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Abstract

Divvy is an application for applying unsupervised machine learning techniques (clustering and

dimensionality reduction) to the data analysis process. Divvy provides a novel UI that allows

researchers to tighten the action-perception loop of changing algorithm parameters and seeing a

visualization of the result. Machine learning researchers can use Divvy to publish easy to use

reference implementations of their algorithms, which helps the machine learning field have a greater

impact on research practices elsewhere.

Keywords: clustering, dimensionality reduction, open source software, human computer interac-

tion, data visualization

1. Introduction

The field of machine learning has produced many techniques for performing data analysis, but

researchers outside the field face substantial challenges applying them to their data. First, new

techniques are difficult to access. Authors often describe an algorithm without providing a refer-

ence implementation, and if they do provide code it may be for an unfamiliar language or platform.

Second, new techniques are difficult to apply correctly. A new technique might make strong as-

sumptions about the structure of its input or be very sensitive to parameter changes. Third, in the

early, exploratory stage of data analysis researchers should explore and compare several different

techniques. If each technique is challenging to get running for the reasons above, the challenge is

compounded with multiple techniques using different languages and data formats.

We have built Divvy to ameliorate these problems for those who would like to use unsupervised

machine learning techniques in their research (specifically clustering and dimensionality reduc-

tion), and provide a platform for machine learning researchers to publish fast, easy to use versions

of their algorithms. Using Divvy, researchers can quickly run an assortment of clustering and di-

mensionality reduction algorithms on their data, without worrying about programming languages,

data formats, or visualization.

Divvy is a member of a family of attempts to bring machine learning and data visualization to a

wider audience. The GGobi project (Swayne et al., 2003) provides a variety of interactive visualiza-
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tions for high-dimensional data, and includes some lightweight machine learning components such

as PCA. The Orange project (University of Ljubljana Bioinformatics Laboratory, 2013) provides a

visual programming interface for machine learning techniques in Python. In the commercial sector,

Ayasdi, Inc. uses topology to help customers analyze their data intuitively (Ayasdi, Inc., 2013).

Divvy’s unique focus among these projects is on user experience and extensibility.

For users, Divvy provides a simple, fast interface for doing data analysis. For machine learning

researchers, Divvy provides a plugin architecture that lets one release a version of an algorithm

complete with custom UI and help resources. By publishing an algorithm on the Divvy platform,

machine learning researchers can drastically lower the barriers to entry that data analysts face when

attempting to use it. Divvy and all of its included plugins are open source, distributed under the

MIT license.

2. Interaction

Divvy has three fundamental components to its interface (see Figure 1). In the lower-right corner

of the main window (Label 1) is a collection of data sets for the user to analyze. Each data set

is associated with one or more data set views, which are visualized in the left hand portion of the

interface (Label 2). Finally each data set view is characterized by a combination of four plugins

from the top-right panel (Label 3): a dimensionality reduction algorithm, a clustering algorithm, a

point visualizer, and a data set visualizer.

Clustering and dimensionality reduction plugins are interfaces to their associated algorithms,

currently K-means and single/complete linkage for clustering, and PCA, Isomap (Tenenbaum et al.,

2000) and t-SNE (van der Maaten and Hinton, 2008) for dimensionality reduction. Point visualizers

render data points in a meaningful way, for example, by rendering images in a data set where points

represent images, or rendering type for a linguistic corpus. Data set visualizers render the entire

data set, for example as a scatter plot or parallel coordinates plot. Divvy includes an image point

visualizer and a scatter plot data set visualizer by default.

As an example, the user in Figure 1 has loaded four data sets into Divvy and selected the faces

data set. The user has created three views that represent three distinct perspectives on the data. The

top-right view is an Isomap embedding of the data set with an image point visualizer, so the user

sees a selection of points rendered as images and positioned in the first two Isomap dimensions. The

lower left view is a t-SNE embedding with coloring from K-means clustering rendered as a scatter

plot.

In practice a researcher can use these visualizations to evaluate different approaches to dimen-

sionality reduction and clustering. In Figure 1 the user can easily see that Isomap embeds the face

images in two dimension more smoothly than t-SNE. The structure of the faces data set is ideal for

Isomap, and a researcher can quickly discover that with Divvy.

Users can create as many perspectives on their data as they’d like, grow or shrink them with the

slider on the lower-right edge of the screen, and export their preferred views as PNGs. Whenever

they change a plugin or plugin parameter, the selected view automatically rerenders with the new

setting. In order to make Divvy as responsive as possible, each data set view is sandboxed in

its own set of threads (Divvy is task parallel with granularity at the view level). Users can start

a long computation in one view while still interacting with other views or data sets. For shorter

computations the view changes instantly, giving users immediate visual feedback on the effect of

their parameter selections.
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Figure 1: Divvy’s UI. (1) The data sets list—data sets the user has loaded appear here with some

summary statistics. (2) The data set view palette—data set views are visualizations of data

sets using a combination of a dimensionality reduction algorithm, a clustering algorithm,

a point visualizer, and a data set visualizer. Each data set can have multiple data set views.

(3) Data set view parameters—controls for setting the parameters of the algorithms that

compose a particular data set view, for example, the number of clusters for a clustering

algorithm.

Our goal with the Divvy UI is to tighten up the action-perception loop in data analysis. As an

analogy, baseball players have an excellent idea of how baseballs behave. A baseball’s behavior

is, of course, governed by the laws of physics and an explicit description of that behavior might be

quite complex when spin, deformation, wind and field texture are taken into account. Nevertheless,

through extensive experience baseball players acquire an excellent pragmatic understanding of how

baseballs behave, an understanding that one might guess is based on an implicit learned model of

baseball behavior rather than the explicit model a physicist would give. By giving Divvy users an

immediate, tactile experience of algorithmic behavior, we hope they can develop better intuitive

models of how algorithms behave and thus make better analysis decisions.
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3. Architecture

The core Divvy application performs no computation. Rather it is a lightweight framework for

loading data sets and plugins and then coordinating their interaction. Each plugin is an independent

bundle that defines a UI and follows one of four possible input/output protocols: clusterer, reducer,

point visualizer and data set visualizer.

While the core Divvy application is Mac OS X specific, each machine learning plugin is just a

lightly-wrapped reference implementation of its algorithm in C or C++.1 A researcher publishing

an algorithm in Divvy’s format need only add an OS X UI (and Divvy gives complete freedom

as to the details of that UI save a fixed width) to their implementation, which remains completely

platform-agnostic. With this bit of work users can drop the algorithm bundle into Divvy and start

using the new technique on their existing data sets.

We implemented Divvy on Mac OS X in order to focus on one user experience. While it’s of

course desirable to have open source software on as many platforms as possible, building the Divvy

UI across platforms was outside the scope of our engineering resources.2

Divvy can import data from CSV or a simple BIN format, and we have released R to Divvy and

MATLAB to Divvy exporters. Data within Divvy can be exported as PNG or CSV as appropriate.

Our goal is that Divvy can fit well into diverse analysis workflows.

4. Performance

Divvy is both task and data parallel. As mentioned above, each data set view owns a set of threads

that compute independently from the UI and those of other views. Within a view each plugin can

operate in parallel over its assigned data set. In our lab Divvy can achieve over 2,300% CPU

utilization on our hyperthreaded 12-core Mac Pro through a combination of these two forms of

parallelization.3

The task parallelism is achieved at the application level through the NSOperation framework in

Cocoa. Plugin authors get it for free. Data parallelism is the responsibility of plugin authors and

should be implemented using the open-source libdispatch library.4
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