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Abstract

How can we take advantage of opportunities for experimental parallelization in exploration-
exploitation tradeoffs? In many experimental scenarios, it is often desirable to execute
experiments simultaneously or in batches, rather than only performing one at a time. Ad-
ditionally, observations may be both noisy and expensive. We introduce Gaussian Process
Batch Upper Confidence Bound (GP-BUCB), an upper confidence bound-based algorithm,
which models the reward function as a sample from a Gaussian process and which can select
batches of experiments to run in parallel. We prove a general regret bound for GP-BUCB,
as well as the surprising result that for some common kernels, the asymptotic average regret
can be made independent of the batch size. The GP-BUCB algorithm is also applicable in
the related case of a delay between initiation of an experiment and observation of its re-
sults, for which the same regret bounds hold. We also introduce Gaussian Process Adaptive
Upper Confidence Bound (GP-AUCB), a variant of GP-BUCB which can exploit parallelism
in an adaptive manner. We evaluate GP-BUCB and GP-AUCB on several simulated and
real data sets. These experiments show that GP-BUCB and GP-AUCB are competitive with
state-of-the-art heuristics.1

Keywords: Gaussian process, upper confidence bound, batch, active learning, regret
bound

1. Introduction

Many problems require optimizing an unknown reward function, from which we can only
obtain noisy observations. A central challenge is choosing actions that both explore (es-
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timate) the function and exploit our knowledge about likely high reward regions in the
function’s domain. Carefully calibrating this exploration–exploitation tradeoff is especially
important in cases where the experiments are costly, e.g., when each experiment takes a
long time to perform and the time budget available for experiments is limited. In such
settings, it may be desirable to execute several experiments in parallel. By parallelizing the
experiments, substantially more information can be gathered in the same time-frame; how-
ever, future actions must be chosen without the benefit of intermediate results. One might
conceptualize these problems as choosing “batches” of experiments to run simultaneously.
The challenge is to assemble batches of experiments that both explore the function and
exploit by focusing on regions with high estimated value.

Two key, interrelated questions arise: the computational question of how one should
efficiently choose, out of the combinatorially large set of possible batches, those that are
most effective; and the statistical question of how the algorithm’s performance depends on
the size of the batches (i.e., the degree of informational parallelism). In this paper, we
address these questions by presenting GP-BUCB and GP-AUCB; these are novel, efficient
algorithms for selecting batches of experiments in the Bayesian optimization setting where
the reward function is modeled as a sample from a Gaussian process prior or has low norm
in the associated Reproducing Kernel Hilbert Space.

In more detail, we provide the following main contributions:

• We introduce GP-BUCB, a novel algorithm for selecting actions to maximize reward
in large-scale exploration-exploitation problems. GP-BUCB accommodates parallel or
batch execution of the actions and the consequent observation of their reward. GP-
BUCB may also be used in the setting of a bounded delay between initiation of an
action and observation of its reward.

• We also introduce GP-AUCB, an algorithm which adaptively exploits parallelism to
choose batches of actions, the sizes of which are limited by the conditional mutual
information gained therein; this limit is such that the batch sizes are small when
the algorithm selects actions for which it knows relatively little about the reward.
Conversely, batch sizes may be large when the reward function is well known for the
actions selected. We show that this adaptive parallelism is effective and can easily be
parameterized using pre-defined limits.

• We prove sublinear bounds on the cumulative regret incurred by algorithms of a
general class, including GP-BUCB and GP-AUCB, that also imply bounds on their
rates of convergence.

• For some common kernels, we show that if the problem is initialized by making obser-
vations corresponding to an easily selected and provably bounded set of queries, the
regret of GP-BUCB can be bounded to a constant multiplicative factor of the known
regret bounds of the fully sequential GP-UCB algorithm of Srinivas et al. (2010, 2012).
This implies (near-)linear speedup in the asymptotic convergence rates through par-
allelism.

• We demonstrate how execution of many UCB algorithms, including the GP-UCB, GP-
BUCB, and GP-AUCB algorithms, can be drastically accelerated by lazily evaluating
the posterior variance. This technique does not result in any loss in accuracy.
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• We evaluate GP-BUCB and GP-AUCB on several synthetic benchmark problems, as
well as two real data sets, respectively related to automated vaccine design and thera-
peutic spinal cord stimulation. We show that GP-BUCB and GP-AUCB are competitive
with state-of-the-art heuristics for parallel Bayesian optimization. Under certain cir-
cumstances, GP-BUCB and GP-AUCB are competitive with sequential action selection
under GP-UCB, despite having to cope with the disadvantage of delayed feedback.

• We consider more complex notions of execution cost in the batch and delay settings
and identify areas of this cost and performance space where our algorithms make
favorable tradeoffs and are therefore especially suitable for practical applications.

In the remainder of the paper, we first review the literature (Section 2) and formally
describe the problem setting (Section 3). In the next section, we describe the GP-BUCB
algorithm, present the main regret bound, which applies to a general class of algorithms
using an upper confidence bound decision rule, and present corollaries bounding the regret
of GP-BUCB and initialized GP-BUCB (Section 4). We extend this analysis to GP-AUCB,
providing a regret bound for that algorithm, and discuss different possible stopping con-
ditions for similar algorithms (Section 5). Next, we introduce the notion of lazy variance
calculations (Section 6). We compare our algorithms’ performance with each other and
with several other algorithms across a variety of problem instances, including two real data
sets (Section 7). Finally, we present our conclusions (Section 8).

2. Related Work

Our work builds on ideas from bandits, Bayesian optimization, and batch selection. In the
following, we briefly review the literature in each of these areas.

2.1 Multi-armed Bandits

Exploration-exploitation tradeoffs have been classically studied in context of multi-armed
bandit problems. These are sequential decision tasks where a single action is taken at each
round, and a corresponding (possibly noisy) reward is observed. Early work has focused
on the case of a finite number of candidate actions (arms), a total budget of actions which
is at least as large as the number of arms, and payoffs that are independent across the
arms (Robbins, 1952). In this setting, under some strong assumptions, optimal policies
can be computed (Gittins, 1979). Optimistic allocation of actions according to upper-
confidence bounds (UCB) on the payoffs has proven to be particularly effective (Auer et al.,
2002). In many applications, the set of candidate actions is very large (or even infinite). In
such settings, dependence between the payoffs associated with different decisions must be
modeled and exploited. Various methods of introducing dependence include bandits with
linear (Dani et al., 2008; Abernethy et al., 2008; Abbasi-Yadkori et al., 2011) or Lipschitz-
continuous payoffs (Kleinberg et al., 2008; Bubeck et al., 2008), or bandits on trees (Kocsis
and Szepesvári, 2006). In this paper we pursue a Bayesian approach to bandits, where
fine-grained assumptions on the regularity of the reward function can be imposed through
proper choice of the prior distribution over the payoff function. Concretely, we focus on
Gaussian process priors, as considered by Srinivas et al. (2010).
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2.2 Bayesian Optimization

The exploration-exploitation tradeoff has also been studied in Bayesian global optimization
and response surface modeling, where Gaussian process (GP, see Rasmussen and Williams,
2006) models are often used due to their flexibility in incorporating prior assumptions
about the payoff function’s structure (Brochu et al., 2010). In addition to a model of
the payoff function, an algorithm must have a method for selecting the next observation.
Several bandit-like heuristics, such as Maximum Expected Improvement (Jones et al., 1998),
Maximum Probability of Improvement (Mockus, 1989), Knowledge Gradient (Ryzhov et al.,
2012), and upper-confidence-based methods (Cox and John, 1997), have been developed
to balance exploration with exploitation and have been successfully applied in learning
problems (e.g., Lizotte et al., 2007). In contrast, the Entropy Search algorithm of Hennig
and Schuler (2012) seeks to take the action that will greedily decrease future losses, a less
bandit-like and more optimization-focused heuristic. Recently, Srinivas et al. (2010, 2012)
analyzed GP-UCB, an algorithm for this setting based on upper-confidence bound sampling,
and proved bounds on its cumulative regret, and thus convergence rates for Bayesian global
optimization. We build on this foundation and generalize it to the parallel setting.

2.3 Parallel Selection

To enable parallel selection, one must account for the delay between decisions and obser-
vations. Most existing approaches that can deal with such delay result in a multiplicative
increase in the cumulative regret as the delay grows. Only recently, Dudik et al. (2011)
demonstrated that it is possible to obtain regret bounds that only increase additively with
the delay (i.e., the penalty becomes negligible for large numbers of decisions). However,
the approach of Dudik et al. only applies to contextual bandit problems with finite deci-
sion sets, and thus not to settings with complex (even nonparametric) payoff functions.
Similarly, contemporary work by Joulani et al. (2013) develops a meta-algorithm for con-
verting sequential bandit algorithms to the delayed, finite decision set environment. While
this algorithm has regret bounds which only increase additively with batch size, it does
not generalize to the case of infinitely large decision sets and, by construction, does not
take advantage of knowledge of pending observations, leading to redundant exploration, of
particular concern when individual observations are expensive.

In contrast to these theoretical developments for finite bandits, there has been heuristic
work on parallel Bayesian global optimization using GPs, e.g., by Ginsbourger et al. (2010).
The state of the art is the simulation matching algorithm of Azimi et al. (2010), which uses
the posterior of the payoff function at the beginning of the batch to simulate observations
that the sequential algorithm would encounter if it could receive feedback during the batch,
obtaining a number of Monte Carlo samples over future behaviors of the sequential algo-
rithm. These Monte Carlo samples are then aggregated into a batch of observations which
is intended to “closely match” the set of actions that would be taken by the sequential algo-
rithm if it had been run with sequential feedback. To our knowledge, no theoretical results
regarding the regret or convergence of this algorithm exist. We experimentally compare
with this approach in Section 7. Azimi et al. (2012a) recently extended this construction
to the batch classification setting.

4056



Parallelizing Exploration-Exploitation in GP Bandit Optimization

Azimi et al. (2012b) also propose a very different algorithm that adaptively chooses the
level of parallelism it will allow. This is done in a manner which depends on the expected
prediction error between the posterior constructed with the simulated observations in the
batch in progress versus the true posterior that would be available assuming the observations
had actually been obtained. We also compare against this adaptive algorithm in Section 7.

Recently, Chen and Krause (2013) investigated batch-mode active learning using the
notion of adaptive submodular functions. In contrast to our work, their approach focuses
on active learning for estimation, which does not involve exploration–exploitation tradeoffs.

3. Problem Setting and Background

We wish to take a sequence of actions (or equivalently, make decisions) x1,x2, . . . ,xT ∈ D,
where D is the decision set, which is often (but not necessarily) a compact subset of Rd. The
subscript denotes the round in which that action was taken; each round is an opportunity
for the algorithm to take one action. For each action xt, we observe a noisy scalar reward
yt = f(xt)+εt, where f : D → R is an unknown function modeling the expected payoff f(x)
for each action x. For now we assume that the noise variables εt are i.i.d. Gaussian with
known variance σ2n, i.e., εt ∼ N (0, σ2n), ∀t ≥ 1. This assumption will be relaxed later in one
of the cases of our main theorem. If the actions xt are selected one at a time, each with
the benefit of all observations y1, . . . , yt−1 corresponding to previous actions x1, . . . ,xt−1,
we shall refer to this case as the strictly sequential setting. In contrast, the main problem
tackled in this paper is the challenging setting where action xt must be selected using
only observations y1, . . . , yt′ , where often t′ < t − 1. Thus, less information is available for
choosing actions as compared to the strictly sequential setting.

In selecting these actions, we wish to maximize the cumulative reward
∑T

t=1 f(xt).
Defining the regret of action xt as rt = [f(x∗)− f(xt)], where x∗ ∈X∗ = argmaxx∈D f(x)
is an optimal action (assumed to exist, but not necessarily to be unique), we may equiva-
lently think of maximizing the cumulative reward as minimizing the cumulative regret

RT =
T∑
t=1

rt.

By minimizing the regret, we ensure progress toward optimal actions uniformly over T . In
fact, the average regret, RT /T , is a natural upper bound on the suboptimality of the best
action considered so far, i.e., RT /T ≥ mint∈1,...,T [f(x∗)− f(xt)] (where this minimum is
often called the simple regret, Bubeck et al., 2009). Therefore bounds on the average regret
imply convergence rates for global optimization. It is particularly desirable to show that
RT is sublinear, i.e., o(T ), such that the average regret (and thus the minimum regret) goes
to zero for large T ; an algorithm with this property is described as being “no-regret.”

In Section 3.1, we formally define the problem setting of parallel selection. Sections 3.2
and 3.3 introduce mathematical background necessary for our analysis. Section 3.4 describes
the GP-UCB algorithm and discusses why some simple attempts at generalizing it to the
parallel setting are insufficient, setting the stage for GP-BUCB, the subject of Section 4.
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3.1 The Problem: Parallel or Delayed Selection

In many applications, at time τ , we wish to select a batch of actions, e.g., xτ , ...,xτ+B−1,
where B is the size of the batch, to be evaluated in parallel. One natural application is the
design of high-throughput experiments, where several experiments are performed in parallel,
but feedback is only received after the experiments have concluded. In other settings, the
feedback is delayed. We can model both situations by selecting actions sequentially; however
when choosing xt in round t, we can only make use of the feedback obtained in rounds
1, . . . , t′, for some t′ ≤ t − 1. Formally, we assume there is some mapping fb : N → {N, 0}
(where N denotes the positive integers) such that fb[t] ≤ t− 1, ∀t ∈ N, and when selecting
an action at time t, we can use feedback up to and including round fb[t]. If fb[t] = 0, no
observation information is available.

Here and in most of the remainder of the paper, we concentrate primarily on this perspec-
tive on parallelism, which we term the pessimistic view, in which we consider the problem of
coping effectively under inferior feedback. Intuitively, given feedback such that fb[t] ≤ t− 1
and often fb[t] < t − 1, an algorithm should be expected to underperform relative to the
strictly sequential algorithm, which obtains feedback according to fb[t] = t − 1. This view
provides a natural benchmark; success is performing nearly as well as the strictly sequen-
tial algorithm, despite the disadvantageous feedback. The contrasting optimistic view, in
which parallelism may confer an advantage over strictly sequential algorithms via the abil-
ity to take more than one action simultaneously, is equivalent to the pessimistic view via a
reparameterization of time, if batches are constructed sequentially; the difference between
the two is fundamentally the philosophical primacy of decision-making in the pessimistic
view and the experimental process in the optimistic view. We examine our results from the
optimistic perspective in Section 7.3 and in Figure 7. Unfortunately, this optimistic view
of parallelism presents difficulties when comparing algorithms; there is less clearly a bench-
mark for comparing the regret suffered by two algorithms which have submitted the same
number of batches but use different levels of parallelism, since they may at any time have
different numbers of observations. We thus concentrate our analytical and experimental
approach on the pessimistic view, while remaining motivated by its optimistic counterpart.

Different specifications of the feedback mapping fb[t] can model a variety of realistic
scenarios. As noted above, setting B = 1 and fb[t] = t − 1 corresponds to the non-
delayed, strictly sequential setting in which a single action is selected and the algorithm
waits until the corresponding observation is returned before selecting the succeeding action.
The simple batch setting, in which we wish to select batches of size B, can be captured by
setting fb[t]SB = b(t− 1)/BcB, i.e.,

fb[t]SB =


0 : t ∈ {1, . . . , B}
B : t ∈ {B + 1, . . . , 2B}
2B : t ∈ {2B + 1, . . . , 3B}

...

.

Note that in the batch case, the time indexing within the batch is a matter of algorithmic
construction, since the batch is built in a sequential fashion, but actions are initiated simul-
taneously and observations are received simultaneously. If we wish to formalize the problem
of selecting actions when feedback from those actions is delayed by exactly B rounds, the
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simple delay setting, we can simply define this feedback mapping as fb[t]SD = max{t−B, 0}.
Note that in both the simple batch and delay cases, B = 1 is the strictly sequential case. In
comparing these two simple cases for equal values of B, we observe that fb[t]SB ≥ fb[t]SD,
that is, the set of observations available in the simple batch case for selecting the tth action
is always at least as large as in the simple delay case, suggesting that the delay case is
in some sense “harder” than the batch case. As we will see, however, the regret bounds
presented in this paper may be expressed in terms of the maximal number of pending ob-
servations (i.e., those which have been initiated, but are still incomplete), which is B− 1 in
both of these settings, resulting in unified proofs and regret bounds for the two cases.

More complex cases may also be described using a feedback mapping. For example,
we may be interested in executing B experiments in parallel, where we can start a new
experiment as soon as one finishes, but the length of each experiment is variable; this
translates to a more complex delay setting in which the algorithm has a queue of pending
observations of some finite size B and checks at each round to see whether the queue is full.
If the queue is not full, the algorithm submits an action, and if it is full, it “balks,” i.e.,
does not submit an action and continues waiting for room to open within the queue. This is
a natural description of an agent which periodically monitors slow experimental processes
and takes action when it discovers they have finished. Since the algorithm only selects a
new action when the queue is not full, there can be at most B − 1 pending observations
at the time a new action is selected, as in the simple batch and delay cases. Again, the
maximum number of pending observations is the key to bounding the regret.

Since the level of difficulty of a variety of settings may be described in terms of the
maximum number of pending observations when selecting any action (which we set to be
B − 1), in our development of GP-BUCB and initialized GP-BUCB in Sections 4.4 and 4.5,
we only assume that the mapping fb[t] is specified as part of the problem instance and
t − fb[t] ≤ B for a known constant B. Importantly, our algorithms do not need to know
the full feedback mapping ahead of time. It suffices if fb[t] is revealed to the algorithms at
each time t.

3.2 Modeling f via Gaussian Processes

Regardless of when feedback is obtained, if we are to turn a finite number of observations
into useful inference about the payoff function f , we will have to make assumptions about
its structure. In particular, for large (possibly infinite) decision sets D there is no hope to do
well, i.e., incur little regret or even simply converge to an optimal action, if we do not make
any assumptions. For good performance, we must choose a regression model which is both
simple enough to be learned and expressive enough to capture the relevant behaviors of f .
One effective formalism is to model f as a sample from a Gaussian process2 (GP) prior.
A GP is a probability distribution across a class of—typically smooth—functions, which is
parameterized by a kernel function k(x,x′), which characterizes the smoothness of f , and
a mean function µ(x). In the remainder of this section, we assume µ(x) = 0 for notational
convenience, without loss of generality. We often also assume that k(x,x) ≤ 1, ∀x ∈ D,
i.e., that the kernel is normalized; results obtained using this assumption can be generalized
to any case where k(x,x) has a known bound. We write f ∼ GP(µ, k) to denote that

2. See Rasmussen and Williams (2006) for a thorough treatment.

4059



Desautels, Krause, and Burdick

we model f as sampled from such a GP. If noise is i.i.d. Gaussian and the distribution
of f is conditional on a vector of observations y1:t−1 = [y1, ..., yt−1]

T corresponding to
actions Xt−1 = [x1, ...,xt−1]

T , one obtains a Gaussian posterior distribution f(x)|y1:t−1 ∼
N (µt−1(x), σ2t−1(x)) for each x ∈ D, where

µt−1(x) = K(x,Xt−1)[K(Xt−1,Xt−1) + σ2nI]−1y1:t−1 and (1)

σ2t−1(x) = k(x,x)−K(x,Xt−1)[K(Xt−1,Xt−1) + σ2nI]−1K(x,Xt−1)
T . (2)

In the above, K(x,Xt−1) denotes the row vector of kernel evaluations between x and
the elements of Xt−1, the set of actions taken in the past, and K(Xt−1,Xt−1) is the
matrix of kernel evaluations where [K(Xt−1,Xt−1)]ij = k(xi,xj), ∀xi,xj ∈ Xt−1, i.e.,
the covariance matrix of the values of f over the set so far observed. Since Equations
(1) and (2) can be computed efficiently, closed-form posterior inference is computationally
tractable in a GP distribution via linear algebraic operations.

3.3 Conditional Mutual Information

A number of information theoretic quantities will be essential to the analysis of the algo-
rithms presented in this paper. In particular, we are interested in the mutual information
I(f ;yA) between f and a set of observations yA, where these observations correspond to a
set A = {x1,x2, . . . } and each xi in A is also in D. For a GP, I(f ;yA) is

I(f ;yA)=H(yA)−H(yA |f)=
1

2
log
∣∣I+σ−2n K(A,A)

∣∣ ,
where K(A,A) is the covariance matrix of the values of f at the elements of the set A,
H(yA) is the differential entropy of the probability distribution over the set of observations
yA, and H(yA |f) is the corresponding value when the distribution over yA is conditioned
on f . Note that for a GP, since yA only depends on the values of f at A, denoted f(A), it
follows that H(yA |f) = H(yA |f(A)) and so I(f ;yA) = I(f(A);yA).

The conditional mutual information with respect to f resulting from observations yA,
given previous observations yS , is defined (for two finite sets A,S ⊆ D) as

I(f ;yA | yS) = H(yA | yS)−H(yA | f,yS) = H(yA | yS)−H(yA | f),

where the second equality follows from conditional independence of the observations given f .
The conditional mutual information gained from observations yA can also be calculated as
a sum of the marginal conditional mutual information gains of each observation in yA;
conditioned on yS , and for A = {x1,x2, ..., xT }, this sum is

I(f ;yA | yS) =
T∑
t=1

log (1 + σ−2n σ2t−1(xt)), (3)

where the term σ2t−1(xt) is the posterior variance over f(xt), conditioned on yS and
{y1, ..., yt−1} ⊆ yA. It is important to note that σ2t−1(xt), given by Equation (2), is in-
dependent of the values of the observations. Since the sum’s value can thus be calculated
without making the observations (i.e., during the course of assembling a batch), it is pos-
sible to calculate the mutual information that will be gained from any hypothetical set of
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Algorithm 1 GP-UCB

Input: Decision set D, GP prior µ0, σ0, kernel function k(·, ·).
for t = 1, 2, . . . , T do

Choose xt = argmaxx∈D[µt−1(x) + α
1/2
t σt−1(x)]

Compute σt(·) via Equation (2)
Obtain yt = f(xt) + εt
Perform Bayesian inference to obtain µt(·) via Equation (1)

end for

observations. We will also be interested in the maximum information gain with respect to f
obtainable from observations yA corresponding to any set of actions A, where |A| ≤ T ,

γT = max
A⊆D, |A|≤T

I(f ; yA). (4)

3.4 The GP-UCB Approach for Strictly Sequential Selection

Modeling f as a sample from a GP has the major benefit that the predictive uncertainty
can be used to guide exploration and exploitation. This is done via a decision rule, by which
the algorithm selects actions xt. While several heuristics, such as Expected Improvement
(Mockus et al., 1978) and Most Probable Improvement (Mockus, 1989) have been effectively
employed in practice, nothing is known about their convergence properties in the case of
noisy observations. Srinivas et al. (2010), guided by the success of upper-confidence-based
sampling approaches for multi-armed bandit problems (Auer, 2002), analyzed the Gaussian
process Upper Confidence Bound (GP-UCB) decision rule,

xt = argmax
x∈D

[
µt−1(x) + α

1/2
t σt−1(x)

]
. (5)

This decision rule uses αt, a domain-specific time-varying parameter, to trade off exploita-
tion (sampling x with high mean) and exploration (sampling x with high standard devia-
tion). Srinivas et al. (2010) showed that, with proper choice of αt, the cumulative regret
of GP-UCB grows sublinearly for many commonly used kernel functions. This algorithm is
presented in simplified pseudocode as Algorithm 1.

Implicit in the definition of the GP-UCB decision rule is the corresponding confidence
interval for each x ∈ D,

Cseq
t (x) ≡

[
µt−1(x)− α1/2

t σt−1(x), µt−1(x) + α
1/2
t σt−1(x)

]
, (6)

where this confidence interval’s upper confidence bound is the value of the argument of the
decision rule. For this (or any) confidence interval, we will refer to the difference between the

uppermost limit and the lowermost, here w = 2α
1/2
t σt−1(x), as the width. This confidence

interval is based on the posterior over f given y1:t−1; a new confidence interval is created
for round t + 1 after adding yt to the set of observations. Srinivas et al. (2010) carefully
select αt such that a union bound over all t ≥ 1 and x ∈ D yields a high-probability
guarantee of confidence interval correctness; it is this guarantee and the direct relationship
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between confidence intervals and the decision rule which enable the construction of high-
probability regret bounds. Using this guarantee, Srinivas et al. (2010) then prove that the
cumulative regret of the GP-UCB algorithm can be bounded as RT = O(

√
TαTγT ), where

αT is the confidence interval width multiplier described above. For many commonly used
kernel functions, Srinivas et al. (2010) show that γT grows sublinearly and αT only needs
to grow polylogarithmically in T , implying that RT is also sublinear; thus RT /T → 0 as
T →∞, i.e., GP-UCB is a no-regret algorithm.

Motivated by the strong theoretical and empirical performance of GP-UCB (Srinivas
et al., 2010, 2012), we explore generalizations to batch and parallel selection (i.e., B > 1).
One näıve approach would be to update the GP-UCB score, Equation (5), only once new
feedback becomes available, selecting the same action at each time step between acquisitions
of new observations. In the case that the observation noise model is Gaussian, the bound
of Srinivas et al. (2010) can be used together with reparameterization of time to bound the
regret to no more than a factor of

√
B greater than the GP-UCB algorithm. In empirical

tests (Online Appendix 2), this algorithm does not explore sufficiently to perform well early
on, making it of limited practical interest. To encourage more exploration, one may instead
require that no action is selected twice within a batch (i.e., simply rank actions according
to the GP-UCB score, and pick actions in order of decreasing score until new feedback is
available). However, since f often varies smoothly, so does the GP-UCB score; under some
circumstances, this algorithm would also suffer from limited exploration. Further, if the
optimal set X∗ ⊆ D is of size |X∗| < B and there is a finite gap between the rewards f(x∗)
and f(x) for all x∗ ∈X∗,x /∈X∗, the algorithm is suffers linear regret, since some x /∈X∗

must be included in every batch. This algorithm also underperforms in empirical tests
(Online Appendix 2). These näıve algorithms have clear shortcomings because they do not
simultaneously select diverse sets of actions and ensure appropriate convergence behavior.

In the following, we introduce the Gaussian process Batch Upper Confidence Bound
(GP-BUCB) algorithm, which successfully balances these competing imperatives. GP-BUCB
encourages diversity in exploration, uses past information in a principled fashion, and yields
strong performance guarantees. We also extend it and develop the Gaussian process Adap-
tive Upper Confidence Bound (GP-AUCB) algorithm, which retains the theoretical guar-
antees of the GP-BUCB algorithm, but chooses batches of variable length in an adaptive,
data-driven manner.

4. The GP-BUCB Algorithm and Regret Bounds

We introduce the GP-BUCB algorithm in Section 4.1. Section 4.2 states the paper’s major
theorem, a bound on the cumulative regret of a general class of algorithms including GP-
BUCB and GP-AUCB. This main result is in terms of a quantity C, a bound on information
used within a batch; this quantity is examined in detail in Section 4.3. Using these insights,
Section 4.4 provides a corollary, bounding the regret of GP-BUCB specifically. Section 4.5
improves this regret bound by initializing GP-BUCB with a finite set of observations.

4.1 GP-BUCB: An Overview

A key property of GPs is that the predictive variance at time t, Equation (2), only de-
pends on Xt−1 = {x1, . . . , xt−1}, i.e., where the observations are made, but not which
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Algorithm 2 GP-BUCB

Input: Decision set D, GP prior µ0, σ0, kernel function k(·, ·), feedback mapping fb[·].
for t = 1, 2, . . . , T do

Choose xt = argmaxx∈D[µfb[t](x) + β
1/2
t σt−1(x)]

Compute σt(·) via Equation (2)
if fb[t] < fb[t+ 1] then

Obtain yt′ = f(xt′) + εt′ for t′ ∈ {fb[t] + 1, . . . , fb[t+ 1]}
Perform Bayesian inference to obtain µfb[t+1](·) via Equation (1)

end if
end for

values y1:t−1 = [y1, . . . , yt−1]
T were actually observed. Thus, it is possible to compute the

posterior variance that would be used by the sequential GP-UCB decision rule, Equation
(5), even while certain observations are not yet available. In contrast, the predictive mean
using in Equation (1) does depend on the actual observations. A natural approach towards
parallel exploration is therefore to replace the GP-UCB decision rule, Equation (5), with a
decision rule that sequentially chooses actions within the batch using all the information
that is available so far,

xt = argmax
x∈D

[
µfb[t](x) + β

1/2
t σt−1(x)

]
. (7)

Here, the parameter βt has a role analogous to the parameter αt in the GP-UCB algorithm.
The confidence intervals corresponding to this decision rule are of the form

Cbatch
t (x) ≡

[
µfb[t](x)− β1/2t σt−1(x), µfb[t](x) + β

1/2
t σt−1(x)

]
. (8)

Note that this approach is equivalent to running the strictly sequential GP-UCB algorithm
based on hallucinated observations. Concretely, we hallucinate observations yfb[t]+1:t−1 for
those observations that have not yet been received, simply using the most recently updated
posterior mean, i.e., yfb[t]+1:t−1 = [µfb[t](xfb[t]+1), . . . , µfb[t](xt−1)]. As a consequence, the
mean of the posterior including these hallucinated observations remains precisely µfb[t](x),
but the posterior variance decreases.

The resulting GP-BUCB algorithm is shown in pseudocode as Algorithm 2. This ap-
proach naturally encourages diversity in exploration by taking into account the change in
predictive variance that will eventually occur after receiving the pending observations; since
the payoffs of “similar” actions are assumed to co-vary, exploring one action will automat-
ically reduce the predictive variance of similar actions, and thus their value in terms of
exploration. This decision rule appropriately deprecates those observations which will be
made partially redundant by the acquisition of the pending observations, resulting in a more
correct valuation of exploring any x in D.

The disadvantage of this approach appears as the algorithm progresses deeper into the
batch. At each time t, the width of the confidence intervals Cbatch

t (x) is proportional to
σt−1(x). As desired, shrinking the confidence intervals with respect to the start of the batch
by using this standard deviation enables GP-BUCB to avoid exploratory redundancy. How-
ever, as an undesired side-effect, doing so conflates the information which is actually avail-
able, gained via the observations y1:fb[t], with the hallucinated information corresponding
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to actions xfb[t]+1 through xt−1. Thus, the posterior reflected by σt−1(x) is “overconfident”
about the algorithm’s actual state of knowledge of the function. This is problematic when
using the confidence intervals to bound the regret.

To build an algorithm with rigorous guarantees on its performance while still avoiding
exploratory redundancy, we must control for this overconfidence. One measure of overconfi-
dence is the ratio σfb[t](x)/σt−1(x), which is the ratio of the width of the confidence interval
derived from the set of actual observations y1:fb[t] to the width of the confidence interval
derived from the partially hallucinated set of observations y1:t−1. This ratio is related to
I(f(x);yfb[t]+1:t−1 | y1:fb[t]), the hallucinated conditional mutual information with respect
to f(x) (as opposed to the whole of f), as follows:

Proposition 1 The ratio of the standard deviation of the posterior over f(x), condi-
tioned on observations y1:fb[t], to that conditioned on y1:fb[t] and hallucinated observations
yfb[t]+1:t−1 is

σfb[t](x)

σt−1(x)
= exp

(
I(f(x);yfb[t]+1:t−1 | y1:fb[t])

)
.

Proof The proposition follows from the fact that

I(f(x);yfb[t]+1:t−1|y1:fb[t]) = H(f(x)|y1:fb[t])−H(f(x)|y1:t−1)

= 1/2 log(2πeσ2fb[t](x))− 1/2 log(2πeσ2t−1(x))

= log(σfb[t](x)/σt−1(x)).

Crucially, if there exists some constant C, such that I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ C, ∀x ∈
D,∀t ≥ 1, the ratio σfb[t](x)/σt−1(x) can also be bounded for every x ∈ D as follows:

σfb[t](x)

σt−1(x)
= exp

(
I(f(x);yfb[t]+1:t−1 | y1:fb[t])

)
≤ exp (C). (9)

Armed with such a bound, the algorithm can be modified to compensate for its overconfi-
dence. Our goal is to compensate in a way that allows the algorithm to avoid redundancy,
while guaranteeing accurate confidence intervals for the sake of deriving regret bounds. Our
strategy is to increase the width of the confidence intervals (through proper choice of the
parameter βt), such that the confidence intervals used by GP-BUCB are conservative in their
use of the hallucinated information and consequently still contain the payoff function f(x)
with high probability. More precisely, we will require that Cseq

fb[t]+1(x) ⊆ Cbatch
t (x) for all t

at which we select actions and all x ∈ D; that is, the batch algorithm’s confidence intervals
are sufficiently large to guarantee that even for the last action selection in the batch, they
contain the confidence intervals used by the GP-UCB algorithm given y1:fb[t], as defined in
Equation (6). Srinivas et al. (2010) provide choices of αt such that the resulting confidence
intervals have a high-probability guarantee of correctness ∀t ≥ 1,x ∈ D. Thus, if it can be
shown that Cseq

fb[t]+1(x) ⊆ Cbatch
t (x), ∀x ∈ D, t ∈ N, the batch confidence intervals inherit

the high-probability guarantee of correctness.
Fortunately, the relationship between Cseq

fb[t]+1(x) and Cbatch
t (x) is simple; since the par-

tially hallucinated posterior has the same mean as that based on only y1:fb[t],

Cseq
fb[t]+1(x) ⊆ Cbatch

t (x) ⇐⇒ β
1/2
t σt−1(x) ≥ α1/2

fb[t]σfb[t](x).
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Figure 1: (a): The confidence intervals Cseq
fb[t]+1(x) (dark), computed from previous noisy

observations y1:fb[t] (crosses), are centered around the posterior mean (solid black)
and contain f(x) (white dashed) w.h.p. To avoid overconfidence, GP-BUCB
chooses Cbatch

fb[t]+1(x) (light gray) such that even in the worst case, the succeed-

ing confidence intervals in the batch, Cbatch
τ (x), ∀τ : fb[τ ] = fb[t], will contain

Cseq
fb[t]+1(x). (b): Due to the observations that GP-BUCB “hallucinates” (stars),

the outer posterior confidence intervals Cbatch
t (x) shrink from their values at the

start of the batch (black dashed), but still contain Cseq
fb[t]+1(x), as desired. (c):

Upon selection of the last action of the batch, the feedback for all actions is
obtained, and for the subsequent action selection in round t′, new confidence
intervals Cseq

fb[t′]+1(x) and Cbatch
fb[t′]+1(x) are computed.

If we have a suitable bound on σfb[t](x)/σt−1(x) via Equation (9), all that remains is to
choose βt appropriately. If we do so by using a uniform, multiplicative increase with re-
spect to αfb[t] for every x ∈ D and t ∈ N, the desired redundancy avoidance property
of these confidence intervals is simultaneously maintained, since the actions correspond-
ing to pending observations (and related actions) are deprecated as if the observations
had actually been obtained. Figure 1 illustrates this idea. The problem of developing
a parallel algorithm with bounded delay is thus reduced to finding a value C such that
I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ C, ∀x ∈ D,∀t ≥ 1, thus allowing us to select βt to guarantee
the containment of the reference sequential confidence intervals by their batch counterparts.

4.2 General Regret Bound

Our main theorem bounds the regret of GP-BUCB and related algorithms. This regret bound
is formulated in terms of a bound C, which we assume to be known to the algorithm, on
the maximum amount of conditional mutual information which is hallucinated with respect
to f(x) for any x in D. We defer discussion of methods of obtaining such a bound to
Section 4.3. This bound is used to relate confidence intervals used to select actions, which
incorporate this hallucinated information, to the posterior confidence intervals as of the last
feedback obtained, which contain the payoff function f with high probability. This theorem
holds under any of three different assumptions about f , studied by Srinivas et al. (2012) in
the case of the GP-UCB algorithm, which may all be of practical interest. In particular, it
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holds even if the assumption that f is sampled from a GP is replaced by the assumption
that f has low norm in the associated Reproducing Kernel Hilbert Space (RKHS).3

Theorem 2 Specify δ ∈ (0, 1) and let γt be as defined in Equation (4). Let there exist a
mapping fb[t] (possibly revealed online) that dictates at which rounds new feedback becomes
available. Model the payoff function f via a Gaussian process prior with bounded variance,
such that for any x in the decision set D, k(x,x) ≤ 1. Suppose one of the following sets of
assumptions holds:

Case 1: D is a finite set and f is sampled from the assumed GP prior. The noise variables
εt are i.i.d., εt ∼ N (0, σ2n). Choose αt = 2 log(|D|t2π2/6δ).

Case 2: D ⊆ [0, l]d is compact and convex, with d ∈ N, l > 0, and f is sampled from
the assumed zero-mean GP prior. The noise variables εt are i.i.d., εt ∼ N (0, σ2n).
The kernel k(x,x′) is such that the following bound holds with high probability
on the derivatives of GP sample paths f , where a and b are constants such that
a ≥ δ/(4d), b > 0 and bl

√
log(4da/δ) is an integer:

Pr

{
sup
x∈D
|∂f/∂xj | > L

}
≤ ae−(L/b)2 , j = 1, . . . , d.

Choose αt = 2 log(2t2π2/(3δ)) + 2d log
(
t2dbl

√
log(4da/δ)

)
.

Case 3: D is arbitrary and the squared RKHS norm of f under the kernel assumed is
bounded as ||f ||2k ≤ M for some constant M . The noise variables εt form an
arbitrary martingale difference sequence (meaning that E[εt | ε1, . . . , εt−1] = 0 for
all t ∈ N), uniformly bounded by σn. Choose αt = 2M + 300γt ln3(t/δ).

Employ the GP posterior and the GP-BUCB update rule, Equation (7), to select actions
xt ∈ D for all t ≥ 1, using βt = exp(2C)αfb[t]+1 (Cases 1 & 3) or βt = exp(2C)αt (Case
2), where C > 0 and

I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ C, (10)

for all t ≥ 1 and all x ∈ D. Under these conditions, the following statement holds with
regard to the cumulative regret:

Pr
{
RT ≤

√
C1T exp(2C)αTγT + 2,∀T ≥ 1

}
≥ 1− δ,

where C1 = 8/ log(1 + σ−2n ).

Proof The proof of this result is presented in Appendix A.

First, note that this guarantee holds for any amount of time the algorithm is allowed
to run, since the algorithm does not use knowledge of how many actions it may yet take;
thus, with high probability, RT is less than the given expression for every T less than
or equal to the number of executed actions. Second, the key quantity that controls the
regret in Theorem 2 is C, the bound in Equation (10) on the maximum conditional mutual
information obtainable within a batch with respect to f(x) for any x ∈ D. In particular,
the cumulative regret bound of Theorem 2 is a factor exp(C) larger than the regret bound
for the sequential (B = 1) GP-UCB algorithm. Various choices of the key parameter C are
explored in the following sections.

3. See Schölkopf and Smola (2002).
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4.3 Suitable Choices for C

The significance of a bound C on the information hallucinated with respect to any f(x)
arises through this quantity’s ability to bound the degree of contamination of the GP-BUCB
confidence intervals, given by Equation (8), with hallucinated information.

Two properties of the mutual information in this setting are particularly useful. These
properties are monotonicity (adding an element x to the set A cannot decrease the mutual
information between f and the corresponding set of observations yA) and submodularity
(the increase in mutual information between f and yA with the addition of an element x
to set A cannot be greater than the corresponding increase in mutual information if x is
added to A′, where A′ ⊆ A) (Krause and Guestrin, 2005). Submodularity arises because
individual observations are conditionally independent, given f .

Using the time indexing notation developed in Section 3.1, the following results hold:

∀x ∈ D : I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ I(f ;yfb[t]+1:t−1 | y1:fb[t]) (11)

≤ max
A⊆D,|A|≤B−1

I(f ;yA | y1:fb[t]) (12)

≤ max
A⊆D,|A|≤B−1

I(f ;yA) = γB−1. (13)

The first inequality follows from the monotonicity of mutual information, i.e., the informa-
tion gained with respect to f as a whole must be at least as large as that gained with respect
to f(x). The second inequality holds because we specify the feedback mapping such that
t − fb[t] ≤ B, and the third inequality holds due to the submodularity of the conditional
mutual information.

Often, the terms on the right-hand side of these inequalities are easier to work with
than I(f(x);yfb[t]+1:t−1 | y1:fb[t]). The remainder of the paper is characterized by which
inequality we employ in constructing an algorithm and choosing a suitable C to use with
Equation (9) and Theorem 2; Sections 4.4 and 4.5 approach the problem via Inequalities
(13) and (12), while Section 5.1 exploits Inequality (11) and Section 5.2 examines the
consequences of directly bounding the local hallucinated information.

4.4 Corollary Regret Bound: GP-BUCB

The GP-BUCB algorithm requires that t− fb[t] ≤ B, ∀t ≥ 1, and uses a value C such that,
for any t ∈ N,

max
A⊆D,|A|≤B−1

I(f ;yA | y1:fb[t]) ≤ C, (14)

thus bounding I(f(x);yfb[t]+1:t−1 | y1:fb[t]) for all x ∈ D and t ∈ N via Inequality (12). Oth-
erwise stated, in GP-BUCB, the local information gain with respect to any f(x),x ∈ D, t ∈ N
is bounded by fixing the feedback times and then bounding the maximum conditional mutual
information with respect to the entire function f which can be acquired by any algorithm
which chooses any set of B−1 or fewer observations. This approach is sensible because such
a bound C holds for any batches constructed with any algorithm. Following an approach
which is less agnostic with regard to algorithm choice makes it quite difficult to disentangle
the role of C in setting the exploration-exploitation tradeoff parameter βt from its role as
a bound on how much information is hallucinated by the algorithm; since a larger βt en-
courages exploration under the GP-BUCB decision rule, Equation (7), a larger value of C
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Algorithm 3 Uncertainty Sampling

Input: Decision set D, GP prior µ0, σ0, kernel function k(·, ·).
for t = 1, 2, . . . , T do

Choose xt = argmaxx∈D σt−1(x)
Compute σt(·) via Equation (2)

end for

(and thus βt) typically produces batches that explore more and thus use more hallucinated
information.

It remains to choose a C which satisfies Inequality (14). We do so via Inequality (13). As
noted in Section 4.3, mutual information is submodular with respect to the set of observed
actions, and thus the maximum conditional mutual information which can be gained by
making any set of observations is maximized when the set of observations currently available,
to which these new observations will be added, is empty. Letting the maximum mutual
information between f and any observation set of size B− 1 be denoted γB−1 and choosing
C = γB−1 provides a bound on the possible local conditional mutual information gain for
any t ∈ N and x ∈ D, as in Inequality (13).

In practice, γB−1 is often difficult to calculate; in general, this requires optimizing over
the combinatorially large set of sets of actions of size B− 1. However, Krause and Guestrin
(2005) demonstrate that, due to the submodularity of the mutual information with respect
to f in this setting, there is an easily obtained upper bound on γB−1. Specifically, they
use uncertainty sampling, a greedy procedure, shown here as Algorithm 3, and show that
e/(e−1) I(f ;yUSB−1) ≥ γB−1, where I(f ;yUSB−1) is the information gained by observing the set
of observations yUSB−1 corresponding to the actions {x1, . . . ,xB−1} selected using uncertainty
sampling. This insight enables efficient computation of upper bounds on γB−1.

Choosing C = γB−1 yields the following Corollary, a special case of Theorem 2:

Corollary 3 Assume the GP-BUCB algorithm is employed with a constant B such that
t − fb[t] ≤ B for all t ≥ 1. Let δ ∈ (0, 1), and let the requirements of one of the numbered
cases of Theorem 2 be met. Choose βt = exp(2C)αfb[t]+1 (Cases 1 & 3) or βt = exp(2C)αt
(Case 2) and select actions xt for all t ≥ 1. Then

Pr
{
RT ≤

√
C1T exp(2γB−1)αTγT + 2, ∀T ≥ 1

}
≥ 1− δ,

where C1 = 8/ log(1 + σ−2n ) and γB−1 and γτ are as defined in Equation (4).

Unfortunately, the choice C = γB−1 is not especially satisfying from the perspective
of asymptotic scaling. The maximum information gain γB−1 usually grows at least as
Ω(logB), implying that exp(C) grows at least linearly in B, yielding a regret bound which
is also at least linear in B. Fortunately, the analysis of Section 4.5 shows that the GP-BUCB
algorithm can be modified such that a constant choice of C independent of B suffices.

4.5 Better Bounds Through Initialization

To obtain regret bounds independent of batch size B, the monotonicity properties of con-
ditional mutual information can again be exploited. This can be done by structuring GP-
BUCB as a two-stage procedure. First, an initialization set Dinit of size |Dinit| = T init is
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selected nonadaptively (i.e., without any feedback); following the selection of this entire set,
feedback yDinit for all actions in Dinit = {xinit

1 , . . . ,xinit
T init} is obtained. In the second stage,

GP-BUCB is applied to the posterior Gaussian process distribution, conditioned on yDinit .
Notice that if we define

γinitT = max
A⊆D,|A|≤T

I(f ;yA | yDinit),

then, under the assumptions of Theorem 2, using C = γinitB−1, the regret of the two-stage

algorithm is bounded by RT = O
(
T init + (TγTαT exp(2C))1/2

)
. In the following, we show

that it is indeed possible to construct an initialization set Dinit such that the size T init

is dominated by (TγTαT exp(2C))1/2, and—crucially—that C = γinitB−1 can be bounded
independently of the batch size B.

The initialization set Dinit which enables us to make this argument is constructed by
running the uncertainty sampling algorithm (Algorithm 3) for T init rounds and setting Dinit

to the selected actions. Note that uncertainty sampling can be viewed as a special case of
the GP-BUCB algorithm with a constant prior mean of 0 and the requirement that for all
1 ≤ t ≤ T init, fb[t] = 0, i.e., no feedback is taken into account for the first T init iterations.

Under this procedure, we have the following key result about the maximum residual
information gain γinit:

Lemma 4 Suppose uncertainty sampling is used to generate an initialization set Dinit of
size T init. Then

γinitB−1 ≤
B − 1

T init
γT init . (15)

Proof The proof of this lemma is presented in Appendix B.

Whenever γT is sublinear in T , the bound on γinitB−1 given by Inequality (15) converges to
zero for sufficiently large T init; thus for any constant C > 0, we can choose T init as a
function of B such that γinitB−1 < C. Using this choice of C in Theorem 2 bounds the post-
initialization regret. In order to derive bounds on T init, we in turn need a bound on γT
which is analytical and sublinear. Fortunately, Srinivas et al. (2010) prove suitable bounds
on how the information gain γT grows for some of the most commonly used kernels. We
summarize our analysis below in Theorem 5. For sake of notation, define Rseq

T to be the
regret bound of Corollary 3 with B = 1 (i.e., that of Srinivas et al., 2010, associated with
the sequential GP-UCB algorithm).

Theorem 5 Suppose the assumptions of one of the cases of Theorem 2 are satisfied. Fur-
ther, suppose the kernel and T init are as listed in Table 1, and B ≥ 2. Fix δ > 0. Let RT
be the cumulative regret at round T of the two-stage initialized GP-BUCB algorithm, which
ignores feedback for the first T init rounds. Then there exists a constant C ′ independent of
B such that

Pr
{
RT ≤ C ′Rseq

T + 2||f ||∞T init,∀T ≥ 1
}
≥ 1− δ, (16)

where C ′ takes the value shown in Table 1.

Proof The proof of this result and the values in Table 1 are presented in Appendix B.

In Table 1, d·e denotes the first integer greater than or equal to the argument. Note that
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Kernel Type Size T init of Initialization Set Dinit Regret
Multiplier C′

Linear: γt ≤ ηd log (t+ 1)

⌈
max

[
log (B),

log η+log d+2 log (B)
2 log (B)−1

eηd(B − 1) log (B)

]⌉
exp (2/e)

Matérn: γt ≤ νtε d(ν(B − 1))1/(1−ε)e e

RBF: γt ≤ η(log (t+ 1))d+1

⌈
max

[
(log (B))d+1,(

e
d+1

log η+(d+2) log (B)
2 log (B)−1

)d+1

η(B − 1)(log (B))d+1

]⌉
exp (( 2d+2

e
)d+1)

Table 1: Initialization set sizes for Theorem 5.

the particular values of C ′ used in Table 1 are not the only ones possible; they are chosen
simply because they yield relatively clean algebraic forms for T init. The most important
component of this result is the scaling of the regret RT with T and B. As compared to
Theorem 2, which bounds RT via the product exp (2C)TαTγT , where C is a function of
B, Theorem 5 replaces the root of this product with a sum of two terms, one in each of B
and T ; the term C ′Rseq

T in Inequality (16) is the cost paid for running the algorithm post-
initialization (dependent on T , but not B), whereas the second term is the cost of performing
the initialization (dependent on B, but not T ). Notice that whenever B = O(polylog(T )),
T init = O(polylog(T )), and further, note Rseq

T = Ω(
√
T ). Thus, as long as the batch size

does not grow too quickly, the term O(T init) is dominated by C ′Rseq
T and the regret bounds

of GP-BUCB are only a constant factor, independent of B, worse than those of GP-UCB.

In practice, Dinit should not be constructed by running uncertainty sampling for T init

rounds, but rather by running until γinitB−1 ≤ C for the pre-specified C; one online check can
be constructed using Lemma 4. This procedure cannot take more than T init rounds for the
kernels discussed and may take considerably fewer. Further, this procedure is applicable to
any kernel with sublinear γT , generalizing this initialization technique to kernels other than
those we have examined.

5. Adaptive Parallelism: GP-AUCB

While the analysis of the GP-BUCB algorithm in Sections 4.4 and 4.5 used feedback map-
pings fb[t] specified by the problem instance, it may be useful to let the algorithm control
when to request feedback, and to allow this feedback period to vary in some range not easily
described by any constant B. For example, allowing the algorithm to control parallelism is
desirable in situations where the cost of executing the algorithm’s requested actions depends
on both the number of batches and the number of individual actions or experiments in those
batches. Consider a chemical experiment, in which the cost may depend on the time to
complete the batch of reactions and the cost of the reagents needed for each individual ex-
periment. In such a case, confronting an initial state of relative ignorance about the reward
function, it may be desirable to avoid using a wasteful level of parallelism. Motivated by this,
we develop an alternative to our requirement in GP-BUCB that t− fb[t] ≤ B; we will instead
specify a C > 0 and choose the feedback mapping fb[t] in concert with the sequence of ac-
tions selected by the algorithm such that I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ C,∀x ∈ D,∀t ≥ 1.
This requirement on fb[t] in terms of C may appear stringent, but in fact it can be easily
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satisfied by on-line, data-driven construction. The GP-AUCB algorithm adaptively controls
feedback through precisely such a mechanism.

Section 5.1 introduces GP-AUCB and states a corollary regret bound for this algorithm.
A few comments on local versus global stopping criteria for adaptivity of algorithms follow
in Section 5.2.

5.1 GP-AUCB Algorithm

The key innovation of the GP-AUCB algorithm is in choosing fb[t] online, using a limit
on the amount of information hallucinated within the batch. Such adaptive batch length
control is possible because we can measure online the amount of information hallucinated
with respect to f using Equation (3), even in the absence of the observations themselves.
This quantity can be used in a stopping condition; when it exceeds a pre-defined constant
C, the algorithm terminates the batch and waits for the environment to return observations
for the pending actions. The feedback mapping fb is then updated to include these new
observations and the selection of a new batch begins. The resulting algorithm, GP-AUCB,
is shown in Algorithm 4.

GP-AUCB is also applicable in the delay setting. In Section 3.1, a view of the delay setting
was presented in which an algorithm maintains a queue of pending observations, where this
queue is of size B and the algorithm submits a query in any round during which the queue
is not full. This is natural for GP-BUCB, particularly if the delay on any observation is
known to be bounded by B′, i.e., t − fb[t] ≤ B′; in such a case, choosing B = B′ gives an
algorithm which submits an action every round. However, if B′ is unknown, the queue size
B would have to be chosen in some other way, such that potentially B < B′. In this case,
the algorithm might have B pending observations at the beginning of a round, a full queue,
and so decline to submit an action in that round, i.e., balk. Analogously, GP-AUCB in the
delay setting implements a queue which is bounded by the conditional mutual information
of the corresponding observations and f , given the current posterior. At each round, GP-
AUCB checks if this quantity is more than a pre-defined value C, and only submits a query
if it is not. Consequently, if C < γB′−1, the algorithm may balk on some rounds.

By terminating batches (or balking) such that no action is selected when the conditional
information of the pending observations with respect to f is more than C, the GP-AUCB
algorithm ensures that

I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ I(f ;yfb[t]+1:t−1 | y1:fb[t]) ≤ C, ∀x ∈ D, ∀t ≥ 1,

where t indexes all actions selected by the algorithm, the first inequality follows from the
monotonicity of conditional mutual information, and the second inequality follows from the
stopping condition. This result implies that Inequality (10) is satisfied, a key requirement
of Theorem 2. In contrast, GP-BUCB satisfies the requirement that the second inequality
hold by selecting a value for C greater than the conditional information which could be
gained in any batch of a fixed size, as in Inequality (14), potentially resulting a choice of
C larger than necessary for a given B. Since GP-AUCB considers the batches which are
actually constructed, it can be expected to enable a higher level of parallelism for the same
C, or a comparable level of parallelism for a smaller C.

It is also important to contrast the behavior of GP-AUCB with a scheduled, monoton-
ically increasing level of parallelism. Under the stopping condition, the batch length is
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Algorithm 4 GP-AUCB

Input: Decision set D, GP prior µ0, σ0, kernel k(·, ·), information gain threshold C.
Set fb[t′] = 0, ∀t′ ≥ 1, G = 0.
for t = 1, 2, . . . , T do

if G > C then
Obtain yt′ = f(xt′) + εt′ for t′ ∈ {fb[t− 1], . . . , t− 1}
Perform Bayesian inference to obtain µt−1(·) via Equation (1)
Set G = 0
Set fb[t′] = t− 1, ∀t′ ≥ t

end if
Choose xt = argmaxx∈D[µfb[t](x) + β

1/2
t σt−1(x)]

Set G = G+ 1
2 log (1 + σ−2n σ2t−1(xt))

Compute σt(·) via Equation (2)
end for

chosen in response to the algorithm’s need to explore or exploit as dictated by the decision
rule, Equation (7). This does tend to cause an increase in parallelism; the batch length
may possibly become quite large as the shape of f is better and better understood and the
variance of f(xt) tends to decrease. However, if exploratory actions are chosen, the high
information gain of these actions contributes to a relatively early arrival at the information
gain threshold C and thus relatively short batch length, even late in the algorithm’s run.

Since all actions are selected when I(f ;yfb[t]+1:t−1 | y1:fb[t]) ≤ C for all x ∈ D, this
approach meets the conditions of Theorem 2, yielding the following corollary:

Corollary 6 Let the GP-AUCB algorithm be employed with a specified constant δ ∈ (0, 1)
and a specified constant C > 0, for which the resulting feedback mapping fb : N → N
guarantees I(f ;yfb[t]+1:t−1 | y1:fb[t]) ≤ C,∀t ≥ 1. If the conditions of one case of Theorem 2
are met, and βt = exp(2C)αfb[t]+1 (Case 1 & 3) or βt = exp(2C)αt (Case 2), then

Pr
{
RT ≤

√
C1T exp(2C)αTγT + 2, ∀T ≥ 1

}
≥ 1− δ

where C1 = 8/ log(1 + σ−2n ).

Importantly, the specification of C directly specifies the regret bound under Corollary 6.
Describing a problem in terms of C is thus natural in the case that we wish to parallelize
an experimental process and our specification is what factor additional regret is acceptable,
as compared to the sequential GP-UCB algorithm. The batch sizes or balking which result
can then be regarded as those which follow from this specification.

Despite the advantages of this approach, C is abstract and less natural for an experi-
mentalist to specify than a maximum batch size or delay length. However, some intuition
with regard to C may be obtained. First, C can be selected to deliver batches with a spec-
ified minimum size Bmin. To ensure this occurs, C can be set such that C > γ(Bmin−1), i.e.,
no set of queries of size less than Bmin could possibly gain enough information to end the
batch. A satisfactory C can be found by either obtaining γ(Bmin−1) directly (tractable for
small Bmin) or via a constant factor bound (Krause and Guestrin, 2005) using the amount
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of information which could be gained during uncertainty sampling (Algorithm 3). Note
that it is also possible to combine the results of Section 4.5 with Corollary 6 to produce
a two-stage adaptive algorithm which can deliver high starting parallelism, very high par-
allelism as the run proceeds, and a low information gain bound C, yielding a favorable
asymptotic regret bound. This may be done by initializing thoroughly enough that, for
a pre-specified C and Bmin, γinitBmin−1 < C, such that the stopping condition cannot take
effect until the batch size is at least Bmin, and then running the GP-AUCB algorithm. This
procedure ensures that all batches are of size at least Bmin and no action is selected using
more than C hallucinated information. Alternatively, for uninitialized GP-AUCB, note that
C could be quite small, e.g., γ1; a very small choice for C should produce GP-UCB-like,
fully-sequential behavior while the algorithm knows very little, but as the algorithm begins
repeatedly selecting actions within a small, well-characterized set, it will permit a greater
level of parallelism.

In Section 3.1, the pessimistic and optimistic views of parallelism discussed therein could
respectively be viewed as emphasizing one or the other of action selection or feedback receipt
as the most important clock by which the system’s progress could be judged. However, in the
simple batch and delay settings, these perspectives were fixed to one another by the constant
B, governing the maximum level of parallelism. Allowing adaptive or stochastic delay and
balking breaks this fixed linkage and can be thought of as creating a third clock timing the
opportunities for the algorithm to select a single action. If the delay is fixed in terms of the
number of such opportunities between action and observation, rather than the number of
actions between these events, this gives a more natural notion of waiting for observations
and allows a better comparison of the tradeoffs inherent in such policies. In our experiments,
this opportunity-for-action perspective is explicitly used for all adaptive algorithms shown
in Figures 3 and 6, which apply the adaptive algorithms to the delay setting. We also
take our previous, pessimistic or action-centered perspective in Figure 5 when looking at
adaptive batch size selection, allowing examination of how much regret adaptive batch size
selection incurs as compared to fully sequential of fixed parallel algorithms.

5.2 Locally Stopped Adaptive Algorithms

Recently, Azimi et al. (2012b) proposed the Hybrid Batch Bayesian Optimization algorithm
(HBBO). HBBO implements a check on the faithfulness of a hallucinated posterior, similar
to our approach. This check is expressed not in terms of information gain, but rather
expected prediction error versus the true posterior if all information had been acquired.
Their stopping condition is also only locally checked at the selected xt, rather than all x in
D. Azimi et al. (2012b) employ this stopping condition along with a constraint that the size
of the batch assembled can never exceed a pre-specified Bmax. They show that, in practice,
much of the time the algorithm is “safe” under the local faithfulness condition and the level
of parallelism is actually controlled by Bmax. In this section, we consider how our results
similarly extend to local stopping conditions.

Theorem 2’s requirement on the hallucinated conditional information gain is stated in
terms of Equation (10), a bound on hallucinated information with respect to f(x) for all
x ∈ D. Through Equation (9), this bound ensures that the confidence intervals used to
select actions are still sufficiently faithful to those based on the true posterior, i.e., that
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Algorithm 5 GP-AUCB Local

Input: Decision set D, GP prior µ0, σ0, kernel k(·, ·), information gain threshold C,
maximum batch size Bmax.
Set fb[t′] = 0, ∀t′ ≥ 1.
for t = 1, 2, . . . , T do

if t− fb[t] > Bmax or ∃x ∈ D : σfb[t](x)/σt−1(x) > exp(C) then
Obtain yt′ = f(xt′) + εt′ for t′ ∈ {fb[t− 1], . . . , t− 1}
Perform Bayesian inference to obtain µt−1(·) via Equation (1)
Set fb[t′] = t− 1, ∀t′ ≥ t

end if
Choose xt = argmaxx∈D[µfb[t](x) + β

1/2
t σt−1(x)]

Compute σt(·) via Equation (2)
end for

σt−1(x) does not become too small with respect to σfb[t](x). In the previous analysis, we
ensured that this bound held for all x ∈ D by bounding I(f ;yfb[t]+1:t−1|y1:fb[t]), an upper
bound on each of the local information gains. However, in order to select actions, σt−1(x)
is calculated on-line; if D is of finite size, it is thus possible (if expensive) to compute
the ratio σfb[t](x)/σt−1(x) for every x in D and every time step. Similar to GP-AUCB,
it is possible to create an algorithm which uses Equation (7) to select actions and which
terminates batches adaptively whenever there is any x ∈ D where this ratio is greater than
exp(C) for a specified C > 0. Such an algorithm retains the regret bounds of Theorem 2.
With the additional constraint that the assembled batch size not exceed a specified Bmax,
we denote this algorithm GP-AUCB Local and present it as Algorithm 5. We also test this
algorithm in some of the experiments and figures in Section 7, along with HBBO.

A number of statements may be made regarding GP-AUCB Local. First, in the case of a
flat prior, e.g., f ∼ GP(0, k(x,x′)), Equation (7) reduces to xt = argmaxx∈D σt−1(x) until
feedback is obtained at the end of the first batch, i.e., uncertainty sampling (Algorithm
3). GP-AUCB Local’s first batch may thus contain a very large number of actions, broadly
initializing the decision set. Such a procedure resembles the typical initialization of bandit
algorithms and may be attractive in some settings, particularly those in which parallelism is
essentially unlimited and the central concern is the number of batches. Second, in practice,
nearly all of batches of GP-AUCB Local are stopped via the maximum batch size constraint
because the largest local information gain may be small, even for a large batch. This means
that this algorithm is effectively implementing GP-BUCB in the simple parallel case, where
B = Bmax, albeit with a tighter regret bound, since the specified C only needs to exceed
the local information gain, rather than the maximum global information gain.

6. Lazy Variance Calculations

In this section, we introduce the notion of lazy variance calculations, which may be used
to greatly accelerate the computation of many UCB-based algorithms, including GP-UCB,
GP-BUCB, and GP-AUCB, without any loss of performance.
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While the probabilistic inference carried out by GP-UCB, GP-BUCB, and GP-AUCB
may be implemented in closed form, without the need for expensive approximate inference,
the computational cost of the algorithms may still be high, particularly as the number of
observations increases. In applications where a finite decision set is considered at every
time t, the major computational bottleneck is calculating the posterior mean µfb[t](x) and
variance σ2t−1(x) for the candidate actions, as required to calculate the decision rule and
choose an action xt. The mean is updated only whenever feedback is obtained, and—
upon computation of the Cholesky factorization of K(Xfb[t], Xfb[t]) + σ2nI—the calculation
of the posterior mean µfb[t](x) takes O(t) additions and multiplications. On the other
hand, σ2t−1(x) must be recomputed for every x ∈ D after every round, and requires solving
backsubstitution, which requires O(t2) computations. For large decision sets D, the variance
computation thus dominates the computational cost of GP-BUCB.

Fortunately, for any fixed decision x, σ2t (x) is non-increasing in t. This fact can be
exploited to dramatically improve the running time of GP-BUCB. The key idea is that
instead of recomputing σt−1(x) for all candidate actions x in every round t, we can maintain
an upper bound σ̂t−1(x), initialized to σ̂0(x) =∞. In every round, we lazily apply the GP-
BUCB rule with this upper bound to identify

xt = argmax
x∈D

[
µfb[t](x) + β

1/2
t σ̂t−1(x)

]
. (17)

We then recompute σ̂t−1(xt) ← σt−1(xt). If xt still lies in the argmax of Equation (17),
we have identified the next action to take, and set σ̂t(x) = σ̂t−1(x) for all x ∈ D. Minoux
(1978) proposed a similar technique, concerning calculating the greedy action for submodu-
lar maximization, which the above technique generalizes to the bandit setting. A similar idea
was also employed by Krause et al. (2008) in the Gaussian process setting for experimen-
tal design. The lazy variance calculation method leads to dramatically improved empirical
computational speed, discussed in Section 7.4. Note also that the quantities needed for a
rank-1 update of the Cholesky decomposition of the observation covariance K(Xt, Xt)+σ2nI
are obtained at no additional cost; in order to select xt, we calculate the posterior standard
deviation σt−1(xt), which requires precisely these values.

Locally stopped algorithms (Section 5.2) may have stopping conditions which require
σt−1(x) for every x ∈ D, which would seem to indicate that the lazy approach is not
applicable. However, they may also benefit from lazy variance calculations. Since the
global conditional information gain bounds the local information gain for all x ∈ D, as in
Inequality (11), we obtain the implication

I(f ;yfb[t]+1:t−1 | y1:fb[t]) ≤ C =⇒ @x ∈ D : I(f(x);yfb[t]+1:t−1 | y1:fb[t]) > C

that is, that until the stopping condition for GP-AUCB is met, the stopping condition for GP-
AUCB Local is also not met, and thus no local calculations need be made. In implementing
GP-AUCB Local, we may run what is effectively lazy GP-AUCB until the global stopping
condition is met, at which time we transition to GP-AUCB Local. For a fixed maximum
batch size Bmax, it is often the case that local variance calculations become only very rarely
necessary after the first few batches.

We have so far in this section concentrated on the case where D is of finite size. It is in
general challenging to optimize the decision rule (a possibly multimodal function) over D if
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D is a continuous set, as in Case 2 of Theorem 2. Many heuristics are reasonable, but any
heuristic which re-uses candidate actions from round to round (e.g., one which considers
repeating past actions xt′ ,∀t′ < t, or employs an expanding, finite discretization of D) could
also be accelerated by this method.

7. Experiments

We compare GP-BUCB with several alternatives: (1) The strictly sequential GP-UCB al-
gorithm (B = 1), which immediately receives feedback from each action without batching
or delay, thus providing the baseline comparison from the pessimistic perspective (see Sec-
tion 3.1); (2) Two versions of a state-of-the-art algorithm for Batch Bayesian optimization
proposed by Azimi et al. (2010), which can use either a UCB or Maximum Expected Im-
provement (MEI) decision rule, herein SM-UCB and SM-MEI respectively. Note that the
algorithm of Azimi et al. (2010) is not applicable to the delay setting and so does not appear
in our delay experiments. Similarly, we compare GP-AUCB against two other adaptive algo-
rithms: (1) HBBO, proposed by Azimi et al. (2012b), which checks an expected prediction
error stopping condition, makes decisions using either an MEI or a UCB decision rule, and
is applicable only to the batch setting; and (2) GP-AUCB Local, a local information gain-
checking adaptive algorithm described in Section 5.2. We also present some experimental
comparisons across these two sets of algorithms.

In Section 7.1, we describe the computational experiments in more detail. We perform
each of these experiments for several data sets. These data sets and the corresponding
experimental results are presented in Section 7.2. We highlight the optimistic perspective
on parallelism and the tradeoffs inherent in adaptive parallelism in Section 7.3. Finally, we
present the results of the computational time comparisons in Section 7.4.

7.1 Experimental Comparisons

We perform a number of different experiments using this set of algorithms: (1) A simple ex-
periment in the batch case, in which the non-adaptive batch length algorithms are compared
against one another, using a single batch length of B = 5 (Figure 2); (2) A correspond-
ing experiment in the delay case using a delay of B = 5 rounds between action and the
corresponding observation, comparing GP-UCB, GP-BUCB, GP-AUCB, and GP-AUCB Local
against one another, where the two adaptive algorithms may balk (Figure 3); (3) An exper-
iment examining how changes in the batch length over the range B = 5, 10, and 20 affect
performance of the non-adaptive algorithms (Figure 4), and a similar experiment where the
adaptive algorithms may terminate batches freely, with the restriction that batches must
contain at least one and at most 5, 10, or 20 actions (Figure 5); (4) A corresponding exper-
iment in the delay setting, examining how fixed delay length values of 5, 10, and 20 rounds
affect algorithm performance, and in which the adaptive algorithms may balk (Figure 6);
(5) An experiment which examines how parallelism and different parameterizations of exe-
cution cost may be traded off (Figure 7); and (6) an experiment comparing execution time
for various algorithms in the batch case, comparing basic and lazy versions (see Section 6)
of the algorithms presented (Figure 8). In the interest of space, some plots are reserved
to Online Appendix 2. We also present the results of the experiments in tabular form in
Online Appendix 3. The algorithms do not receive an initialization set of observations in
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any of the experiments. All experiments were performed in MATLAB using custom code,
which we make publicly available.4

Comparisons of reward and regret among the algorithms discussed above are presented in
terms of their cumulative regret, as well as their simple regret (the function’s maximum value
minus the best reward obtained). Execution time comparisons are performed using wall-
clock time elapsed since the beginning of the experiment, recorded at ends of algorithmic
time steps. All experiments were repeated for 200 trials, with pseudo-independent tie-
breaking and observation noise for each trial. Additionally, in those experimental cases
where the reward function was a draw from a GP (the SE and Matérn problems), each trial
used a pseudo-independent draw from the same GP.

In the theoretical analysis in Section 4, the crucial elements in proving the regret bounds
of GP-BUCB and GP-AUCB are C, the bound on the information which can be hallucinated
within a batch and βt, the exploration-exploitation tradeoff parameter, which is set with ref-
erence to C to ensure confidence interval containment of the reward function. For practical
purposes, it is often necessary to define βt and the corresponding parameter of GP-UCB, αt,
in a fashion which makes the algorithm considerably more aggressive than the regret bound
requires. This aggressiveness is particularly important in cases where each observation is
very expensive. Setting αt or βt in this fashion removes the high-probability guarantees in
the regret bound, but often produces excellent empirical performance. On the other hand,
leaving the values for αt and βt as would be indicated by the theory results in heavily
exploratory behavior and very little exploitation. In this paper, in all algorithms which
use the UCB or BUCB decision rules, the value of αt has been set such that it has a small
premultiplier (0.05 or 0.1, see Table 2), yielding substantially smaller values for αt. Further,
despite the rigors of analysis explored above in Section 4, we choose to set βt = αfb[t]+1 for
the batch and delay algorithms, without reference to the value of C or the batch length B.
Taking either of these measures removes the guarantees of correctness as carefully crafted
in Section 4. However, as verified by the experiments comparing batch sizes, this is often
not a substantial detriment to performance, even for large batch sizes; the batch algorithms
generally remain quite competitive with the sequential GP-UCB algorithm. This approach
is additionally supported by interactions between local information gain and batch size
constraints seen in practice with GP-AUCB Local. One experimental advantage of this ap-
proach is that (with some limitations necessitated by the adaptive algorithms) the various
algorithms using a UCB decision rule are using the same exploration-exploitation trade-
off parameter at the same iteration, including GP-UCB, GP-BUCB, GP-AUCB, and even
SM-UCB and HBBO when using the UCB decision rule. This choice enables us to remove
a confounding factor in comparing how well the algorithms overcome the disadvantages
inherent in the batch and delay settings.

In the adaptive algorithms (GP-AUCB and GP-AUCB Local), C still establishes the
stopping condition, even though it is not used in setting βt. For GP-AUCB, we specify a
minimum batch size or acceptable number of queued observations Bmin and use uncertainty
sampling to calculate a constant-ratio upper bound on γBmin , as discussed in Section 4.4.
Since the ratio e/(e− 1) in this bound is > 1, we also use a linear upper bound γ1Bmin and
set C to the smaller of the two bounds. This choice ensures that the algorithm will always be

4. See www.its.caltech.edu/~tadesaut/.
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(a) Matérn: AR
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(d) Matérn: MR
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(e) SE: MR
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(f) Rosenbrock: MR
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(i) SCI: AR
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(j) Cosines: MR

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

Time (Actions)

M
in

im
um

 R
eg

re
t

 

 

GP−UCB

GP−BUCB

SM−UCB
SM−MEI

(k) Vaccine: MR
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Figure 2: Time-average (AR) and minimum (MR) regret, simple batch setting, batch size
of 5. GP-UCB is shown in blue, GP-BUCB in green with circular markers, SM-MEI
in black, with triangles, and SM-UCB red, with inverted triangles. When more
than one algorithm name is associated with a single arrow, the vertical order of
the labels indicates the local vertical order of the regret curves.
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Problem Setting Kernel Function Hyperparameters Noise Variance σ2
n

Premultiplier
(on αt, βt)

Matérn covMaterniso l = 0.1, σ2 = 0.5 0.0250 0.1

SE covSEiso l = 0.2, σ2 = 0.5 0.0250 0.1

Rosenbrock RBF l2 = 0.1, σ2 = 1 0.01 0.1

Cosines RBF l2 = 0.03, σ2 = 1 0.01 0.1
Vaccine covLINone t2 = 0.8974 1.1534 0.05

SCI covSEard
l = [0.988, 1.5337, 1.0051, 1.5868],

σ2 = 1.0384
0.0463 0.1

Table 2: Experimental kernel functions and parameters.

able to select at least Bmin actions before receiving feedback. In GP-AUCB Local, it is more
difficult to choose C appropriately, but we set C = maxx∈D 1/2 log(1 + Bminσ

−2
n σ20(x)),

where σ20(x) = k(x,x) is the prior variance at x. This is the maximum information about
any f(x) which would result from noisily observing f(x) Bmin times. Since for both GP-
AUCB and GP-AUCB Local we used Bmin rather than Bmin− 1 to set C, we implement the
stopping condition using a strict inequality for the threshold, requiring that the information
gain be < C rather than ≤ C. In experimental setting (3), we set Bmin = 1, in line with
HBBO, and in experimental settings (2), (4), and (5), we use Bmin = 2.

7.2 Data Sets

We empirically evaluate GP-BUCB and GP-AUCB on several synthetic benchmark problems
as well as two real applications. For each of the experimental data sets used in this paper,
the kernel functions and experimental constants are listed in Table 2. Where applicable,
the covariance function from the GPML toolbox (Ver. 3.1, Rasmussen and Nickisch, 2010)
used is also listed by name. For all experiments, δ = 0.1 (see Theorem 2) for UCB-based
algorithms and tolerance ε = 0.02 for HBBO. Each of the experiments discussed above is
performed for each of the data sets described below and their results are presented, organized
by experimental comparison (e.g., delay, adaptive batch size, etc.), in the accompanying
figures.

7.2.1 Synthetic Benchmark Problems

We first test GP-BUCB and GP-AUCB in conditions where the true prior is known. A set of
100 example functions was drawn from a zero-mean GP with Matérn kernel over the interval
[0, 1]. The kernel, its parameters, and the noise variance are known to each algorithm and
D is the discretization of [0, 1] into 1000 evenly spaced points. These experiments are also
repeated with a Squared-Exponential kernel. Broadly speaking, these two problems are
quite easy; the functions are fairly smooth, and for all algorithms considered, the optimum
was found nearly every time, even for long batch sizes or delay lengths. For long batch
lengths, substantial regret is incurred during the first batch, since no feedback is available;
this is visible in Figures 11(a) and 11(b), in Online Appendix 2. For the batch lengths
studied, the first batch of feedback provides a good localization of the optimum because
the first few observations are highly informative; for this reason, subsequent values of the
minimum regret are typically very small. For the same reason, average regret is largely
driven by the length of the first batch. In the delay length experiments, the relative ease of
the problems also means that the adaptive algorithms were able to use only relatively few
actions and still obtain effective initialization.
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Figure 3: Time-average (AR) and minimum (MR) regret plots, delay setting, with a delay
length of 5 rounds between action and observation. GP-AUCB is shown in cyan
with square markers.

The Rosenbrock and Cosines test functions used by Azimi et al. (2010) are also consid-
ered, using the same Squared-Exponential kernel as employed in their experiments, though
with somewhat different length scales. For both functions, D is a 31x31 grid of evenly-
spaced points on [0, 1]2; D is thus similar in size to its counterpart in the Matérn and
Squared-Exponential experiments. The values of the Rosenbrock test function at these
points are heavily skewed toward the upper end of the reward range, such that the mini-
mum regret is often nearly zero before the first feedback is obtained. In our experiments
on the Rosenbrock function, similar performance was obtained across algorithms at each
batch size in terms of both average and minimum regret. One result of interest is visible in
Figure 6(c), which concerns delay length changes; it is possible to see that GP-AUCB balked
too often in this setting, leading to substantial losses in performance relative to GP-AUCB
Local and GP-BUCB. The Cosines test function also shows broadly similar results across
specific problem instances, with only a small spread in regret among the algorithms tested.
Because the Cosines function is multi-modal, the average regret seems to show two-phase
convergence behavior, in which individual runs may be approaching local optima and sub-
sequently finding the global optimum. The overly frequent balking by GP-AUCB present
in the Rosenbrock test function is also present for longer delays in the Cosines function, as
can be seen in 6(g).

In both delay experiments, this behavior may be explained by how the kernel chosen
interacts with the stopping condition, which requires that the information gain with respect
to the reward function f as a whole be less than a chosen constant C. With a flat prior,
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Figure 4: Time-average (AR) and minimum (MR) regret plots, non-adaptive batch algo-
rithms, batch sizes 5 (solid), 10 (dash-dot), and 20 (dashed).

GP-BUCB, GP-AUCB and GP-AUCB Local all initially behave like uncertainty sampling
(see Sections 4.5 and 5.2). Since uncertainty sampling gains a great deal of information
globally, GP-AUCB thus tends to balk; on the other hand, since uncertainty sampling scatters
queries widely, the information gained with respect to any individual reward f(x) may be
comparatively small, and so GP-AUCB Local balks less or not at all. If the informativeness
of the observations selected is overestimated, perhaps by poor specification of the long-
range covariance properties of the assumed kernel function, this greater degree of balking
by GP-AUCB may result in overall losses in performance.

7.2.2 Automated Vaccine Design

We also test GP-BUCB and GP-AUCB on a database of Widmer et al. (2010), as considered
for experimental design by Krause and Ong (2011). This database describes the bind-
ing affinity of various peptides with a Major Histocompatibility Complex (MHC) Class I
molecule, of importance when designing vaccines to exploit peptide binding properties. Al-
gorithmic parallelization in such broad chemical screens is particularly attractive because
automated, parallel equipment for carrying out these experiments is available. Each of the
peptides which bound with the MHC molecule is described by a set of chemical features in
R45, where each dimension corresponds to a chemical feature of the peptide. The binding
affinity of each peptide, which is treated as the reward or payoff, is described as an off-
set IC50 value. The experiments use an isotropic linear kernel fitted on a different MHC
molecule from the same data set. Since the data describe a phenomenon which has a mea-
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Figure 5: Time-average (AR) and minimum (MR) regret plots, adaptive batch algorithms,
maximum batch sizes 5, 10, and 20. HBBO is shown in black with left pointing
triangle makers when using an MEI decision rule and in red with right pointing
triangle makers when using a UCB decision rule, while GP-AUCB Local is shown
in pink with diamond markers. For the adaptive algorithms, minimum batch size
Bmin was set to 1, as in HBBO. The algorithms tended to run fully sequentially
at the beginning, but quite rapidly switched to maximal parallelism.

surable limit, many members of the data set are optimal; out of 3089 elements of D, 124,
or about 4%, are in the maximizing set. In the simple batch experiments, Figures 2(h) and
2(k), GP-BUCB performs competitively with SM-MEI and SM-UCB, both in terms of aver-
age and minimum regret, and converges to the performance of GP-UCB. In the simple delay
setting, Figures 3(b) and 3(e), both GP-BUCB and GP-AUCB produce superior minimum
regret curves to that of GP-UCB, while performing comparably in terms of long-run aver-
age regret; this indicates that the more thorough initialization of GP-AUCB and GP-BUCB
versus GP-UCB may enable them to avoid early commitment to the wrong local optimum,
thus finding a member of the maximizing set more consistently. This is consistent with
the results of the non-adaptive batch size comparison experiment, Figures 4(b) and 4(e),
which shows that as the batch size B grows, the algorithm must pay more “up front” due
to its more enduring ignorance, but also tends to avoid missing the optimal set entirely.
This same sort of tradeoff of average regret against minimum regret is clearly visible for
the GP-AUCB Local variants in the experiments sweeping maximal batch size for adaptive
algorithms, Figures 5(b) and 5(e).

4082



Parallelizing Exploration-Exploitation in GP Bandit Optimization

7.2.3 Spinal Cord Injury (SCI) Therapy

Lastly, we compare the algorithms on a data set of leg muscle activity triggered by ther-
apeutic spinal electrostimulation in spinal cord injured rats. From the 3-by-9 grid of elec-
trodes on the array, a pair of electrodes is chosen to activate, with the first element of the
pair used as the cathode and the second used as the anode. Electrode configurations are
represented in R4 by the cathode and anode locations on the array. These active array
electrodes create an electric field which may influence both incoming sensory information
in dorsal root processes and the function of interneurons within the spinal cord, but the
precise mechanism of action is poorly understood. Since the goal of this therapy is to
improve the motor control functions of the lower spinal cord, the designated experimen-
tal objective is to choose the stimulus electrodes which maximize the resulting activity in
lower limb muscles, as measured by electromyography (EMG). Batch or delay algorithms
are particularly suited to this experimental setting because the time to process the EMG
information needed to assess experimental stimuli may be quite long as compared to the
time required to actually test a stimulus, and because idle time during the experimental
session should be avoided to the degree possible. We use data with a stimulus amplitude
of 5 V and seek to maximize the peak-to-peak amplitude of the recorded EMG waveforms
from the right medial gastrocnemius muscle in a time window corresponding to a single
interneuronal delay. This objective function attempts to measure the degree to which the
selected stimulus activates interneurons controlling reflex activity in the spinal gray matter.
This response signal is non-negative and for physical reasons does not generally rise above
3 mV. A Squared-Exponential ARD kernel was fitted using experimental data from 12 days
post-injury. Algorithm testing is done using an reward function composed of data from 116
electrode pairs tested on the 14th day post-injury.

Like the Vaccine data set, the SCI data set displays a number of behaviors which indicate
that the problem instance is difficult; in particular, the same tendency that algorithms which
initialize more thoroughly eventually do better in both minimum and average regret was
observed. This tendency is visible in the simple batch setting (Figures 2(i) and 2(l)), where
GP-UCB is not clearly superior to either GP-BUCB or GP-AUCB. This is surprising because
the pessimistic perspective on parallelism suggests that being required to work in batches,
rather than one query at a time, might be expected to give the algorithm less information at
any given round, and should thus be a disadvantage. This under-exploration in GP-UCB may
be a result of the exploration-exploitation tradeoff parameter αt being chosen to promote
greater aggressiveness across all algorithms. Interestingly, this data set also displays both a
small gap between the best and second-best values of the reward function (approximately
0.9% of the range) and a large gap between the best and third-best (approximately 7% of
the range). When examining how many out of the individual experimental runs simulated
selected x∗ = argmaxx∈D f(x) on the 200th query in the simple batch case, only 20% of
GP-UCB runs choose x∗; the numbers are considerably better for GP-BUCB, SM-UCB, and
SM-MEI, at 35%, 30.5%, and 36%, but are still not particularly good. If the first sub-
optimal action is also included, these numbers improve substantially, to 63.5% for GP-UCB
and 84%, 91%, and 96.5% for GP-BUCB, SM-UCB, and SM-MEI. These results indicate
that the second-most optimal x is actually easier to find than the most optimal, to a
fairly substantial degree. It is also important to place these results in the context of the
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(c) Rosenbrock: AR
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(g) Cosines: AR
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Figure 6: Time-average (AR) and minimum (MR) regret plots, delay setting, with delay
lengths of 5, 10, and 20 rounds between action and observation. This experiment
examines the degree to which these algorithms are able to cope with long delays
between action and observation. Note that the adaptive algorithms, GP-AUCB
and GP-AUCB Local, may balk at some rounds. The time-average regret is calcu-
lated with respect to the number of actions actually executed as of that round;
this means that the number of queries submitted as of any particular round is
hidden with respect to the plots shown, and may vary across runs of the same
algorithm.
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experimental setting; even assuming that the measured response values are reflective of a
difference in spinal excitability between these two highest-performing stimuli, it may be
that this very small difference in excitability would not yield any difference in therapeutic
outcome. Since all of GP-BUCB, SM-UCB, and SM-MEI more consistently found one of the
two best actions in the decision set than GP-UCB, all of them show strong performance in
comparison to GP-UCB.

7.3 Parallelism: Costs and Tradeoffs

We have presented several algorithms, but an important question is which should be chosen
to control any particular experimental process. Our motivation in pursuing parallel algo-
rithms is the setting in which there is a cost—not accumulated in the regret—associated
with the experimental process, such that each round or opportunity to submit a query is
expensive, but the additional marginal cost of taking an action at that round is not very
large. It is interesting to consider more precisely what we mean by “expensive” or “not very
large,” and also what effect varying these costs with respect to one another might have on
which algorithm or level of parallelism is appropriate. In particular, one would expect a low
level of parallelism to be beneficial if per-action costs are much higher than per-opportunity
(i.e., when speed is less important than economy), while a high level of parallelism would
be beneficial if the opposite is true, with intermediate levels of parallelism being superior
in the middle. This intuition can be tested by measuring the costs and regret incurred by
several algorithms solving the same problem. It is necessary to have a measure by which the
performance of different algorithms can be compared, given a particular parameterization
of costs. Here, we use an experiment in the delay setting, where the algorithm chooses to
either take an action or balk at each round, and employ the average total cost up to the
round in which a given average regret is first obtained.

Given N sample runs, a successful algorithm should have a (nearly) monotonically
decreasing average regret curve, defined as r̄(T ) = 1/N

∑N
n=1RT,n/T , where RT,n is the

cumulative regret of run n after T rounds; these regret curves are the same ones presented in
previous experiments. After averaging over many runs, this curve can be inverted to find the
first round τ(r̄) in which the sample average regret is at or below a particular r̄. The average
cost of running the algorithm until round τ(r̄) can then be computed. The cost of run n
is the sum of two contributions, the first for running τ(r̄) rounds of the algorithm and the
second for the actual execution of an(τ(r̄)) actions, where the number of actions executed
varies depending on the data acquired. Parameterizing the relative costs of each round and
each action using w, the average cost C(r̄, w) = (1− w)τ(r̄) + w · ā(τ(r̄)) corresponding to
a particular average regret value r̄ can be obtained, where ā(τ(r̄)) = 1/N

∑N
n=1 an(τ(r̄)).

Note that w ∈ [0, 1] translates to any constant, non-negative ratio of the cost of a single
action to that of a single round. This procedure is not equivalent to fixing a value of r̄,
running each sample run of the algorithm until Rt,n/t ≤ r̄ and averaging over the costs
incurred in so doing; in particular, if an algorithm has a non-zero probability of failing
to ever obtain r̄, individual sample runs may not terminate, making sensible comparison
impossible. The calculation of C(r̄, w) as proposed here is robust to this case, giving an
estimate of the expected cost to run the algorithm until a round in which the expected
cumulative average regret is ≤ r̄.
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Figure 7: Parameterized cost comparison on the SCI data set, simple delay case, B = 5.
The same experiment is also presented in Figure 3(c), but in that figure, we
take the pessimistic perspective and compare GP-BUCB and GP-AUCB with GP-
UCB, where GP-UCB receives feedback every round. Here, we take the optimistic
perspective, which treats parallelism as a potential advantage, and impose the
same delay on all algorithms. Figure 7(a): the space of cost-tradeoff parameter
w and attained average regrets r̄ is colored according to which algorithm has the
lowest mean cost at the round in which the mean, time-average regret is first
≤ r̄. Figures 7(b), (c), and (d) show r̄ as a function of C and correspond to
vertical slices through Figure 7(a) at the left, center, and right. Since GP-AUCB
and GP-UCB pass on some rounds, the terminal cost of GP-AUCB and GP-UCB
is possibly < 300.

Among a set of algorithms, and given a test problem, one can find which among them
has the lowest value of C(r̄, w) at any particular point in the r̄, w space. Similarly, for
any fixed value of w, it is possible to once more invert the function and plot r̄w(C); this
plot resembles conventional average regret plots, and corresponds to intersections of each
algorithm’s C(r̄, w) surface with the plane at a fixed w.
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We compare GP-BUCB, GP-AUCB, and GP-UCB in the SCI therapy setting, with a
simple delay (B = 5). In this setting, GP-BUCB selects an action every round (filling its
queue of pending experiments to 5, and then keeping it full) and GP-AUCB may balk, but
will tend to fill its queue fully by the end of the experiment. Note that here, we employ
GP-UCB under the same feedback mapping as the other algorithms, rather than its use as a
benchmark in all of our previous experiments; it thus only submits an action when its queue
of pending observations is empty, i.e., every fifth round. The results of this experiment are
shown in Figure 7. In this scenario, GP-AUCB costs the least through most of the parameter
space, due to its tendency to pass in early rounds, when the potential for exploitation is
lowest. In line with the intuition described at the beginning of this section, the advantage
changes to the fully sequential algorithm when w is large (i.e., parallelism is expensive),
and to GP-BUCB when w is small. Many real-world situations lie somewhere between these
extremes, suggesting that GP-AUCB may be useful in a variety of scenarios.

7.4 Computational Performance

We also examined the degree to which lazy variance calculations, as described in Section 6,
reduce the computational overhead of each of the algorithms discussed. These results are
presented in Figure 8. Note that for algorithms which appear as both lazy and non-lazy
versions, the only functional difference between the two is the procedure by which the action
is selected, not the action selection itself; all computational gains are without sacrificing
accuracy and without requiring any algorithmic approximations. All computational time
experiments were performed on a desktop computer (quad-core Intel i7, 2.8 GHz, 8 GB
RAM, Ubuntu 10.04) running a single MATLAB R2012a process.

For all data sets, the algorithms lie in three broad classes: Class 1, comprised of the
lazy GP-UCB family of algorithms; Class 2, the non-lazy versions of the GP-UCB family of
algorithms, as well as the HBBO UCB and MEI variants; and Class 3, consisting of the
SM-MEI and SM-UCB algorithms, in both lazy and non-lazy versions. Class 1 algorithms
run to completion about one order of magnitude faster than those in Class 2, which in turn
are about one order of magnitude faster than those in Class 3. The various versions of
the simulation matching algorithm of Azimi et al. (2010) require multiple samples from the
posterior over f to aggregate together into a batch, the composition of which is intended
to match or cover the performance of the corresponding sequential UCB or MEI algorithm.
The time difference between Class 2 and Class 3, approximately one order of magnitude,
reflects the choice to run 10 such samples. Within Class 3, our implementation of the
lazy version of SM-MEI is slower than the non-lazy version, largely due to the increased
overhead of sorting the decision rule and computing single values of the variance; a more
efficient implementation of either or both of these elements could perhaps improve on this
tradeoff. The lazy algorithms also tend to expend a large amount of computational time
early, computing upper bounds on later uncertainties, but tend to make up for this early
investment later; this is even visible with regard to the lazy version of SM-UCB, which is
initially slower than the non-lazy version, but scales better and, in all six data sets examined,
ends up costing substantially less computational time by the 200th query.
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Figure 8: Elapsed computational time in batch experiments, B = 5. Lazy versions of al-
gorithms (except GP-UCB) are shown will filled markers. Note the logarithmic
vertical scaling in all plots. Note also the substantial separation between the
three groups of algorithms, discussed in Section 7.4.

8. Conclusions

We develop the GP-BUCB and GP-AUCB algorithms for parallelizing exploration-exploitation
tradeoffs in Gaussian process bandit optimization. We present a unified theoretical analysis,
hinging on a natural notion of conditional mutual information accumulated while making
selections without observing feedback. Our analysis allows us to bound the regret of GP-
BUCB and GP-AUCB, as well as similar GP-UCB-type algorithms. In particular, Theorem 2
provides high-probability bounds on the cumulative regret of algorithms in this class, ap-
plicable to both the batch and delay setting. These bounds also imply bounds on the
convergence rate of such algorithms. Further, we prove Theorem 5, which establishes a
regret bound for a variant GP-BUCB using uncertainty sampling as initialization. Crucially,
this bound scales independently of the batch size or delay length B, if B is constant or
polylogarithmic in T . Finally, we introduce lazy variance calculations, which dramatically
accelerate computational performance of GP-based active learning decision rules.

Across the experimental settings examined, GP-BUCB and GP-AUCB performed compa-
rably with state-of-the-art parallel and adaptive parallel Bayesian optimization algorithms,
which are not equipped with theoretical bounds on regret. GP-BUCB and GP-AUCB also
perform comparably to the sequential GP-UCB algorithm, indicating that GP-BUCB and
GP-AUCB successfully overcome the disadvantages of only receiving delayed or batched
feedback. As the family of algorithms we describe offers a spectrum of parallelism, we also
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examine a parameterization of cost to achieve a given level of regret. In this comparison,
GP-AUCB appears to offer substantial advantages over the fully parallel or fully sequential
approaches. We believe that our results provide an important step towards solving complex,
large-scale exploration-exploitation tradeoffs.
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Appendix A. Proof of Theorem 2

In order to prove Theorem 2, this appendix first establishes a series of supporting lemmas.
For clarity of development, we present the proof of the first case in detail, followed by the
required lemmas and modifications required to prove the second and third cases. Since our
three cases are those treated by Srinivas et al. (2012) for the GP-UCB algorithm, our proofs
use Proposition 1 to generalize their theoretical analysis to the batch and delay cases. In
the following, µt−1(x) and σt−1(x) are found via Equations (1) and (2), which assume i.i.d.
Gaussian noise of variance σ2n, even in Case 3, where the actual noise is non-Gaussian.

A.1 Case 1: Finite D

In all three cases, the first component of the proof is the establishment of confidence intervals
which contain the payoff function f with high-probability. In Case 1, this is done by using
a result established by Srinivas et al. (2012), presented here as Lemma 7.

Lemma 7 (Lemma 5.1 of Srinivas et al., 2012) Specify δ ∈ (0, 1) and set αt = 2 log(|D|πt/δ),
where

∑∞
t=1 π

−1
t = 1, πt > 0. Let x1,x2, · · · ∈ D be an arbitrary sequence of actions. Then,

P (|f(x)− µt−1(x)| ≤ α1/2
t σt−1(x), ∀x ∈ D,∀t ≥ 1) ≥ 1− δ.

Proof For a ∼ N (0, 1), P (a > c) ≤ 1/2 exp(−c2/2). Conditioned on actions {x1, . . . ,xt−1}
and corresponding observations {y1, . . . , yt−1}, f(x) ∼ N (µt−1(x), σ2t−1(x)); for any αt > 0,

P

(
f(x)− µt−1(x)

σt−1(x)
> α

1/2
t

)
= P

(
f(x)− µt−1(x)

σt−1(x)
< −α1/2

t

)
≤ 1

2
exp(−αt/2).

Note that these two events are the two ways the confidence interval on f(x) could fail

to hold, i.e., that f(x) /∈ [µt−1(x) − α1/2
t σt−1(x), µt−1(x) + α

1/2
t σt−1(x)]. Union bound-

ing these confidence interval failure probabilities over D, P (∃x ∈ D : f(x) /∈ [µt−1(x) −
α
1/2
t σt−1(x), µt−1(x)+α

1/2
t σt−1(x)]) ≤ |D| exp(−αt/2). Let δ/πt = |D| exp(−αt/2), implic-

itly defining αt as specified. Union bounding in time and taking the complement yields

P (|f(x)− µt−1(x)| ≤ α1/2
t σt−1(x), ∀x ∈ D,∀t ∈ {1, . . . , T}) ≥ 1− δ

T∑
t=1

π−1t .
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If πt > 0 is chosen such that
∑∞

t=1 π
−1
t ≤ 1, the result follows.

This series convergence condition on πt corresponds to a requirement that αt grow
sufficiently fast as to make confidence interval failures vanishingly unlikely as t → ∞.
Lemma 7 also implies that for S, a subset of the positive integers, P (|f(x) − µt−1(x)| ≤
α
1/2
t σt−1(x), ∀x ∈ D,∀t ∈ S) ≥ 1− δ, since πt > 0 =⇒

∑
t∈S π

−1
t ≤ 1.

Next, we must establish a link between confidence intervals which use a fully updated
posterior and for which we have high probability guarantees of correctness (e.g., those in
in Lemma 7), and the confidence intervals used in Equation (7), which use a hallucinated
posterior. Lemma 8 shows that a bound on the local information hallucinated during the
batch implies such a link between batch and sequential confidence intervals.

Lemma 8 Suppose that at round t, there exists C > 0 such that

I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ C, ∀x ∈ D. (18)

Choose

βt = exp(2C)αfb[t]+1, (19)

where Equation (6) relates sequential confidence intervals Cseq
fb[t]+1(x) with the parameter

αfb[t]+1 and Equation (8) relates batch confidence intervals Cbatch
t (x) with the parameter βt.

If f(x) ∈ Cseq
fb[t]+1(x), for all x ∈ D, then f(x) ∈ Cbatch

t′ (x) for all x ∈ D and all t′ such

that fb[t] + 1 ≤ t′ ≤ t.

Proof Noting that the confidence intervals Cseq
fb[t]+1(x) and Cbatch

t (x) are both centered on

µfb[t](x),

Cseq
fb[t]+1(x) ⊆ Cbatch

t (x), ∀x ∈ D ⇐⇒ α
1/2
fb[t]+1σfb[t](x) ≤ β1/2t σt−1(x), ∀x ∈ D.

By the definition of the conditional mutual information with respect to f(x), and by em-
ploying Equation (18), Equation (9) follows. Choosing βt as in Equation (19), it follows
that

α
1/2
fb[t]+1σfb[t](x) = β

1/2
t exp (−C) · σfb[t](x) ≤ β1/2t σt−1(x),

where the inequality is based on Equation (9), thus implying Cseq
fb[t]+1(x) ⊆ Cbatch

t (x)∀x ∈ D.

In turn, if f(x) ∈ Cseq
fb[t]+1(x), then f(x) ∈ Cbatch

t (x). Further, since Equation (19) relates

βt to αfb[t]+1, then βt′ = βt for all t′ ∈ {fb[t] + 1, . . . , t}. Since σt′(x) is non-increasing,

Cbatch
t′ (x) ⊇ Cbatch

t (x) for all such t′, completing the proof.

With a bound C on the conditional mutual information gain with respect to f(x) for
any x ∈ D, as in Equation (18), Lemma 8 links the confidence intervals and GP-BUCB
decision rule at time t with the GP posterior after observation fb[t]. Lemma 9 extends this
link to all t ≥ 1 and all x ∈ D, given a high-probability guarantee of confidence interval
correctness at the beginning of all batches.
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Lemma 9 Let there exist a constant C > 0, a sequence of actions {x1, . . . , xt−1}, and a
feedback mapping fb[t] such that for all x ∈ D

I(f(x);yfb[t]+1:t−1 | y1:fb[t]) ≤ C, ∀t ≥ 1.

Let βt = exp(2C)αfb[t]+1, ∀t ≥ 1; then

P (f(x) ∈ Cseq
fb[t]+1(x), ∀x ∈ D, ∀t ≥ 1) ≥ 1− δ

=⇒ P (f(x) ∈ Cbatch
t (x), ∀x ∈ D, ∀t ≥ 1) ≥ 1− δ.

Proof For every t ≥ 1, there exists a τ ≥ 0 such that τ = fb[t]; let S = {τ1, τ2, . . . } be the
set of all such images under fb, such that fb[t] ∈ S for all t ≥ 1. If βt is chosen as specified,
then for any t and τ = fb[t], if f(x) ∈ Cseq

τ+1(x), Lemma 8 implies that f(x) ∈ Cbatch
t (x). If

f(x) ∈ Cseq
τ+1(x) for all x ∈ D and τ ∈ S, then f(x) ∈ Cbatch

t (x) for all x ∈ D and all t ≥ 1
because every t has an image in S. Thus f(x) ∈ Cseq

τ+1(x), ∀x ∈ D,∀τ ∈ S =⇒ f(x) ∈
Cbatch
t (x),∀x ∈ D,∀t ≥ 1. The lemma follows because if the probability of the sufficient

condition is at least 1 − δ, then the probability of the implied condition must also be at
least 1− δ.

The high-probability confidence intervals are next related to the instantaneous regret
and thence to the cumulative regret. We first state several supporting lemmas.

Lemma 10 (From Lemma 5.2 of Srinivas et al., 2012) If f(x) ∈ Cbatch
t (x) for all x ∈ D

and all t ≥ 1, when actions are selected via Equation (7), rt ≤ 2β
1/2
t σt−1(xt), ∀t ≥ 1.

Proof By Equation (7), xt is chosen at each time t such that µfb[t](x) + β
1/2
t σt−1(x) ≤

µfb[t](xt) + β
1/2
t σt−1(xt), ∀x ∈ D, including for any optimal choice x = x∗. Since the

instantaneous regret is defined as rt = f(x∗) − f(xt) and by assumption both f(x∗) and
f(xt) are contained within their respective confidence intervals,

rt ≤ [µfb[t](x
∗) + β

1/2
t σt−1(x

∗)]− [µfb[t](xt)− β
1/2
t σt−1(xt)]

≤ [µfb[t](xt) + β
1/2
t σt−1(xt)]− [µfb[t](xt)− β

1/2
t σt−1(xt)]

≤ 2β
1/2
t σt−1(xt).

Lemma 11 (Lemma 5.3 of Srinivas et al., 2012) The mutual information gain with respect
to f for the actions selected, {x1, . . . ,xT }, can be expressed in terms of the predictive
variances as

I(f ;y1:T ) =
1

2

T∑
t=1

log(1 + σ−2n σ2t−1(xt)).

This statement is a result of the additivity of the conditional mutual information gain of
observations of a Gaussian.

4091



Desautels, Krause, and Burdick

Lemma 12 (Extension of Lemma 5.4 of Srinivas et al., 2012) Let k(x,x) ≤ 1, ∀x ∈ D. If
f(x) ∈ Cbatch

t (x), ∀x ∈ D, ∀t ≥ 1, and given that actions xt, ∀t ∈ {1, . . . , T} are selected
using Equation (7), it holds that

RT ≤
√
TC1βTγT ,

where C1 = 8/ log(1 + σ−2n ), γT is defined in Equation (4), and βt is defined in Equation
(19).

Proof Given f(x) ∈ Cbatch
t (x), ∀x ∈ D, ∀t ≥ 1, Lemma 10 bounds the instantaneous

regret rt as rt ≤ 2β
1/2
t σt−1(xt), ∀t ≥ 1. The square of the right-hand quantity may be

manipulated algebraically to show that 4βtσ
2
t−1(xt) ≤ C1βt[1/2 log(1 + σ−2n σ2t−1(xt))]. This

manipulation exploits the facts that σ2t−1(x) ≤ k(x,x) ≤ 1,∀x ∈ D and that x/ log(1 + x)
is non-decreasing for x ∈ [0,∞). Summing in time and noting that βt is non-decreasing,∑T

t=1 4βtσ
2
t−1(xt) ≤ C1βT

∑T
t=1 1/2 log(1 + σ−2n σ2t−1(xt)) = C1βT I(f ;y1:T ) by Lemma 11.

Thus, by Equation (4),
∑T

t=1 r
2
t ≤ C1βTγT . The claim then follows as a consequence of the

Cauchy-Schwarz inequality, since R2
T ≤ T

∑T
t=1 r

2
t .

Proof [Proof of Theorem 2, Case 1] Taken together, Lemmas 8 through 12, a bound C
satisfying Equation (18), and a high-probability guarantee that some set of sequential con-
fidence intervals always contain the values of f allow us to construct a batch algorithm with
high-probability regret bounds. Lemma 7 gives us precisely such a guarantee in the case
that D is of finite size. Employing Lemma 7 and Lemma 12, and noting that the result
holds for all T ≥ 1, Case 1 of Theorem 2 follows as an immediate corollary.

A.2 Case 2: D ⊂ Rd

Case 2 of Theorem 2 deals with decision sets which are continuous regions of Rd. As a
note, we assume that it is possible to select xt ∈ D according to Equation (7), i.e., as the
maximizer of the decision rule over D. This assumption is non-trivial in practice; this is
a non-convex optimization problem in general, though of a function which is perhaps not
too ill-behaved, e.g., it is differentiable under the assumptions of Case 2. Nevertheless, we
make this assumption and proceed with our analysis.

In the proof of Lemma 7, P (∃x ∈ D : |f(x)− µt−1(x)| > β1t /2σt−1(x)) is bounded via
a union bound over D as at most |D| exp(−αt/2). Unfortunately, since this bound scales
directly with the number of elements in D, this is not useful when D is continuous. We
instead use a very similar analysis to establish high-probability confidence intervals on a
subset Dt of D; using a high-probability bound on the derivatives of the sample paths drawn
from the GP, we then proceed to upper-bound f(x) for x ∈ D \Dt. Next, we establish a
high-probability guarantee for the containment of the reward corresponding to the actions
actually taken within their respective confidence bounds at any time, and combine these
results to bound the regret rt suffered in round t. With some slight modifications and
careful choices of the scaling of Dt and βt, the remainder of the analysis from Case 1 can
be employed to establish the required bound on RT for all T ≥ 1.
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Lemma 13 (From Lemma 5.6 of Srinivas et al., 2012) Specify a discrete set Dt ⊂ D
for every t ≥ 1, where D ⊆ [0, l]d and |Dt| is finite. Also specify δ ∈ (0, 1) and let βt =
2 exp(2C) log(|Dt|πt/δ), where πt > 0,∀t ≥ 1,

∑∞
t=1 π

−1
t = 1, and I(f(x);yfb[t]+1:t−1|y1:t) ≤

C,∀x ∈ D,∀t ≥ 1. Then,

P (|f(x)− µfb[t](x)| ≤ β1/2t σt−1(x),∀x ∈ Dt,∀t ≥ 1) ≥ 1− δ.

Proof The proof of this lemma is very similar to that of Lemma 7. First, conditioned on ac-
tions {x1,x2, . . . ,xfb[t]} and observations {y1, y2, . . . , yfb[t]}, f(x) ∼ N (µfb[t](x), σ2fb[t](x));

thus, (f(x) − µfb[t](x))/σfb[t](x) ∼ N (0, 1). If a ∼ N (0, 1), c ≥ 0, then P (a > c) ≤
1/2 exp(−c2/2). Using this inequality and a union bound over all x ∈ Dt, we obtain
the following result for general βt > 0:

P

( |f(x)− µfb[t](x)|
σfb[t](x)

≤ β1/2t

σt−1(x)

σfb[t]
,∀x ∈ Dt

)
≥ 1− |Dt| exp

(
−βt

2

σ2t−1(x)

σ2fb[t]

)
≥ 1− |Dt| exp(−βt exp(−2C)/2).

Analogous to the proof of Lemma 7, let δ/πt = |Dt| exp(−βt exp(−2C)/2), implicitly defin-
ing βt, and union bound in time, yielding the desired result.

Note that if at each time t ≥ 1 we specify a particular zt ∈ D and choose Dt = zt,

Lemma 13 implies that P (|f(zt) − µfb[t](zt)| ≤ β̃
1/2
t σt−1(zt), ∀t ≥ 1) ≥ 1 − δ, where β̃t ≥

2 exp(2C) log(πt/δ). This fact will be employed for zt = xt below.
Next, we upper bound the value of f(x∗), where x∗ is possibly within D \ Dt. Let

[x]t = argminx′∈Dt ||x− x′||1, i.e., the closest point in Dt to x, in the sense of 1-norm. As
a technical point, [x]t may not be uniquely determined; any 1-norm minimizing element of
Dt is sufficient for the following discussion.

Lemma 14 (From Lemma 5.7 of Srinivas et al., 2012) Specify δ ∈ (0, 1) and let τt be a
time-varying parameter. Let Dt ⊂ D be chosen such that ||x− [x]t||1 ≤ ld/τt,∀x ∈ D,∀t ≥
1. Let the statement

P (sup
x∈D
|∂f(x)/∂xi| < L,∀i ∈ {1, . . . , d}) ≥ 1− da exp(−L2/b2)

hold for any L > 0 for some corresponding a ≥ δ/(2d), b > 0, where xi denotes the ith
dimension of x. Choose L = b

√
log(2da/δ), τt = dt2bl

√
log(2da/δ), and βt ≥ 2 exp(2C) ·

log(2|Dt|πt/δ), where πt > 0,∀t ≥ 1,
∑∞

t=1 π
−1
t = 1, and I(f(x);yfb[t]+1:t−1|y1:t) ≤ C,∀x ∈

D,∀t ≥ 1. Then,

P

(
|f(x∗)− µfb[t]([x∗]t)| < β

1/2
t σt−1([x

∗]t) +
1

t2
, ∀t ≥ 1

)
≥ 1− δ

Proof For the specified choice of L, we obtain P (|∂f(x)/∂xi| < b
√

log(2da/δ),∀x ∈
D,∀i ∈ {1, . . . , d}) ≥ 1− δ/2. Thus, with probability ≥ 1− δ/2,

|f(x∗)− f([x∗]t)| ≤ b
√

log(2da/δ) · ||x∗ − [x∗]t||1
≤ b
√

log(2da/δ) · ld/τt

≤ 1

t2
.
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By Lemma 13, for βt as chosen above, |f([x∗]t)−µfb[t]([x∗]t)| ≤ β
1/2
t σt−1([x

∗]t), ∀t ≥ 1 with
probability ≥ 1 − δ/2. The result follows by a union bound on the possible failures these
two events.

Note that Lemma 14 states that if we know the size of a suitable discretization Dt of D, we
may choose βt such that we may establish a high probability upper bound on f over all of
D. Note also that a larger βt is acceptable and that Dt itself is not required to prove the
result. Our next result proves the existence and size of a sufficient discretization of D; we
will then choose βt according to this provably existent discretization and entirely avoid its
explicit construction.

In the following lemma, dτte denotes the smallest integer which is at least τt.

Lemma 15 There exists a discretization Dt of D ⊆ [0, l]d, D compact and convex, where
|Dt| ≤ dτted and ||x− [x]t||1 ≤ ld

τt
, ∀x ∈ D.

Proof It is sufficient to construct an example discretization. One way to do so is to first
generate an ε-cover of [0, l]d ⊇ D, where ε = ld/2τt; this can be done by placing a ball

centered at each location in { l
2dτte ,

3l
2dτte , . . . ,

(2dτte−1)l
2dτte }

d, such that each point in [0, l]d (and

thus D) is at most ld/2dτte ≤ ld/2τt from the nearest point in this set (i.e., is within at
least one of the closed balls) and every ball center lies within [0, l]d. Denote this set of ball
centers A and note that |A| = dτted. For each x ∈ A, denote the corresponding 1-norm
ball of radius ld/2τt as B1

ld/2τt
(x). We now use A to construct Dt, such Dt is an ε-cover

for D, for ε = ld/τt. Begin with Dt empty and iterate over x ∈ A. If x ∈ D, add it to
Dt. If x /∈ D, but B1

ld/2τt
(x) ∩D 6= ∅, add any point in this intersection to Dt. If x /∈ D

and B1
ld/2τt

(x) ∩ D = ∅, do not add x to Dt. By construction, x ∈ Dt =⇒ x ∈ D.

Since the triangle inequality implies B1
ld/2τt

(x) ⊂ B1
ld/τt

(x′), ∀x′ ∈ B1
ld/2τt

(x), we have the

result that
⋃

x′∈Dt B
1
ld/τt

(x′) ⊇
⋃

x:x∈A, B1
ld/2τt

(x)∩D 6=∅B
1
ld/2τt

(x), where this second union

is by definition a cover for D. Dt is thus an ε-cover for D for ε = ld/τt and therefore a
satisfactory discretization of size no more than dτted.

Lemma 14 also rests on a bound on the derivatives of f(x) with respect to xi, ∀i =
1, . . . , d. Such a bound can be created if the kernel function k(x,x′) defining the distribution
over f is sufficiently many times differentiable with respect to x and x′.

Lemma 16 (From Srinivas et al., 2012, Appendix I) If f ∼ GP(0, k(x,x′)) and derivatives
of k(x,x′) exist up to fourth order with respect to x,x′ ∈ D, then f is almost surely
continuously differentiable and there exist positive constants a, b, and L, such that

P (|f(x)− f(x′)| ≤ L||x− x′||1, ∀x,x′ ∈ D) ≥ 1− δ,

where L = b
√

log(da/δ).

Proof If all fourth order partial derivatives of k(x,x′) exist, the derivatives of f are them-
selves Gaussian processes with a kernel function corresponding to the twice differentiated
k and there exist positive constants a, {b1, . . . , bd} such that P (supx∈D |∂f/∂xj | > L1) ≤
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a exp(−bjL2
1),∀j ∈ {1, . . . , d}, for any L1 > 0 (Theorem 5 of Ghosal and Roy, 2006). Let

L1 =
√

log(da/δ)/(minj
√
bj). Note that a can be chosen arbitrarily large and a ≥ δ/d

(required so the argument of the logarithm is ≥ 1) implies (da/δ)(−bj/(minj bj)) ≤ δ/da;
union bounding in j, we thus obtain that P (supx∈D |∂f/∂xj | > L1, ∀j ∈ {1, . . . , d}) ≤ δ.

Reparameterizing, choose b ≥ maxj b
−1/2
j > 0, and define L = b

√
log(da/δ). Using this

bound on the supremum of the derivatives of f , and a piecewise construction of the path
from x to x′ according to the unit vectors, the result follows.

In the proof of Lemma 15, we bound the size of the virtual decision set Dt as dτted. We
can instead use τdt if τt is an integer. Luckily, we can always make a and b bigger, e.g., such
that bl

√
log(da/δ) is an integer. If this quantity is an integer, so is τt = dt2bl

√
log(da/δ).

Next, we bound the regret rt incurred at round t.

Lemma 17 (From Lemma 5.8 of Srinivas et al., 2012) Specify δ ∈ (0, 1). Let the statement

P (sup
x∈D
|∂f(x)/∂xi| < L,∀i ∈ {1, . . . , d}) ≥ 1− da exp(−L2/b2)

hold for any L > 0 and positive constants a, b. Choose a, b such that a ≥ δ/(4d) and
bl
√

log(4da/δ) is an integer. Let actions be selected using Equation (7), where

βt = 2 exp(2C)[log(4πt/δ) + d log(dt2bl
√

log(4da/δ))],

πt > 0,∀t ≥ 1,
∑∞

t=1 π
−1
t = 1, and I(f(x);yfb[t]+1:t−1|y1:t) ≤ C,∀x ∈ D,∀t ≥ 1. Then,

P (rt ≤ β1/2t σt−1(x) + t−2, ∀t ≥ 1) ≥ 1− δ.

Proof By Lemma 15, for any round t, we may construct a discretization Dt of size no more
than dτted, such that ||x− [x]t||1 ≤ ld/τt, where τt = dt2bl

√
log(4da/δ) and τt is an integer.

Choosing βt as specified and implicitly constructing such a Dt, by Lemma 14, it follows that

P (|f(x∗) − µ([x∗]fb[t])| < β
1/2
t σt−1([x

∗]t) + t−2) ≥ 1 − δ/2. Applying Lemma 13 to every

xt, t ≥ 1, for any β̃t ≥ 2 exp(2C) log(2πt/δ), P (|f(xt)− µfb[t](xt)| ≤ β̃
1/2
t σt−1(xt)∀t ≥ 1) ≥

1− δ/2. As specified, βt ≥ 2 exp(2C) log(2πt/δ), and so f(xt) is bounded with probability

≥ 1−δ/2. By Equation (7), µfb[t](xt)+β
1/2
t σt−1(xt) ≥ µfb[t](x)+β

1/2
t σt−1(x),∀x ∈ D,∀t ≥

1, and so,

rt = f(x∗)− f(xt)

≤ [µfb[t]([x
∗]t) + β

1/2
t σt−1([x

∗]t) + t−2]− [µfb[t](xt)− β
1/2
t σt−1(xt)]

≤ [µfb[t](xt) + β
1/2
t σt−1(xt) + t−2]− [µfb[t](xt)− β

1/2
t σt−1(xt)]

= 2β
1/2
t σt−1(xt) + t−2,

with probability ≥ 1− δ.

Proof [Proof of Theorem 2, Case 2] By Lemma 17, for βt = 2 exp(2C)[log(4πt/δ) +

d log(dt2bl
√

log(4da/δ))], it follows that rt ≤ 2β
1/2
t σt−1(xt) + t−2,∀t ≥ 1, with probability
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≥ 1− δ. Consequently,

RT =
T∑
t=1

rt ≤
T∑
t=1

2β
1/2
t σt−1(xt) +

T∑
t=1

t−2

≤
√
TC1βTγT + π2/6,

for all T ≥ 1, with probability ≥ 1−δ, where C1 = 8/ log(1+σ−2n ) and the second inequality
follows via the argument advanced in the proof of Lemma 12 in Case 1; this argument uses
the information gain and Lemma 11 to bound the sum of the squares of the terms, and then
the Cauchy-Schwarz inequality to bound the original sum. Theorem 2, Case 2 follows.

A natural extension is to the case where the GP prior mean is non-zero, but is known
and Lipschitz-continuous. This is straight-forward, since bounds on supx∈D |∂f(x)/∂xi| or
the generalization error in the prior mean may be naturally obtained.

A.3 Case 3: Finite RKHS Norm of f

Case 3 involves a reward function f with a finite RKHS norm with respect to the algorithm’s
GP prior. Fortunately, Srinivas et al. (2012) again have a result which creates confidence
intervals in this situation.

Lemma 18 (Theorem 6 from Srinivas et al., 2012) Specify δ ∈ (0, 1). Let k(x,x′) be an
assumed Gaussian process kernel and let ||f ||k be the RKHS norm of f with respect to k. Let
k be such that k(x,x) ≤ 1 for all x ∈ D. Assume noise variables εt are from a martingale
difference sequence, such that they are uniformly bounded by σn. Define

αt = 2M + 300γt log3(t/δ),

where M ≥ ||f ||2k. Then

P (|f(x)− µt−1(x)| ≤ α1/2
t σt−1(x), ∀x ∈ D,∀t ≥ 1) ≥ 1− δ.

In brief, the reproducing property of kernels implies that the corresponding inner product
of g(x) with k(x,x′), denoted 〈g(x), k(x,x′)〉k, is 〈g(x), k(x,x′)〉k = g(x′) for any kernel
k, and so, using such an inner product and the Cauchy-Schwarz inequality,

|µt(x)− f(x)| =
√
〈µt(x′)− f(x′), kt(x,x′)〉2kt

≤
√
〈kt(x,x′), kt(x,x′)〉kt〈µt(x)− f(x), µt(x)− f(x)〉kt

=
√
kt(x,x)||µt − f ||kt = σt(x)||µt − f ||kt ,

where kt is the posterior kernel and µt is the posterior mean at time t. This implies
that an upper bound on ||µt − f ||kt gives an upper bound on the regret which can be
incurred at the selection of action t + 1 (via the argument of Lemma 10), suggesting that

our UCB width multiplier α
1/2
t should have a form related to the growth of ||µt − f ||kt .

Since ||g||2kt = ||g||2k + σ−2n
∑t

τ=1 g(xτ )2 for a function g, we may substitute g = µt − f and
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then factor the squared norm. We thus obtain a term in ||f ||2k and a second term in the
observations and noise terms yt and εt. We assume we have a bound M ≥ ||f ||2k, and so
our problem reduces to choosing an αt sufficiently large to surpass the growth of the second
term. Through an inductive argument on the probability of confidence interval failure up
to the tth action and using the αt chosen, Srinivas et al. (2012) show that these confidence
intervals hold with probability at least 1− δ. Importantly, this argument does not use the
decision-making process of the algorithm, instead only relying on the algorithm’s internal
GP posterior over f and the characteristics of the martingale noise process. We refer the
interested reader to Appendix II of Srinivas et al. (2012) for the details.5

In terms of proving Case 3 of Theorem 2, Lemma 18 is just the sort of statement we
need; it establishes a precisely analogous result to Lemma 7, providing a set of confidence
intervals Cseq

τ (x) such that for τ = fb[t] + 1, we can construct βt and thus Cbatch
t (x) such

that Cbatch
t (x) ⊇ Cseq

fb[t]+1(x),∀x ∈ D,∀t ≥ 1.

Proof [Proof of Theorem 2, Case 3] By Lemma 18, for the specified value of δ, and
choosing αt = 2M + 300γt log3(t/δ), P (f(x) ∈ Cseq

τ (x), ∀x ∈ D,∀τ ≥ 1) ≥ 1 − δ. Let
βt = exp(2C)αfb[t]+1, where C satisfies Equation (18); by Lemmas 8 and 9, P (f(x) ∈
Cbatch
t (x),∀x ∈ D,∀t ≥ 1) ≥ 1 − δ. Then, by Lemma 10, the instantaneous regret is

bounded as rt ≤ β
1/2
t σ2t−1(x) for each t ≥ 1. Application of Lemmas 11 and 12 yields the

result.

Appendix B. Initialization Set Size Bounds

Thorough initialization of GP-BUCB can drive down the constant C, which bounds the
information which can be hallucinated in the course of post-initialization batches and also
governs the asymptotic scaling of the regret bound with batch size B. First, we connect
the information which can be gained in post-initialization batches with the amount of
information being gained in the initialization, through Lemma 4, the formal statement
of which is in Section 4.5, and the proof of which is presented here.

Proof [Proof of Lemma 4] Since the initialization procedure is greedy, the marginal infor-
mation gain 1/2 log(1 + σ−2n σ2t−1(x)) is a monotonic function of σt−1(x), and information
gain is submodular (See Section 3.3), the information gain from yT init , which corresponds to
xinit
T init , the last element of the initialization set, must be the smallest marginal information

gain in the initialization process, and thus no greater than the mean information gain, i.e.,

I

(
f ;yT init | yDinit

T init−1

)
≤ I

(
f ;yDinit

T init

)
/T init.

5. In the proof of Lemma 7.2 of Srinivas et al. (2012), the (GP-UCB-type) algorithm’s internal GP posterior
model of f is exploited to examine ||µt−f ||kt in terms of the model’s individual conditional distributions
for yτ , τ = 1, . . . , t. This argument relies on the GP model and its assumption of i.i.d. Gaussian noise,
but does not change or violate the problem assumption that the actual observation noise εt is from an
arbitrary, uniformly bounded martingale difference sequence.
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Further, again because information gain is submodular and the initialization set was con-
structed greedily, no subsequent action can yield greater marginal information gain. Thus,

γinitB−1 ≤ (B − 1) · I
(
f ;yT init | yDinit

T init−1

)
.

Combining these two inequalities with the definition of γT init yields the result.

Next, we examine how Lemma 4 can be used to bound the regret of the two-stage
algorithm. In the two stage algorithm, we may consider two sets of confidence intervals,
which do not coincide during the construction of the initialization set, and do coincide
afterward; specifically, let f̃b[t] be a virtual feedback mapping which receives feedback at
every point the actual feedback mapping fb[t] does, i.e., at time T init and at times thereafter
such that Equation (10) is satisfied for all t ≥ T init +1 for C = 1/2 log(C ′), and in addition,
receives feedback during the construction of the initialization set such that Equation (10)
is also satisfied during this time. While the virtual feedback mapping f̃b[t] is of course
not used by the algorithm to construct confidence intervals or make decisions, it will prove
useful for our proof.
Proof [Theorem 5] Assume that there can be constructed an initialization set Dinit of size
T init, subsequent to which the information gain of any batch selected by the GP-BUCB
decision rule with respect to f(x) for any x ∈ D is no more than C. Then, for the values
of βt given in the statement of Theorem 2 and using C = 1/2 log(C ′), where C ′ is dictated
by the choice of kernel,

P (|f(x)− µf̃b[t](x)| ≤ β1/2t σt−1(x), ∀x ∈ D,∀t ≥ 1) ≥ 1− δ

in Cases 1 & 3, and the corresponding statement with |f(x)−µf̃b[t](x)| ≤ β1/2t σt−1(x)+ t−2

in Case 2. This result follows from the following sets of lemmas: 7, 8, and 9 (Case 1); 13,
14, 15, and 16 (Case 2); and 18, 8, and 9 (Case 3). Since the actual feedback mapping fb[t]
and f̃b[t] coincide for t ≥ T init + 1, the virtual feedback mapping’s probability of confidence
interval containment (correctness to known error in Case 2) at all times t ≥ 1 is a lower
bound on the probability that the true, post-initialization confidence intervals constructed
using fb[t] are correct (correct to known error in Case 2); i.e.,

P (|f(x)−µfb[t](x)| ≤ β1/2t σt−1(x), ∀x ∈ D,∀t ≥ T init + 1)

≥ P (|f(x)− µf̃b[t](x)| ≤ β1/2t σt−1(x), ∀x ∈ D,∀t ≥ 1)

≥ 1− δ

in Cases 1 & 3 and similarly,

P (|f(x)− µfb[t](x)| ≤ β1/2t σt−1(x) + t−2,∀x ∈ D,∀t ≥ T init + 1) ≥ 1− δ

in Case 2. By Lemma 11, I(yT init+1:T ; {f(x1), . . . , f(xT )}) = 1
2

∑T
t=T init+1 log(1+σ−2n σ2t−1(xt)).

DefineRT init+1:T =
∑T

t=T init+1 rt. By the same Cauchy-Schwarz argument used in each proof
in Appendix A, with probability ≥ 1− δ,

RT init+1:T ≤
√

(T − T init)C1βTγinit(T−T init)
≤
√
TC1βTγT ,
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for all T ≥ 1, in Cases 1 & 3. The second inequality in the above argument is wasteful, but
simplifies the statement of the theorem without affecting asymptotic scaling. In Case 2, we
must amend the final bound by adding a term π2/6 to the right-hand side as an upper bound
on
∑T

t=T init+1 t
−2, itself bounding the generalization error from the virtual discretization.

Noting that RT = RT init + RT init+1:T , RT init =
∑T init

t=1 f(x∗) − f(xt) ≤ 2T init||f ||∞, C ′ ≥ 1,
and βt = (C ′)2αfb[t]+1 (αt in Case 2), the result follows.

B.1 Initialization Set Size: Linear Kernel

For the linear kernel, there exists a logarithmic bound on the maximum information gain
of a set of queries, precisely, ∃ η ≥ 0 : γt ≤ ηd log (t+ 1) (Srinivas et al., 2010). We attempt
to initialize GP-BUCB with a set Dinit of size T init, where, motivated by this bound and the
form of Inequality (15), we assume T init is of the form

T init = kηd(B − 1) logB. (20)

We must show that there exists a k of finite size for which an initialization set of size
T init, as in Equation (20), implies that any subsequent set S, |S| = B − 1, produces a
conditional information gain with respect to f of no more than C. This requires showing
that the inequality B−1

T initγT init ≤ C holds for this choice of k and thus T init. Since we consider
non-trivial batches, i.e., B − 1 ≥ 1, if k is large enough that kηd(B − 1) ≥ 1,

log (log (B) + 1/(kηd(B − 1))) ≤ log (log (B) + 1) ≤ logB.

Using Equation (20) and the bound for γT init , and following algebraic rearrangement, this
inequality implies that if kηd(B − 1) ≥ 1,

B − 1

T init
γT init ≤ C ⇐=

log k

k logB
+

log η + log d

k logB
+

2

k
≤ C.

By noting that the maximum of log k
k over k ∈ (0,∞) is 1/e and choosing for convenience

C = 2/e, we obtain for k ≥ 1/(ηd(B − 1)):

B − 1

T init
γT init ≤

2

e
⇐=

1

e logB
+

1

k

(
log η + log d+ 2 logB

logB

)
≤ 2

e
.

Choosing k to satisfy both constraints simultaneously,

B − 1

T init
γT init ≤

2

e
⇐= k ≥ max

[
1

ηd(B − 1)
,
e(log η + log d+ 2 logB)

2 log (B)− 1

]
.

Thus, for a linear kernel and such a k, an initialization set Dinit of size T init, where
T init ≥ kηd(B − 1) log (B), ensures that the hallucinated conditional information in any
future batch of size B is ≤ 2

e .
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B.2 Initialization Set Size: Matérn Kernel

For the Matérn kernel, γt ≤ νtε, ε ∈ (0, 1) for some ν > 0 (Srinivas et al., 2010). Hence:

(B − 1)

T init
γT init ≤ C ⇐=

ν(B − 1)(T init)ε

T init
= ν(B − 1)(T init)ε−1 ≤ C

⇐⇒ T init ≥
(
ν(B − 1)

C

)1/(1−ε)
.

Thus, for a Matérn kernel, an initialization set Dinit of size T init ≥
(
ν(B−1)

C

)1/(1−ε)
implies that the conditional information gain of any future batch is ≤ C. Choosing C = 1,
we obtain the results presented in the corresponding row of Table 1.

B.3 Initialization Set Size: Squared-Exponential (RBF) Kernel

For the RBF kernel, the information gain is bounded by an expression similar to that of the
linear kernel, γt ≤ η(log (t+ 1))d+1 (Srinivas et al., 2010). Again, motivated by Inequality
(15), one reasonable choice for an initialization set size is T init = kη(B − 1)(logB)d+1. We
again attempt to show that there exists a finite k such that the conditional information
gain of any post-initialization batch is ≤ C. By a similar parallel argument to that for the
linear kernel (Appendix B.1), and assuming that B ≥ 2 and kη(B − 1) ≥ 1, it follows that

B − 1

T init
γT init ≤ C ⇐=

log k + log η + log (B − 1)

k1/(d+1)(logB)

log [(logB)d+1 + 1]

k1/(d+1)(logB)
≤ C1/(d+1)

⇐=
log k

k1/(d+1)(logB)
+

log η

k1/(d+1)(logB)
+

(d+ 2)

k1/(d+1)
≤ C1/(d+1),

where the last implication follows because for a ≥ 0, b ≥ 1, (ab + 1) ≤ (a+ 1)b.
By noting that the maximum of k−1/(d+1) log k over k ∈ (0,∞) is (d+1)/e and choosing

C = (2(d+ 1)/e)d+1, we obtain for k ≥ 1/(η(B − 1)):

B − 1

T init
γT init ≤

(
2d+ 2

e

)d+1

⇐=
d+ 1

e logB
+

1

k1/(d+1)

(
log η + (d+ 2) logB

logB

)
≤ 2d+ 2

e
,

or equivalently, incorporating the constraint k ≥ 1/(η(B − 1)) explicitly,

B − 1

T init
γT init ≤

(
2d+ 2

e

)d+1

⇐= k ≥ max

[
1

η(B − 1)
,

(
e(log η + (d+ 2) logB)

(d+ 1)(2 log (B)− 1)

)d+1
]
.

Thus, for a Squared-Exponential kernel and such a k, an initialization set Dinit of size
T init, where T init ≥ kη(B − 1)(log (B))d+1, ensures that the hallucinated conditional infor-

mation in any future batch of size B is no more than
(
2d+2
e

)d+1
.
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