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Abstract

We study unsupervised learning in a probabilistic generative model for occlusion. The
model uses two types of latent variables: one indicates which objects are present in the
image, and the other how they are ordered in depth. This depth order then determines how
the positions and appearances of the objects present, specified in the model parameters,
combine to form the image. We show that the object parameters can be learned from an
unlabeled set of images in which objects occlude one another. Exact maximum-likelihood
learning is intractable. Tractable approximations can be derived, however, by applying
a truncated variational approach to Expectation Maximization (EM). In numerical experi-
ments it is shown that these approximations recover the underlying set of object parameters
including data noise and sparsity. Experiments on a novel version of the bars test using
colored bars, and experiments on more realistic data, show that the algorithm performs
well in extracting the generating components. The studied approach demonstrates that the
multiple-causes generative approach can be generalized to extract occluding components,
which links research on occlusion to the field of sparse coding approaches.

Keywords: generative models, occlusion, unsupervised learning, sparse coding, expecta-
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1. Introduction

A key problem in image analysis is to learn the shape and form of objects directly from
unlabeled data. Many approaches to this unsupervised learning problem have been moti-
vated by the observation that, although the number of objects appearing across all images
is vast, the number appearing in any one image is far smaller. This property, a form of
sparsity, has motivated a number of algorithms including sparse coding (SC; Olshausen
and Field, 1996) and non-negative matrix factorization (NMF; Lee and Seung, 1999) with
its sparse variants (e.g., Hoyer, 2004). These approaches can be framed as latent-variable
models, where each possible object, or part of an object, is associated with a latent variable
controlling its presence or absence in a given image. Any individual “hidden cause” is rarely
active, corresponding to the small number of objects present in any one image. Despite this
plausible motivation, SC or NMF make severe assumptions which coarsely approximate the
physical process by which images are produced. Perhaps the most crucial assumption is
that in the underlying latent variable models, objects or parts thereof, combine linearly
to form the image. In real images the combination of individual objects depends on their
relative distance from the camera or eye. If two objects occupy the same region in planar
space, the nearer one occludes the other, i.e., the hidden causes non-linearly compete to
determine the pixel values in the region of overlap.

In this paper we extend multiple-causes models such as SC or NMF to handle occlusion.
The idea of using many hidden “cause” variables to control the presence or absence of ob-
jects is retained, but these variables are augmented by another set of latent variables which
determine the relative depth of the objects, much as in the z-buffer employed by computer
graphics. In turn, this enables the simplistic linear combination rule to be replaced by one
in which nearby objects occlude those that are more distant. One of the consequences of
moving to a richer, more complex model is that inference and learning become correspond-
ingly harder. One of the main contributions of this paper is to show how to overcome these
difficulties.

The problem of occlusion has been addressed in different contexts (Jojic and Frey, 2001;
Williams and Titsias, 2004; Fukushima, 2005; Eckes et al., 2006; Lücke et al., 2009; LeRoux
et al., 2011; Tajima and Watanabe, 2011). Probabilistic ‘sprite’ models (e.g., Jojic and Frey,
2001; Williams and Titsias, 2004) assign pixels in multiple images taken from the same scene
to a fixed number of image layers. The approach is most frequently applied to automatically
remove foreground and background objects. Those models are in many aspects more general
than the approach discussed here. However, in contrast to our approach, they model data
in which objects maintain a fixed position in depth relative to the other objects. Other
approaches study occlusion in the context of neural network models (Tajima and Watanabe,
2011) or generalized versions of restricted Boltzmann machines (RBMs) which incorporate
occlusion (LeRoux et al., 2011). This paper takes a new and different approach which can
be regarded as a generalization of sparse coding to model occlusion.

2. A Generative Model for Occlusion

The occlusion model contains three important elements. The first is a set of variables which
controls the presence or absence of objects in a particular image (this part will be analogous,
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e.g., to NMF or sparse coding). The second is a variable which controls the relative depths
of the objects that are present. The third is the combination rule which describes how
active objects which are closer occlude more distant ones. The second and third part are
the distinguishing features of the model. They describe how values of observed variables
are determined by the occlusion non-linearity given a set of hidden variables. While the
occlusion model will be applicable to the same data as NMF or sparse coding, and while
efficient inference and learning will require sparsity, explicitly modeled occlusions will define
solutions different from these models with linear combination rules. Furthermore, more
general features per observed variable such as color vectors can be taken into account.
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Figure 1: A Illustration of how object masks and features combine to generate an image. If
two objects are randomly chosen (|~s | = 2), two different images with two different
depth-orders (denoted by ϕ1 and ϕ2) can be generated. B Graphical model of
the generation process with hidden variables ~s (object presence) and ϕ (depth
permutation).

To model the presence or absence of objects we use H binary hidden variables s1, . . . , sH .
We assume that the presence of one object is independent of the presence of the others and,
for simplicity, we also assume that each object is equally likely to be present in an image a
priori (we refer to this probability by π). The probability for the presence and absence of
objects is given by

p(~s |π) =

H∏
h=1

Bernoulli(sh;π) =

H∏
h=1

πsh (1− π)1−sh . (1)

Objects in a real image can be ordered by their depth and it is this ordering which determines
how the objects occlude each other in regions of overlap. The depth-ordering is captured
in the model by associating the active objects with a permutation. We randomly and
uniformly choose a member ϕ of the set G(|~s |) which contains all permutation functions
ϕ : {h̃1, . . . , h̃|~s |} → {1, . . . , |~s |}, with |~s | =

∑
h sh, where h̃1 to h̃|~s | are the indices of the

non-zero entries of ~s. More formally, the probability of ϕ given ~s (see Figure 1B) is defined
by

p(ϕ |~s ) = 1
|~s |! with ϕ ∈ G(|~s |) . (2)
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Figure 2: Visualization of the mapping τ(S) : {1, . . . ,H} → [0, 2] which represents different
permutations of objects in depth. The eye at the bottom illustrates the position
of the observer. A and B show the two possible mappings if two causes are
present. C shows one of the 24 mappings if four causes are present.

Note that we could have defined the prior over the order in depth (Equation 2) independently
of ~s, by choosing from G(H) with p(ϕ) = 1

H! . But then, because the depth of absent objects
(sh = 0) is irrelevant, no more than |~s |! distinct choices of ϕ would have resulted in different
images.

The final stage of the generative model describes how to produce the image given a
selection of active causes and an ordering in relative depth of these causes. One approach
would be to choose the closest object and to set the image equal to the feature vector
associated with this object. However, this would mean that every image generated from the
model would comprise just one object: the closest. What is missing from this description
is a notion of the extent of an object and the fact that it might only contribute to a subset
of pixels in an image. For this reason, our model contains two sets of object parameters.
One set of parameters, W ∈ RH×D, describes whether an object contributes to a pixel and
the strength of that contribution (D is the number of pixels). The vector (Wh1, . . . ,WhD)
is therefore described as the mask of object h. If an object is highly localized, this vector
will contain many zero elements. The other set of parameters, T ∈ RH×C , represents the
features of the objects. We define one vectorial feature per object h, ~Th ∈ RC , describing, for
instance, the object’s RGB color (C = 3 in that case). Figure 1A illustrates the combination
of masks and features, and Figure 1B shows the graphical model of the generation process.

Let us formalize how an image is generated given the parameters W and T and given
the hidden variables S = (~s, ϕ). To further abbreviate the notation, we will denote all
the model’s parameters by Θ = (W,T, π, σ). We define the generation of a noiseless image
~T (S,Θ) to be given by the following equations:

~T d(S,Θ) = Whod
~Tho

where ho = argmaxh{τ(S, h)Whd} ,
τ(S, h) =


0 if sh = 0
3
2 if sh = 1 and |~s | = 1
ϕ(h)−1
|~s|−1 + 1 otherwise

(3)

2692



Efficient Occlusive Components Analysis

In Equation 3 the order in depth is represented by the mapping τ which intuitively can
be thought of as the relative proximity of the objects. The form of this mapping has been
chosen to facilitate later algebraic steps. To illustrate the combination rule of Equation 3
and the mapping τ consider Figure 1A and Figure 2. Let us assume that the mask values
Whd are zero or one (although we will later also allow for continuous values). As depicted
in Figure 1A an object h with sh = 1 occupies all image pixels with Whd = 1 and does
not occupy pixels with Whd = 0. For all pixels with Whd = 1 the vector ~Th sets the pixels’
values to a specific feature, e.g., to a specific color. The function τ maps all causes h with
sh = 0 to zero while all other causes are mapped to values within the interval [1, 2] (see
Figure 2). In this way, it assigns a proximity value τ(S, h) > 0 to each present object. For
a given pixel d the combination rule in Equation 3 simply states that of all objects with
Whd = 1, the most proximal is used to set the pixel property. The interval [1,2] represents
a natural choice for proximity values, but any interval with boundaries greater zero would
result in an equivalent generative process.

Given the latent variables and the noiseless image ~T (S,Θ), we take the observed vari-
ables Y = (~y1, . . . , ~yD) to be drawn independently from a Gaussian distribution, i.e.,

p(Y |S,Θ) =

D∏
d=1

p(~yd | ~T d(S,Θ)), p(~y |~t ) = N (~y;~t, σ2
1) . (4)

Equations 1 to 4 represent a model for image generation that incorporates occlusion. We
will refer to the model as the Occlusive Components Analysis (OCA) generative model.

3. Maximum Likelihood

One approach to learning the parameters Θ = (W,T, π, σ) of this model from data
Y = {Y (n)}n=1,...,N is to use maximum likelihood learning, that is,

Θ∗ = argmaxΘ{L(Θ)} with L(Θ) = log
(
p(Y (1), . . . , Y (N) |Θ)

)
. (5)

However, as there is usually a large number of objects that can potentially be present in
the training images, and since the likelihood involves summing over all combinations of
objects and associated orderings, the computation of Equation 5 is typically intractable.
More concretely, given H components the number of different sets of objects that may be
present scales with 2H . Occlusion adds additional complexity: for any subset of size γ′ of
the H objects that may be present there are γ′! different depth orders. Formally, the total
number of hidden states to be considered is given by

Statesexact(H) =

H∑
γ′=0

(
H

γ′

)
γ′! . (6)

The need to consider depth-order to model occlusion means that the number of hidden states
scales super-exponentially with the number of potential components H. Moreover, even if
this computational tractability problem can be overcome, optimization of the likelihood is
made problematic by an analytical intractability arising from the fact that the occlusion
non-linearity is non-differentiable. The following section describes how to side-step both
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of these intractabilities within the standard Expectation Maximization (EM) formalism
for maximum likelihood learning. First, we will describe how the analytical intractability
may be avoided using an approximation that softens the occlusion non-linearity, and which
therefore allows parameter update equations (M-step equations) to be derived. Second,
we will describe how the computational intractability can be addressed by leveraging the
sparsity of visual scenes to reduce the space of solutions entertained by the posterior.

To find the maximum-likelihood parameters Θ∗, at least approximately, we use the
EM formalism in the form used by Neal and Hinton (1998) and introduce the free-energy
function F(Θ, q) which is a function of Θ and of an unknown distribution q(S(1), . . . , S(N))
over the hidden variables. F(Θ, q) is a lower bound of the likelihood L(Θ). Approximations
introduced later on can be interpreted as constraining the function q to lie within a specified
class. In the model described above each image is assumed to be drawn independently
and identically from an underlying distribution, q(S(1), . . . , S(N)) =

∏
n qn(S(n),Θ′), which

results in the free-energy

F(Θ, q) =

N∑
n=1

[∑
S

qn(S ; Θ′)
[

log
(
p(Y (n) |S,Θ)

)
+ log

(
p(S |Θ)

)] ]
+ H[q] , (7)

where the function H[q] = −
∑

n

∑
S qn(S ; Θ′) log(qn(S ; Θ′)) (the Shannon entropy) is in-

dependent of Θ. Note that
∑

S in Equation 7 sums over all possible states of S = (~s, ϕ),
i.e., over all binary vectors and all associated permutations in depth, so that the num-
ber of terms in the sum is given by Equation 6. These large sums are the source of the
computational intractability. In the EM scheme, F(Θ, q) is maximized alternately with
respect to the distribution q in the E-step (while the parameters Θ are kept fixed) and
with respect to parameters Θ in the M-step (while q is kept fixed). Θ′ refers to the model
parameters of the previous iteration of the algorithm. At the end of the M-step, we thus
set Θ′ ← Θ. Each EM iteration increases the free-energy or leaves it unchanged. If q is
unconstrained (or if any constraints imposed allow it) then the optimal setting of q in the
E-step is given by the posterior distribution over the hidden states at the current parameter
settings qn(S; Θ′) = p(S |Y (n),Θ′). In this case, each EM step increases the likelihood or
leaves it unchanged and this process converges to a (local) maximum of the likelihood.

3.1 M-Step Equations

The M-step of EM, in which the free-energy, F , is optimized with respect to the parameters,
is usually derived by taking derivatives of F with respect to the parameters. Unfortunately,
this standard procedure is not directly applicable because the occlusive combination rule
in Equation 3 is not differentiable. However, it is possible to soften the combination rule
using the differentiable approximation

~T ρd(S,Θ) :=

∑H
h=1(τ(S, h)Whd)

ρWhd
~Th∑H

h=1(τ(S, h)Whd)ρ
, (8)

which becomes equal to the combination rule in Equation 3 as ρ → ∞. Note that for
the softened combination rule with small values of ρ, the choice of the interval for the
proximity values (Equation 3) can now have an effect. According to Equation 8 the hidden
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states combine in the sense of a softmax operation, and different interval boundaries for the
proximity values τ(S, h) change how strongly the closest cause dominates the others. Such
effects can be counteracted by choosing corresponding finite values for ρ, however. For large
values of ρ, differences due to different intervals become negligible again.

~T ρd(S,Θ) is differentiable w.r.t. the parameters Whd and T ch (with c ∈ {1, . . . , C}). For
large ρ, the derivatives can be well approximated as follows:

∂
∂Wid

~T ρd(S,Θ) ≈ Aρid(S,W ) ~Ti,

∂
∂T ci

~T ρd(S,Θ) ≈ Aρid(S,W )Wid ~ec,
with

Aρid(S,W ) := (τ(S,i)Wid)ρ∑H
h=1(τ(S,h)Whd)ρ

,

Aid(S,W ) := lim
ρ→∞

Aρid(S,W ) ,
(9)

where ~ec is a unit vector in feature space with entry equal one at position c and zero
elsewhere. The approximations on the left-hand-side above become equalities for ρ → ∞.
Given the approximate combination rule in Equation 9, we can compute approximations to
the derivatives of F(Θ, q). For large values of ρ the following holds (see Appendix B):

∂

∂Wid
F(Θ, q) ≈

N∑
n=1

[∑
S

qn(S ; Θ′)

(
∂

∂Wid

~T ρd(S,Θ)

)T
~f
(
~y (n), ~T ρd(S,Θ)

)]
, (10)

∂

∂T ci
F(Θ, q) ≈

N∑
n=1

[∑
S

qn(S ; Θ′)
D∑
d=1

(
∂

∂T ci
~T ρd(S,Θ)

)T
~f
(
~y (n), ~T ρd(S,Θ)

)]
, (11)

where ~f(~y (n),~t ) :=
∂

∂~t
log
(
p(~y (n) |~t )

)
= −σ−2 (~y (n) − ~t ).

Setting the derivatives in Equations 10 and 11 to zero and inserting Equations 9 yields
the following necessary conditions for a maximum of the free-energy that hold in the limit
ρ→∞:

Wid =

∑
n

〈Aid(S,W )〉qn ~T Ti ~y
(n)
d∑

n

〈Aid(S,W )〉qn ~T Ti ~Ti
, ~Ti =

∑
n

∑
d

〈Aid(S,W )〉qn Wid ~y
(n)
d∑

n

∑
d

〈Aid(S,W )〉qn (Wid)
2
. (12)

Note that Equations 12 are not straightforward update rules. However, we can use them in
the fixed-point sense and approximate the parameters which appear on the right-hand-side
of the equations using the values from the previous iteration. For the update note that due
to the multiplication of the weights and the mask, Whd

~Th in Equation 3, there is degeneracy
for the object parameters: given h, the combination ~Td remains unchanged for the operation
~Th → ~Th/% and Whd → %Whd with % 6= 0. This transformation does not leave the selection
of the closest object unchanged (selection of ho in Equation 3) because the values of Whd

are not binary. To remove the degeneracy and to keep the values of Whd close to zero or
one, we rescale after each EM iteration as follows:

W new
hd = Whd/W h, ~T new

h = W h
~Th,

where W h =
1

|I|
∑
d∈I

Whd with I = {d | |Whd| > α} where α ∈ R.

2695



Henniges, Turner, Sahani, Eggert, and Lücke

The use of W h instead of, e.g., Wmax
h = maxd{Whd} is advantageous for some data, although

for many other types of data Wmax
h works equally well. Through the influence of the scaling

on the selection of closest objects, small values of Whd tend to be suppressed for larger
values of α and converge to zero. In general, we find the algorithm to avoid local optima
more frequently if we initialize α at a small value and then slowly increase it over the EM
iterations to a value near 1

2 . The index set I thus contains all entries Whd at first, and only
later considers exclusively entries with higher values for normalization. In this way, smaller
values are suppressed only when the algorithm is already closer to an optimum than it is in
the beginning of learning.

If the derivatives of the free-energy in Equation 7 w.r.t. to σ (data noise) and π (ap-
pearance frequency) are set to zero, we obtain through straightforward derivations (see
Appendix B) the following two remaining update rules:

σnew =

√√√√ 1

NDC

N∑
n=1

〈
D∑
d=1

C∑
c=1

(
y

(n)
dc − Tdc(S,Θ)

)2
〉
qn

, (13)

πnew =
1

HN

N∑
n=1

〈|~s |〉qn . (14)

3.2 E-Step Equations

The crucial quantities that have to be computed for update Equations 12 to 14 are expec-
tation values w.r.t. the variational distributions qn(S ; Θ′) in the form

〈g(S,Θ)〉qn =
∑
S

qn(S ; Θ′) g(S,Θ) , (15)

where g(S,Θ) are functions that depend on the latent state and potentially the model pa-
rameters. The optimal choice for qn(S ; Θ′) is the exact posterior, qn(S ; Θ′) = p(S |Y (n),Θ′),

which is given by Bayes’ rule, p(S |Y (n),Θ′) = p(Y (n) |S,Θ′) p(S |Θ′)∑
S′ p(Y

(n) |S′,Θ′) p(S′|Θ′)
, with prior and noise

distributions given by the OCA generative model in Equations 1 to 4. Unfortunately, the
computation of the expectations or sufficient statistics in Equation 15 becomes compu-
tationally intractable in this case because of the large number of states that have to be
considered (see Equation 6). To derive tractable approximations, we can, however, make
use of typical properties of visual scenes: in any given scene the number of objects which
are present is far smaller than the set of all objects that can potentially be present in the
scene. As such, the sum over all states in Equation 15 is typically dominated by only a few
terms. More specifically, components which are compatible with the observed image are
the only ones to make a significant contribution to this sum, whilst components which are
incompatible make only a negligible contribution. Consequently, a good approximation to
the expectation values in Equation 15 can be obtained by identifying the states which carry
high posterior mass and retaining only these states.

It has recently been shown (Lücke and Eggert, 2010) that this general idea (see Yuille
and Kersten, 2006) can be considered as approximate variational EM. When the variational
distribution q in Equation 7 is imperfectly optimized, or optimized within a constrained
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space of functions, then the resulting variational EM algorithm is no longer guaranteed to
converge to a local maximum of the likelihood. However, it still increases a lower bound
on the likelihood, and frequently finds a good approximation to the maximum likelihood
solution. The most commonly used constraint is to decompose q into a product of disjoint
factors, for instance, one for each possible source object. By contrast, the approach adopted
here uses a distribution truncated to a limited set Kn of all possible source configurations,
i.e,

qn(S; Θ) =
p(S |Y (n),Θ)∑

S′∈Kn

p(S′ |Y (n),Θ)
δ(S ∈ Kn) with δ(S ∈ Kn) :=

{
1 if S ∈ Kn
0 if S 6∈ Kn

, (16)

where Kn is a subset of the space of all states. If Kn, indeed, contains most of the posterior
mass given a data point Y (n), then qn(S; Θ) approximates the exact posterior well. The
variational approximation qn(S; Θ) is a truncated posterior distribution that allows for
the efficient estimation of the necessary expected values. The approximation is, therefore,
referred to as Expectation Truncation (ET; Lücke and Eggert, 2010) or truncated EM.

In the case of the OCA generative model, we might expect good approximations if we
identified a small set of candidate objects which are likely to be present in the scene, and
then let Kn contain all of the combinations of the candidate objects. By using qn(S; Θ) in
Equation 16 as a variational distribution, the expectation values required for the M-step
are of the form

〈g(S,Θ)〉qn =
∑
S∈Kn

p(S |Y (n),Θ)∑
S′∈Kn

p(S′ |Y (n),Θ)
g(S,Θ) =

∑
S∈Kn

p(S, Y (n)|Θ′)g(S,Θ)∑
S′∈Kn

p(S′, Y (n)|Θ′) .
(17)

We compute Kn for a given data point Y (n) in two stages. In the first we use a computa-
tionally inexpensive selection or scoring function (see Lücke and Eggert, 2010) to identify
candidate objects. The selection function Sh

(
Y (n)

)
seeks to assign high values to states

corresponding to objects h present in the scene Y (n) and low values to states corresponding
to objects which are not present. An ideal selection function would be monotonically related
to the posterior probability of the object given the current image, but at the same time it
would also be efficient to compute. The top H ′ states are selected as candidates and placed
into an index set In. In the second stage we form the set Kn from the candidate objects.
The index set In is used to define the set Kn as containing the states of all likely object
combinations, i.e.,

Kn = {S |
(∑

h sh ≤ γ and ∀h 6∈ In : sh = 0
)

or
∑

j sj ≤ 1} . (18)

As an additional constraint, Kn does not contain combinations of more than γ objects.
Furthermore, we make sure that Kn contains all singleton states, which proved beneficial
in numerical experiments.

The selection function itself is defined as the squared distance between the observed
image and the image generated by the hth component alone,

Sh
(
Y (n)

)
= −

D∑
d=1

C∑
c=1

(
Y

(n)
cd − Tcd(S

(h); Θ)
)2

(19)
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where S(h) := (~s (h), ϕ) with ~s (h) being the state with only the hth object present.

Intuitively, the selection function can be thought of as a measure of the log-probability
that each singleton state accounts for the current data point (also see Appendix D). Since
we are only interested in the relative values of the selection function between the different
components, Equation 19 contains only the exponent of the strictly monotonic exponential
function without the normalization pre-factors.

3.3 Efficient EM Learning

The M-step Equations 12 to 14 together with the approximation of the expectation values
in Equation 17 represent a learning algorithm for the OCA generative model. Its efficiency
crucially depends on the approximation parameters H ′ and γ as they determine the number
of latent states in Kn that have to be considered, that is,

States ET(H,H ′, γ) =

γ∑
γ′=0

(
H ′

γ′

)
γ′! + (H −H ′) . (20)

Because of the preselection of H ′ candidates, the combinatorics no longer scales with H.
Only the number of singleton states scales linearly with H. Furthermore, the computation of
the selection functions scales with H, but for the selection function specified in Equation 19
this scaling is only linear.

The potentially strongly reduced number of states in Equation 20 allows for an efficient
optimization of the OCA model parameters (see Figure 8 in Appendix A for an example
of such a reduction). By choosing H ′ and γ large enough to approximate the posteriors of
the data points well, and small enough to sufficiently reduce the number of latent states
that must be considered, an efficient yet accurate optimization procedure can be obtained.
A crucial role for the efficiency / accuracy trade-off is played by the parameter γ which
constrains the maximal number of considered components per data point (also compare
Figure 8). If γ is too large, the large number of permutations that have to be considered
for occlusion quickly results in computational intractabilities (scaling with γ!). If γ is too
small, data points with more than γ components cannot be approximated well. Ideally we
would like to learn the component parameters using as small an active set as possible (i.e.,
using low values of γ). However, representations of the posterior distribution which are too
impoverished can result in strong biases in the parameter estimates (as is well-known, e.g.,
for factored variational approximations; Turner and Sahani, 2011). Since the approximation
methods considered here will be at their worst for data-points that contain a large number of
components, we simply discount these points and focus instead upon the data-points which
are simple to learn from, thereby reducing the biases and the computational demands. This
general approach was used by Lücke and Eggert (2010) who showed that such a discount-
ing within the truncated approximate EM approach still results in approximately optimal
solutions. Here we discount data-points that we believe contain more than γ components
and modify the M-step equations accordingly. If we denote byM the subset of the N data
points which are estimated to contain at most γ components, the new expressions are given
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by:
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)
πγ′ (1− π)H−γ′ .

These modified M-step equations can be derived from a truncated free-energy (Lücke and
Eggert, 2010) of the form

F(q,Θ) =
∑
n∈M

∑
S

qn(S ; Θ′) log
(
p(Y (n) |S,Θ)

p(S |Θ)∑
S′∈K p(S

′ |Θ)

)
, (24)

with qn(S ; Θ′) given in Equation 16 and with K being the set of all states S with at most
γ non-zero components, K = {S | |~s | ≤ γ}. Details of the derivations of the update rules
are given in Appendix B.

As can be observed, the update equations for W , T and σ remain essentially unchanged
except for averages now running over the subsetM instead of all data points (Equations 21
and 22). The reason is that the derivatives of the truncated free-energy w.r.t. these param-
eters are equal to the derivatives of the original free-energy except for reduced sums. For
the derivative w.r.t. the prior parameter, the situation is different. The additional term in
the denominator of the logarithm in Equation 24 results in a correction term for the update
equation for π (Equation 23). Intuitively, it is clear that discounting data points with more
than γ components has a direct impact on estimating the mean probability for a component
to appear in a data point. The additional term in Equation 23 corrects for this.

To complete the procedure, we must determine the set M of all data points which are
estimated to have γ active components or fewer. First note that the size of this set can be
estimated given the current estimate for π. It contains an expected number of

N cut = N
∑

S,|~s |≤γ

p(S|π) = N

γ∑
γ′=0

(
H

γ′

)
πγ

′
(1− π)H−γ

′

data points (analogously to the π correction factor in Appendix B.2). Following Lücke and
Eggert (2010), we now compute for all N data points the sums

∑
S∈Kn p(S, Y

(n)|Θ′), and
define the set M to consist of the N cut largest such values. The computation of M does
not significantly increase the complexity of the algorithm, and in numerical experiments the
set M is, indeed, found to contain almost all data points with at most γ components.
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Iterating the M-step (Equations 21 to 23) and the E-step (Equations 17) results in a
learning algorithm for the OCA generative model. As will be shown numerically in the next
section, the algorithm allows for a very accurate estimation of model parameters based on
a strongly reduced number of latent states.

4. Experiments

In order to evaluate the OCA learning algorithm, it has been applied to artificial and real-
world data. Artificial data allows for an evaluation based on ground-truth information and
for a comparison with other approaches. The use of real-world data enables us to test the
robustness of the method.

4.1 Initialization and Annealing

For all data points, a vector ~yd ∈ [0, 1]3 represented the RGB values of a pixel. In all trials of
the experiments we initialized the parameters Whd and T ch by independently and uniformly
drawing from the interval [0, 1]. The parameters for sparseness and standard deviation were
initialized as πinit = 1

H and σinit = 5, respectively.

Parameter optimization in multiple-cause models is usually a non-convex problem. For
the OCA model, the strongly non-linear combination rule seems to result in even more pro-
nounced local optima in parameter space than is the case for other models such as sparse
coding. To efficiently avoid convergence to local optima, we (A) applied deterministic
annealing (Ueda and Nakano, 1998; Sahani, 1999) and (B) added noise to model parame-
ters after each EM iteration. Annealing was implemented by introducing the temperature
T = 1

β . The inverse temperature β started near 0 and was gradually increased to 1 as iter-

ations progressed. It modified the EM updates by substituting π → πβ, (1−π)→ (1−π)β,
and 1

σ2 → β
σ2 in all E-step equations. We also annealed the occlusion non-linearity by set-

ting ρ = 1
1−β ; however, once β became greater than 0.95 we set ρ = 21 and did not increase

it further. We ran 100 iterations for each trial of learning. The inverse-temperature was
set to β = 2

D for the first 15 iterations, then linearly increased to β = 1 over the next 15
iterations, and then kept constant until termination of the algorithm.

Additive parameter noise was drawn randomly from a normal distribution with zero
mean. Its standard deviation was initially set to 0.3 for the mask parameters and at 0.05
for the prior and noise parameters. The value was kept constant for the first 10 iterations
and then linearly decreased to zero over the next 30 iterations. The degeneracy parameter
α was initialized at 0.2 and increased to 0.6 from iteration 25 to 35. The amount of data
points used for training was linearly reduced from N to N cut between iteration 15 to 30.
Approximation parameters were set to γ = 3 and H ′ = 5 unless stated otherwise.

4.2 Evaluation of Optimization Results

After optimizing the parameters using the derived EM approach, we obtain different sets
of parameters in different runs. In the case of available ground-truth parameters, a means
to identify the best run is a comparison of the learned parameters with the ground-truth.
It could, for instance, be asked if all generating components (all generating objects in
our case) have been recovered successfully. However, usually the ground-truth parameters
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Figure 3: A Histogram of values for the parameter σ (Equation 13) for 100 runs of the
algorithm on a standard bars test (see bars test section). The ground-truth value
for σ in these runs was 0.25, indicated by the red line. As can be observed,
most values lie close to this number while some values form a second mode at
higher values. By thresholding the σ parameter, we can identify local optima.
B Examples for the basis functions for the left and for the right cluster.

are not known and so another measure for the quality of a run has to be found. A good
indication of the quality of the learned parameters is provided by the learned noise parameter
σ (Equation 13). In fact, if we compute the derivative of the update rule for σ w.r.t. the
mask and feature parameters and set these equal to zero, we obtain the same update
rules for W and T as for the derivative of the free-energy. That is, maximizing the free-
energy corresponds to optimizing (minimizing) the noise which the model has to assume to
explain the data (see Appendix C). If this noise is small, the data are well explained by the
parameters (see Figure 3 for an application to artificial data).

4.3 Colored Bars Test

The component extraction capabilities of the model were tested using the colored bars test.
This test is a generalization of the classical bars test (Földiák, 1990) which has become a
popular benchmark task for non-linear component extraction. In the standard bars test
with H = 8 bars the input data are 16-dimensional vectors, representing a 4 × 4 grid of
pixels, i.e., D = 16. The single bars appear at the 4 vertical and 4 horizontal positions. For
the colored bars test, each of the bars has a different color. Feature values were initialized
such that the color values had maximal distance to each other in one brightness plane
of HSV color space. Once chosen, they remained fixed for the generation of the data
set. For each image a bar appeared independently with a probability π = 2

H = 0.25
which resulted in two bars per image on average (the standard value in the literature).
For the bars chosen to be active, a ranking in depth was randomly and uniformly chosen
from the permutation group to generate the image. The color of each (noiseless) image
pixel was determined by the least distant bar and was black, i.e., zero, if the pixel was
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Figure 4: A Example of ten noiseless and noisified data points. B Development of the
(reshaped) generative fields for the given iterations. For the first cause, mask ~Wh

and feature ~T Th are displayed separately. The other causes are shown as product
~Wh · ~T Th . C - D Development of data sparseness and standard deviation over the
100 iterations. E Magnitude of the noise which is added to the mask parameters
after each iteration. F Annealing temperature as chosen for the algorithm.

occupied by no bar. Gaussian data noise of σ = 0.25 was added to each data point.
N = 1000 images were generated for learning and Figure 4A shows a random selection
of 10 noiseless and 10 noisy examples. The learning algorithm was applied to the colored
bars test with H = 8 hidden units and D = 16 input units. The inferred approximate
maximum-likelihood parameters converged to values close to the generating parameters in
97 of 100 trials. The success rate, or reliability, was thus 97%. Lücke et al. (2009) achieved
a similar reliability of 96% with N = 500. Yet, here we learn, with the current version
of the algorithm, more parameters, namely the data noise and the sparseness parameter.
The values obtained for σ and π all lay in the interval [0.246, 0.252] and [0.241, 0.268],
respectively. Figure 4B shows the time-course of a typical trial during learning. As can
be observed, the mask values W and the feature values T converged to values close to the
generating ones. More specifically, the product of each mask ~Wh and its color value ~Th
represents a true underlying bar in the right color. Reliability is affected by changes in the
annealing and parameter noise schedules, i.e., by changes to those algorithmic parameters
which control the mechanisms for avoiding local optima. Furthermore, we observed an
effect of the approximation parameters H ′ and γ on the algorithm’s capability to avoid
local optima. Notably, smaller as well as much larger values for H ′ and γ lead to lower
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reliabilities. In addition to increasing efficiency, Expectation Truncation, therefore, helps
in avoiding local optima for this model, presumably because local optima corresponding to
broad posterior distributions are avoided. A similar observation was recently reported in
an application of ET to a sparse coding variant (Exarchakis et al., 2012).

4.4 Standard Bars Test

Instead of choosing the bar colors randomly as above, they can also be set to specific
values. In particular, if all bar colors are white, ~T = (1, 1, 1)T , the classical version of the
bars test is recovered. Note that the learning algorithm can be applied to this standard
form without modification, even though it is impossible to recover the relative depth of the
bars in this case. When the generating parameters were as above (eight bars, probability
of a bar to be present 2

8 , N = 1000), all bars were successfully extracted in 80 of 100 trials
(80% reliability). The estimated values of σ and π lay in the intervals [0.247, 0.254] and
[0.241, 0.263], respectively. When learning on noiseless data, we obtained a reliability of
95%. By increasing the approximation parameters to γ = 4 and H ′ = 6, reliability changed
to 91%.

For a standard setting of the parameters (N = 500, H = 10, D = 5×5, probability of 2
10

for each bar to be present) as was used in numerous previous studies (Saund, 1995; Dayan
and Zemel, 1995; Hochreiter and Schmidhuber, 1999; Lücke and Sahani, 2008; Lücke and
Eggert, 2010), the OCA algorithm with γ = 3 and H ′ = 5 achieved 83% for a noisy and
78% for a noiseless bars test. For N = 1000 data points reliability increased to 85%. For
comparison, earlier generative modeling approaches such as those reported by Saund (1995)
or Dayan and Zemel (1995) (both assuming a noisy-or like combination rule) achieved 27%
and 69% reliability, respectively. Maximal Causes Analysis (Lücke and Sahani, 2008; Lücke
and Eggert, 2010) achieved about 82% (MCA3) reliability. And the preliminary version
of the OCA algorithm (Lücke et al., 2009) achieved 86% for noiseless data. Approaches
such as PCA or ICA were reported to fail in this task (Hochreiter and Schmidhuber, 1999).
Furthermore, different types of objective functions and neural network approaches (Charles
et al., 2002; Lücke and Malsburg, 2004; Spratling, 2006) are also successful at this task, often
reporting close to 100% reliability (also see Frolov et al., 2014). The assumptions used (e.g.,
fixed bar appearance, noise level, parameter constraints, constraint on latent activities) are
often implicit but, at the same time, can significantly facilitate learning. NMF algorithms
can be successful in extracting all bars (with up to 100% reliability) but require hand-set
values for sparsity constraints on hidden variables and/or parameters (see Hoyer, 2004, and
for discussions Spratling, 2006, Lücke and Sahani, 2008). In general, the fewer assumptions
a model makes, the more difficult it becomes to infer the parameters from a given set of
data. For earlier generative models and in particular for the more general model discussed
in this paper, larger data sets directly translate into higher reliabilities. A reliability of 78%
for the noiseless bars test is, for the OCA algorithm discussed in this work, in this view
still relatively high. Reliabilities are comparable to values for MCA and to the preliminary
OCA algorithm (Lücke et al., 2009). Note, however, that the latter did use fixed values for
data noise σ and bar appearance π which may explain the higher reliability.

As the recovery of optimal model parameters is the goal of the approach, we can further
increase the rate of successfully recovered parameters that correspond to a representation of
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all bars by considering several runs of the algorithm simultaneously. That is, given a set of
N images, we can apply the algorithm M times, and use as the final result the parameters of
a run with the smallest σ value. For some data sets, we even obtain two clusters of σ values
(see Figure 3) where the cluster with smaller σ’s represents the runs which have terminated
in an optimum with parameters representing all bars. Note that clearly separable clusters
are not observed for all data sets and parameter settings. In general, however, runs with
small σ values tend to correspond to parameters reflecting the true underlying generative
process more accurately. For the standard settings of the bars test with D = 5×5, N = 500,
H = 10, and noiseless data, the algorithm with M = 20 extracts all components in 50 of
50 runs. But note that each run now consists of evaluating M = 20 subruns. The same
applies for values of M down to M = 10.

4.5 Inference

To briefly illustrate the algorithm’s performance on an inference task, i.e., the extraction
of the underlying causes and their depth order, and to show how inference can be applied
to data points exceeding γ components, let us consider data points generated according to
the colored bars test. Furthermore, consider the model after it has learned the parameters
to represent the bars, noise level, and sparsity. Given a data point, the trained model can
infer the hidden variables by applying the following procedure: We start by executing an
E-step with the same values for H ′ and γ as used during training (H ′ = 5 and γ = 3
in this case). We then determine the maximum a-posteriori (MAP) state ~s∗ based on the
approximate posterior computed in this E-step. If this state has |~s∗| = γ active components,
we repeat the E-step with values of H ′ and γ increased by one each (leaving H ′ unchanged
if H ′ = H). We terminate the procedure if the MAP state has less than γ states or
if γ = H ′ = H. Exemplarily, Figure 5 shows three data points and the corresponding
MAP states obtained with the described procedure. The data point with two components
terminated after the first E-step (Figure 5A), the data points with three after γ was increased
to four (Figure 5B), and the data point with four components terminated after γ was
increased to five (Figure 5C,D show result for initial and final γ). For ambiguous data
points, e.g., if the input contained two parallel bars, two states or more states can carry
equally large probability mass due to the fact that different depth permutations do not
change the image. The MAP estimate can still serve to illustrate the inference result but
the approximate distribution over states represents a more accurate description in this case.

4.6 More Realistic Data

To numerically investigate the algorithm for more realistic data, it was applied to data
based on pictures of objects from the COIL-100 database (Nene et al., 1996).1 Images
were scaled down to 20× 20 pixels and were placed at random planar positions on a black
background image of D = 35× 35 = 1225 pixels. The objects were then colored with their
mean color, weighted by pixel intensity (see Figure 6A). In 100 runs, we created N = 8000
data points by combining Hgen = 20 of these images according to the generative model with

1. We used objects 2, 3, 4, 25, 28, 34, 47, 48, 51, 56, 58, 60, 73, 74, 77, 85, 89, 94, 97, and 112 all at 0
degree rotation.
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Figure 5: Examples of the inference procedure for the colored bars test. The second column
shows the data points used for inference (with their noiseless versions in the first
column). On the right, the causes inferred from the noisy data points are shown
arranged in their inferred depth order. A - D The algorithm reliably inferred
the causes for the three examples (C and D show two steps of the inference
procedure). Note that we have learned the basis functions from noisy data with
the same properties as those shown here.

prior parameter π = 2
Hgen

= 0.1, i.e., πHgen = 2 and data noise σ = 0.25 (see Figure 6B).

For learning, the algorithm was applied with H = 30 mask and feature parameters ~Wh

and ~Th, i.e., 50% more than we used for data generation. Figure 6C shows the resulting
mask and feature parameters for an example run (where we display each pair of feature and
mask combined into one image, compare Equation 3). We obtained all 20 underlying basis
functions along with 10 noisy fields in 44% of the trials. For the data noise we obtained
σ ∈ [0.251, 0.254] and for the sparseness parameter π ∈ [0.062, 0.070], i.e., πH ∈ [1.85, 2.11]
for all runs. The high discrepancy in the sparseness values can be explained by the fact
that we have introduced extra basis functions for learning. In the remaining 56 trials,
almost all objects were extracted with usually just one and at most three objects not being
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Figure 6: A 20 downscaled COIL images. B 10 noiseless and 10 noisy data points (obtained
from A according to Equation 3). C 30 extracted basis functions. The first two
rows display the clean extracted causes in the same order as in A. The third
row shows the additionally learned causes which are mostly noisy fields or noisy
combinations of more than one cause.

represented. Again, low values of the observation noise were found to indicate the successful
extraction of all objects. By performing a series of runs and retaining the parameters of
runs with the lowest learned observation noise, the reliability increased to close to 100%.

4.7 Real Data

Finally we tested the algorithm on a real world data set that includes a range of effects that
are not present in synthetic data, including real-world occlusion, lighting variability due to
shadows and specular variations, as well as some small translation effects. As such the data-
set provides an important test of the algorithm’s robustness. The data-set comprised 500
pictures of scenes consisting of up to five (toy) cars in front of a gray background. The cars
could appear at different positions in depth but always in the same position in planar space
(see Figure 7A). Pictures were taken from the side (as for instance a camera in a tunnel
might be positioned) such that moving a car in depth had almost no effect on its vertical
or horizontal position in the image (see Figure 7B). We then cut out the area of the images
that contained the cars and downscaled the cut-out images to 40×165 pixels. Subsequently,
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Figure 7: Numerical experiment with photographic images of cars. A Five cars could ap-
pear in three lanes which account for the arbitrary position in depth (y). Position
in x-direction was fixed. B One of the 500 pictures taken of one state with three
active causes. C 10 data points after cutting and pre-processing. D Generative
fields (mask on top, feature below) at different iterations.

the images were normalized in luminance and the 5% lightest pixels were clamped to the
same maximal value for each color channel to remove reflection effects. Figure 7C shows
some example images. For learning, we then subtracted an image of an empty scene (i.e.,
the background) pixelwise from each input image such that pixels that did not belong to
a cause became almost zero. Note that these data points can now have negative values
while RGB values are usually defined to be positive. To interpret the data point as an
image, one can map the values in the three color channels back to [0, 1]. For a homogeneous
background, these images look almost the same as the original input images. We initialized
the masks as random noise and the features as RGB color vectors all equally far apart from
each other in color space (see Figure 7D). The inverse annealing temperature was set to
β = 1

15 and increased to 1 from iteration 5 to 25. Parameter noise was decreased between
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iterations 15 and 26. Over 30 iterations we extracted the masks of all five cars along with
data noise (σ = 0.05) and sparseness (π = 0.17 with πground-truth = 1

H = 0.2). The features
which had positive and negative values were mapped to [0, 1] to be interpreted as color. As
can be seen from the generative fields in iteration 30, not all masks were extracted cleanly.
This can be explained by the fact that a different position in depth still causes a slight shift
in planar space such that in some images one cause is higher or lower than in others. This
smearing effect leads to a change in color because a pixel then sometimes belongs to the
car and sometimes to the background which results in a color shift towards the background
color (black). Another reason is that one cause does not only consist of one color but rather
of a combination of the car color and background, shadow, window, and wheel color. For
the yellow car which is relatively similar to the background the mask almost only represents
the shadow of the car, which is the most salient part relative to the background. For the
other cars, the masks correspond to representations of whole cars.

5. Discussion

We have studied learning in a multiple-cause generative model which assumes an explicit
model of occlusion for component superposition. According to the OCA model assumptions,
an object can appear in different depth positions for different images. This aspect reflects
properties of real images and is complementary, e.g., to assumptions made by sprite models
(Jojic and Frey, 2001; Williams and Titsias, 2004). A combination of sprite models and
the OCA model is, therefore, a promising line of inquiry, e.g., towards systems that can
learn from video data in which objects change their positions in depth. Other lines of
research have also identified occlusions as an important property that has to be modeled
for applications to visual data. In the context of neural network modeling, Tajima and
Watanabe (2011) have recently addressed the problem (albeit with a very small number of
components and in a partly supervised setting), while restricted Boltzmann machines have
been augmented by LeRoux et al. (2011) to incorporate occlusions.

The directed graphical model studied here has a close connection to multiple-cause
approaches such as sparse coding, NMF or ICA. All of these standard approaches use linear
superpositions of elementary components to model component superposition. ICA and SC
have prominently been applied to explain neural response properties, and NMF is a popular
approach to learn components, e.g., for visual object recognition (e.g., Lee and Seung, 1999;
Wersing and Körner, 2003; Hoyer, 2004). In the class of multiple-cause approaches our
model is the first to generalize the combination rule to one that models occlusion explicitly.
While non-linear combination rules have been studied before by Saund (1995); Dayan and
Zemel (1995); Šingliar and Hauskrecht (2006); Frolov et al. (2014) (noisy-or), Valpola and
Karhunen (2002); Honkela and Valpola (2005) (post-linear sigmoidal function) or Lücke
and Sahani (2008); Puertas et al. (2010); Bornschein et al. (2013) (point-wise maximum),
we go a step further and model occlusion explicitly by making the component combination
dependent on an additional hidden variable for depth-ordering. As a consequence, the model
requires two sets of parameters: masks and features. Masks are required because the planar
space that a component occupies has to be defined. Parameterized masks are, therefore,
a feature of many approaches with explicit occlusion modeling (compare Jojic and Frey,
2001; Williams and Titsias, 2004; LeRoux et al., 2011; Tajima and Watanabe, 2011). For
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our model, the combination of masks and vectorial feature parameters, furthermore, allows
for applications to more general sets of data than the scalar values used for SC, NMF or
than in applications of sprite models (compare Jojic and Frey, 2001; Williams and Titsias,
2004). In numerical experiments we have used color images for instance. However, we
can also apply our algorithm to gray-level data such as used for other algorithms. This
allows for a direct quantitative comparison of the novel algorithm with state-of-the-art
component extraction approaches. The reported results for the standard bars test show
the competitiveness of our approach despite its larger set of parameters (compare, e.g.,
Spratling, 2006; Lücke and Sahani, 2008). For applications to visual data, color is the most
straightforward feature to model. Possible alternatives are Gabor feature vectors which
model object edges and textures, or further developments such as SIFT features (Lowe,
2004). Depending on the application, the generative model itself could also be generalized.
It is, for instance, straightforward to introduce several feature vectors per cause. Although
one feature (e.g., one color) per cause can represent a suitable model for many applications,
it might for other applications also make sense to use multiple feature vectors per cause.
In the extreme case, as many feature vectors as pixels could be used, i.e., ~Th → ~Thd.
The derivation of update rules for such features would proceed along the same lines as
the derivations for single features ~Th. Furthermore, individual prior parameters for the
frequency of object appearances could be introduced. Additional parameters could be used
to model different prior probabilities for different arrangements in depth. Finally, the most
interesting but also most challenging generalization direction would be the inclusion of
explicit invariance models. In its current form the model uses, in common with state-of-
the-art component extraction algorithms, the assumption that the component locations are
fixed. Especially for images of objects, changes in planar component positions have to be
addressed in general. Possible approaches that have been discussed in the literature have,
for instance, been investigated by Jojic and Frey (2001) and Williams and Titsias (2004) in
the context of occlusion modeling, by Eggert et al. (2004) and Wersing and Körner (2003) in
the context of NMF, or by Berkes et al. (2009), Gregor and LeCun (2011) and others in the
context of sparse coding. The crucial challenge of a generalization of the occlusion model
studied in this work is the further increase in the dimensionality of the hidden space. By
generalizing the methods as used here, such challenges could be overcome, however. On the
other hand, methods such as sparse coding or NMF have proven to be useful building blocks
in vision systems although they do not address translation invariance in an explicit way.
As a generalization of sparse coding, the model studied here can provide a more accurate
model in situations where the modeling of occlusions is important. Like for sparse coding,
no prior information about the two dimensional nature of images is used in the model, i.e.,
learning would not suffer from a (fixed) permutation of all pixels applied to all data points.
The tasks faced by the model may, therefore, appear easier for the human observer because
humans make (e.g., for the COIL data) use of additional object knowledge such as of the
gestalt law of proximity. This also illustrates that extensions of the model to incorporate
prior knowledge about objects would further improve the approach.

To investigate robustness, we have applied the developed algorithm to real images, and
observed that it is robust enough to work on non-artificial data. We do not regard this
work as providing a directly applicable algorithm, however. The main goal of this study
was rather to show that the challenges of a multiple-cause model with explicit occlusions can
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be overcome. Replacing the standard linear superposition of sparse coding by an occlusion
superposition resulted in a number of challenges that all had to be addressed:

1) The occlusion model required parameterized masks.

2) The learning equations are not closed-form.

3) Occlusion leads to a much larger combinatorial explosion of possible configurations.

4) Posterior probabilities are not unimodal.

5) Local optima in parameter space are more pronounced.

By generalizing the treatment of non-linear superpositions developed for maximal causes
analysis (see Lücke and Sahani, 2008), parameter update equations were derived for all pa-
rameters of the occlusion model: for masks and features as well as data noise and sparsity
(addressing points 1 and 2). The combinatoric challenge of the model’s large latent space
(point 3) was addressed using Expectation Truncation (ET; Lücke and Eggert, 2010) which,
furthermore, does not make any assumptions about unimodal posteriors (point 4). Com-
bined with deterministic annealing, the algorithm efficiently avoided local optima (point
5). Compared to the earlier version of the OCA learning algorithm (Lücke et al., 2009),
Expectation Truncation provides a further increase of efficiency by selecting relevant latent
causes using selection functions. In this way, the complexity was reduced from scaling poly-
nomially with H (usually with H to the power of 3 or 4) to a linear scaling with H. The
combinatorics of states instead only affects the much smaller space of the H ′ candidates
selected for each data point (compare Figure 8). Given H ′ and γ the combinatorics is
known exactly (Equation 20) and this is the main factor that determines the scalability of
the algorithm. How large the values of H ′ and γ have to be depends on the data. A large
number of objects per image will require higher values and consequently a large number
of states. If the average number of objects per data point remains constant, H ′ and γ
can be kept constant for increasing H, and the number of states that have to be evalu-
ated will scale only linearly with H. Secondary effects may lead to the algorithm scaling
super-linearly, however. Larger values of H mean a higher number of parameters which
may in turn require larger data sets to prevent overfitting. Such effects can be considered
as much less severe than combinatorial effects that increase the state space. Because of
the generally favorable scaling with H, we could handle numerical experiments with larger
numbers of latents than previously considered. For the COIL data set, the algorithm was
run with H = 30 hidden variables and D = 35×35 observed variables. For the colored bars
test the algorithm was run with up to H = 80 hidden and D = 40× 40 observed variables
(but extraction of all bars becomes increasingly challenging). In practice and depending
on the data, learning times may differ. For some data longer learning may be required for
the parameters to converge or in order to efficiently avoid local optima with slower anneal-
ing. A precise theoretical quantification of these data-dependent effects is, like for most
learning algorithms, difficult. In all our empirical evaluations we found that the mecha-
nisms in place to avoid local optima are important. We applied deterministic annealing and
parameter noise for the algorithm to converge to approximately optimal global solutions,
i.e., to solutions corresponding to parameters that all represented true data components
(in cases when these components were known). Without annealing or parameter noise the
algorithm converged to approximate global optima only in very few cases, and local optima
were usually reached after a small number of steps. Both annealing and parameter noise
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had an influence on the typical convergence points. With only parameter noise (i.e., with-
out annealing), the algorithm usually converged within few EM iterations to local optima
with a relatively large number of fields representing more than one component. With only
annealing (i.e., without parameter noise), the algorithm often converged to local optima in
which most components were represented correctly but where few generative fields repre-
sented two components. The combination of annealing and parameter noise resulted in a
frequent representation of all causes (see experiments). As stated earlier, we also observed
a positive effect of the approximation scheme in avoiding local optima presumably because
shallow local optima corresponding to solutions with dense states are not considered by the
truncated approximation.

A further improvement that followed from the application of Expectation Truncation is
the availability of learning rules for data noise and sparsity. While data noise could have
been inferred within the preliminary study of the occlusion model (Lücke et al., 2009),
inference of sparsity requires a correction term that compensates for considering a reduced
space of latent configurations, and Expectation Truncation provides a systematic way to
derive such a correction (compare Appendix B.2). Data noise and sparsity parameters are,
notably, not a consequence of modeling occlusion. They are potential parameters also of
standard sparse coding approaches or NMF objective functions. Nonetheless, most sparse
coding approaches only optimize the generative fields because of limitations induced by the
usual maximum a-posteriori based learning (but see Berkes et al., 2008; Henniges et al.,
2010, for exceptions). Likewise, NMF approaches focus on learning of generative fields /
basis functions. Sparsity is at most indirectly inferred by standard SC or NMF through
cross-validation.

To summarize, our study shows that the challenges of occlusion modeling with explicit
depth orders can be overcome, and that all model parameters can be efficiently inferred.
The approach complements established approaches of occlusion modeling in the literature
by generalizing standard approaches such as sparse coding or NMF to incorporate one of
the most salient properties of visual data.
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Appendix A. Illustration of Hidden State Combinatorics

after preselection

additional

singleton:

(example)

for data point

StatesET(4, 3, 2) = 11

StatesET(H,H ′, γ) =
γ∑

γ′=0

(
H ′

γ′

)
γ′! + (H −H ′)

γ′ = 1

γ′ = 2

γ′ = 3

γ′ = 4

γ′ = 0

ET with H = 4, H ′ = 3, and γ = 2Exact EM with H = 4

States exact(4) = 65

States exact(H) =

H∑
γ′=0

(
H

γ′

)
γ′!

Figure 8: This figure shows all possible combinations for hidden states with given basis
functions for exact EM as well as for a reduced number of combinations. The left-
hand-side corresponds to exact EM and thus displays all possible combinations
of H = 4 different causes separated for each value of γ′ = |~s |. On the right-
hand-side, we see all combinations of the three most relevant objects in which at
most two objects appear simultaneously. The reduced number of combinations
corresponds to the states evaluated by the used approximation (Equation 16)
with parameters H ′ = 3 and γ = 2 in Equation 18. Given a noisy data point,
the first, second, and fourth component are preselected for this example. Note
that we additionally consider all singleton states. The formulas for the number
of considered states are given on the bottom right.
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Appendix B. Derivation of Update Rules

Our goal is to optimize the free-energy, i.e.,

F(Θ, q) =
N∑
n=1

[∑
S

qn(S ; Θ′)
[

log
(
p(Y (n) |S,Θ)

)
+ log

(
p(S |Θ)

)] ]
+ H[q] ,

where

p(Y (n) |S,Θ) =
D∏
d=1

p(~y
(n)
d |~Td(S,Θ)) with p(~y |~t ) = N (~y;~t, σ21) .

More explicitly,

p(Y (n) |S,Θ) =
D∏
d=1

C∏
c=1

1√
2πσ2

exp

(
− 1

2σ2

(
y

(n)
cd − Tcd(S,Θ)

)2
)

=
(
2πσ2

)−CD
2

D∏
d=1

C∏
c=1

exp

(
− 1

2σ2

(
y

(n)
cd − Tcd(S,Θ)

)2
)

and for the logarithm

log
(
p(Y (n) |S,Θ)

)
= −CD

2
log
(
2πσ2

)
−

D∑
d=1

C∑
c=1

1

2σ2

(
y

(n)
cd − Tcd(S,Θ)

)2
.

The prior term, we defined to be

p(S |Θ) = π|~s |(1− π)(H−|~s |) 1

|~s |!
,

such that

log (p(S |Θ)) = |~s | log(π) + (H − |~s |) log(1− π)−
|~s |∑
γ=1

log(γ) .

The free-energy thus takes the form

F(Θ, q) =

N∑
n=1

[∑
S

qn(S ; Θ′)

[
− CD

2
log
(
2πσ2

)
− 1

2σ2

D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

)2

+ |~s | log(π) + (H − |~s |) log(1− π)−
|~s |∑
γ=1

log(γ)

]]
+ H[q] .
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B.1 Optimization of the Data Noise

Let us start be deriving the M-step equation for σ as follows:

∂

∂σ
F(Θ, q)

=
N∑
n=1

[∑
S

qn(S ; Θ′)

[
− CD

2

∂

∂σ
log
(
2πσ2

)
−
(
∂

∂σ

1

2σ2

) D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

)2
]]

=

N∑
n=1

[∑
S

qn(S ; Θ′)

[
− CD

2

4πσ

2πσ2
− (−2 (2σ)−3 2)

D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

)2
]]

=
N∑
n=1

[∑
S

qn(S ; Θ′)

[
− CD

σ
+

1

2σ3

D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

)2
]]

!
= 0

⇒ 1

2σ3

N∑
n=1

[∑
S

qn(S ; Θ′)

D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

)2
]

=
NCD

σ

⇒σ2 =
1

NCD

N∑
n=1

[∑
S

qn(S ; Θ′)
D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

)2
]

For ET, all we need to change is the amount of data points we consider. We thus obtain
for the update of the data noise that

σnew =

√√√√ 1

|M|CD
∑
n∈M

〈
D∑
d=1

C∑
c=1

(
y

(n)
dc − Tdc(S,Θ)

)2
〉
qn

.

B.2 Optimization of the Prior Parameter

Now we will derive the M-Step equation for the update of the parameter π as follows:

∂

∂π
F(Θ, q) =

N∑
n=1

[∑
S

qn(S ; Θ′)

[
∂

∂π
|~s | log(π) +

∂

∂π
(H − |~s |) log(1− π)

]]

=
N∑
n=1

[∑
S

qn(S ; Θ′)

[
|~s |
π
− H − |~s |

1− π

]]

=
N∑
n=1

∑
S

qn(S ; Θ′)
|~s | −Hπ
π(1− π)

!
= 0

⇒
N∑
n=1

∑
S

qn(S ; Θ′)|~s | = HπN

⇒ π =
1

NH

N∑
n=1

∑
S

qn(S ; Θ′)|~s |
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With ET, we have to introduce a normalization factor, A, which changes p(S|π) to

pET(S|π) =

{
1
A p(S|π), |~s | ≤ γ
0, |~s | > γ

.

With
∑

S pET(S|π) =
∑

S∈Kn
1
A p(S|π) ≈

∑
S;|~s |<γ

1
A p(S|π)

!
= 1, we find that

A =
∑

S, |~s|≤γ

p(S|π) =
∑

S, |~s|≤γ

π|~s|(1− π)(H−|~s |) 1

|~s |!

=
[
1× π0(1− π)H +H × π1(1− π)(H−1)

+H(H − 1)× π2(1− π)(H−2) 1

2!
+ . . .

]
=

γ∑
γ′=0

(
H

γ′

)
πγ

′
(1− π)H−γ

′
.

As we are going to need it below, we define

B(π) :=

γ∑
γ′=0

γ′
(
H

γ′

)
πγ

′
(1− π)H−γ

′

and also calculate the derivative of A w.r.t. π as follows:

∂

∂π
A(π) =

γ∑
γ′=0

(
H

γ′

)[
γ′

π
πγ

′
(1− π)(H−γ′) − πγ′(1− π)(H−γ′) H − γ′

1− π

]

=

γ∑
γ′=0

(
H

γ′

)[
πγ

′
(1− π)(H−γ′)

(
γ′

π
− H

1− π
+

γ′

1− π

)]

=
1

π

γ∑
γ′=0

γ′
(
H

γ′

)
πγ

′
(1− π)(H−γ′)

− H

1− π

γ∑
γ′=0

(
H

γ′

)
πγ

′
(1− π)(H−γ′)

+
1

1− π

γ∑
γ′=0

γ′
(
H

γ′

)
πγ

′
(1− π)(H−γ′)

=
1

π
B(π)− H

1− π
A(π) +

1

1− π
B(π)

=
B(π)

π(1− π)
− HA(π)

1− π
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As we now take the derivative of the ET prior, we find that

∂

∂π
log (pET(S|π)) =

∂

∂π
log

[
1

A(π)
π|~s |(1− π)(H−|~s |) 1

|~s |!

]
=
|~s |
π
− H − |~s |

1− π
− ∂

∂π
logA(π)

=
|~s |
π
− H − |~s |

1− π
− 1

A(π)

∂

∂π
A(π)

=
|~s |
π
− H − |~s |

1− π
− B(π)

A(π)π(1− π)
+

H

1− π

=
|~s |
π
− H

1− π
+
|~s |

1− π
− B(π)

A(π)π(1− π)
+

H

1− π

=
|~s |

π(1− π)
− B(π)

A(π)π(1− π)
.

We now have to set the free-energy with this expression equal to zero:∑
n∈M

∑
S∈Kn

q(n)(S,Θ′)

[
|~s |

π(1− π)
− B(π)

A(π)π(1− π)

]
!

= 0

⇒
∑
n∈M

∑
S∈Kn

q(n)(S,Θ′)|~s | = B(π)|M|
A(π)

⇔ A(π)

B(π)|M|
∑
n∈M

∑
S∈Kn

q(n)(S,Θ′)|~s | = 1

In a fixed-point sense, this expression can be multiplied with π on both sides, one repre-
senting the updated πnew and one the old π from the iteration before:

πnew =
A(π)π

B(π)

1

|M|
∑
n∈M

〈|~s |〉qn

B.3 Optimization of the Basis Functions

For the M-step equations of the mask and feature parameters, we observe that

∂

∂Wid
F(Θ, q) =

1

2σ2

N∑
n=1

∑
S

qn(S ; Θ′)
∂

∂Wid

D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

)2

=− 1

σ2

N∑
n=1

∑
S

qn(S ; Θ′)

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

) ∂

∂Wid
Tcd(S,Θ)

and

∂

∂Tic
F(Θ, q) =

1

2σ2

N∑
n=1

∑
S

qn(S ; Θ′)
∂

∂Tic

D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

)2

=− 1

σ2

N∑
n=1

∑
S

qn(S ; Θ′)
D∑
d=1

(
y

(n)
cd − Tcd(S,Θ)

) ∂

∂Tic
Tcd(S,Θ) .
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We thus have to calculate the derivative of the combination rule. Since the original non-
linear combination rule is not differentiable, we calculate the derivative of the approximated
function and find that

∂

∂Wid
T ρcd(S,Θ) =

∂

∂Wid

∑H
h=1(τ(S, h)Whd)

ρWhd Thc∑H
h=1(τ(S, h)Whd)ρ

[
=
u′v

v2
− uv′

v2

]
=

(τ(S, i)Wid)
ρTic(ρ+ 1)×

∑H
h=1(τ(S, h)Whd)

ρ(∑H
h=1(τ(S, h)Whd)ρ

)2

−
∑H

h=1(τ(S, h)Whd)
ρWhd Thc × ρ (τ(S, i)Wid)

ρ−1 τ(S, i)(∑H
h=1(τ(S, h)Whd)ρ

)2

=
(τ(S, i)Wid)

ρTic(ρ+ 1)∑H
h=1(τ(S, h)Whd)ρ

− T ρcd(S,Θ)× ρ (τ(S, i)Wid)
ρ−1 τ(S, i)

= . . . .

As this derivation does not result in an analytically tractable solution, we introduce another
approximation: The prefactor (τ(S, h)Whd)

ρ together with the normalizing denominator∑H
h=1(τ(S, h)Whd)

ρ simulates a differentiable step-function, i.e., its derivative will be zero
almost everywhere, except for close to the point where the actual ’step’ is where it is
infinitely large. We will thus treat this entity as a constant prefactor. We obtain that

∂

∂Wid
T ρcd(S,Θ) =

∑H
h=1(τ(S, h)Whd)

ρ ∂
∂Wid

Whd Thc∑H
h=1(τ(S, h)Whd)ρ

=
(τ(S, i)Wid)

ρ Tic∑H
h=1(τ(S, h)Whd)ρ

=Aρid(S,W )Tic ,

where we defined for convenience that

Aρid(S,W ) :=
(τ(S, i)Wid)

ρ∑H
h=1(τ(S, h)Whd)ρ

with Aid(S,W ) := lim
ρ→∞

Aρid(S,W ) .

For the feature parameter, we find that

∂

∂Tic
T ρcd(S,Θ) = Aρid(S,W )Wid .

For large ρ, we find for a well-behaved function f(t) that

Aρid(S,W )f(T ρcd(S,Θ)) ≈ Aρid(S,W )f(WidTic) .

When we insert this, together with the derivations above, into the free-energy, we observe
that

∂

∂Wid
F(Θ, q) =

1

σ2

N∑
n=1

[∑
S

qn(S ; Θ′)

C∑
c=1

(
y

(n)
cd −WidTic

)
Aρid(S,W )Tic

]
!

= 0
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and

∂

∂Tic
F(Θ, q) =

1

σ2

N∑
n=1

[∑
S

qn(S ; Θ′)

D∑
d=1

(
y

(n)
cd −WidTic

)
Aρid(S,W )Wid

]
!

= 0 .

Then it follows that

N∑
n=1

∑
S

qn(S ; Θ′)Aρid(S,W )~T Ti ~y
(n)
d =

N∑
n=1

∑
S

qn(S ; Θ′)Aρid(S,W )Wid
~T Ti ~Ti

and

N∑
n=1

∑
S

qn(S ; Θ′)

D∑
d=1

Aρid(S,W )y
(n)
cd Wid =

N∑
n=1

∑
S

qn(S ; Θ′)

D∑
d=1

Aρid(S,W )Tic(Wid)
2 .

After a transformation, we find that

N∑
n=1

〈
Aρid(S,W )

〉
qn
~T Ti ~y

(n)
d = Wid

N∑
n=1

〈
Aρid(S,W )

〉
qn
~T Ti ~Ti

and
N∑
n=1

D∑
d=1

〈
Aρid(S,W )

〉
qn
y

(n)
cd Wid = Tic

N∑
n=1

D∑
d=1

〈
Aρid(S,W )

〉
qn

(Wid)
2 .

Solving for the feature and mask parameters, we then obtain the necessary conditions for
a maximum of the free-energy that need to hold in the limit ρ → ∞. They are given as
follows:

Wid =

N∑
n=1

〈
Aρid(S,W )

〉
qn
~T Ti ~y

(n)
d

N∑
n=1

〈
Aρid(S,W )

〉
qn
~T Ti ~Ti

and

Tic =

N∑
n=1

D∑
d=1

〈
Aρid(S,W )

〉
qn
Wid y

(n)
cd

N∑
n=1

D∑
d=1

〈
Aρid(S,W )

〉
qn

(Wid)
2

.

For ET, we need to restrict the sums over the data points to only those summands corre-
sponding to data points which can be expected to be explained by less or equal γ causes, i.e.,
data points which are in the set M. The resulting update equations are given as follows:

W new
id =

∑
n∈M
〈Aid(S,W )〉qn ~T Ti ~y

(n)
d∑

n∈M
〈Aid(S,W )〉qn ~T Ti ~Ti

, ~T new
i =

∑
n∈M

∑
d

〈Aid(S,W )〉qnWid ~y
(n)
d∑

n∈M

∑
d

〈Aid(S,W )〉qn (Wid)
2
.
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Appendix C. Influence of the Basis Functions on the Data Noise

Notably, as we alter the mask and feature values during learning, these new values have an
effect on the value for σ. More specifically, we have seen that optimization runs resulting
in low values for sigma closely correspond to a representation of the true underlying causes
while runs with comparably high sigma values do not. For data such as provided by the
bars test the final sigma values for different runs may even form corresponding clusters
(Figure 3). The interplay between sigma values and object parameters will be investigated
here in more detail: As we compare the derivative of the free-energy w.r.t. the masks and
features

∂

∂Wid
F(Θ, q) = − 1

σ2

N∑
n=1

∑
S

qn(S ; Θ′)
D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

) ∂

∂Wid
Tcd(S,Θ)

and

∂

∂Tic
F(Θ, q) = − 1

σ2

N∑
n=1

∑
S

qn(S ; Θ′)
D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

) ∂

∂Tic
Tcd(S,Θ)

with the derivative of the obtained update rule for the data noise squared, again w.r.t. both
basis function parameters

∂

∂Wid
σ2 =

2

NCD

N∑
n=1

∑
S

qn(S ; Θ′)
D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

) ∂

∂Wid
Tcd(S,Θ)

∂

∂Tic
σ2 =

2

NCD

N∑
n=1

∑
S

qn(S ; Θ′)

D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(S,Θ)

) ∂

∂Tic
Tcd(S,Θ)

we find that these are virtually identical, except for a pre-factor which will disappear when
we set the derivatives equal to zero. The optimal values for the mask and feature vectors
in terms of the free-energy thus also optimize the data noise.

Appendix D. Selection Function

A straightforward selection function is given by the posterior for only one active cause which
we calculate through Bayes’ rule as, i.e.,

p(Sh|Y (n),Θ) =
p(Y (n) |Sh,Θ)p(Sh|Θ)

p(Y (n) |Θ)

where S(h) := (~s (h), ϕ) with ~s (h) being the state with only the hth object present.

Since we are only interested in comparing the numbers per data point, a normalization w.r.t.
p(Y (n) |Θ) is not required and does not have to be calculated for the selection function. Since
the prior p(Sh|Θ) is identical for all Sh, we can omit that entity as well. We are, therefore,
left with only the noise (or likelihood) term, i.e.,

p(Y (n) |Sh,Θ) =
(
2πσ2

)−CD
2

D∏
d=1

C∏
c=1

exp

(
− 1

2σ2

(
y

(n)
cd − Tcd(Sh,Θ)

)2
)
.
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Since the logarithm is a strictly monotonic function, we instead can consider

log
(
p(Y (n) |Sh,Θ)

)
= −CD

2
log
(
2πσ2

)
− 1

2σ2

D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(Sh,Θ)

)2
.

As the first term is constant for all causes, as is the prefactor − 1
2σ2 , we omit these and are

then left with

Sh
(
Y (n)

)
= −

D∑
d=1

C∑
c=1

(
y

(n)
cd − Tcd(Sh; Θ)

)2
,

which is the function used to select the most likely hidden units given Y (n) (compare
Equation 19).
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P. Földiák. Forming sparse representations by local anti-Hebbian learning. Biological Cy-
bernetics, 64:165–170, 1990.

A. A. Frolov, D. Husek, and P. Y. Polyakov. Two expectation-maximization algorithms for
Boolean factor analysis. Neurocomputing, 130:83–97, 2014.

K. Fukushima. Restoring partly occluded patterns: a neural network model. Neural Net-
works, 18(1):33–43, 2005.

2720



Efficient Occlusive Components Analysis

K. Gregor and Y. LeCun. Efficient learning of sparse invariant representations. CoRR,
abs/1105.5307, 2011.

M. Henniges, G. Puertas, J. Bornschein, J. Eggert, and J. Lücke. Binary sparse coding. In
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