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Abstract

Optimization on manifolds is a rapidly developing branch of nonlinear optimization.
Its focus is on problems where the smooth geometry of the search space can be leveraged
to design efficient numerical algorithms. In particular, optimization on manifolds is well-
suited to deal with rank and orthogonality constraints. Such structured constraints appear
pervasively in machine learning applications, including low-rank matrix completion, sensor
network localization, camera network registration, independent component analysis, metric
learning, dimensionality reduction and so on.

The Manopt toolbox, available at www.manopt.org, is a user-friendly, documented
piece of software dedicated to simplify experimenting with state of the art Riemannian
optimization algorithms. By dealing internally with most of the differential geometry, the
package aims particularly at lowering the entrance barrier.

Keywords: Riemannian optimization, nonlinear programming, non convex, orthogonality
constraints, rank constraints, optimization with symmetries, rotation matrices

1. Introduction

Optimization on manifolds, or Riemannian optimization, is a fast growing research topic in
the field of nonlinear optimization. Its purpose is to provide efficient numerical algorithms
to find (at least local) optimizers for problems of the form

min
x∈M

f(x), (1)

where the search spaceM is a smooth space: a differentiable manifold which can be endowed
with a Riemannian structure. In a nutshell, this meansM can be linearized locally at each
point x as a tangent space TxM and an inner product 〈·, ·〉x which smoothly depends on x is
available on TxM. For example, whenM is a submanifold of Rn×m, a typical inner product
is 〈H1, H2〉X = trace(H>1H2). Many smooth search spaces arise often in applications.
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For example, the oblique manifoldM = {X ∈ Rn×m : diag(X>X) = 1m} is a product
of spheres. That is, X ∈M if each column of X has unit 2-norm in Rn. Absil and Gallivan
(2006) show how independent component analysis can be cast on this manifold as non-
orthogonal joint diagonalization.

When furthermore it is only the product Y = X>X which matters, matrices of the
form QX are equivalent for all orthogonal Q. This suggests a quotient geometry for the
fixed-rank elliptope M = {Y ∈ Rm×m : Y = Y > � 0, rank(Y ) = n,diag(Y ) = 1m}.
Grubǐsić and Pietersz (2007) optimize over this set to produce low-rank approximations of
covariance matrices.

The (compact) Stiefel manifold is the Riemannian submanifold of orthonormal matri-
ces, M = {X ∈ Rn×m : X>X = Im}. Theis et al. (2009) formulate independent component
analysis with dimensionality reduction as optimization over the Stiefel manifold. Journée
et al. (2010b) frame sparse principal component analysis over this manifold as well.

The Grassmann manifoldM = {col(X) : X ∈ Rn×m
∗ }, where X is a full-rank matrix

and col(X) denotes the subspace spanned by its columns, is the set of subspaces of Rn of
dimension m. Among other things, optimization over the Grassmann manifold is useful
in low-rank matrix completion, where it is observed that if one knows the column space
spanned by the sought matrix, then completing the matrix according to a least-squares
criterion is easy (Boumal and Absil, 2011; Keshavan et al., 2010).

The special orthogonal groupM = {X ∈ Rn×n : X>X = In and det(X) = 1} is the
group of rotations, typically considered as a Riemannian submanifold of Rn×n. Optimization
problems involving rotation matrices occur in robotics and computer vision, when estimating
the attitude of vehicles or the pose of cameras (Boumal et al., 2013).

The set of fixed-rank matrices M = {X ∈ Rn×m : rank(X) = k} admits a number
of different Riemannian structures. Vandereycken (2013) proposes an embedded geometry
for M and exploits Riemannian optimization on that manifold to address the low-rank
matrix completion problem. Shalit et al. (2012) use the same geometry to address similarity
learning. Mishra et al. (2012) further cover a number of quotient geometries.

The set of symmetric, positive semidefinite, fixed-rank matrices is also a man-
ifold, M = {X ∈ Rn×n : X = X> � 0, rank(X) = k}. Meyer et al. (2011) exploit this to
propose low-rank algorithms for metric learning. This space is tightly related to the space
of Euclidean distance matrices X such that Xij is the squared distance between two
fixed points xi, xj ∈ Rk. Mishra et al. (2011) leverage this geometry to formulate efficient
low-rank algorithms for Euclidean distance matrix completion.

The rich geometry of Riemannian manifolds makes it possible to define gradients and
Hessians of cost functions f , as well as systematic procedures (called retractions) to move
on the manifold starting at a point x, along a specified tangent direction at x. Those
are sufficient ingredients to generalize standard nonlinear optimization methods such as
gradient descent, conjugate gradients, quasi-Newton, trust-regions, etc.

Building upon many earlier results not reviewed here, the recent monograph by Absil
et al. (2008) sets an algorithmic framework to analyze problems of the form (1) when f
is a smooth function, with a strong emphasis on building a theory that leads to efficient
numerical algorithms on special manifolds. In particular, it describes the necessary ingredi-
ents to design first- and second-order algorithms on Riemannian submanifolds and quotient
manifolds of linear spaces. These algorithms come with numerical costs and convergence
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guarantees essentially matching those of the Euclidean counterparts they generalize. For
example, the Riemannian trust-region method converges globally toward critical points and
converges locally quadratically when the Hessian of f is available.

The maturity of the theory of smooth Riemannian optimization, its widespread appli-
cability and its excellent track record performance-wise prompted us to build the Manopt
toolbox: a user-friendly piece of software to help researchers and practitioners experiment
with these tools. Code and documentation are available at www.manopt.org.

2. Architecture and features of Manopt

The toolbox architecture is based on a separation of the manifolds, the solvers and the prob-
lem descriptions. For basic use, one only needs to pick a manifold from the library, describe
the cost function (and possible derivatives) on this manifold and pass it on to a solver.
Accompanying tools help the user in common tasks such as numerically checking whether
the cost function agrees with its derivatives up to the appropriate order, approximating the
Hessian based on the gradient of the cost, etc.

Manifolds in Manopt are represented as structures and are obtained by calling a factory.
The manifold descriptions include projections on tangent spaces, retractions, helpers to
convert Euclidean derivatives (gradient and Hessian) to Riemannian derivatives, etc. All
the manifolds mentioned in the introduction work out of the box, and more can be added.
Cartesian products of known manifolds are supported too.

Solvers in Manopt are functions that implement generic Riemannian minimization al-
gorithms. Solvers log standard information at each iteration and comply with standard
stopping criteria. Users may provide callbacks to log extra information or check custom
stopping criteria. Currently available solvers include Riemannian trust-regions—based on
work by Absil et al. (2007)—and conjugate gradients (both with preconditioning), as well
as steepest descent and a couple of derivative-free schemes. More solvers can be added.

An optimization problem in Manopt is represented as a problem structure. The latter
includes a field which contains a manifold, as obtained from a factory. Additionally, the
problem structure hosts function handles for the cost function f and (possibly) its deriva-
tives. An abstraction layer at the interface between the solvers and the problem description
offers great flexibility in the cost function description. As the needs grow during the life-
cycle of the toolbox and new ways of describing f become necessary (subdifferentials, partial
gradients, etc.), it will be sufficient to update this interface.

Computing f(x) typically produces intermediate results which can be reused in order
to compute the derivatives of f at x. To prevent redundant computations, Manopt in-
corporates an (optional) caching system, which becomes useful when transitioning from a
proof-of-concept draft of the algorithm to a convincing implementation.

3. Example: the maximum cut problem

Given an undirected graph with n nodes and weights wij ≥ 0 on the edges such that
W ∈ Rn×n is the weighted adjacency matrix and D ∈ Rn×n is the diagonal degree matrix
with Dii =

∑
j wij , the graph Laplacian is the positive semidefinite matrix L = D −W .

The max-cut problem consists in building a partition s ∈ {+1,−1}n of the nodes in two

1457

www.manopt.org


Boumal, Mishra, Absil and Sepulchre

classes such that 1
4s
>Ls =

∑
i<j wij

(si−sj)2
4 , that is, the sum of the weights of the edges

connecting the two classes, is maximum. Let X = ss>. Then, max-cut is equivalent to:

max
X∈Rn×n

trace(LX)/4

s.t. X = X>� 0,diag(X) = 1n and rank(X) = 1.

Goemans and Williamson (1995) proposed and analyzed the famous relaxation of this prob-
lem which consists in dropping the rank constraint, yielding a semidefinite program. Al-
ternatively relaxing the rank constraint to be rank(X) ≤ r for some 1 < r < n yields a
tighter but nonconvex relaxation. Journée et al. (2010a) observe that fixing the rank with
the constraint rank(X) = r turns the search space into a smooth manifold, the fixed-rank
elliptope, which can be optimized over using Riemannian optimization. In Manopt, simple
code for this reads (with Y ∈ Rn×r such that X = Y Y >):

% The problem structure hosts a manifold structure as well as function handles
% to define the cost function and its derivatives (here provided as Euclidean
% derivatives, which will be converted to their Riemannian equivalent).
problem.M = elliptopefactory(n, r);
problem.cost = @(Y) −trace(Y'*L*Y)/4;
problem.egrad = @(Y) −(L*Y)/2;
problem.ehess = @(Y, U) −(L*U)/2; % optional

% These diagnostics tools help make sure the gradient and Hessian are correct.
checkgradient(problem); pause;
checkhessian(problem); pause;

% Minimize with trust−regions, a random initial guess and default options.
Y = trustregions(problem);

Randomly projecting Y yields a cut: s = sign(Y*randn(r, 1)). The Manopt distribu-
tion includes advanced code for this example, where the caching functionalities are used
to avoid redundant computations of the product LY in the cost and the gradient, and the
rank r is increased gradually to obtain a global solution of the max-cut SDP (and hence a
formal upperbound), following a procedure described by Journée et al. (2010a).
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