession of the ball. The takers and other
keepers act according to simple hand-coded behaviors. Keepers notin possession of the ball try to
open a clear shot from the keeper with the ball to themselves and attempt to receive the ball when it
is passed to them. Takers either try to block keepers that are not holding theball, try to take the ball
from the keeper in possession, or try to intercept a pass.

Rather than using the primitive actions of the domain, keepers are given a set of predefined
options. The options available to the keeper in possession of the ball are HoldBall (remain stationary
while keeping the ball positioned away from the takers) and PassBall(k) (pass the ball to thekth other
keeper). Since only the keeper in possession of the ball is acting according to the reinforcement
learner at any given time, multiple keepers may learn during each episode; each keeper’s learner
runs separately.

The state variables are continuous and defined according to the center ofthe board and the
location of the players, with the number of variables depending on the numberof players. For
example, 3v2 Keepaway (three keepers versus two takers) has thirteenstate variables: the distance

1350

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

from K1 (the keeper in possession) to each other player, the minimum anglesBAC for each other
keeper (whereB is the other keeper,A is K1, andC is a taker—this measures how “open” each other
keeper is to a pass), the distance from each player to the center, and the minimum distance from
each other keeper to a taker. The number of state variables is 4K +2T −3, for K keepers andT
takers. We used a field measuring 20x20 units for 3v2 games, and a field measuring 30x30 for 4v3
and 5v4. For a more detailed description of the Keepaway domain we refer the reader to Stone et al.
(2005).

4.4.1 EXPERIMENTAL STRUCTURE

In the previous section, we studied transferring portable shaping functions from a varying number
of smaller randomly generated source tasks to a fixed larger target task. In Keepaway, instances of
the domain are obtained by fixing the number of keepers and the number of takers. Since we cannot
obtain experience in more than a few distinct source tasks, in this section we instead study the effect
of varying amounts of training time in a source task on performance in a targettask.

We thus studied transfer from 3v2 Keepaway to 4v3 and 5v4 Keepway, and from 4v3 to 5v4;
these are the most common Keepaway configurations and are the same configurations studied by
Taylor and Stone (2005). In all three cases we used the state variables from 5v4 as an agent-space.
When a state variable is not defined (e.g., the distance to the 4th keeper in 3v2Keepaway), we set
distances and angles to keepers to 0, and distances and angles to takers totheir maximum value,
which effectively simulates their being present but not meaningfully involved in the current state.
We employed linear function approximation with Sarsa (Sutton and Barto, 1998) using 32 radial
basis functions per state variable, tiling each variable independently of the others, following and
using the same parameters as Stone et al. (2005).

We performed 20 separate runs for each condition. We first ran 20 baseline runs for 3v2, 4v3,
and 5v4 Keepaway, saving weights for the common space for each 3v2 and 4v3 run at 50, 250, 500,
1000, 2000, and 5000 episodes. Then for each set of common space weights from a given number
of episodes, we ran 20 transfer runs. For example, for the 3v2 to 5v4 transfer with 250-episode
weights, we ran 20 5v4 transfer runs, each of which used one of the 20saved 250-episode 3v2
weights.

Because of Keepaway’s high variance, and in order to provide resultsloosely comparable with
Taylor and Stone (2005), we evaluated the performance of transfer in Keepaway by measuring the
average time required to reach some benchmark performance. We selecteda benchmark time for
each setting (3v2, 4v3 or 5v4) which the baseline learner could consistently reach by about 5000
episodes. This benchmark timeT is considered reached at episoden when the average of the
times fromn−500 ton+500 is at leastT; this window averaging compensates Keepaway’s high
performance variance. The benchmark times for each domain were, in order, 12.5 seconds, 9.5
seconds, and 8.5 seconds.

4.4.2 RESULTS

Table 1 shows the results of performing transfer from 3v2 Keepaway to 4v3 Keepaway. Results
are reported as time (in simulator hours) to reach the benchmark in the target task (4v3 Keepaway)
given a particular number of training episodes in the source task (3v2 Keepaway), and the total time
(source task training time plus time to reach the benchmark in the target task, in simulator hours).
We can thereby evaluate whether the agents achieveweak transfer—where there is an improvement

1351

KONIDARIS, SCHEIDWASSER ANDBARTO

in the target task with experience in the source task—by examining the third column (average 4v3
time), andstrong transfer—where the sum of the time spent in both source and target tasks is lower
than that taken when learning the target task in isolation—by examining the fourth column (average
total time).

The results show that training in 3v2 decreases the amount of time required toreach the bench-
mark in 4v3, which shows that transfer is successful in this case and weak transfer is achieved.
However, the total (source and target) time to benchmark never decreases with experience in the
source task, so strong transfer is not achieved.

3v2 Episodes Ave. 3v2 Time Ave 4v3 Time Ave. Total Time Std. Dev.

0 0.0000 5.5616 5.5616 1.5012
50 0.0765 5.7780 5.8544 0.8870
250 0.3919 5.4763 5.8682 1.2399
500 0.8871 5.1192 6.0063 0.9914
1000 1.8166 4.7380 6.5546 1.2680
2000 3.9908 3.1295 7.1203 1.1465
5000 14.7554 1.4236 16.1790 0.2738

Table 1: Results of transfer from 3v2 Keepaway to 4v3 Keepaway.

Figure 9 shows sample learning curves for agents learning from scratchand agents using trans-
ferred knowledge from 5000 episodes of 3v2 Keepaway, demonstrating that agents that transfer
knowledge start with better policies and learn faster.

Table 2 shows the results of transfer from 3v2 Keepaway (Table 1(a))and 4v3 Keepaway (Table
1(b)) to 5v4 Keepaway. As before, in both cases more training on the easier task results in better
performance in 5v4 Keepaway, demonstrating that weak transfer is achieved. However, the least
total time (including training time on the source task) is obtained using a moderate amount of source
task training, and so when transferring to 5v4 we achieve strong transfer.

Finally, Table 3 shows the results of transfer for shaping functions learned on both 3v2 and
4v3 Keepaway, applied to 5v4 Keepaway. Again, more training time obtains better results although
over-training appears to be harmful.

These results show that knowledge transfer through agent-space canachieve effective transfer in
a challenging problem and can do so in multiple problems through the same set ofcommon features.

4.5 Discussion

The results presented above suggest that agents that employ reinforcement learning methods can
be augmented to use their experience to learn their own shaping rewards. This could result in
agents that are more flexible than those with pre-engineered shaping functions. It also creates the
possibility of training such agents on easy tasks as a way of equipping them with knowledge that
will make harder tasks tractable, and is thus an instance of an autonomous developmental learning
system (Weng et al., 2000).

In some situations, the learning algorithm chosen to learn the shaping function, or the sensory
patterns given to it, might result in an agent that is completely unable to learn anything useful. We
do not expect such an agent to do much worse than one without any shaping rewards at all. Another

1352

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

 6

 7

 8

 9

 10

 11

 12

 0 2 4 6 8 10 12

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

 6

 7

 8

 9

 10

 11

 12

 0 2 4 6 8 10 12

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

 6

 7

 8

 9

 10

 11

 12

 0 2 4 6 8 10 12

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

 6

 7

 8

 9

 10

 11

 12

 0 2 4 6 8 10 12

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

 6

 7

 8

 9

 10

 11

 12

 0 2 4 6 8 10 12

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

 6

 7

 8

 9

 10

 11

 12

 0 2 4 6 8 10 12

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

 6

 7

 8

 9

 10

 11

 12

 0 2 4 6 8 10 12

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

 6

 7

 8

 9

 10

 11

 12

 0 2 4 6 8 10 12

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

 6

 7

 8

 9

 10

 11

 12

 0 2 4 6 8 10 12

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

 6

 7

 8

 9

 10

 11

 12

 0 2 4 6 8 10 12

E
pi

so
de

 D
ur

at
io

n
(s

ec
on

ds
)

Training Time (hours)

Figure 9: Sample learning curves for 4v3 Keepaway given no transfer(solid lines) or having expe-
rienced 5000 episodes of experience in 3v2 (dashed lines).

potential concern is the possibility that a maliciously chosen or unfortunate set of training tasks
could result in an agent that performs worse than one with no training. Fortunately, such agents will
still eventually be able to learn the correct value function (Ng et al., 1999).

All of the experiments reported in this paper use model-free learning algorithms. Given that
an agent facing a sequence of tasks receives many example transitions between pairs of agent-
space descriptors, it may prove efficient to instead learn an approximate transition model in agent-
space and then use that model to obtain a shaping function via planning. However, learning a good
transition model in such a scenario may prove difficult because the agent-space features are not
Markov.

In standard classical search algorithms such as A∗, a heuristic imposes an order in which nodes
are considered during the search process. In reinforcement learning the state space is searched
by the agent itself, but its initial value function (either directly or via a shapingfunction) acts to
order the selection of unvisited nodes by the agent. Therefore, we argue that reinforcement learning
agents using non-uniform initial value functions are using something very similar to a heuristic, and
those that are able to learn their own portable shaping functions are in effect able to learn their own
heuristics.

5. Skill Transfer

The previous section showed that we can effectively transfer knowledge about reward when a se-
quence of tasks is related and reward-linked, and that such knowledgecan significantly improve

1353

KONIDARIS, SCHEIDWASSER ANDBARTO

(a) Transfer results from 3v2 to 5v4 Keepaway.

3v2 Episodes Ave. 3v2 Time Ave 5v4 Time Ave. Total Time Std. Dev.

0 0.0000 7.4931 7.4931 1.5229
50 0.0765 6.3963 6.4728 1.0036
250 0.3919 5.6675 6.0594 0.7657
500 0.8870 5.9012 6.7882 1.1754
1000 1.8166 3.9817 5.7983 1.2522
2000 3.9908 3.9678 7.9586 1.8367
5000 14.7554 3.9241 18.6795 1.3228

(b) Transfer results from 4v3 to 5v4 Keepaway.

4v3 Episodes Ave. 4v3 Time Ave 5v4 Time Ave. Total Time Std. Dev.

0 0.0000 7.4931 7.4930 1.5229
50 0.0856 6.6268 6.7125 1.2162
250 0.4366 6.1323 6.5689 1.1198
500 0.8951 6.3227 7.2177 1.0084
1000 1.8671 6.0406 7.9077 1.0766
2000 4.0224 5.0520 9.0744 0.9760
5000 11.9047 3.218 15.1222 0.6966

Table 2: Results of transfer to 5v4 Keepaway.

3v2 Episodes # 4v3 Episodes Ave 5v4 Time Ave. Total Time Std. Dev.

500 500 6.1716 8.0703 1.1421
500 1000 5.6139 8.6229 0.9597
1000 500 4.5395 7.3922 0.6689
1000 1000 4.8648 8.8448 0.9517

Table 3: Results of transfer from both 3v2 Keepaway and 4v3 Keepaway to 5v4 Keepaway.

performance. We can apply the same framework to effect skill transfer by creating portable option
policies. Most option learning methods work within the same state space as the problem the agent
is solving at the time. Although this can lead to faster learning on later tasks in the same state space,
learned options would be more useful if they could be reused in later tasks that are related but have
distinct state spaces.

In this section we demonstrate empirically that an agent that learns portable options directly in
agent-space can reuse those options in future related tasks to significantlyimprove performance.
We also show that the best performance is obtained using portable options inconjunction with
problem-specific options.

1354

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

5.1 Options in Agent-Space

Following section 4.2, we consider an agent solvingnproblemsM1, ...,Mn with state spacesS1, ...,Sn,
and action spaceA. Once again, we associate a four-tupleσ j

i with the ith state inM j :

σ j
i = 〈sj

i ,d
j
i , r

j
i ,v

j
i 〉,

wheresj
i is the usual problem-space state descriptor (sufficient to distinguish this state from the

others inSj), d j
i is the agent-space descriptor,r j

i is the reward obtained at the state andv j
i is the

state’s value (expected total reward for action starting from the state).
The agent is also either given, or learns, a set of higher-level optionsto reduce the time required

to solve the task. Options defined usingsj
i are not portable between tasks because the form and

meaning ofsj
i (as a problem-space descriptor) may change from one task to another. However, the

form and meaning ofd j
i (as an agent-space descriptor) does not. Therefore we define agent-space

option components as:

πo : (d j
i ,a) 7→ [0,1],

Io : d j
i 7→ {0,1},

βo : d j
i 7→ [0,1].

Although the agent will be learning task and option policies in different spaces, both types of poli-
cies can be updated simultaneously as the agent receives both agent-space and problem-space de-
scriptors at each state.

To support learning a portable shaping function, an agent space should contain some features
that are correlated to return across tasks. To support successful skill policy learning, an agent space
needs more: it must be suitable for directly learning control policies.

If that is the case, then why not perform task learning (in addition to option learning) in agent-
space? There are two primary reasons why we might prefer to perform task learning in problem-
space, even when given an agent-space suitable for control learning. The first is that agent-space
may be very much larger than problem-space, making directly learning the entire task in agent-space
inefficient or impractical. The second is that the agent-space may only be sufficient for learning
control policies locally, rather than globally. In the next two sections we demonstrate portable skill
learning on domains with each characteristic in turn.

5.2 The Lightworld Domain

The lightworld domain is a parameterizable class of discrete domains which share an agent-space
that is much larger than any individual problem-space. In this section, we empirically examine
whether learning portable skills can improve performance in such a domain.

An agent is placed in an environment consisting of a sequence of rooms, with each room con-
taining a locked door, a lock, and possibly a key. In order to leave a room,the agent must unlock
the door and step through it. In order to unlock the door, it must move up to thelock and press it,
but if a key is present in the room the agent must be holding it to successfully unlock the door. The
agent can obtain a key by moving on top of it and picking it up. The agent receives a reward of
1000 for leaving the door of the final room, and a step penalty of−1 for each action. Six actions
are available: movement in each of the four grid directions, a pickup action and a press action. The
environments are deterministic and unsuccessful actions (for example, moving into a wall) result in
no change in state.

1355

KONIDARIS, SCHEIDWASSER ANDBARTO

In order to specify an individual lightworld instance, we must specify the number of rooms,x
andy sizes for each room, and the location of the room entrance, key (or lack therefore), lock and
door in each. Thus, we may generate new lightworld instances by generating random values for
each of these parameters.

We equip the agent with twelve light sensors, grouped into threes on each of its sides. The first
sensor in each triplet detects red light, the second green and the third blue.Each sensor responds
to light sources on its side of the agent, ranging from a reading of 1 when itis on top of the light
source, to 0 when it is 20 squares away. Open doors emit a red light, keyson the floor (but not those
held by the agent) emit a green light, and locks emit a blue light. Figure 10 showsan example.

Figure 10: A small example lightworld.

Five pieces of data form a problem-space descriptor for any lightworld instance: the current
room number, thex and y coordinates of the agent in that room, whether or not the agent has
the key, and whether or not the door is open. We use the light sensor readings as an agent-space
because their semantics are consistent across lightworld instances. In thiscase the agent-space (with
12 continuous variables) has much higher dimension than any individual problem-space, and it is
impractical to perform task learning in it directly, even though the problem might in principle be
solvable that way.

5.2.1 TYPES OFAGENT

We used five types of reinforcement learning agents: agents without options, agents with problem-
space options, agents with perfect problem-space options, agents with agent-space options, and
agents with both option types.

The agents without options used Sarsa(λ) with ε-greedy action selection (α = 0.1, γ = 0.99,
λ = 0.9, ε = 0.01) to learn a solution policy in problem-space, with each state-action pair assigned
an initial value of 500.

Agents with problem-space options had an (initially unlearned) option for each pre-specified
salient event (picking up each key, unlocking each lock, and walking through each door). Options
were learned in problem-space and used the same parameters as the agentwithout options, but used

1356

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

off-policy trace-based tree-backup updates (Precup et al., 2000) for intra-option learning. We used
an option termination reward of 1 for successful completion, and a discount factor of 0.99 per action.
Options could be executed only in the room in which they were defined and only in states where
their value function exceeded a minimum threshold (0.0001). Because these options were learned
in problem-space, they were useful but needed to be relearned for each individual lightworld.

Agents with perfect problem-space options were given options with pre-learned policies for
each salient event, though they still performed option updates and were otherwise identical to the
standard agent with options. They represent the ideal case of agents with that can perform perfect
transfer, arriving in a new task with fully learned options.

Agents with agent-space options still learned their solution policies in problem-space but learned
their option policies in agent-space. Each agent employed three options: one for picking up a
key, one for going through an open door and one for unlocking a door, with each one’s policy a
function of the twelve light sensors. Since the sensor outputs are continuous we employed linear
function approximation for each option’s value function, performing updates using gradient descent
(α = 0.01) and off-policy trace-based tree-backup updates. We used an option termination reward
of 1, a step penalty of 0.05 and a discount factor of 0.99. An option could be taken at a particular
state when its value function there exceeded a minimum threshold of 0.1. Because these options
were learned in agent-space, they could be transferred between lightworld instances.

Finally, agents with both types of options were included to represent agentsthat learn both
general portable and specific non-portable skills simultaneously.

Note that all agents used discrete problem-space value functions to solve the underlying task
instance, because their agent-space descriptors are only Markov in lightworlds with a single room,
which were not present in our experiments.

5.2.2 EXPERIMENTAL STRUCTURE

We generated 100 random lightworlds, each consisting of 2-5 rooms with width and height of be-
tween 5 and 15 cells. A door and lock were randomly placed on each room boundary, and1

3 of
rooms included a randomly placed key. This resulted in state space with between 600 and approxi-
mately 20,000 state-action pairs (4,900 on average). We evaluated each problem-space option agent
type on 1000 lightworlds (10 samples of each generated lightworld).

To evaluate the performance of agent-space options as the agents gainedmore experience, we
similarly obtained 1000 lightworld samples and test tasks, but for each test task we ran the agents
once without training and then with between 1 and 10 training experiences. Each training experience
for a test lightworld task consisted of 100 episodes in a training lightworld randomly selected from
the remaining 99. Although the agents updated their options during evaluation inthe test lightworld,
these updates were discarded before the next training experience so the agent-space options never
received prior training in the test lightworld.

5.2.3 RESULTS

Figure 11(a) shows average learning curves for agents employing problem-space options, and Fig-
ure 11(b) shows the same for agents employing agent-space options. Thefirst time an agent-space
option agent encounters a lightworld, it performs similarly to an agent without options (as evidenced
by the two topmost learning curves in each figure), but its performance rapidly improves with ex-
perience in other lightworlds. After experiencing a single training lightworld,the agent starts with

1357

KONIDARIS, SCHEIDWASSER ANDBARTO

better performance than an agent using problem-space options alone, until by 5 experiences its
learning curve is similar to that of an agent with perfect problem-space options (compare the learn-
ing curves in Figure 11(b) with the bottom-most learning curve of Figure 11(a)), even though its
options are never trained in the same lightworld in which it is tested. The comparison between
Figures 11(a) and 11(b) shows that agent-space options can be successfully transferred between
lightworld instances.

10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

Episodes

A
c
ti
o

n
s

Perfect Options

Learned Options

No Options

(a) Learning curves for agents with problem-space op-
tions.

10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

Episodes

A
c
ti
o

n
s

0 experiences

1 experience

2 experiences

5 experiences

10 experiences

(b) Learning curves for agents with agent-space options,
with varying numbers of training experiences.

10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

Episodes

A
c
ti
o
n
s

0 experiences

1 experience

2 experiences

5 experiences

10 experiences

(c) Learning curves for agents with agent-spaceand
problem-space options, with varying numbers of training
experiences.

NO LO PO 0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14
x 10

5

(d) Total steps over 70 episodes for agents with no options
(NO), learned problem-space options (LO), perfect options
(PO), agent-space options with 0-10 training experiences
(dark bars), and both option types with 0-10 training expe-
riences (light bars).

Figure 11: Results for the Lightworld Domain.

Figure 11(c) shows average learning curves for agents employingboth types of options.4 The
first time such agents encounter a lightworld, they perform as well as agents using problem-space

4. In 8 of the more than 200,000 episodes used when testing agents with both types of options, an agent-space value
function approximator diverged, and we restarted the episode. Although this is a known problem with the backup

1358

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

options (compare with the second highest curve in Figure 11(a)), and thereafter rapidly improve
their performance (performing better than agents using only agent-spaceoptions) and again by
5 experiences performed nearly as well as agents with perfect options.This improvement can be
explained by two factors. First, the agent-space is much larger than any individual problem-space, so
problem-space options are easier to learn from scratch than agent-space options. This explains why
agents using only agent-space options and no training experiences perform more like agents without
options than like agents with problem-space options. Second, options learned in our problem-space
can represent exact solutions to specific subgoals, whereas options learned in our agent-space are
general and must be approximated, and are therefore likely to be slightly lessefficient for any
specific subgoal. This explains why agents using both types of options perform better in the long
run than agents using only agent-space options.

Figure 11(d) shows the mean total number of steps required over 70 episodes for agents using
no options, problem-space options, perfect options, agent-space options, and both option types.
Experience in training environments rapidly drops the number of total steps required to nearly as
low as the number required for an agent with perfect options. It also clearly shows that agents using
both types of options do consistently better than those using agent-space options alone. We note that
the error bars in Figure 11(d) are small and decrease with experience,indicating consistent transfer.

In summary, these results show that learning using portable options can greatly improve per-
formance over learning using problem-specific options. Given enough experience, learned portable
options can perform similarly to perfect pre-learned problem-specific options, even when the agent-
space is much harder to learn in than any individual problem-space. However, the best learning
strategy is to learn using both problem-specific options and portable options.

5.3 The Conveyor Belt Domain

In the previous section we showed that an agent can use experience in related tasks to learn portable
options, and that those options can improve performance in later tasks, when the agent has a high-
dimensional agent-space. In this section we consider a task where the agent-space is not high-
dimensional, but is only sufficient for local control.

In the conveyor belt domain, a conveyor belt system must move a set of objects from a row
of feeders to a row of bins. There are two types of objects (triangles andsquares), and each bin
starts with a capacity for each type. The objects are issued one at a time froma feeder and must be
directed to a bin. Dropping an object into a bin with a positive capacity for its type decrements that
capacity.

Each feeder is directly connected to its opposing bin through a conveyor belt, which is connected
to the belts above and below it at a pair of fixed points along its length. The system may either run
the conveyor belt (which moves the current object one step along the belt)or try to move it up or
down (which only moves the object if it is at a connection point). Each action results in a reward of
−1, except where it causes an object to be dropped into a bin with spare capacity, in which case it
results in a reward of 100. Dropping an object into a bin with zero capacity for that type results in
the standard reward of−1.

method we used (Precup et al., 2000), it did not occur during the samenumber of samples obtained for agents with
agent-space options only.

1359

KONIDARIS, SCHEIDWASSER ANDBARTO

To specify an instance of the conveyor belt domain, we must specify the number of objects
present, belts present, bin capacities, belt length, and where each adjacent pair of belts are con-
nected. A small example conveyor belt system is shown in Figure 12.

1

2

3

Figure 12: A small example conveyor belt problem.

Each system has a camera that tracks the current object and returns values indicating the distance
(up to 15 units) to the bin and each connector along the current belt. Because the space generated
by the camera is present in every conveyor-belt problem and retains thesame semantics, it is an
agent-space, and because it is discrete and relatively small (13,500 states), we can learn policies in
it without function approximation. However, because it is non-Markov (due to its limited range and
inability to distinguish between belts), it cannot be used as a problem-space.

A problem-space descriptor for a conveyor belt instance consists of three numbers: the current
object number, the belt it is on, and how far along that belt it lies (technicallywe should include the
current capacity of each bin, but we can omit this and still obtain good policies). We generated 100
random instances with 30 objects and 20-30 belts (each of length 30-50) with randomly-selected
interconnections, resulting in problem-spaces of 18,000-45,000 states.

We ran experiments where the agents learned three options: one to move the current object to
the bin at the end of the belt it is currently on, one for moving it to the belt above it, and one for
moving it to the belt below it. We used the same agent types and experimental structure as before,
except that the agent-space options did not use function approximation.

5.3.1 RESULTS

Figures 13(a), 13(b) and 13(c) show learning curves for agents employing no options, problem-
space options and perfect options; agents employing agent-space options; and agents employing
both types of options, respectively.

Figure 13(b) shows that the agents with agent-space options and no priorexperience initially
improve quickly but eventually obtain lower quality solutions than agents with problem-space op-
tions (Figure 13(a)). One or two training experiences result in roughly the same curve as agents
using problem-space options, but by 5 training experiences the agent-space options are a significant
improvement (although due to their limited range they are never as good as perfect options). This
initial dip relatively to agents with no prior experience is probably due to the limitedrange of the
agent-space options (due to the limited range of the camera) and the fact thatthey are only locally
Markov, even for their own subgoals.

1360

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

0 10 20 30 40 50 60 70
−5000

−4000

−3000

−2000

−1000

0

1000

Episodes

R
e
w

a
rd

Learned Options

Perfect Options

No Options

(a) Learning curves for agents with problem-space op-
tions.

0 10 20 30 40 50 60 70
−5000

−4000

−3000

−2000

−1000

0

1000

Episodes

R
e
w

a
rd

0 experiences

1 experience

3 experiences

5 experiences

8 experiences

10 experiences

(b) Learning curves for agents with agent-space options,
with varying numbers of training experiences.

0 10 20 30 40 50 60 70
−5000

−4000

−3000

−2000

−1000

0

1000

Episodes

R
e

w
a

rd

0 experiences

1 experience

3 experiences

5 experiences

8 experiences

10 experiences

(c) Learning curves for agents with both types of options,
with varying numbers of training experiences.

NO LO PO 0 1 2 3 4 5 6 7 8 9 10

−8

−6

−4

−2

0

2

4

x 10
4

(d) Total reward over 70 episodes for agents with no op-
tions (NO), learned problem-space options (LO), perfect
options (PO), agent-space options with 0-10 training expe-
riences (dark bars), and both option types with 0-10 train-
ing experiences (light bars).

Figure 13: Results for the Conveyor Belt Domain.

Figure 13(c) shows that agents with both option types do not experience this initial dip relative
to agents with no prior experience and outperform problem-space optionsimmediately, most likely
because the agent-space options are able to generalise across belts. Figure 13(d) shows the mean
total reward for each type of agent. Agents using agent-space options eventually outperform agents
using problem-space options only, even though the agent-space options have a much more limited
range; agents using both types of options consistently outperform agentswith either option type and
eventually approach the performance of agents using pre-learned problem-space options.

In summary, these results demonstrate that when an agent-space is only locally Markov, learn-
ing portable options can still result in a significant performance improvementover learning using
problem-specific options, but that even with a great deal of experiencewill not reach the perfor-

1361

KONIDARIS, SCHEIDWASSER ANDBARTO

mance of perfect pre-learned problem-specific options. Once again, the best approach is to learn
using both problem-specific and agent-space options simultaneously.

5.4 Summary

Our results show that options learned in agent-space can be successfully transferred between related
tasks, and that this significantly improves performance in sequences of tasks where the agent space
cannot be used for learning directly. Our results suggest that when theagent space is large but can
support global policies, experience in related tasks can eventually result in options that perform as
well as perfect problem-specific options. When the agent space is only locally Markov, learned
portable options will improve performance but are unlikely to reach the performance of perfect
problem-specific options due to their limited range.

We expect that, in general, learning an option in agent-space will often actually be harder than
solving an individual problem-space instance, as was the case in our experiments. In such situations,
learning both problem-specific and agent space options simultaneously will likely obtain better
performance than either individually. Since intra-option learning methods allow for the update of
several options from the same experiences, it may be better in general to simultaneously learn both
general portable skills and specific, exact but non-portable skills, andallow them to bootstrap each
other.

6. Related Work

Although the majority of research in transfer assumes that the source and target problems have the
same state space, some existing research does not make that assumption.

Wilson et al. (2007) consider the case where an agent faces a sequence of environments, each
generated by one of a set of environment classes. Each environment class is modeled as a distri-
bution of values of some observed signal given a feature vector, and since the number of classes
is unknown, the agent must learn an infinite mixture model of classes. When faced with a new
environment, the agent determines which of its existing models it best matches orwhether it instead
corresponds to a novel class. A model-based planning algorithm is then used to solve the new task.
This work explicitly considers environment sequences that do not have the same state space, and
thus defines the distributions of each environment class over the output ofa functionf that generates
a feature vector for each state in each environment. Since that feature vector retains its semantics
across all of the tasks, it is exactly an agent-space descriptor as defined here. Thus, this work can
be seen as using agent-space to learn a set of environment models.

Banerjee and Stone (2007) consider transfer learning for the case ofGeneral Game Playing,
where knowledge gained from playing one game (e.g., Tic-Tac-Toe) is exploited to improve perfor-
mance in another (e.g., Connect-4). Here, transfer is affected throughthe game tree: the authors
define generic game-tree features that apply across all games and then use theirQ-values to initial-
ize the values of novel states with matching features when playing a subsequent game. This is a
very similar mechanism to a portable shaping function, including the use of features—in this case
derived from the game tree—that are common across all tasks.

Taylor et al. (2007) use a hand-coded transfer function to seed one task’s value function with
learned values from another similar task with a potentially different state space. This requires a
mapping to be constructed between the weights of the function approximators of each pair of tasks

1362

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

between which transfer might occur.5 Our method offers two advantages over this. First, we ef-
fectively require the construction of a mapping from each task to an agent-space, so the number of
mappings scales linearly with the number of tasks, rather than quadratically. Second, through the
use of a shaping function, those mappings can be constructed between state descriptors, rather than
between function approximation terms. This allows us to treat the function approximator employed
for each task as a black box rather than requiring detailed knowledge of itsconstruction, and it
allows us to transfer between potentially very different function approximators where a direct map-
ping might be difficult to obtain. On the other hand, if performance is critical, then constructing a
specialized task-to-task mapping may result in better performance than a moregeneric agent-space
mapping; the results in Taylor et al. (2007) seem slightly better than those given in Section 4.4.2,
although a direct comparison is not possible since the benchmarks used (expressing the underlying
learning performance) differ (presumably due to implementation differences), even though we used
the same parameters.

Another related line of research focuses on effecting representation transfer, where basis func-
tions are learned in one task and applied in another. Representation transfer has so far focused
primarily on task sequences where reward function or dynamics differ but the state space remains
the same (Ferguson and Mahadevan, 2006; Ferrante et al., 2008). Ifthe state spaces differ signifi-
cantly, manifold alignment or scaling methods may be employed to transform basisfunctions from
one state space to another (Ferguson and Mahadevan, 2008); however, such transformations require
prior knowledge of the topology of the two state spaces to either achieve scaling or to obtain a good
alignment.

Lazaric et al. (2008) introduced sample transfer, where sample transitions from a source task
may be used as additional data to improve performance in a new task. Transition samples from a
set of source tasks are stored, and then used along with a small set of sample transitions in a new
task to compute a similarity measure between the new task and the source tasks. The transferred
transitions are then sampled according to the similarity measure and added to the new task samples,
resulting in a performance boost for batch-learning methods. Reusing such samples requires their
state descriptors to (at least) be the same size, although if the reused descriptors were defined in
an agent-space, then such a method may be useful for more efficiently learning portable shaping
functions.

Konidaris and Hayes (2004) describe a similar method to ours that uses training tasks to learn
associations between reward and strong signals at reward states, resulting in a significant improve-
ment in the total reward obtained by a simulated robot learning to find a puck in anovel maze.
The research presented in this paper employs a more general mechanism where the agent learns a
heuristic from all visited states.

Zhang and Dietterich (1995) use common features to transfer learned value functions across
a class of job-shop scheduling problems. The value functions (represented as neural networks)
were learned using TD(λ) over a set of features constructed to be common to the entire problem
class. Value functions trained using small instances of scheduling problemswere then used to
obtain solutions to larger problems. This research is a case where an agent-space was sufficient to

5. Construction has been primarily accomplished by hand, but we brieflydiscuss recent work aimed at automating it in
Section 7.1.

1363

KONIDARIS, SCHEIDWASSER ANDBARTO

represent a solution to each individual problem and the need for a problem-specific state space was
avoided.6

The X-STAGE algorithm (Boyan and Moore, 2000) uses features commonacross a class of
tasks to transfer learned evaluation functions that predict the performance of a local search algorithm
applied to an optimization task. The evaluation functions—which are similar to valuefunctions in
that they predict the outcome of the execution of a policy, in this case a search algorithm—serve
to identify the most promising restart points for local search. The X-STAGEalgorithm learns a
distinct evaluation function for each source task and then obtains a “vote”for the next action in
the target task from each source evaluation function. Interestingly, whilethis method of transfer
results in an initial performance boost, it eventually obtains solutions inferiorto those obtained by
learning a problem-specific evaluation function; our use of shaping avoids this dilemma, because
it naturally incorporates experience from the current task into the agent’s value function and thus
avoids permanent bias arising from the use of transferred knowledge.

All of the option creation methods given in Section 2.2 learn options in the same state space in
which the agent is performing reinforcement learning, and thus the optionscan only be reused for
the same problem or for a new problem in the same space. The available state abstraction methods
(Jonsson and Barto, 2001; Hengst, 2002) only allow for the automatic selection of a subset of this
space for option learning, or they require an explicit transformation fromone space to another
(Ravindran and Barto, 2003a).

There has been some research focusing on extracting options by exploiting commonalities in
collections of policies (Thrun and Schwartz, 1995; Bernstein, 1999; Perkins and Precup, 1999;
Pickett and Barto, 2002) or analysing the relationships between variablesgiven sample trajectories
(Mehta et al., 2008), but in each case the options are learned over a single state space. In contrast,
we leave the method used for creating the options unspecified—any option creation method may be
used—but create them in a portable space.

Ferńandez and Veloso (2006) describe a method called Policy Reuse, where an agent given a
library of existing policies determines which of them is closest to a new problemit faces, and then
incorporates that policy into the agent’s exploration strategy. The resultingdistance metric is also
used to build a library of core policies that can be reused for later tasks in the same state space. Al-
though this method has very attractive attributes (particularly when applied in ahierarchical setting),
it is limited to task sequences where only the reward function changes.

Torrey et al. (2006) show that policy fragments learned in a symbolic form using inductive
logic programming (ILP) can be transferred to new tasks as constraints onthe new value-function.
This results in a substantial performance improvement. However, a user must provide a mapping
from state variables in the first task to the second, and the use of an ILP implementation introduces
significant complexity and overhead.

Croonenborghs et al. (2007) learns relational options and shows thatthey can be transferred to
different state spaces provided the same symbols are still present. This approach is similar to ours,
in that we could consider the symbols shared between the tasks to be an agent-space.

6. The agent-space in this case did introduce aliasing, which occasionally caused policies with loops. This was avoided
using a loop-detection algorithm.

1364

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

7. Discussion

The work in the preceding sections has shown that both knowledge and skill transfer can be effected
across a sequence of tasks through the use of features common to all tasks in the sequence. Our
results have shown significant improvements over learning from scratch,and the framework offers
some insight into which problems are amenable to transfer.

However, our framework requires the identification of a suitable agent-space to facilitate trans-
fer, but it does not specify how that space is identified, which creates adesign problem similar to
that of standard state space design. Researchers in the reinforcementlearning community have so
far developed significant expertise at designing problem-spaces, butnot agent-spaces. Neverthe-
less, the example domains in this paper offer several examples of related tasks with different types
of common feature sets—deictic sensors (the Rod positioning task and the Lightworld), a maximum
set (Keepaway), and local sensing (the Conveyor Belt domain)—and we have pointed out the use of
similar feature sets in existing work (Zhang and Dietterich, 1995; Boyan andMoore, 2000; Wilson
et al., 2007; Snel and Whiteson, 2010). Taken together, these examplessuggest that transfer via
common features may find wide application.

Additionally, for option learning, an agent-space descriptor should ideallybe Markov within the
set of states that the option is defined over. The agent-space descriptorform will therefore affect
both what options can be learned and their range. In this respect, designing agent-spaces for learning
options requires more care than for learning shaping functions.

An important assumption made in our option transfer work is that all tasks havethe same set of
available actions, even though they have different state spaces. If this isnot the case, then learning
portable options directly is only possible if the action spaces share a common subset or if we can
find a mapping between action spaces. If no such mapping is given, we may be able to construct
one from experience using a homomorphism (Ravindran and Barto, 2003b).

When learning portable shaping functions, if the action space differs across tasks then we can
simply learn shaping functions defined over states only (as potential-basedshaping functions were
originally defined by Ng et al., 1999) rather than defining them over state-action pairs. Although
we expect that learning using portable state-only shaping functions will not perform as well as
learning using portable state-action shaping functions, we nevertheless expect that they will result
in substantial performance gains for reward-linked tasks.

The idea of an agent-centric representation is closely related to the notion ofdeictic or ego-
centric representations (Agre and Chapman, 1987), where objects arerepresented from the point
of view of the agent rather than in some global frame of reference. We expect that for most prob-
lems, especially in robotics, agent-space representations will be egocentric, except in manipulation
tasks, where they will likely be object-centric. In problems involving spatial maps, we expect that
the difference between problem-space and agent-space will be closely related to the difference be-
tween allocentric and egocentric representations of space (Guazzelli etal., 1998)—the utility of
such spaces for transfer has been demonstrated by Frommberger (2008).

7.1 Identifying Agent-Spaces

In this work we have assumed that an agent-space is given. However, this may not always be
the case; if it is not, then we are faced with the problem of attempting to automaticallyidentify
collections of features that retain their semantics across tasks.

1365

KONIDARIS, SCHEIDWASSER ANDBARTO

This problem may arise in several settings. In the simplest setting, given a pair of corresponding
feature sets for two problems, we must determine whether the two feature setsare an agent-space.
To do this, we may build approximate transition models for each feature set, andthen compare them.

In an intermediate setting, we might be given two sets of corresponding features and asked to
identify which subsets of these features form an agent-space. Snel and Whiteson (2010) report very
promising results on this problem using a formalization of how task-informativea feature is (and
thus how likely it is to be in problem-space) against how domain-informative it is(and thus how
likely it is to be in agent-space).

The problem becomes much harder when we are given an arbitrary number of features for each
task, and we are required to both identify correspondences between features and determine which
subset of features form an agent-space. Taylor et al. (2008) address a similar problem: constructing
mappings between two sets of state variables for a pair of given tasks. They propose an algorithm
which generates all possible mappings from the first task to the second, then learns a transition
model from the first and compares its predictions (using each candidate mapping) to sample data
from the second; finally the algorithm selects the mapping with the lowest transition error. This
method can be adapted to our setting by selecting a reference task (most likelythe first task the
agent sees) and then building mappings from each new task back to it. The subset of variables in
the reference task that appear in all mappings constitute an agent-space.

Taylor et al. (2008) claim that their algorithm is data-efficient because thesame sample tran-
sitions can be used for comparing every possible mapping, even though thealgorithm’s time com-
plexity is exponential in the size of the number of variables in the two tasks. In our setting, once the
first mapping (from the reference task to some other task) has been constructed, we may remove the
reference variables absent from the mapping from later consideration,which could lead to signifi-
cant efficiency gains when constructing later mappings. In addition, sucha method (mapping to a
reference task) would require onlyn−1 mappings to be constructed for arbitrary transfer between
pairs of tasks drawn from a sequence ofn tasks, whereas a direct mapping methodology requires
O(n2) mappings to be constructed.

In the most difficult setting, we might be given no features at all, and askedto construct an
agent-space. This can be considered a problem of discovering latent variables that describe aspects
of the state space which can be used for transfer. We expect that this willbe a challenging but
fruitful avenue of future work.

7.2 Identifying Reward-Linked Tasks

An important distinction raised by this work is the difference between related tasks and tasks that
are both related and reward-linked. Tasks that are related (in that they share an agent-space) but are
not reward-linked do not allow us to transfer knowledge about the valuefunction, since they do not
necessarily have similar reward functions.

This raises an important question for future work: given a solved taskTs and a new related task
Tn, how can we determine whether they are reward-linked? More broadly, given a set of previously
learned related tasks that are not reward-linked, which one should we use as the source of a portable
shaping function for a new related task?

Answering these questions relies upon us finding some method of comparisonfor the two task
reward functions,Rn andRs. Since one of the important motivations behind learning portable shap-
ing functions is boosting initial task performance, we would prefer to perform this comparison

1366

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

without requiring much experience. If we are givenRn in some appropriate functional form, then
we could obtain its value at sample state-action pairs inTs and compare the results with the expe-
rienced values ofRs. If the method used to compare the two reward functions returns a distance
metric, then the agent could use it to cluster portable shaping functions and build libraries of them,
drawing on an appropriate one for each new task it encounters.

However, if we are not givenRn, then we must sampleRn with experience. It is easy to construct
an adversarial argument showing that an agent with experience only inTs cannot determine whether
Tn andTs are reward-linked without at the very least one full episode’s worth ofexperience inTn.

However, we do not believe the complete absence of prior information about a task is rep-
resentative of applied reinforcement learning settings where the agent must solve multiple tasks
sequentially. In most cases, the agent has access to some extra informationabout a new task before
it attempts to solve it. We can formalize this by attaching a descriptor to each task; then the extent
to which an agent can recognize a task “type” depends on how much information is contained in
its descriptor. If the relationship between task descriptor and task “type” isnot known in advance,
it can be learned over time using training examples obtained by comparing reward functions after
experience.

8. Summary and Conclusions

We have presented a framework for transfer in reinforcement learningbased on the idea that related
tasks share common features and that transfer can take place through functions defined over those
related features. The framework attempts to capture the notion of tasks that are related but distinct,
and it provides some insight into when transfer can be usefully applied to a problem sequence and
when it cannot.

Most prior work on transfer relies on mappings between pairs of tasks, and therefore implicitly
defines transfer as a relationship between problems. This work providesa contrasting viewpoint by
relying on a stronger notion of an agent: that there is something common across a series of tasks
faced by the same agent, and that that commonality derives from features shared because they are a
property of an agent.

We have empirically demonstrated that this framework can be successfully applied to signif-
icantly improve transfer using both knowledge transfer and skill transfer. It provides a practical
approach to building agents that are capable of improving their own problem-solving capabilities
through experience over multiple problems.

Acknowledgments

We would like to thank Ron Parr and our three anonymous reviewers for their tireless efforts
to improve this work. We also thank Gillian Hayes, Colin Barringer, Sarah Osentoski, Özg̈ur
Şimşek, Michael Littman, Aron Culotta, Ashvin Shah, Chris Vigorito, Kim Ferguson, Andrew
Stout, Khashayar Rohanimanesh, Pippin Wolfe and Gene Novark for theircomments and assis-
tance. Andrew Barto and George Konidaris were supported in part by the National Science Foun-
dation under Grant No. CCF-0432143, and Andrew Barto was supported in part by a subcontract
from Rutgers University, Computer Science Department, under award number HR0011-04-1-0050
from DARPA. George Konidaris was supported in part by the AFOSR under grant AOARD-104135

1367

KONIDARIS, SCHEIDWASSER ANDBARTO

and the Singapore Ministry of Education under a grant to the Singapore-MIT International Design
Center. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science Foundation,
DARPA, the AFOSR, or the Singapore Ministry of Education.

References

P.E. Agre and D. Chapman. Pengi: An implementation of a theory of activity. InProceedings of
the Sixth National Conference on Artificial Intelligence, pages 268–272, 1987.

B. Banerjee and P. Stone. General game learning using knowledge transfer. In Proceedings of the
20th International Joint Conference on Artificial Intelligence, pages 672–677, 2007.

A.G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning.Discrete
Event Dynamic Systems, 13:41–77, 2003. Special Issue on Reinforcement Learning.

D.S. Bernstein. Reusing old policies to accelerate learning on new MDPs. Technical Report UM-
CS-1999-026, Department of Computer Science, University of Massachusetts at Amherst, April
1999.

J. Boyan and A.W. Moore. Learning evaluation functions to improve optimization by local search.
Journal of Machine Learning Research, 1:77–112, 2000.

T. Croonenborghs, K. Driessens, and M. Bruynooghe. Learning relational options for inductive
transfer in relational reinforcement learning. InProceedings of the Seventeenth International
Conference on Inductive Logic Programming, pages 88–97, 2007.

T.G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decomposition.
Journal of Artificial Intelligence Research, 13:227–303, 2000.

B.L. Digney. Learning hierarchical control structures for multiple tasks and changing environments.
In R. Pfeifer, B. Blumberg, J. Meyer, and S.W. Wilson, editors,From Animals to Animats 5:
Proceedings of the Fifth International Conference on Simulation of AdaptiveBehavior, Zurich,
Switzerland, August 1998. MIT Press.

M. Dorigo and M. Colombetti.Robot Shaping: An Experiment in Behavior Engineering. MIT
Press/Bradford Books, 1998.

K. Ferguson and S. Mahadevan. Proto-transfer learning in Markov Decision Processes using spectral
methods. InProceedings of the ICML Workshop on Structural Knowledge Transferfor Machine
Learning, Pittsburgh, June 2006.

K. Ferguson and S. Mahadevan. Proto-transfer learning in Markov Decision Processes using spectral
methods. Technical Report TR-08-23, University of Massachusetts Amherst, 2008.

F. Ferńandez and M. Veloso. Probabilistic policy reuse in a reinforcement learning agent. InPro-
ceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent Sys-
tems, pages 720–727, 2006.

1368

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

E. Ferrante, A. Lazaric, and M. Restelli. Transfer of task representation in reinforcement learning
using policy-based proto-value functions (short paper). InProceedings of the Seventh Interna-
tional Conference on Autonomous Agents and Multiagent Systems, pages 1329–1332, 2008.

L. Frommberger. Learning to behave in space: A qualitative spatial representation for robot navi-
gation with reinforcement learning.International Journal on Artificial Intelligence Tools, 17(3):
465–482, 2008.

A. Guazzelli, F.J. Corbacho, M. Bota, and M.A. Arbib. Affordances, motivations, and the world
graph theory.Adaptive Behavior, 6(3/4):433–471, 1998.

B. Hengst. Discovering hierarchy in reinforcement learning with HEXQ. In Proceedings of the
Nineteenth International Conference on Machine Learning, pages 243–250, 2002.

A. Jonsson and A.G. Barto. Automated state abstraction for options using theU-Tree algorithm. In
Advances in Neural Information Processing Systems 13, pages 1054–1060, 2001.

A. Jonsson and A.G. Barto. A causal approach to hierarchical decomposition of factored MDPs. In
Proceedings of the Twenty Second International Conference on Machine Learning, 2005.

G.D. Konidaris and G.M. Hayes. Estimating future reward in reinforcement learning animats us-
ing associative learning. InFrom Animals to Animats 8: Proceedings of the 8th International
Conference on the Simulation of Adaptive Behavior, pages 297–304, July 2004.

A. Laud and G. DeJong. The influence of reward on the speed of reinforcement learning: an analysis
of shaping. InProceedings of the Twentieth International Conference on Machine Learning,
pages 440–447, 2003.

A. Lazaric, M. Restelli, and A. Bonarini. Transfer of samples in batch reinforcement learning. In
Proceedings of the Twenty-Fifth International Conference on Machine Learning, pages 544–551,
2008.

S. Mannor, I. Menache, A. Hoze, and U. Klein. Dynamic abstraction in reinforcement learning via
clustering. InProceedings of the Twenty First International Conference on Machine Learning,
pages 560–567, 2004.

M.J. Mataríc. Reinforcement learning in the multi-robot domain.Autonomous Robots, 4(1):73–83,
1997.

A. McGovern and A.G. Barto. Automatic discovery of subgoals in reinforcement learning using
diverse density. InProceedings of the Eighteenth International Conference on Machine Learning,
pages 361–368, 2001.

N. Mehta, S. Ray, P. Tadepalli, and T. Dietterich. Automatic discovery and transfer of MAXQ
hierarchies. InProceedings of the Twenty Fifth International Conference on Machine Learning,
2008.

A.W. Moore and C.G. Atkeson. Prioritized sweeping: Reinforcement learning with less data and
less time.Machine Learning, 13(1):103–130, 1993.

1369

KONIDARIS, SCHEIDWASSER ANDBARTO

A.Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: theory and
application to reward shaping. InProceedings of the 16th International Conference on Machine
Learning, pages 278–287, 1999.

R. Parr and S. Russell. Reinforcement learning with hierarchies of machines. InAdvances in Neural
Information Processing Systems 10, pages 1043–1049, 1997.

T.J. Perkins and D. Precup. Using options for knowledge transfer in reinforcement learning. Tech-
nical Report UM-CS-1999-034, Department of Computer Science, University of Massachusetts,
Amherst, 1999.

M. Pickett and A.G. Barto. Policyblocks: An algorithm for creating usefulmacro-actions in re-
inforcement learning. InProceedings of the Nineteenth International Conference of Machine
Learning, pages 506–513, 2002.

D. Precup, R.S. Sutton, and S. Singh. Eligibility traces for off-policy policyevaluation. InProceed-
ings of the Seventeenth International Conference on Machine Learning, pages 759–766, 2000.

M.L. Puterman.Markov Decision Processes. Wiley, 1994.

J. Randløv and P. Alstrøm. Learning to drive a bicycle using reinforcement learning and shaping. In
Proceedings of the 15th International Conference on Machine Learning, pages 463–471, 1998.

B. Ravindran and A.G. Barto. Relativized options: Choosing the right transformation. InProceed-
ings of the Twentieth International Conference on Machine Learning, pages 608–615, 2003a.

B. Ravindran and A.G. Barto. SMDP homomorphisms: An algebraic approach to abstraction in
semi markov decision processes. InProceedings of the Eighteenth International Joint Conference
on Artificial Intelligence, pages 1011–1016, 2003b.

O. Selfridge, R. S. Sutton, and A. G. Barto. Training and tracking in robotics. InProceedings of the
Ninth International Joint Conference on Artificial Intelligence, pages 670–672, 1985.

Ö. Şimşek and A. G. Barto. Using relative novelty to identify useful temporal abstractions in re-
inforcement learning. InProceedings of the Twenty-First International Conference on Machine
Learning, pages 751–758, 2004.

Ö. Şimşek, A. P. Wolfe, and A. G. Barto. Identifying useful subgoalsin reinforcement learning
by local graph partitioning. InProceedings of the Twenty-Second International Conference on
Machine Learning, 2005.

S. Singh, A.G. Barto, and N. Chentanez. Intrinsically motivated reinforcement learning. InPro-
ceedings of the 18th Annual Conference on Neural Information Processing Systems, 2004.

B. F. Skinner.The Behavior of Organisms: An Experimental Analysis. Appleton-Century-Crofts,
New York, 1938.

M. Snel and S. Whiteson. Multi-task evolutionary shaping without pre-specified representations. In
Proceedings of the Genetic and Evolutionary Computation Conference, pages 1031–1038, 2010.

1370

TRANSFER INREINFORCEMENTLEARNING VIA SHARED FEATURES

P. Stone, R.S. Sutton, and G. Kuhlmann. Reinforcement learning for robocup soccer keepaway.
Adaptive Behavior, 13(3):165–188, 2005.

R.S. Sutton and A.G. Barto.Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 1998.

R.S. Sutton, D. Precup, and S.P. Singh. Intra-option learning about temporally abstract actions.
In Proceedings of the Fifteenth International Conference on Machine Learning, pages 556–564,
1998.

R.S. Sutton, D. Precup, and S.P. Singh. Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning.Artificial Intelligence, 112(1-2):181–211, 1999.

M.E. Taylor and P. Stone. Value functions for RL-based behavior transfer: a comparative study. In
Proceedings of the Twentieth National Conference on Artificial Intelligence, 2005.

M.E. Taylor, P. Stone, and Y. Liu. Transfer learning via inter-task mappings for temporal difference
learning.Journal of Machine Learning Research, 8:2125–2167, 2007.

M.E. Taylor, G. Kuhlmann, and P. Stone. Autonomous transfer for reinforcement learning. InPro-
ceedings of the Seventh International Conference on Autonomous Agents and Multiagent Systems,
2008.

S. Thrun and A. Schwartz. Finding structure in reinforcement learning.In Advances in Neural
Information Processing Systems, volume 7, pages 385–392. The MIT Press, 1995.

L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Skill acquisition via transfer learning and advice
taking. In Proceedings of the Seventeenth European Conference on Machine Learning, pages
425–436, 2006.

J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur, and E. Thelen. Autonomous
mental development by robots and animals.Science, 291(5504):599–600, 2000.

E. Wiewiora. Potential-based shaping and Q-value initialization are equivalent. Journal of Artificial
Intelligence Research, 19:205–208, 2003.

E. Wiewiora, G. Cottrell, and C. Elkan. Principled methods for advising reinforcement learning
agents. InProceedings of the Twentieth International Conference on Machine Learning, pages
792–799, 2003.

A. Wilson, A. Fern, S. Ray, and P. Tadepalli. Multi-task reinforcement learning: a hierarchical
bayesian approach. InProceedings of the 24th International Conference on Machine Learning,
pages 1015–1022, 2007.

W. Zhang and T.G. Dietterich. A reinforcement learning approach to job-shop scheduling. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence, pages 1114–
1120, 1995.

1371

