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Abstract

We study pool-based active learning of half-spaces. We revisit the aggressive approach for active learning

in the realizable case, and show that it can be made efficient and practical, while also having theoretical

guarantees under reasonable assumptions. We further show, both theoretically and experimentally, that it

can be preferable to mellow approaches. Our efficient aggressive active learner of half-spaces has formal

approximation guarantees that hold when the pool is separable with a margin. While our analysis is focused

on the realizable setting, we show that a simple heuristic allows using the same algorithm successfully for

pools with low error as well. We further compare the aggressive approach to the mellow approach, and prove

that there are cases in which the aggressive approach results in significantly better label complexity compared

to the mellow approach. We demonstrate experimentally that substantial improvements in label complexity

can be achieved using the aggressive approach, for both realizable and low-error settings.
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1. Introduction

We consider pool-based active learning (McCallum and Nigam, 1998), in which a learner receives a pool of

unlabeled examples, and can iteratively query a teacher for the labels of examples from the pool. The goal

of the learner is to return a low-error prediction rule for the labels of the examples, using a small number of

queries. The number of queries used by the learner is termed its label complexity. This setting is most useful

when unlabeled data is abundant but labeling is expensive, a common case in many data-laden applications.

A pool-based algorithm can be used to learn a classifier in the standard PAC model, while querying fewer

labels. This can be done by first drawing a random unlabeled sample to be used as the pool, then using

pool-based active learning to identify its labels with few queries, and then using the resulting labeled sample

as input to a regular “passive” PAC-learner.

Most active learning approaches can be loosely described as more ‘aggressive’ or more ‘mellow’. A

more aggressive approach is one in which only highly informative queries are requested (where the meaning

of ‘highly informative’ depends on the particular algorithm) (Tong and Koller, 2002; Balcan et al., 2007;

Dasgupta et al., 2005), while the mellow approach, first proposed in the CAL algorithm (Cohn et al., 1994),

is one in which the learner essentially queries all the labels it has not inferred yet.

In recent years a significant advancement has been made for active learning in the PAC model. In particu-

lar, it has been shown that when the data is realizable (relative to some assumed hypothesis class), the mellow
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approach can guarantee an exponential improvement in label complexity, compared to passive learning (Bal-

can et al., 2006a). This exponential improvement depends on the properties of the distribution, as quantified

by the Disagreement Coefficient proposed in Hanneke (2007). Specifically, when learning half-spaces in

Euclidean space, the disagreement coefficient implies a low label complexity when the data distribution is

uniform or close to uniform. Guarantees have also been shown for the case where the data distribution is a

finite mixture of Gaussians (El-Yaniv and Wiener, 2012).

An advantage of the mellow approach is its ability to obtain label complexity improvements in the agnos-

tic setting, which allows an arbitrary and large labeling error (Balcan et al., 2006a; Dasgupta et al., 2007).

Nonetheless, in the realizable case the mellow approach is not always optimal, even for the uniform dis-

tribution (Balcan et al., 2007). In this work we revisit the aggressive approach for the realizable case, and

in particular for active learning of half-spaces in Euclidean space. We show that it can be made efficient

and practical, while also having theoretical guarantees under reasonable assumptions. We further show, both

theoretically and experimentally, that it can sometimes be preferable to mellow approaches.

In the first part of this work we construct an efficient aggressive active learner for half-spaces in Euclidean

space, which is approximately optimal, that is, achieves near-optimal label complexity, if the pool is separable

with a margin. While our analysis is focused on the realizable setting, we show that a simple heuristic allows

using the same algorithm successfully for pools with low error as well. Our algorithm for halfspaces is based

on a greedy query selection approach as proposed in Tong and Koller (2002) and Dasgupta (2005). We obtain

improved target-dependent approximation guarantees for greedy selection in a general active learning setting.

These guarantees allow us to prove meaningful approximation guarantees for halfspaces based on a margin

assumption.

In the second part of this work we compare the greedy approach to the mellow approach. We prove that

there are cases in which this highly aggressive greedy approach results in significantly better label complexity

compared to the mellow approach. We further demonstrate experimentally that substantial improvements in

label complexity can be achieved compared to mellow approaches, for both realizable and low-error settings.

The first greedy query selection algorithm for learning halfspaces in Euclidean space was proposed by

Tong and Koller (2002). The greedy algorithm is based on the notion of a version space: the set of all

hypotheses in the hypothesis class that are consistent with the labels currently known to the learner. In the

case of halfspaces, each version space is a convex body in Euclidean space. Each possible query thus splits

the current version space into two parts: the version space that would result if the query received a positive

label, and the one resulting from a negative label. Tong and Koller proposed to query the example from

the pool that splits the version space as evenly as possible. To implement this policy, one would need to

calculate the volume of a convex body in Euclidean space, a problem which is known to be computationally

intractable (Brightwell and Winkler, 1991). Tong and Koller thus implemented several heuristics that attempt

to follow their proposed selection principle using an efficient algorithm. For instance, they suggest to choose

the example which is closest to the max-margin solution of the data labeled so far. However, none of their

heuristics provably follow this greedy selection policy.

The label complexity of greedy pool-based active learning algorithms can be analyzed by comparing it to

the best possible label complexity of any pool-based active learner on the same pool. The worst-case label

complexity of an active learner is the maximal number of queries it would make on the given pool, where

the maximum is over all the possible classification rules that can be consistent with the pool according to

the given hypothesis class. The average-case label complexity of an active learner is the average number of

queries it would make on the given pool, where the average is taken with respect to some fixed probability

distribution P over the possible classifiers in the hypothesis class. For each of these definitions, the optimal

label complexity is the lowest label complexity that can be achieved by an active learner on the given pool.

Since implementing the optimal label complexity is usually computationally intractable, an alternative is to

implement an efficient algorithm, and to guarantee a bounded factor of approximation on its label complexity,

compared to the optimal label complexity.

Dasgupta (2005) showed that if a greedy algorithm splits the probability mass of the version space as

evenly as possible, as defined by the fixed probability distribution P over the hypothesis class, then the

approximation factor for its average label complexity, with respect to the same distribution, is bounded by
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O(log(1/pmin)), where pmin is the minimal probability of any possible labeling of the pool, if the classifier is

drawn according to the fixed distribution. Golovin and Krause (2010) extended Dasgupta’s result and showed

that a similar bound holds for an approximate greedy rule. They also showed that the approximation factor

for the worst-case label complexity of an approximate greedy rule is also bounded by O(log(1/pmin)), thus

extending a result of Arkin et al. (1993). Note that in the worst-case analysis, the fixed distribution is only an

analysis tool, and does not represent any assumption on the true probability of the possible labelings.

Returning to greedy selection of halfspaces in Euclidean space, we can see that the fixed distribution over

hypotheses that matches the volume-splitting strategy is the distribution that draws a halfspace uniformly

from the unit ball.1 The analysis presented above thus can result in poor approximation factors, since if there

are instances in the pool that are very close to each other, then pmin might be very small.

We first show that mild conditions suffice to guarantee that pmin is bounded from below. By proving a

variant of a result due to Muroga et al. (1961), we show that if the examples in the pool are stored using

number of a finite accuracy 1/c, then pmin ≥ (c/d)d2
, where d is the dimensionality of the space. It follows

that the approximation factor for the worst-case label complexity of our algorithm is at most O(d2 log(d/c)).
While this result provides us with a uniform lower bound on pmin, in many real-world situations the

probability of the target hypothesis (i.e., one that is consistent with the true labeling) could be much larger

than pmin. A noteworthy example is when the target hypothesis separates the pool with a margin of γ. In this

case, it can be shown that the probability of the target hypothesis is at least γd , which can be significantly

larger than pmin. An immediate question is therefore: can we obtain a target-dependent label complexity

approximation factor that would depend on the probability of the target hypothesis, P(h), instead of the

minimal probability of any labeling?

We prove that such a target dependent bound does not hold for a general approximate-greedy algorithm.

To overcome this, we introduce an algorithmic change to the approximate greedy policy, which allows us

to obtain a label complexity approximation factor of log(1/P(h)). This can be achieved by running the

approximate-greedy procedure, but stopping the procedure early, before reaching a pure version space that

exactly matches the labeling of the pool. Then, an approximate majority vote over the version space, that

is, a random rule which approximates the majority vote with high probability, can be used to determine the

labels of the pool. This result is general and holds for any hypothesis class and distribution. For halfspaces,

it implies an approximation-factor guarantee of O(d log(1/γ)).
We use this result to provide an efficient approximately-optimal active learner for half-spaces, called

ALuMA, which relies on randomized approximation of the volume of the version space (Kannan et al., 1997).

This allows us to prove a margin-dependent approximation factor guarantee for ALuMA. We further show

an additional, more practical implementation of the algorithm, which has similar guarantees under mild

conditions which often hold in practice. The assumption of separation with a margin can be relaxed if a lower

bound on the total hinge-loss of the best separator for the pool can be assumed. We show that under such an

assumption a simple transformation on the data allows running ALuMA as if the data was separable with a

margin. This results in approximately optimal label complexity with respect to the new representation.

We also derive lower bounds, showing that the dependence of our label-complexity guarantee on the

accuracy c, or the margin parameter γ, is indeed necessary and is not an artifact of our analysis. We do

not know if the dependence of our bounds on d is tight. It should be noted that some of the most popular

learning algorithms (e.g., SVM, Perceptron, and AdaBoost) rely on a large-margin assumption to derive

dimension-independent sample complexity guarantees. In contrast, here we use the margin for computational

reasons. Our approximation guarantee depends logarithmically on the margin parameter, while the sample

complexities of SVM, Perceptron, and AdaBoost depend polynomially on the margin. Hence, we require a

much smaller margin than these algorithms do. In a related work, Balcan et al. (2007) proposed an active

learning algorithm with dimension-independent guarantees under a margin assumption. These guarantees

hold for a restricted class of data distributions.

In the second part of this work, we compare the greedy approach to the mellow approach of CAL in the

realizable case, both theoretically and experimentally. Our theoretical results show the following:

1. We discuss the challenges presented by other natural choices of a distribution in Section 2.
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1. In the simple learning setting of thresholds on the line, our margin-based approach is preferable to the

mellow approach when the true margin of the target hypothesis is large.

2. There exists a distribution in Euclidean space such that the mellow approach cannot achieve a signifi-

cant improvement in label complexity over passive learning for halfspaces, while the greedy approach

achieves such an improvement using more unlabeled examples.

3. There exists a pool in Euclidean space such that the mellow approach requires exponentially more

labels than the greedy approach.

We further compare the two approaches experimentally, both on separable data and on data with small er-

ror. The empirical evaluation indicates that our algorithm, which can be implemented in practice, achieves

state-of-the-art results. It further suggests that aggressive approaches can be significantly better than mellow

approaches in some practical settings.

2. On the Challenges in Active Learning for Halfspaces

The approach we employ for active learning does not provide absolute guarantees for the label complexity

of learning, but a relative guarantee instead, in comparison with the optimal label complexity. One might

hope that an absolute guarantee could be achieved using a different algorithm, for instance in the case of

half-spaces. However, the following example from Dasgupta (2005) indicates that no meaningful guarantee

can be provided that holds for all possible pools.

Example 1 Consider a distribution in R
d for any d≥ 3. Suppose that the support of the distribution is a set of

evenly-distributed points on a two-dimensional sphere that does not circumscribe the origin, as illustrated in

the following figure. As can be seen, each point can be separated from the rest of the points with a halfspace.

In this example, to distinguish between the case in which all points have a negative label and the case in

which one of the points has a positive label while the rest have a negative label, any active learning algorithm

will have to query every point at least once. It follows that for any ε > 0, if the number of points is 1/ε,

then the label complexity to achieve an error of at most ε is 1/ε. On the other hand, the sample complexity

of passive learning in this case is order of 1
ε log 1

ε , hence no active learner can be significantly better than a

passive learner on this distribution.

Since we provide margin-dependent guarantees, one may wonder if a margin assumption alone can guar-

antee that few queries suffice to learn the half-space. This is not the case, as evident by the following variation

of Example 1.

Example 2 Let γ ∈ (0, 1
2
) be a margin parameter. Consider a pool of m points in R

d , such that all the points

are on the unit sphere, and for each pair of points x1 and x2, 〈x1,x2〉 ≤ 1− 2γ. It was shown in Shannon

(1959) that for any m≤ O(1/γd), there exists a set of points that satisfy the conditions above. For any point

x in such a pool, there exists a (biased) halfspace that separates x from the rest of the points with a margin

of γ. This can be seen by letting w = x and b = 1− γ. Then 〈w,x〉− b = γ while for any z 6= x in the set,

〈w,z〉−b = 〈x,z〉−1+ γ≤ −γ. By adding a single dimension, this example can be transformed to one with

homogeneous (unbiased) halfspaces. Each point in this pool can be separated from the rest of the points by

a halfspace. Thus, if the correct labeling is all-positive, then all m examples need to be queried to label the

pool correctly.
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These examples show that there are “difficult” pools, where no active learner can do well. The advantage

of the greedy approach is that the optimal label complexity is used as a natural measure of the difficulty of

the pool.

At first glance it might seem that there are simpler ways to implement an efficient greedy strategy for

halfspaces, by using a different distribution over the hypotheses. For instance, if there are m examples in

d dimensions, Sauer’s lemma states that the effective size of the hypothesis class of halfspaces will be at

most md . One can thus use the uniform distribution over this finite class, and greedily reduce the number of

possible hypotheses in the version space, obtaining a d log(m) factor relative to the optimal label complexity.

However, a direct implementation of this method will be exponential in d, and it is not clear whether this

approach has a polynomial implementation.

Another approach is to discretize the version space, by considering only halfspaces that can be represented

as vectors on a d-dimensional grid {−1,−1+c, . . . ,1−c,1}d . This results in a finite hypothesis class of size

(2/c+1)d , and we get an approximation factor of O(d log(1/c)) for the greedy algorithm, compared to an

optimal algorithm on the same finite class. However, it is unknown whether a greedy algorithm for reducing

the number of such vectors in a version space can be implemented efficiently, since even determining whether

a single grid point exists in a given version space is NP-hard (see, e.g., Matoušek, 2002, Section 2.2). In

particular, the volume of the version space cannot be used to estimate this quantity, since the volume of a

body and the number of grid points in this body are not correlated. For example, consider a line in R
2, whose

volume is 0. It can contain zero grid points or many grid points, depending on its alignment with respect

to the grid. Therefore, the discretization approach is not straightforward as one might first assume. In fact,

if this approach is at all computationally feasible, it would probably require the use of some approximation

scheme, similarly to the volume-estimation approach that we describe below.

Yet another possible direction for pool-based active learning is to greedily select a query whose answer

would determine the labels of the largest amount of pool examples. The main challenge in this direction

is how to analyze the label complexity of such an algorithm: it is unclear whether competitiveness with

the optimal label complexity can be guaranteed in this case. Investigating this idea, both theoretically and

experimentally, is an important topic for future work. Note that the CAL algorithm (Cohn et al., 1994), which

we discuss in Section 6, can be seen as implementing a mellow version of this approach, since it decreases

the so-called “disagreement region” in each iteration.

3. Definitions and Preliminaries

In pool-based active learning, the learner receives as input a set of instances, denoted X = {x1, . . . ,xm}. Each

instance xi is associated with a label L(i) ∈ {±1}, which is initially unknown to the learner. The learner

has access to a teacher, represented by the oracle L : [m]→ {−1,1}. An active learning algorithm A obtains

(X ,L,T ) as input, where T is an integer which represents the label budget of A . The goal of the learner is

to find the values L(1), . . . ,L(m) using as few calls to L as possible. We assume that L is determined by a

function h taken from a predefined hypothesis class H . Formally, for an oracle L and a hypothesis h ∈H , we

write L ⇚ h to state that for all i, L(i) = h(xi).
Given S⊆ X and h ∈H , we denote the partial realization of h on S by

h|S = {(x,h(x)) : x ∈ S} .
We denote by V (h|S) the version space consisting of the hypotheses which are consistent with h|S. Formally,

V (h|S) = {h′ ∈H : ∀x ∈ S, h′(x) = h(x) }.
Given X and H , we define, for each h ∈ H , the equivalence class of h over H , [h] = {h′ ∈ H | ∀x ∈

X , h(x)= h′(x)}. We consider a probability distribution P over H such that P([h]) is defined for all h∈H . For

brevity, we denote P(h) = P([h]). Similarly, for a set V ⊆H , P(V ) = P(∪h∈V [h]). Let pmin = minh∈H P(h).
We specifically consider the hypothesis class of homogeneous halfspaces in R

d . In this case, X ⊆ R
d .

The hypothesis class H is defined by W = {x 7→ sgn(〈w,x〉) | w ∈ R
d}, where 〈w,x〉 is the inner product

between the vectors w and x.
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For a given active learning algorithm A , we denote by N(A ,h) the number of calls to L that A makes

before outputting (L(x1), . . . ,L(xm)), under the assumption that L ⇚ h. The worst-case label complexity of

A is defined to be

cwc(A)
def
= max

h∈H

N(A ,h).

We denote the optimal worst-case label complexity for the given pool by OPTmax. Formally, we define

OPTmax = minA cwc(A), where the minimum is taken over all possible active learners for the given pool.

Given a probability distribution P over H , the average-case label complexity of A is defined to be

cavg(A)
def
= Eh∼PN(A ,h).

The optimal average label complexity for the given pool X and probability distribution P is defined as

OPTavg = minA cavg(A).
For a given active learner, we denote by Vt ⊆ H the version space of an active learner after t queries.

Formally, suppose that the active learning queried instances i1, . . . , it in the first t iterations. Then

Vt = {h ∈H | ∀ j ∈ [t],h(xi j
) = L(i j)}.

For a given pool example x ∈ X , denote by V
j

t,x the version spaces that would result if the algorithm now

queried x and received label j. Formally,

V
j

t,x =Vt ∩{h ∈H | h(x) = j}.

A greedy algorithm (with respect to a probability distribution P) is an algorithm A that at each iteration

t = 1, . . . ,T , the pool example x that A decides to query is one that splits the version space as evenly as

possible. Formally, at every iteration t A queries some example in argminx∈X max j∈{±1}P(V
j

t,x). Equivalently,

a greedy algorithm is an algorithm A that at every iteration t queries an example in

argmax
x∈X

P(V−1
t,x ) ·P(V+1

t,x ).

To see the equivalence, note that P(V−1
t,x ) = P(Vt)−P(V+1

t,x ). Therefore,

P(V−1
t,x ) ·P(V+1

t,x ) = (P(Vt)−P(V+1
t,x ))P(V+1

t,x ) = (P(Vt)/2)2− (P(Vt)/2−P(V+1
t,x ))2.

It follows that the expression is monotonic decreasing in |P(Vt)/2−P(V+1
t,x )|.

This equivalent formulation motivates the following definition of an approximately greedy algorithm,

following Golovin and Krause (2010).

Definition 3 An algorithm A is called α-approximately greedy with respect to P, for α≥ 1, if at each itera-

tion t = 1, . . . ,T , the pool example x that A decides to query satisfies

P(V 1
t,x)P(V

−1
t,x )≥ 1

α
max
x̃∈X

P(V 1
t,x̃)P(V

−1
t,x̃ ),

and the output of the algorithm is (h(x1), . . . ,h(xm)) for some h ∈VT .

It is easy to see that by this definition, an algorithm is exactly greedy if it is approximately greedy with α = 1.

By Dasgupta (2005) we have the following guarantee: For any exactly greedy algorithm A with respect

to distribution P,

cavg(A) = O(log(1/pmin) ·OPTavg).

Golovin and Krause (2010) show that for an α approximately greedy algorithm,

cavg(A) = O(α · log(1/pmin) ·OPTavg).

In addition, they show a similar bound for the worst-case label complexity. Formally,

cwc(A) = O(α · log(1/pmin) ·OPTmax). (1)
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4. Results for Greedy Active Learning

The approximation factor guarantees cited above all inversely depend on pmin, the smallest probability of any

hypothesis in the given hypothesis class, according to the given distribution. Thus, if pmin is very small, the

approximation factor is large, regardless of the true target hypothesis. We show that by slightly changing

the policy of an approximately-greedy algorithm, we can achieve a better approximation factor whenever the

true target hypothesis has a larger probability than pmin. This can be done by allowing the algorithm to stop

before it reaches a pure version space, that is before it can be certain of the correct labeling of the pool, and

requiring that in this case, it would output the labeling which is most likely based on the current version space

and the fixed probability distribution P. We say that A outputs an approximate majority vote if whenever VT

is pure enough, the algorithm outputs the majority vote on VT . Formally, we define this as follows.

Definition 4 An algorithm A outputs a β-approximate majority vote for β ∈ ( 1
2
,1) if whenever there exists a

labeling Z : X →{±1} such that Ph∼P[Z ⇚ h | h ∈VT ]≥ β, A outputs Z.

In the following theorem we provide the target-dependent label complexity bound, which holds for any ap-

proximate greedy algorithm that outputs an approximate majority vote. We give here a sketch of the proof

idea, the complete proof can be found in Appendix A.

Theorem 5 Let X = {x1, . . . ,xm}. Let H be a hypothesis class, and let P be a distribution over H . Suppose

that A is α-approximately greedy with respect to P. Further suppose that it outputs a β-approximate majority

vote. If A is executed with input (X ,L,T ) where L ⇚ h ∈H , then for all

T ≥ α(2ln(1/P(h))+ ln(
β

1−β
)) ·OPTmax,

A outputs L(1), . . . ,L(m).

Proof [Sketch] Fix a pool X . For any algorithm alg, denote by Vt(alg,h) the version space induced by the

first n labels it queries if the true labeling of the pool is consistent with h. Denote the average version space

reduction of alg after t queries by

favg(alg, t) = 1−Eh∼P[P(Vt(alg,h))].

Golovin and Krause (2010) prove that since A is α-approximately greedy, for any pool-based algorithm alg,

and for every k, t ∈ N,

favg(A , t)≥ favg(alg,k)(1− exp(−t/αk)). (2)

Let opt be an algorithm that achieves OPTmax. We show (see Appendix A) that for any hypothesis h ∈H and

any active learner alg,

favg(opt,OPTmax)− favg(alg, t)≥ P(h)(P(Vt(alg,h))−P(h)).

Combining this with Equation (2) we conclude that if A is α-approximately greedy then

P(h)

P(Vt(A ,h))
≥ P(h)2

exp(− t
αOPTmax

)+P(h)2
.

This means that if P(h) is large enough and we run an approximate greedy algorithm, then after a suffi-

cient number of iterations, most of the remaining version space induces the correct labeling of the sample.

Specifically, if t ≥ α(2ln(1/P(h))+ ln( β
1−β

)) ·OPTmax, then P(h)/P(Vt(A ,h)) ≥ β. Since A outputs a β-

approximate majority labeling from Vt(A ,h), A returns the correct labeling.

When P(h)≫ pmin, the bound in Theorem 5 is stronger than the guarantee in Equation (1), obtained

by Golovin and Krause (2010). Note, however, that this bound depends on the probability of the target
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hypothesis and thus is not known a-priori, unless additional assumptions are made. The margin assumption,

which we discuss below, is an example for such a plausible assumption. Moreover, our experimental results

indicate that even when such an apriori bound is not known, using a majority vote is preferable to selecting

an arbitrary random hypothesis from an impure version space (see Figure 1 in Section 6.2).

Importantly, such an improved approximation factor cannot be obtained for a general approximate-greedy

algorithm, even in a very simple setting. Thus, we can conclude that some algorithmic change is necessary.

To show this, consider the setting of thresholds on the line. In this setting, the domain of examples is [0,1],
and the hypothesis class includes all the hypotheses defined by a threshold on [0,1]. Formally,

Hline = {hc | c ∈ [0,1],hc(x) = 1⇔ x≥ c}.

Note that this setting is isomorphic to the case of homogeneous halfspaces with examples on a line in any

Euclidean space of two or more dimensions.

Theorem 6 Consider pool-based active learning on Hline, and assume that P on Hline selects hc by drawing

the value c uniformly from [0,1]. For any α > 1 there exists an α-approximately greedy algorithm A such

that for any m > 0 there exists a pool X ⊆ [0,1] of size m, and a threshold c such that P(hc) = 1/2, while the

label-complexity of A for L ⇚ hc is m
⌈log(m)⌉ ·OPTmax.

Proof For the hypothesis class Hline, the possible version spaces after a partial run of an active learner are all

of the form [a,b]⊆ [0,1].
First, it is easy to see that binary search on the pool can identify any hypothesis in [0,1] using ⌈log(m)⌉

example, thus OPTmax = ⌈log(m)⌉. Now, Consider an active learning algorithm that satisfies the following

properties:

• If the current version space is [a,b], it queries the smallest x that would still make the algorithm α-

approximately greedy. Formally, it selects

x = min{x ∈ X | (x−a)(b− x)≥ 1

α
max

x̃∈X∩[a,b]
(x̃−a)(b− x̃)}.

• When the budget of queries is exhausted, if the version space is [a,b], then the algorithm labels the

points above a as positive and the rest as negative.

It is easy to see that this algorithm is α-approximately greedy, since in this problem V 1
t,x ·V−1

t,x = (x−a)(b−x)
for all x ∈ [a,b] = Vt . Now for a given pool size m ≥ 2, consider a pool of examples defined as follows.

First, let x1 = 1, x2 = 1/2 and x3 = 0. Second, for each i ≥ 3, define xi+1 recursively as the solution to

(xi+1− xi)(1− xi+1) =
1
α (x2− xi)(x1− x2). Since α > 1, it is easy to see by induction that for all i ≥ 3,

xi+1 ∈ (xi,x2). Furthermore, suppose the true labeling is induced by h3/4; Thus the only pool example with

a positive label is x1, and P(h3/4) = 1/2. In this case, the algorithm we just defined will query all the pool

examples x4,x5, . . . ,xm in order, and only then will it query x2 and finally x1. If stopped at any time t ≤m−1,

it will label all the points that it has not queried yet as positive, thus if t < m− 1 the output will be an

erroneous labeling. Finally, note that the same holds for the pool x1,x2,x4, . . . ,xm that does not include x3, so

the algorithm must query this entire pool to identify the correct labeling.

Interestingly, this theorem does not hold for α = 1, that is for the exact greedy algorithm. This follows from

Theorem 18, which we state and prove in Section 6.

So far we have considered a general hypothesis class. We now discuss the class of halfspaces in R
d ,

denoted by W above. For simplicity, we will slightly overload notation and sometimes use w to denote

the halfspace it determines. Every hypothesis in W can be described by a vector w ∈ B
d
1 , where B

d
1 is the

Euclidean unit ball, Bd
1 = {w ∈ R

d | ‖w‖ ≤ 1}. We fix the distribution P to be the one that selects a vector

w uniformly from B
d
1 . Our active learning algorithm for halfspaces, which is called ALuMA, is presented in

Section 5. ALuMA receives as input an extra parameter δ ∈ (0,1), which serves as a measure of the desired

confidence level. The following lemma, which we prove in Section 5, shows that ALuMA has the desired

properties described above with high probability.
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Lemma 7 If ALuMA is executed with confidence δ, then with probability 1−δ over its internal randomiza-

tion, ALuMA is 4-approximately greedy and outputs a 2/3-approximate majority vote. Furthermore, ALuMA

is polynomial in the pool size, the dimension, and log(1/δ).

Combining the above lemma with Theorem 5 we immediately obtain that ALuMA’s label complexity is

O(log(1/P(h)) ·OPTmax). We can upper-bound log(1/P(h)) using the familiar notion of margin: For any

hypothesis h ∈W defined by some w ∈ Bd
1 , let γ(h) be the maximal margin of the labeling of X by h, namely

γ(h) = maxv:‖v‖=1 mini∈[m] h(xi)〈v,xi〉/‖xi‖. We have the following lemma, which we prove in Appendix D:

Lemma 8 For all h ∈W , P(h)≥
(

γ(h)
2

)d

.

From Lemma 8 and Lemma 7, we obtain the following corollary, which provides a guarantee for ALuMA

that depends on the margin of the target hypothesis.

Corollary 9 Let X = {x1, . . . ,xm} ⊆ B
d
1 , where B

d
1 is the unit Euclidean ball of Rd . Let δ ∈ (0,1) be a

confidence parameter. Suppose that ALuMA is executed with input (X ,L,T,δ), where L ⇚ h ∈W and T ≥
4(2d ln(2/γ(h))+ ln(2)) ·OPTmax. Then, with probability of at least 1−δ over ALuMA’s own randomization,

it outputs L(1), . . . ,L(m).

Note that ALuMA is allowed to use randomization, and it can fail to output the correct label with prob-

ability δ. In contrast, in the definition of OPTmax we required that the optimal algorithm always succeeds,

in effect making it deterministic. One may suggest that the approximation factor we achieve for ALuMA in

Lemma 7 is due to this seeming advantage for ALuMA. We now show that this is not the case—the same ap-

proximation factor can be achieved when ALuMA and the optimal algorithm are allowed the same probability

of failure. Let m be the size of the pool and let d be the dimension of the examples, and set δ0 =
1

2md . Denote

by Nδ(A ,h) the number of calls to L that A makes before outputting (L(x1), . . . ,L(xm)) with probability at

least 1−δ, for L ⇚ h. Define OPTδ0
= minA maxh Nδ0

(A,h).
First, note that by setting δ = δ0 in ALuMA, we get that Nδ(ALuMA,h) ≤ O(log(1/P(h)) ·OPTmax).

Moreover, ALuMA with δ = δ0 is polynomial in m and d (since it is polynomial in ln(1/δ)). Second,

by Sauer’s lemma there are at most md different possible labelings for the given pool. Thus by the union

bound, there exists a fixed choice of the random bits used by an algorithm that achieves OPTδ0
, that leads

to the correct identification of the labeling for all possible labelings L(1), . . . ,L(m). It follows that OPTδ0
=

OPTmax. Therefore the same factor of approximation can be achieved for ALuMA with δ = δ0, compared to

OPTδ0
.

Our result for ALuMA provides a target-dependent approximation factor guarantee, depending on the

margin of the target hypothesis. We can also consider the minimal possible margin, γ = minh∈W γ(h), and

deduce from Corollary 9, or from the results of Golovin and Krause (2010), a uniform approximation factor

of O(d log(1/γ)). How small can γ be? The following result bounds this minimal margin from below under

the reasonable assumption that the examples are represented by numbers of a finite accuracy.

Lemma 10 Let c > 0 be such that 1/c is an integer and suppose that X ⊂ {−1,−1+ c, . . . ,1− c,1}d . Then,

minh∈W γ(h)≥ (c/
√

d)d+2.

The proof, given in Appendix D, is an adaptation of a classic result due to Muroga et al. (1961). We con-

clude that under this assumption for halfspaces, pmin = Ω((c/d)d2
), and deduce an approximation factor

of d2 log(d/c) for the worst-case label complexity of ALuMA. The exponential dependence of the minimal

margin on d here is necessary; as shown in Håstad (1994), the minimal margin can indeed be exponentially

small, even if the points are taken only from {±1}d .

We also derive a lower bound, showing that the dependence of our bounds on γ or on c is necessary.

Whether the dependence on d is also necessary is an open question for future work.

Theorem 11 For any γ ∈ (0,1/8), there exists a pool X ⊆ B
2
1 ∩{−1,1+ c, . . . ,1− c,1}2 for c = Θ(γ), and

a target hypothesis h∗ ∈W for which γ(h∗) = Ω(γ), such that there exists an exact greedy algorithm that re-

quires Ω(ln(1/γ)) =Ω(ln(1/c)) labels in order to output a correct majority vote, while the optimal algorithm

requires only O(log(log(1/γ))) queries.
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The proof of Theorem 11 is provided in Appendix D. In the next section we describe the ALuMA algorithm

in detail.

5. The ALuMA Algorithm

We now describe our algorithm, listed below as Alg. 1, and explain why Lemma 7 holds. We name the

algorithm Active Learning under a Margin Assumption or ALuMA. Its inputs are the unlabeled sample X ,

the labeling oracle L, the maximal allowed number of label queries T , and the desired confidence δ ∈ (0,1).
It returns the labels of all the examples in X .

As we discussed earlier, in each iteration, we wish to choose among the instances in the pool, the instance

whose label would lead to the maximal (expected) reduction in the version space. Denote by It the set of

indices corresponding to the elements in the pool whose label was not queried yet (I0 = [m]). Then, in round

t, we wish to find

k = argmax
i∈It

P(V 1
t,xi

) ·P(V−1
t,xi

). (3)

Recall we take P to be uniform over W , the class of homogenous half-spaces in R
d . In this case, the

probability of a version space is equivalent to its volume, up to constant factors. Therefore, in order to be able

to solve Equation (3), we need to calculate the volumes of the sets V 1
t,x and V−1

t,x for every element x in the

pool. Both of these sets are convex sets obtained by intersecting the unit ball with halfspaces. The problem

of calculating the volume of such convex sets in R
d is #P-hard if d is not fixed (Brightwell and Winkler,

1991). In many learning applications d is large, therefore, indeed d should not be taken as fixed. Moreover,

deterministically approximating the volume is NP-hard in the general case (Matoušek, 2002). Luckily, it is

possible to approximate this volume using randomization. Specifically, in Kannan et al. (1997) a randomized

algorithm with the following guarantees is provided, where Vol(K) denotes the volume of the set K.

Lemma 12 Let K ⊆ R
d be a convex body with an efficient separation oracle. There exists a randomized

algorithm, such that given ε,δ> 0, with probability at least 1−δ the algorithm returns a non-negative number

Γ such that (1−ε)Γ < Vol(K)< (1+ε)Γ. The running time of the algorithm is polynomial in d,1/ε, ln(1/δ).

We denote an execution of this algorithm on a convex body K by Γ← VolEst(K,ε,δ). The algorithm

is polynomial in d,1/ε, ln(1/δ). ALuMA uses this algorithm to estimate P(V 1
t,x) and P(V−1

t,x ) with sufficient

accuracy. We denote these approximations by v̂x,1 and v̂x,−1 respectively. Using the constants in ALuMA, we

can show the following.

Lemma 13 With probability at least 1−δ/2, Alg. 1 is 4-approximately greedy.

Proof Fix some t ∈ [T ]. Let k ∈ It be the index chosen by ALuMA. Let k∗ be the index corresponding to

the value of Equation (3). Since ALuMA performs at most 2m approximations in each round, we obtain by

Lemma 12 and the union bound that with probability at least 1− δ
2T

, for each i ∈ It and each j ∈ {−1,1},

v̂xi, j ∈
(

2

3
Vol(V

j
t,xi

),
4

3
Vol(V

j
t,xi

)

)

.

In addition, v̂xk,1 · v̂xk,−1 ≥ v̂xk∗ ,1 · v̂xk∗ ,−1. Hence, with probability at least 1− δ
2T

,

16

9
Vol(V−1

t,xk
) ·Vol(V 1

t,xk
)≥ 4

9
Vol(V−1

t,xk∗ ) ·Vol(V 1
t,xk∗ ).

Applying the union bound over T iteration completes our proof.

After T iterations, ALuMA needs to output the majority vote of a version space that has a high enough

purity level. To output an approximate majority vote from the final version space V , we would like to uni-

formly draw several hypotheses from V and label X according to a majority vote over these hypotheses. The
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Algorithm 1 The ALuMA algorithm

1: Input: X = {x1, . . . ,xm}, L : [m]→{−1,1}, T , δ
2: I1← [m], V1← B

d
1

3: for t = 1 to T do

4: ∀i ∈ It , j ∈ {±1}, do v̂xi, j← VolEst(V
j

t,xi
, 1

3
, δ

4mT
)

5: Select it ∈ argmaxi∈It
(v̂xi,1 · v̂xi,−1)

6: It+1← It \{it}
7: Request y = L(it)
8: Vt+1←Vt ∩{w : y〈w,xit 〉> 0}
9: end for

10: M← ⌈72ln(2/δ)⌉.
11: Draw w1, . . . ,wM

1
12

-uniformly from VT+1.

12: For each xi return the label yi = sgn
(

∑M
j=1 sgn(〈w j,xi〉)

)

.

task of uniformly drawing hyphteses from V can be approximated using the hit-and-run algorithm (Lovász,

1999). The hit-and-run algorithm efficiently draws a random sample from a convex body K according to

a distribution which is close in total variation distance to the uniform distribution over K. Formally, The

following definition parametrizes the closeness of a distribution to the uniform distribution:

Definition 14 Let K ⊆ R
d be a convex body with an efficient separation oracle, and let τ be a distribution

over K. τ is λ-uniform if supA |τ(A)−P(A)/P(K)| ≤ λ, where the supremum is over all measurable subsets

of K.

The hit-and-run algorithm draws a sample from a λ-uniform distribution in time Õ(d3/λ2). The next

lemma shows that using the hit-and-run as suggested above indeed produces a majority vote classification.

Lemma 15 ALuMA outputs a 2/3-approximate majority vote with probability at least 1−δ/2.

Proof Assume that there exists a labeling Z : X→{±1} such that Ph∼P[Z ⇚ h | h∈VT+1]≥ 2/3. In step 11 of

ALuMA, M ≥ 72ln(2/δ) hypotheses are drawn 1
12

-uniformly at random from Vt . Therefore each hypothesis

hi ∈VT+1 is consistent with Z with probability at least 7
12

. By Hoeffding’s inequality,

P

[

1

M

M

∑
i=1

I[hi ∈V (h|X )]≤
1

2

]

≤ exp(−M/72) =
δ

2
.

Therefore, with probability at least 1−δ/2, ALuMA outputs a 2/3-approximate majority vote.

We can now prove Lemma 7.

Proof (Of Lemma 7) Lemma 13 and Lemma 15 above prove the first two parts of the lemma. We only have

left to analyze the time complexity of ALuMA. In each iteration, the cost of ALuMA is dominated by the cost

of performing at most 2m volume approximation, each of which costs O(d5 ln(1/δ)). As we discussed above,

implementing the majority vote costs polynomial time in d and ln(1/δ). Overall, the runtime of ALuMA is

polynomial in m (which upper bounds T ), d and log(1/δ).

5.1 A Simpler Implementation of ALuMA

The ALuMA algorithm described in Alg. 1 uses O(T m) volume estimations as a black-box procedure, where

T is the budget of labels and m is the pool size. The complexity of each application of the volume estimation
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procedure is Õ(d5) where d is the dimension. Thus the overall complexity of the algorithm is Õ(T md5). This

complexity can be somewhat improved under some “luckiness” conditions.

The volume estimation procedure uses λ-uniform sampling based on hit-and-run as its core procedure.

Instead, we can use hit-and-run directly as follows: At each iteration of ALuMA, instead of step 4, perform

the following procedure:

Algorithm 2 Estimation Procedure

1: Input: λ ∈ (0, 1
24
),Vt , It

2: k← ln(2Nm/δ)
2λ2

3: Sample h1, . . . ,hk ∈Vt λ-uniformly.

4: ∀i ∈ It , j ∈ {−1,+1}, v̂xi, j← 1
k
|{i | hi(xi) = j}|.

The complexity of ALuMA when using this procedure is Õ(T (d3/λ4 +m/λ2)), which is better than the

complexity of the full Alg. 1 for a constant λ. An additional practical benefit of this alternative estimation pro-

cedure is that when implementing, it is easy to limit the actual computation time used in the implementation

by running the procedure with a smaller number k and a smaller number of hit-and-run mixing iterations.2

This provides a natural trade-off between computation time and labeling costs.

The following theorem shows that under mild conditions, using the estimation procedure listed in Alg. 2

also results in an approximately greedy algorithm, as does the original implementation of ALuMA.

Theorem 16 If for each iteration t of the algorithm, the greedy choice x∗ satisfies

∀ j ∈ {−1,+1}, P[h(x∗) = j | h ∈Vt ]≥ 4
√

λ

then ALuMA with the estimation procedure is a 2-approximate greedy algorithm. Moreover, it is possible to

efficiently verify that this condition holds while running the algorithm.

Proof Fix the iteration t, and denote px,1 = P(V 1
t,x)/P(Vt) and px,−1 = P(V 1

t,x)/P(Vt). Note that px,1+ px,−1 =
1. Since h1, . . . ,hk are sampled λ-uniformly from the version space, we have

∀i ∈ [k], |P[hi ∈V
j

t,x]− px, j| ≤ λ. (4)

In addition, by Hoeffding’s inequality and a union bound over the examples in the pool and the iterations of

the algorithm,

P[∃x, |v̂xi, j−P[hi ∈V
j

t,x]| ≥ λ]≤ 2mexp(−2kλ2). (5)

From Alg. 2 we have k = ln(2m/δ)
2λ2 . Combining this with Equation (4) and Equation (5) we get that

P[∃x, |v̂xi, j− pxi, j]| ≥ 2λ]≤ δ.

The greedy choice for this iteration is

x∗ ∈ argmax
x∈X

∆(h|X ,x) = argmax
x∈X

(px,1 px,−1).

By the assumption in the theorem, px∗, j ≥ 4
√

λ for j ∈ {−1,+1}. Since λ ∈ (0, 1
64
), we have λ≤

√
λ/8.

Therefore px∗, j−2λ≥ 4
√

λ−
√

λ/4≥
√

10λ. Therefore

v̂x∗,1v̂x∗,−1 ≥ (px∗,1−2λ)(px∗,−1−2λ)≥ 10λ. (6)

2. Gilad-Bachrach et al. (2005) report that the actual mixing time of hit-and-run is much faster than the one guaranteed by the theoret-

ical bounds, and we have observed a similar phenomenon in our experiments.
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Let x̃ = argmax(v̂x,−1v̂x,+1) be the query selected by ALuMA using Alg. 2. Then

v̂x∗,−1v̂x∗,+1 ≤ v̂x̃,−1v̂x̃,+1 ≤ (px̃,1 +2λ)(px̃,−1 +2λ)≤ px̃,1 px̃,−1 +4λ.

Where in the last inequality we used the facts that px̃,1 + px̃,−1 = 1 and 4λ2 ≤ 2λ. On the other hand, by

Equation (6)

v̂x∗,−1v̂x∗,+1 ≥ 5λ+
1

2
v̂x∗,−1v̂x∗,+1 ≥ 5λ+

1

2
(px∗,−1−2λ)(px∗,−1−2λ)≥ 4λ+

1

2
px∗,−1 px∗,−1.

Combining the two inequalities for v̂x∗,−1v̂x∗,+1 it follows that px̃,1 px̃,−1 ≥ 1
2

px∗,−1 px∗,−1, thus this is a

2-approximately greedy algorithm.

To verify that the assumption holds at each iteration of the algorithm, note that for all x = xi such that

i ∈ It
px,−1 px,+1 ≥ (v̂x,−1−2λ)(v̂x,+1−2λ)≥ v̂x,−1v̂x,+1−2λ.

therefore it suffices to check that for all x = xi such that i ∈ It v̂x,−1v̂x,+1 ≥ 4
√

λ+2λ.

The condition added in this theorem is that the best example in each iteration should induce a fairly

balanced partition of the current version space. In our experiments we noticed that this is generally the case

in practice. Moreover, the theorem shows that it is possible to verify that the condition holds while running the

algorithm. Thus, the estimation procedure can easily be augmented with an additional verification step at the

beginning of each iteration. On iterations that fail the verification, the algorithm will use the original black-

box volume estimation procedure. We have used this simpler implementation in our experiments, which are

reported below.

5.2 Handling Non-Separable Data and Kernel Representations

If the data pool X is not separable, but a small upper bound on the total hinge-loss of the best separator can

be assumed, then ALuMA can be applied after a preprocessing step, which we describe in detail below. This

preprocessing step maps the points in X to a set of points in a higher dimension, which are separable using the

original labels of X . The dimensionality depends on the margin and on the bound on the total hinge-loss of

the original representation. The preprocessing step also supports kernel representations, so that the original

X can be represented by a kernel matrix as well. Applying ALuMA after this preprocessing steps results

in an approximately optimal label complexity, however OPTmax here is measured with respect to the new

representation.

While some of the transformations we employ in the preprocessing step have been discussed before in

other contexts (see, e.g., Balcan et al., 2006b), we describe and analyze the full procedure here for complete-

ness. The preprocessing step is composed of two simple transformations. In the first transformation each

example xi ∈ X is mapped to an example in dimension d +m, defined by x′i = (axi;
√

1−a2 · ei), where ei is

the i’th vector of the natural basis of Rm and a > 0 is a scalar that will be defined below. Thus the first d coor-

dinates of x′i hold the original vector times a, the rest of the coordinates are zero,except for x′i[d+ i] =
√

1−a2.

This mapping guarantees that the set X ′ = (x′1, . . . ,x
′
m) is separable with the same labels as those of X , and

with a margin that depends on the cumulative squared-hinge-loss of the data.

In the second transformation, a Johnson-Lindenstrauss random projection (Johnson and Lindenstrauss,

1984; Bourgain, 1985) is applied to X ′, thus producing a new set of points X̄ = (x̄1, . . . , x̄m) in a different

dimension R
k, where k depends on the original margin and on the amount of margin error. With high proba-

bility, the new set of points will be separable with a margin that also depends on the original margin and on

the amount of margin error. If the input data is provided not as vectors in R
d but via a kernel matrix, then a

simple decomposition is performed before the preprocessing begins.

The full preprocessing procedure is listed below as Alg. 3. The first input to the algorithm is the data for

preprocessing, given as X ⊆R
d or as a kernel matrix K ∈Rm×m. The other inputs are γ—a margin parameter,

H—an upper bound on the margin error relative to γ, and δ, which is the required confidence.
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Algorithm 3 Preprocessing

1: Input: X = {x1, . . . ,xm} ∈ R
d or K ∈ R

m×m, γ, H, δ
2: if input data is a kernel matrix K then

3: Find U ∈ R
m×m such that K =UUT

4: ∀i ∈ [m],xi← row i of U

5: d← m

6: end if

7: a←
√

1

1+
√

H

8: ∀i ∈ [m],x′i← (axi;
√

1−a2 · ei)

9: k← O
(

(H+1) ln(m/δ)
γ2

)

10: M← a random {±1} matrix of dimension k× (d +m)
11: for i ∈ [m] do

12: x̄i←Mx′i
13: end for

14: Return (x̄1, . . . , x̄m).

After the preprocessing step, X̄ is used as input to ALuMA, which then returns a set of labels for the

examples in X̄ . These are also the labels of the examples in the original X . To retrieve a halfspace for X with

the least margin error, any passive learning algorithm can be applied to the resulting labeled sample. The full

active learning procedure is described in Alg. 4.

Note that if ALuMA returns the correct labels for the sample, the usual generalization bounds for passive

supervised learning can be used to bound the true error of the returned separator w. In particular, we can

apply the support vector machine algorithm (SVM) and rely on generalization bounds for SVM.

Algorithm 4 Active Learning

1: Input: X = {x1, . . . ,xm} or K ∈ R
m×m, L : [m]→{−1,1}, N, γ, H, δ

2: if input has X then

3: Get X̄ by running Alg. 3 with input X ,γ,H,δ/2.

4: else

5: Get X̄ by running Alg. 3 with input K,γ,H,δ/2.

6: end if

7: Get (y1, . . . ,ym) by running ALuMA with input X̄ , L, N, δ/2.

8: Get w ∈ R
d by running SVM on the labeled sample {(x1,y1), . . . ,(xm,ym)}.

9: Return w.

The result of these transformations are summarized in the following theorem.

Theorem 17 Let X = {x1, . . . ,xm} ⊆ B, where B is the unit ball in some Hilbert space. Let H ≥ 0 and γ > 0,

and assume there exists a w∗ ∈ B such that

H ≥
m

∑
i=1

max(0,γ−L(i)〈w∗,xi〉)2.

Let δ ∈ (0,1) be a confidence parameter. There exists an algorithm that receives X as vectors in R
d or as a

kernel matrix K ∈ R
m×m, and input parameters γ and H, and outputs a set X̄ = {x̄1, . . . , x̄m} ⊆ R

k, such that

1. k = O
(

(H+1) ln(m/δ)
γ2

)

,

2. With probability 1−δ, X̄ ⊆ B
k
1 and (X̄ ,L) is separable with a margin

γ

2+2
√

H
.
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3. The run-time of the algorithm is polynomial in d,m,1/γ, ln(1/δ) if xi are represented as vectors in d,

and is polynomial in m,1/γ, ln(1/δ) if xi are represented by a kernel matrix.

The proof of Theorem 17 can be found in Appendix B. In Section 6.2 we demonstrate that in practice, this

procedure provides good label complexity results on real data sets. Investigating the relationship between

OPTmax in the new representation and OPTmax in the original representation is an important question for

future work.

6. Other Approaches: A Theoretical and Empirical Comparison

We now compare the effectiveness of the approach implemented by ALuMA to other active learning strate-

gies. ALuMA can be characterized by two properties: (1) its “objective” is to reduce the volume of the

version space and (2) at each iteration, it aggressively selects an example from the pool so as to (approxi-

mately) minimize its objective as much as possible (in a greedy sense). We discuss the implications of these

properties by comparing to other strategies. Property (1) is contrasted with strategies that focus on increasing

the number of examples whose label is known. Property (2) is contrasted with strategies which are “mellow”,

in that their criterion for querying examples is softer.

Much research has been devoted to the challenge of obtaining a substantial guaranteed improvement of

label complexity over regular “passive” learning for halfspaces in R
d . Examples (for the realizable case)

include the Query By Committee (QBC) algorithm (Seung et al., 1992; Freund et al., 1997), the CAL al-

gorithm (Cohn et al., 1994), and the Active Perceptron (Dasgupta et al., 2005). These algorithms are not

“pool-based” but rather use “selective-sampling”: they sample one example at each iteration, and immedi-

ately decide whether to ask for its label. Out of these algorithms, CAL is the most mellow, since it queries

any example whose label is yet undetermined by the version space. Its “objective” can be described as re-

ducing the number of examples which are labeled incorrectly, since it has been shown to do so in many cases

(Hanneke, 2007, 2011; Friedman, 2009). QBC and the active perceptron are less mellow. Their “objective”

is similar to that of ALuMA since they decide on examples to query based on geometric considerations.

In Section 6.1 we discuss the theoretical advantages and disadvantages of different strategies, by consid-

ering some interesting cases from a theoretical perspective. In Section 6.2 we report an empirical comparison

of several algorithms and discuss our conclusions.

6.1 Theoretical Comparison

The label complexity of the algorithms mentioned above is usually analyzed in the PAC setting, thus we

translate our guarantees into the PAC setting as well for the sake of comparison. We define the (ε,m,D)-label

complexity of an active learning algorithm to be the number of label queries that are required in order to

guarantee that given a sample of m unlabeled examples drawn from D, the error of the learned classifier will

be at most ε (with probability of at least 1− δ over the choice of sample). A a pool-based active learner

can be used to learn a classifier in the PAC model by first sampling a pool of m unlabeled examples from D,

then applying the pool-based active learner to this pool, and finally running a standard passive learner on the

labeled pool to obtain a classifier. For the class of halfspaces, if we sample an unlabeled pool of m = Ω̃(d/ε)
examples, then the learned classifier will have an error of at most ε (with high probability over the choice of

the pool).

To demonstrate the effect of the first property discussed above, consider again the simple case of thresh-

olds on the line defined in Section 4. Compare two greedy pool-based active learners for Hline : The first

follows a binary search procedure, greedily selecting the example that increases the number of known labels

the most. Such an algorithm requires ⌈log(m)⌉ queries to identify the correct labeling of the pool. The second

algorithm queries the example that splits the version space as evenly as possible. Theorem 5 implies a label

complexity of O(log(m) log(1/γ(h))) for such an algorithm, since OPTmax = ⌈log(m)⌉. However, a better

result holds for this simple case:
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Theorem 18 In the problem of thresholds on the line, for any pool with labeling L, the exact greedy algorithm

requires at most O(log(1/γ(h))) labels. This is also the label complexity of any approximate greedy algorithm

that outputs a majority vote.

Proof First, assume that the algorithm is exactly greedy. A version space for Hline is described by a segment

in [a,b]⊆ [0,1], and a query at point α results in a new version space, [a,α] or [α,b], depending on the label.

We now show that for every version space [a,b], at most two greedy queries suffice to either reduce the size

of the version space by a factor of at least 2/3, or to determine the labels of all the points in the pool.

Assume for simplicity that the version space is [0,1], and denote the pool of examples in the version space

by X . Assume w.l.o.g. that the greedy algorithm now queries α≤ 1
2
. If α > 1/3, then any answer to the query

will reduce the version space size to less than 2/3. Thus assume that α ≤ 1/3. If the query answer results

in the version space [0,α) then we are done since this version space is smaller than 2/3. We are left with

the case that the version space after querying α is [α,1]. Since the algorithm is greedy, it follows that for

β = min{x ∈ X | x≥ α}, we have β≥ 1−α: this is because if there was a point β ∈ (α,1−α), it would cut

the version space more evenly than α, in contradiction to the greedy choice of α. Note further that (α,1−α)
is larger than [1−α,1] since α≤ 1/3. Therefore, the most balanced choice for the greedy algorithm is β. If

the query answer for β cuts the version space to (β,1] then we are done, since 1−β ≤ α ≤ 1/3. Otherwise,

the query answer leaves us with the version space (α,β). This version space includes no more pool points,

by the definition of β. Thus in this case the algorithm has determined the labels of all points.

It follows that if the algorithm runs at least t iterations, then the size of the version space after t iterations

is at most (2/3)t/2. If the true labeling has a margin of γ, we conclude that (2/3)t/2 ≥ γ, thus t ≤O(log(1/γ)).
A similar argument can be carried for ALuMA, using a smaller bound on α and more iterations due to

the approximation, and noting that if the correct answer is in (α,1−α) then a majority vote over thresholds

drawn randomly from the version space will label the examples correctly.

Comparing the ⌈log(m)⌉ guarantee of the first algorithm to the log(1/γ(h)) guarantee of the second, we

reach the (unsurprising) conclusion, that the first algorithm is preferable when the true labeling has a small

margin, while the second is preferable when the true labeling has a large margin. This simple example ac-

centuates the implications of selecting the volume of the version space as an objective. A similar implication

can be derived by considering the PAC setting, replacing the binary-search algorithm with CAL, and letting

m = Θ̃(1/ε). On the single-dimensional line, CAL achieves a label-complexity of O(log(1/ε)) = O(log(m)),
similarly to the binary search strategy we described. Thus when ε is large compared to γ(h), CAL is better

than being greedy on the volume, and the opposite holds when the condition is reversed. QBC will behave

similarly to ALuMA in this setting.

To demonstrate the effect of the second property described above—being aggressive versus being mellow,

we consider the following example, adapted slightly from Dasgupta (2006).

Example 19 Consider two circles parallel to the (x,y) plane in R
3, one at the origin and one slightly above

it. For a given ε, fix 2/ε points that are evenly distributed on the top circle, and 2/ε points at the same

angles on the bottom circle (see left illustration below). The distribution Dε is an uneven mix of a uniform

distribution over the points on the top circle and one over the points of the bottom circle: The top circle is

given a much higher probability. All homogeneous separators label half of the bottom circle positively, but

an unknown part of the top circle (see right illustration). The bottom points can be very helpful in finding the

correct separator fast, but their probability is low.

+−
+−

Dasgupta has demonstrated via this example that active learning can gain in label complexity from having

significantly more unlabeled data. The following theorem shows that the aggressive strategy employed by
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ALuMA indeed achieves an exponential improvement when there are more unlabeled samples. In many

applications, unlabeled examples are virtually free to sample, thus it can be worthwhile to allow the active

learner to sample more examples than the passive sample complexity and use an aggressive strategy.3 In

contrast, the mellow strategy of CAL does not significantly improve over passive learning in this case. We

note that these results hold for any selective-sampling method that guarantees an error rate similar to passive

ERM given the same sample size. This falls in line with the observation of Balcan et al. (2007), that in some

cases a more aggressive approach is preferable.

Theorem 20 For all small enough ε ∈ (0,1) the distribution Dε in Example 19 satisfies

1. For m = O(1/ε), the (ε,m,Dε)-label complexity of any active learner is Ω(1/ε).

2. For m = Ω(log2(1/ε)/ε2), the (ε,m,Dε)-label complexity of ALuMA is O(log2(1/ε)).

3. For any value of m, the (ε,m,Dε)-label complexity of CAL is Ω(1/ε).

The proof of Theorem 20 is provided in Appendix C. The example above demonstrated that more unla-

beled examples can help ALuMA use less labels, whereas they do not help CAL. In fact, in some cases the

label complexity of CAL can be significantly worse than that of the optimal algorithm, even when both CAL

and the optimal algorithm have access to all the points in the support of the distribution. This is demonstrated

in the following example. Note that in this example, a passive learner also requires access to all the points in

the support of the distribution, thus CAL, passive learning, and optimal active learning all require the same

size of a random unlabeled pool.

Example 21 Consider a distribution in R
d that is supported by two types of points on an octahedron (see an

illustration for R3 below).

1. Vertices: {e1, . . . ,ed}.

2. Face centers: z/d for z ∈ {−1,+1}d .

Consider the hypothesis class W = {x 7→ sgn(〈x,w〉−1+ 1
d
) | w ∈ {−1,+1}d}. Each hypothesis in W ,

defined by some w ∈ {−1,+1}d , classifies at most d +1 data points as positive: these are the vertices ei for

i such that w[i] = +1, and the face center w/d.

Theorem 22 Consider Example 21 for d ≥ 3, and assume that the pool of examples includes the entire

support of the distribution. There is an efficient algorithm that finds the correct hypothesis from W with at

most d labels. On the other hand, with probability at least 1
e

over the randomization of the sample, CAL uses

at least 2d+d
2d+3

labels to find the correct separator.

3. In the limit of an infinite number of unlabeled examples, if the distribution has a non-zero support on the entire domain, the

pool-based setting becomes identical to the setting of membership queries (Angluin, 1988). In contrast, we are interested in finite

samples.
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Proof First, it is easy to see that if h∗ ∈W is the correct hypothesis, then

w = (h∗(e1), . . . ,h
∗(ed)).

Thus, it suffices to query the d vertices to discover the true w.

We now show that the number of queries CAL asks until finding the correct separator is exponential in d.

CAL inspects the unlabeled examples sequentially, and queries any example whose label cannot be inferred

from previous labels. Consider some run of CAL (determined by the random ordering of the sample). Assume

w.l.o.g. that each data point appears once in the sample. Let S be the set that includes the positive face center

and all the vertices. Note that CAL cannot terminate before either querying all the 2d − 1 negative face

centers, or querying at least one example from S. Moreover, CAL will query all the face centers it encounters

before encountering the first example from S. At each iteration t before encountering an example from S,

there is a probability of d+1
2d+d−t

that the next example is from S. Therefore, the probability that the first

T = 2d+d
2d+3

examples are not from S is

T−1

∏
t=0

(

1− d +1

2d +d− t

)

≥
(

1− d +1

2d +d−T

)T

≥ e
−2T d+1

2d+d−T = e

−2(d+1)

2d+d
T
−1 =

1

e
,

where in the second equality we used 1−a≥ exp(−2a) which holds for all a ∈ [0, 1
2
]. Therefore, with prob-

ability at least 1
e

the number of queries is at least 2d+d
2d+3

.

These examples show that in some cases an aggressive approach is preferable to a mellow approach such

as employed by CAL. At the same time, it should be noted that CAL has a guaranteed label complexity for

cases for which ALuMA currently has none. Its label complexity is bounded by Õ(dθ log(1/ε)), where θ is

the disagreement coefficient, a quantity that depends on the distribution and the target hypothesis (Hanneke,

2007, 2011). Specifically, if D is uniform over a sphere centered at the origin, then for all target hypothe-

ses θ = Θ(
√

d). Thus CAL achieves an exponential improvement over passive learning for this canonical

example. We do not have a similar analysis for ALuMA for the case of a uniform distribution.

6.2 Empirical Comparison

We carried out an empirical comparison between the algorithms discussed above. Our goal is twofold: First,

to evaluate ALuMA in practice, and second, to compare the performance of aggressive strategies compared

to mellow strategies. The aggressive strategies are represented in this evaluation by ALuMA and one of the

heuristics proposed by Tong and Koller (2002). The mellow strategy is represented by CAL. QBC represents

a middle-ground between aggressive and mellow. We also compare to a passive ERM algorithm—one that

uses random labeled examples. We evaluated the algorithms over synthetic and real data sets and compared

their label complexity performance.

Our implementation of ALuMA uses hit-and-run samples instead of full-blown volume estimation, as

described in Section 5.1. QBC is also implemented using hit-and-run, as described in Gilad-Bachrach et al.

(2005). For both ALuMA and QBC, we used a fixed number of mixing iterations for hit-and-run, which

we set to 1000. We also fixed the number of sampled hypotheses at each iteration of ALuMA to 1000, and

used the same set of hypotheses to calculate the majority vote for classification. CAL and QBC examine

the examples sequentially, thus the input provided to them was a random ordering of the example pool. The

algorithm TK is the first heuristic proposed in Tong and Koller (2002), in which the example chosen at each

iteration is the one closest to the max-margin solution of the labeled examples known so far. The graphs

below compare the train and the test errors of the different algorithms.

In each of the algorithms, the classification of the training examples is done using the version space

defined by the queried labels. The theory for CAL and ERM allows selecting an arbitrary predictor out of

the version space. In QBC, the hypothesis should be drawn uniformly at random from the version space. We

have found that all the algorithms show a significant improvement in classification error if they classify using
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Figure 1: QBC (MNIST 4 vs. 7) - Random hypothesis Vs. Majority vote

Figure 2: MNIST 3 vs. 5. Train error (left) and test error (right)

the majority vote classification proposed for ALuMA. This observation is demonstrated in Figure 1, which

shows the rate of error of QBC (on MNIST data which is described below) using a random hypothesis and

a majority vote. Therefore, in all of our experiments below, the results for all the algorithms are based on a

majority vote classification.

Our first data set is MNIST.4 The examples in this data set are gray-scale images of handwritten digits

in dimension 784. Each digit has about 6,000 training examples. We performed binary active learning by

pre-selecting pairs of digits. Figure 2 and Figure 3 depict the error as a function of the label budget for two

pairs of digits: 3 vs. 5 and 4 vs. 7. It is striking to observe that CAL provides no improvement over passive

ERM in the first 1000 examples, while this budget suffices to reach zero training error for ALuMA and TK.

We also tested the algorithms on the PCMAC data set.5 This is a real-world data set, which represents

a two-class categorization of the 20-Newsgroup collection. The examples are web-posts represented using

bag-of-words. The original dimension of examples is 7511. We used the Johnson-Lindenstrauss projection

to reduce the dimension to 300, which kept the data still separable. We used a training set of 1000 examples.

4. The data set is available at http://yann.lecun.com/exdb/mnist/.

5. The data set is available at http://vikas.sindhwani.org/datasets/lskm/matlab/pcmac.mat.
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Figure 3: MNIST 4 vs. 7. Train error (left) and test error (right)

Figure 4: PCMAC. Train error (left) and test error (right)

Figure 4 depicts the results. We were not able to run QBC long enough to use its entire label budget, as it

tends to become slower when the training error becomes small.

The following experiments show that ALuMA and TK outperform CAL and QBC even on a data sampled

from the uniform distribution on a sphere in R
d . Figure 5 and Figure 6 depict the error as a function of the

label budget when learning a random halfspace over the uniform distribution in R
10 and R

100 respectively.

Figure 5: Uniform distribution (d = 10). Train error (left) and test error (right)
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Figure 6: Uniform distribution (d = 100). Train error (up) and test error (down)

The difference between the performance of the different algorithms is less marked for d = 10 than for d = 100

, suggesting that the difference grows with the dimension. This result suggests that ALuMA might have a

better guarantee than the general relative analysis in the case of the uniform distribution. Achieving such an

analysis is an open question which is left for future work.

In the experiments reported so far, TK and ALuMA perform about the same, showing that the TK heuristic

is very successful. However, there are cases where TK performs much worse than ALuMA, as the following

synthetic experiment demonstrates. In this experiment the pool of examples is taken to be the support of the

distribution described in Example 21, with an additional dimension to account for halfspaces with a bias. We

also added the negative vertices −ei to the pool. Similarly to the proof of Theorem 22, it suffices to query the

vertices to reach zero error. Table 1 lists the number of iterations required in practice to achieve zero error

by each of the algorithms. In this experiment, unlike the rest, ALuMA is not only much better than QBC

and CAL, it is also much better than TK, which is worse even than QBC here. This suggests that TK might

not have guarantees similar to those of ALuMA, despite the fact that they both attempt to minimize the same

objective. The number of queries ALuMA requires is indeed close to the number of vertices.

d ALuMA TK QBC CAL ERM

10 29 156 50 308 1008

12 38 735 113 862 3958

15 55 959 150 2401 > 20000

Table 1: Octahedron: number of queries to achieve zero error

To summarize, in all of the experiments above, aggressive algorithms performed better than mellow ones.

These results are not fully explained by current theory. The experiments also show that ALuMA and TK have

comparable success in practice, but also that there are cases where TK is much worse than ALuMA.

6.3 Non-Separable Data

We now turn to evaluate ALuMA on non-separable data, based on the procedure described in Section 5.2.

We compare to IWAL (Beygelzimer et al., 2009), which is a state-of-the-art active learning algorithm for
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the agnostic case. We compared ALuMA and IWAL to the passive soft-SVM, which selects random labeled

examples from the training set as input.

Figure 7: MNIST 4 vs. 7. (non-separable) training error (left) and test error (right)

Figure 8: MNIST 3 vs. 5. (non-separable), training error (left) and test error (right)

In our first experiment, we tested the algorithms on the MNIST data, pairs 3 vs. 5 and 4 vs. 7 again, by first

reducing the dimension. Following the experimental procedure in Beygelzimer et al. (2009), we projected

the 784-dimensional data to a 25-dimensional space using PCA. This renders the two pairs of digits we tested

in Section 6.2 non-separable. Using model selection, we set the regularization parameter of soft-SVM to

λ = 10−3 and the maximal norm of the separator in IWAL to
√

1000. For ALuMA, the noise parameter was

set to H = 0.02 and the dimension after preprocessing was 240. The results are presented in Figures 7 and

8. It can be seen that ALuMA enjoys a faster improvement in error compared to IWAL. This improvement

might be attributed to the fact that we assume an upper bound on the hinge-loss in this case, while IWAL

must be prepared to handle any amount of label error.

Our second experiment is for the W1A data set.6 The original data contains a (sparse representation of)

more than 2000 train instances and more than 47,000 test instances in dimension 300. Our preprocessing

step used H = 10−2 and projected the data to dimension 260. The other parameters were the same as in

the previous experiments. The results are shown in Figure 9. It can be seen that in this data set IWAL and

ALuMA are comparable, both offering improvement over soft SVM. Unlike MNIST, here ALuMA does not

show a consistent improvement over IWAL. We suspect that this is due to the fact that the best achievable

error for this data is larger, thus decreasing ALuMA’s advantage.

6. The data set is available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.
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Figure 9: W1A training error (left) and test error (right)

7. Discussion

In this work we have shown that the aggressive approach for active learning can be implemented efficiently

and successfully for learning halfspaces. Our theoretical results shed light on the relationship between the

margin of the true separator and the number of active queries that the algorithm requires. The experiments

show that this approach is practical to implement, and results in improved performance compared to mellow

approaches.

Many questions remain open. First, while our analysis guarantees an approximation factor of O(d log(m)),
in practice our experiments for the uniform distribution show that in this case the approach performs as well

or better than algorithms which are known to achieve almost optimal rates, such as QBC, even in high di-

mensions. Providing a tight analysis for the label complexity of the aggressive approach for the uniform

distribution is thus an interesting open question. Further, while our guarantees only bound the number of

queries required to achieve zero error, in practice the algorithm performs well compared to other algorithms

even if the goal is only to reach some small non-zero error. Characterizing the behavior of the aggressive ap-

proach in this regime is another important open question. Lastly, our work shows that for low-error settings,

the aggressive approach can be preferable to the mellow approach. On the other hand, the mellow approach

is clearly preferable when error levels are very high. Thus we posit the following open problem for further

research: Characterizing the best active learning algorithm one should choose, given a numerical upper bound

on the amount of error in the given learning problem.

Appendix A. Proof of Theorem 5

In this section we provide the complete proof of Theorem 5. We will follow Golovin and Krause (2010) and

rely on the notion of adaptive sub-modularity.

Denote the product space of partial realizations by LX ,H . Let f : LX ,H → R+ be any utility function

from the set of possible partial labelings of X to the non-negative reals. We define the notions of adaptive

monotonicity and adaptive submodularity of a utility function using the following notation: For an element

x ∈ X , a subset Z ⊆ X and a hypothesis h ∈ H , we define the conditional expected marginal benefit of x,

conditioned on having observed the partial labeling h|Z , by

∆(h|Z ,x) = Eg

[

f (g|Z∪{x})− f (g|Z)
∣

∣g|Z = h|Z
]

.

Put another way, ∆(h|Z ,x) is the expected improvement of f if we add to Z the element x, where expectation

is over a choice of a hypothesis g taken uniformly at random from the set of hypotheses that agree with h on

Z.
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Definition 23 (Adaptive Monotonicity) A utility function f : LX ,H → R+ is adaptive monotone if the con-

ditional expected marginal benefit is always non-negative. That is, if for all h ∈ H ,Z ⊆ X and x ∈ X,

∆(h|Z ,x)≥ 0.

Definition 24 (Adaptive Submodularity) A function f : LX ,H → R+ is adaptive submodular if the condi-

tional expected marginal benefit of a given item does not increase if the partial labeling is extended. That is,

if for all h ∈H , for all Z1 ⊆ Z2 ⊆ X ,and for all x ∈ X,

∆(h|Z1
,x)≥ ∆(h|Z2

,x).

Any (deterministic) pool-based algorithm is associated with a policy function, which we usually denote

by π, which maps each partial realization h|S to an element x of X , namely, the element x queried by the

algorithm after observing h|S. It is natural to consider a greedy algorithm which always selects an item that

maximizes the marginal utility. Since it is often computationally hard to choose the element which maximizes

the marginal utility, we introduce the notion of an approximately-greedy algorithm, following Golovin and

Krause (2010).

Definition 25 (Approximate Greedy) Let α≥ 1. An algorithm which is associated with policy π : LX ,H →X

is α-approximately greedy with respect to a utility function f if for every h and for every Z ⊆ X

∆(h|Z ,π(h|Z))≥
1

α
max
x∈X

∆(h|Z ,x). (7)

If an algorithm A is 1-approximately greedy with respect to a utility function f , we simply say that A is

greedy w.r.t. f .

We denote by S(A ,h,k) the first k pairs of instances along with their labels observed by A , under the

assumption that L ⇚ h. Following this notation, the utility of running A for k steps under the assumption that

L ⇚ h is denoted by f (S(A ,h,k)). The expected utility of running A for k steps is defined by

favg(A ,k) = Eh∼P[ f (S(A ,h,k)].

The central theorem of adaptive submodularity, stated below as Theorem 26, links the expected utility

of the optimal policy for maximizing favg with the expected utility of the associated approximately-greedy

algorithm.

Theorem 26 (Golovin and Krause (2010)) Let f : LX ,H → R+ be a utility function, and let A be a (de-

terministic) active learning algorithm. If f is adaptive monotone and adaptive submodular, and A is α-

approximately greedy, then for any deterministic algorithm A∗ and for all positive integers t,k,

favg(A , t)≥ (1− e−
t

αk ) favg(A
∗,k).

Let P be a distribution over H . For any algorithm alg, denote by Vt(alg,h) the version space induced

by the first t labels it queries if the true labeling of the pool is consistent with h. Denote the version space

reduction of alg after t queries in the case that L⇐ h by

f (alg, t,h) = 1−P(Vt(alg,h)). (8)

The average version space reduction of alg after t queries is

favg(alg, t) = 1−Eh∼P[P(Vt(alg,h))].

In the active learning setting, we define the utility function f as in Equation (8) and have the following

result:
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Lemma 27 (Golovin and Krause (2010)) The function f defined in Equation (8) is adaptive monotone and

adaptive submodular.

Corollary 28 Let X = {x1, . . . ,xm}. Let H be a hypothesis class, and let P be a distribution over H . Suppose

that A is α-approximately greedy with respect to P, and let A∗ be a (deterministic) algorithm that achieves

OPTmax, that is cwc(A
∗) = OPTmax. Then, for all positive integers t,k,

favg(A , t)≥ (1− e−
t

αk ) favg(A
∗,k).

The following lemma will allow us to show that the version space of an α-approximately greedy algorithm

is relatively pure.

Lemma 29 Let A∗ be an algorithm that achieves OPTmax. For any h ∈H , any active learner A , and any t,

favg(A
∗,OPTmax)− favg(A , t)≥ P(V (h|X ))(P(Vt(A ,h))−P(V (h|X ))) .

Proof Since A∗ acheives the optimal worst-case cost, the version space induced by the labels that A∗ queries

within the first OPTmax iterations must be exactly the set of hypotheses which are consistent with the true

labels of the sample. Therefore, for any h ∈H .

P(VOPTmax(A
∗,h)) = P(V (h|X )).

By definition of favg,

favg(A
∗,OPTmax)− favg(A , t) = Eh∼P[P(Vt(A ,h))−P(VOPTmax(A

∗,h))]

= Eh∼P[P(Vt(A ,h))−P(V (h|X ))].

Since S(A ,h, t) does not depend on the value of h outside of X , we can sum over the possible labelings of X

to have

favg(A
∗,OPTmax)− favg(A , t) = ∑

h|X :h∈H

P(V (h|X ))(P(Vt(A ,h))−P(V (h|X ))).

Now, it is easy to see that for any h ∈H , Vt(A ,h)⊇V (h|X ), thus

P(Vt(A ,h))−P(V (h|X ))≥ 0.

It follows that for any h ∈H

favg(A
∗,OPTmax)− favg(A , t)≥ P(V (h|X ))(P(Vt(A ,h))−P(V (h|X ))).

Combining Corollary 28 and Lemma 29, the following corollary is immediate.

Corollary 30 For any α-approximate greedy algorithm A ,

∀h ∈H , P(V (h|X ))(P(Vt(A ,h))−P(V (h|X ))) ≤ e
− t

αOPTmax ,

which yields

∀h ∈H ,
P(V (h|X ))
P(Vt(A ,h))

≥ P(V (h|X ))2

e
− t

αOPTmax +P(V (h|X ))2

. (9)
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Proof (Of Theorem 5) Let A be α-approximately greedy algorithm which outputs a β-approximate majority

vote. Corollary 30 holds for A . Let h be the target hypothesis. Substituting T ≥ α(2ln(1/P(h))+ ln( β
1−β

)) ·
OPTmax into Equation (9) implies that

P(V (h|X ))
P(VT (A ,h))

≥ β .

The proof now follows from the fact that A outputs a β-approximate majority vote.

Appendix B. Handling Non-Separable Data and Kernel Representations

We now prove Theorem 17 by showing that Alg. 3 satisfies the claims of the theorem. It is clear that Alg. 3

is polynomial as required in item (3). In addition, item (1) holds from the definition of Alg. 3. We have left

to prove item (2). We first prove that it holds for the case where the input is represented directly as X ⊆ R
d .

We start by showing that under the assumption of Theorem 17, the set {x′1, . . . ,x′m}, which is generated

in step 8, is separated with a bounded margin by the original labels of xi. Fix γ > 0 and w∗ ∈ B
d
1 . For each

i ∈ [m], define

ℓi = max(0,γ−L(i)〈w∗,xi〉).
Thus, ℓi quantifies the margin violation of example xi by w∗, relative to its true label L(i).

Lemma 31 If H ≥ ∑m
i=1 ℓ

2
i , where H is the input to Alg. 3, then there is a w ∈ B

d+m
1 such that for all i ∈ [m],

L(i)〈w,x′i〉 ≥
γ

1+
√

H
.

Proof By step 8 in Alg. 3, x′i = (a · xi;
√

1−a2 · ei), where a =
√

1

1+
√

H
. Define

w′ = (w∗;
a√

1−a2
(L(1)ℓ1, . . . ,L(m)ℓm)).

Then

L(i)〈w′,x′i〉= aL(i)〈w∗,xi〉+aℓi ≥ a(γ− ℓi)+aℓi = aγ.

Let w = w′
‖w′‖ . Then w ∈ B

d+m
1 , and

L(i)〈w,x′i〉=
L(i)〈w′,x′i〉
‖w′‖ ≥ aγ

√

1+ a2

1−a2 ∑m
i=1 ℓ

2
i

=
γ

√

1
a2 +

1
1−a2 ∑m

i=1 ℓ
2
i

.

Set a2 = 1

1+
√

H
, and assume H ≥ ∑m

i=1 ℓ
2
i . Then

L(i)〈w,x′i〉 ≥
γ

1+
√

H
.

The set {x̄1, . . . , x̄m} returned by Alg. 3 is a Johnson-Lindenstrauss projection of {x′1, . . . ,x′m} on R
k. It is

known (see, e.g., Balcan et al., 2006b) that if a set of m points is separable with margin η and k≥O
(

ln(m/δ)
η2

)

,

then with probability 1−δ, the projected points are separable with margin η/2. Setting η = γ

1+
√

H
, it is easy

to see that step 12 in Alg. 3 indeed maintains the desired margin. This completes the proof of item (2) of

Theorem 17 for the case where the input is X ⊆ R
m.
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We now show that if the input is a kernel matrix K, then the decomposition step 3 preserves the separation

properties of the input data, thus showing that item (2) holds in this case as well. To show that our decom-

position step does not change the properties of the original data, we first use the following lemma, which

indicates that separation properties are conserved under different decompositions of the same kernel matrix.

Lemma 32 (Sabato et al. (2010), Lemma 6.3) Let K ∈ R
m×m be a positive definite matrix and let V ∈

R
m×n,U ∈ R

m×k be matrices such that K = VV T = UUT . For any vector w ∈ R
n there exists a vector

u ∈ R
k such that V w =Uu and ‖u‖ ≤ ‖w‖.

The next lemma extends the above result, showing that the property holds even if K is not invertible.

Lemma 33 Let K ∈ R
m×m be a positive definite matrix and let V ∈ R

m×n,U ∈ R
m×k be matrices such that

K =VV T =UUT . For any vector w ∈ R
n there exists a vector u ∈ R

k such that V w =Uu and ‖u‖ ≤ ‖w‖.

Proof For a matrix A and sets of indexes I,J let A[I] be the sub-matrix of A whose rows are the rows of A

with an index in I. Let A[I, I] be the sub-matrix of A whose rows and columns are those that have index I in

A.

If K is invertible, the claim holds by Lemma 32. Thus, assume K is singular. Let I ⊆ [m] be a maximal

subset such that the matrix K[I; I] is invertible.7 Then by Lemma 32, K[I; I] =V [I](V [I])T =U [I](U [I])T , and

there exists a vector u such that V [I]w =U [I]u, and ‖u‖ ≤ ‖w‖. We will show that for any i /∈ I, V [i]w =U [i]u
as well.

For any i /∈ I, K[I∪{i}; I∪{i}] is singular. Therefore V [I∪{i}] is singular, while V [I] is not. Thus there

is some vector λ ∈ R
|I| such that V [i]T = V [I]T λ. By a similar argument there is some vector η ∈ R

|I| such

that U [i]T =U [I]T η. We have K[I, i] =V [I]V [i]T =V [I]V [I]T λ = K[I, I]λ. Similarly for U , K[I, i] = K[I, I]η.

Therefore K[I, I](λ−η) = 0. Since K[I, I] is invertible, it follows that λ = η. Therefore, U [i]u = ηTU [I]u =
λTV [I]w =V [i]w.

We now use this lemma to show that the decomposition step does not change the upper bound on the

margin loss which is assumed in Theorem 17.

Theorem 34 Let ψ1, . . . ,ψm be a set of vectors in a Hilbert space S, and let K ∈ R
m×m such that for all

i, j ∈ [m], Ki, j = 〈ψi,ψ j〉. suppose there exists a w ∈ S with ‖w‖ ≤ 1 such that

H ≥
m

∑
i=1

max(0,γ− yi〈w,ψi〉)2. (10)

Let U ∈ R
m×k such that K =UUT and let xi be row i of U. Then there exists a u ∈ B

k
1 such that

H ≥
m

∑
i=1

max(0,γ− yi〈u,xi〉)2. (11)

Proof Let α1, . . . ,αn ∈ S be an orthogonal basis for the span of ψ1, . . . ,ψm and w, and let v1, . . . ,vm,vw ∈ R
n

such that ∑n
l=1 vi[l]αl = ψi and ∑n

l=1 vw[l]αl = w. Let V ∈Rm×n be a matrix such that row i of the matrix is vi.

Then K = VV T , and V vw = r, where r[i] = 〈vw,vi〉 = 〈w,ψi〉. By Lemma 33, there exists a u ∈ R
k such that

Uu = r. Then we have 〈u,xi〉 = r[i]. Therefore for all i ∈ [m], 〈w,ψi〉 = 〈u,xi〉, thus Equation (10) implies

Equation (11). In addition, ‖u‖ ≤ ‖vw‖= ‖w‖ ≤ 1, therefore u ∈ B
k
1.

7. If no such subset exists then K,V,U are all zero and the claim is trivial.
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Appendix C. Proof of Theorem 20

Proof [of Theorem 20] Assume that 1/(2ε) is an odd integer and ε < 1/8. Let Da be the uniform distribution

over points on the top circle, defined by

Sa = {an
def
= (

1√
2

cos2πεn,
1√
2

sin2πεn,
1√
2
) : n ∈ {0,1, . . . ,1/ε−1}} .

Let Db be the uniform distribution over points on the bottom circle, defined by

Sb = {bn
def
= (cos2πεn,sin2πεn,0) : n ∈ {0,1, . . . ,1/ε−1}} .

Let Dε/2 be the distribution (1− τ)Da + τDb, where τ = ε
4log(4/ε) . Note that in order to label Dε/2 correctly

with error no more than ε/2, all the labels of points in Sa need to be determined. We prove each of the

theorem statements in order. We consider the label complexity with high probability over the choice of

unlabeled sample, where high probability is 1−δ for some fixed δ ∈ (0,1/2).
First, we prove claim (1). If the unlabeled sample contains only points from Sa, then an active learner has

to query all the points in Sa to distinguish between a hypothesis that labels all of Sa positively and one that

labels positively all but one point in Sa. Since the probability of the entire set Sb is o(ε), an i.i.d. sample of

size O(1/ε), will not contain a point from Sb, thus any active learner will require Ω(1/ε) labels.

More formally, assume that there exists a constant C and ε0 > 0 such that if ε < ε0, then at most C/ε
examples are drawn. Assume from now that ε < ε0 and that C

4log(4/ε) ≤ 1/2. Let A be the event that an i.i.d.

sample of size m(ε)≤C/ε contains any element from Sb. Then, using the union bound, we obtain

P(A)≤ C

ε

ε

4log(4/ε)
≤ 1/2≤ 1−δ .

We now turn to prove claim (2). Assume that the size of the sample is at least
4log(4/ε) log(1/(εδ))

ε2 . It is easy

to check that with probability at least 1− δ, the sample contains all the points in Sa ∪ Sb. More formally,let

δ > 0 be any given confidence parameter. Let B be the event that the sample doesn’t contain all the points of

Db and let A the event that the sample doesn’t contain all the points of Da. For n ∈ {0,1, . . . ,1/ε−1} let Bn

be the event that the sample doesn’t contain the element bn. Then,

P(Bn) =

(

1− ε2

4log(4/ε)

)

4log(4/ε) log(2/(εδ))

ε2

≤ εδ/2 .

Using the union bound, we obtain that

P(B)≤ 1

ε
P(A0)≤ δ/2 .

Obviously, P(A) ≤ P(B). Using the union bound, we obtain that with probability at least 1− δ, both A

and B don’t occur.

Given such a sample as a pool, we now show that OPTmax =O(log(1/ε)), by describing an active learning

algorithm that achieves this label complexity:

1. For all possible separators, the points b0 = (1,0,0) and b1/2ε = (−1,0,0) have different labels. The

algorithm will first query these initial points, and then apply a binary search to find the boundary

between negative and positive labels in Sb. This identifies the labels of all the points in Sb using

O(log(1/ε)) queries.

2. Of the points in Sb, half are labeled positively and half negatively. Moreover, there are n1, n2 and

y ∈ {−1,1} such that bn1
, . . . ,bn2

are all labeled by y, and n2−n1 +1 = |Sb|/2 = 1
2ε (see illustration in

Figure 10). Let n3 =
n2+n1

2
(this is the middle point with label y). n3 is an integer because n2− n1 is

even, thus their sum is also even. Let n4 = mod (n3 + 1/2ε,1/2ε). Query the points an3
and an4

for

their label.
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bn1

bn2

bn3
bn4 +-

an3
an4 +-

Figure 10: Illustration for the proof of Theorem 20.

3. If an3
and an4

each have a different label, apply a binary search starting from these points to find the

boundaries between positive and negative labels in Sa, using O(log(1/ε)) queries. Otherwise, label all

the examples in Sa by the label of an3
.

This algorithm uses O(log(1/ε)) queries to label the sample. If an3
and an4

have different labels, it is clear

that the algorithm labels all the examples correctly. We only have left to prove that if they both have the

same label, then all the examples in Sa also share that label. Let h∗ be the true hypothesis, defined by some

homogeneous separator, and assume w.l.o.g that {bn | h∗(bn) = 1}= {bn ∈ Sb | bn[1]> 0} (note that no point

has bn[1] = 0 since 1/2ε is odd). It follows that n3 = 0 and n4 = 1/2ε, thus an3
= (1/

√
2,0,1/

√
2) and

an4
= (−1/

√
2,0,1/

√
2) (see illustration in Figure 10). We use the following lemma, whose proof can be

found in Appendix D:

Lemma 35 Assume 1/2ε is odd. If {bn ∈ Sb | h∗(bn) = 1} = {bn | bn[1] > 0} and h∗(a0) = h∗(a1/2ε) = y

then ∀an ∈ Sa, h∗(an) = y.

If follows that OPTmax = O(log(1/ε)).
To bound the label complexity of ALuMA, it suffices to bound from below the minimal margin of possible

separators over the given sample. Let h∗ be the correct hypothesis. By the same argument as in the proof of

Lemma 10, there exists some w ∈ R
3 that labels the sample identically to h∗ and attains its maximal margin

on three linearly independent points a,b,c from our sample. Hence, Aw = 1 where A ∈ R
3×3 is the matrix

whose rows are a,b,c ∈ Sa∪Sb. By Cramer’s rule, for every i ∈ [3]

w[i] =
detAi

detA
,

where Ai is the matrix obtained from A by replacing the ith column with the vector 1. Recall that the absolute

value of the determinant of A is the volume of the parallelepiped whose sides are a,b and c. Since a,b,c are

linearly independent, each of Sa and Sb includes at most two of them. Assume that a,b ∈ Sa and c ∈ Sb. In

this case, the surface area of the basis of this parallelepiped, defined by a and b, is at least sin2πε√
2

, and the

height is 1/
√

2. Hence,

|detA| ≥ sin2πε

2
= Ω(ε) .

The case where two of the points are in Sb leads to an even larger lower bound. Since the elements in each Ai

are in [−1,1], we also have that |detAi| ≤ 3! = 6. Thus, for i ∈ [3] we obtain that wi = O(1/ε). All in all, we

get ‖w‖2 = O(1/ε), and thus γ(h∗) = Ω(ε) . Applying Corollary 9, we obtain that ALuMA classifies all the

points correctly using O(log(1/γ(h∗)) ·OPTmax) = O(log2(1/ε)) labels.

Finally, we prove claim (3). CAL examines the examples sequentially at a random order, and queries

the label of any point whose label is not determined by previous examples. Thus, if the true hypothesis is
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all-positive on Sa, and CAL sees all the points in Sa before seeing any point in Sb, it will request Ω(1/ε)
labels. Hence, it suffices to show that there is a large probability that CAL will indeed examine all of Sa

before examining any point from Sb. Let A be the event that the first 1
ε log 4

ε examples of an i.i.d. sample

contain any element from Sb. Then, by the union bound, P(A)≤ 1
ε log( 4

ε ) · ε
4log 4

ε

= 1/4. Assume now that A

does not occur. Let B be the event that the first 1
ε log 1

ε examples do not contain all the elements in Sa. Then,

by the union bound, P(B) ≤ 1
ε (1− ε)

1
ε log 4

ε ≤ 1/4. All in all, with probability at least 1/2, CAL see all the

points in Sa before seeing any point in Sb and thus its label complexity is Ω(1/ε).

Appendix D. Other Proofs

In this section we provide proofs omitted from the text.

Proof [of Lemma 8] Fix h ∈W and let V = {h′ ∈ H : ∀i,h′(xi) = h(xi)}. Assume w.l.o.g. that ‖x‖ = 1 for

all x ∈ X . Denote for brevity γ = γ(h). Choose w ∈ B
d
1 such that ∀x ∈ X , h(x)〈w,x〉 ≥ γ. For a given v ∈ B

d
1 ,

denote by hv ∈ H the mapping x 7→ sgn(〈v,x〉). Note that for all v ∈ B
d
1 such that ‖w− v‖ < γ, hv ∈V . This

is because for all x ∈ X ,

h(x)〈v,x〉= 〈v−w,h(x) · x〉+h(x)〈w,x〉 ≥ −‖w− v‖ · ‖h(x) · x‖+ γ >−γ+ γ = 0,

Since hv(x) = sgn(〈v,x〉) it follows that hv(x) = h(x). We conclude that {v | hv ∈ V} ⊇ B
d
1 ∩B(w,γ), where

B(z,r) denotes the ball of radius r with center at z. Let u = (1− γ/2)w. Then for any z ∈ B(u,γ/2), we have

z ∈ B
d
1 , since

‖z‖= ‖z−u+u‖ ≤ ‖z−u‖+‖u‖ ≤ γ/2+1− γ/2 = 1.

In addition, z ∈ B(w,γ) since

‖z−w‖= ‖z−u+u−w‖ ≤ ‖z−u‖+‖u−w‖ ≤ γ/2+ γ/2 = γ.

Therefore B(u,γ/2)⊆ B
d
1 ∩B(w,γ). We conclude that {v | hv ∈V} ⊇ B(u,γ/2). Thus,

P(h) = P(V )≥ Vol(B(u,γ/2))/Vol(Bd
1)≥

( γ

2

)d

.

Proof (of Lemma 10) Let us multiply all examples in the pool by 1/c. Then, all the elements of all examples

in the pool are integers. Choose a labeling L which is consistent with some w∗. Consider the optimization

problem:

min
w
‖w‖2 s.t. ∀i, L(i)〈w,xi〉 ≥ 1 .

For simplicity assume that the pool of examples span all of Rd . Then, it is easy to show that if w the solution

to the above problem then there exist d linearly independent examples from the pool, denoted w.l.o.g. by

x1, . . . ,xd , such that L(i)〈w,xi〉 = 1 for all i. In other words, w is the solution of the linear system Aw = b

where the rows of A are x1, . . . ,xd and b = (L(1), . . . ,L(m))T .

By Cramer’s rule, wi = det(Ai)/det(A), where Ai is obtained by replacing column i of A by the vector

b. Since all elements of A are integers and A is invertible, we must have that |det(A)| ≥ 1. Therefore,

|wi| ≤ |det(Ai)|. Furthermore, by Hadamard’s inequality, |det(Ai)| is upper bounded by the product of the

norms of the columns of Ai. Since each element of Ai is upper bounded by 1/c, we obtain that the norm

of each column is at most
√

d
c

, hence |det(Ai)| ≤ (
√

d/c)d . It follows that ‖w‖ ≤
√

d (
√

d/c)d . Hence, the

margin is
1

‖w‖maxi ‖xi‖
≥ 1√

d (
√

d/c)d ·
√

d/c
=

1√
d (
√

d/c)d+1
.
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Proof (of Theorem 11) Set m = ⌊ln(1/γ)⌋ such that m is a power of 2. Let x′0 = (1,0) ∈ R
2. For all

i ∈ [m−1], define x′i = (cos(π/2i),sin(π/2i)). Fix c > 0, and define S = B
2
1∩{−1,−1+c, . . . ,1−c,1}2. For

each i ∈ {0,1, . . . ,m−1}, let xi be the nearest neighbor of x′i in S, that is xi = argminx∈S ‖x− x′i‖2. It can be

easily seen that if c = Θ(γ) then ∀i, ‖xi− x′i‖= O(γ).
Consider an exact greedy algorithm that always selects x0 first (this is possible since on the first round of

the algorithm, any query halves the version space). Suppose that the target hypothesis h∗ satisfies

h∗(xi) =

{

−1 i = 0

1 otherwise

By setting a small enough c we get that γ(h∗) = Ω(γ).
If c is small enough compared to γ, then after querying x0 the algorithm will query x1, . . . ,xm−1 in order.

In addition, on every round t < m−1 the majority vote would lead to the wrong labeling, since only a small

fraction of the version space belongs to the correct hypothesis. Thus the algorithm queries all the examples

(except perhaps one) before reaching the correct answer.

Proof [of Lemma 35] We prove the lemma for the case h∗(a1/2ε) = 1. The case h∗(a0) =−1 can be proved

similarly. Let w∗ be any hyperplane which is consistent with h∗. Let n1 =
1
4ε − 1

2
and let n2 = n1 +1. Then

bn1
= (cos(π/2−πε),sin(π/2−πε),0), and

bn2
= (cos(π/2+πε),sin(π/2+πε),0).

By the assumption of the lemma, 〈w∗,bn1
〉 > 0 and 〈w∗,bn2

〉 < 0. It follows that w∗[1]sinπε > w∗[2]cosπε
and −w∗[1]sinπε < w∗[2]cosπε. As a consequence, we obtain that |w∗[2]|< w∗[1] tan(πε).

Now, choose some n ∈ {0, . . . ,1/ε− 1}. We show that the corresponding element in Sa is labeled posi-

tively. First, from the last inequality, we obtain

〈w∗,an〉=
1√
2
〈w∗,(cos2πεn,sin2πεn,1)〉

≥ 1√
2
(w∗1(cos2πεn− tan(πε)sin(2πεn))+w∗3). (12)

We will now show that

∀n ∈ {0,1, . . . ,1/ε−1}, cos2πεn− tan(πε)sin(2πεn)≥−1. (13)

From symmetry, it suffices to prove this for every n ∈ {0,1, . . . ,1/(2ε)− 1}. We divide our range and

conclude for each part separately; since ε < 1/8, we have that tanεπ < 1. Then, cosα− tan(πε)sinα ≥ −1

in the range α ∈ [0,π/2]. For α ∈ [π/2,π− πε], it can be shown that the function cosα− tan(πε)sinα is

monotonically decreasing, thus it suffices to show that the inequality holds for n = 1/(2ε)−1. Indeed,

cos(π−2επ)− tan(επ)sin(π−2επ) =−cos(2πε)−2sin2(πε)

=−cos2(πε)− sin2(πε)

=−1 .

Therefore, we obtain from Equation (12) and Equation (13) that

1√
2
〈w∗,an〉 ≥

1√
2
(−w∗[1]+w∗[3]) = 〈w∗,(−1/

√
2,0,1/

√
2)〉= 〈w∗,a1/2ε〉> 0,

where the last inequality follows from the assumption that h∗(a1/2ε) = 1.
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