
Journal of Machine Learning Research 15 (2014) 2911-2947 Submitted 4/13; Revised 4/14; Published 10/14

QUIC: Quadratic Approximation for Sparse Inverse
Covariance Estimation

Cho-Jui Hsieh cjhsieh@cs.utexas.edu
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Abstract

The `1-regularized Gaussian maximum likelihood estimator (MLE) has been shown to have
strong statistical guarantees in recovering a sparse inverse covariance matrix, or alterna-
tively the underlying graph structure of a Gaussian Markov Random Field, from very
limited samples. We propose a novel algorithm for solving the resulting optimization prob-
lem which is a regularized log-determinant program. In contrast to recent state-of-the-art
methods that largely use first order gradient information, our algorithm is based on New-
ton’s method and employs a quadratic approximation, but with some modifications that
leverage the structure of the sparse Gaussian MLE problem. We show that our method is
superlinearly convergent, and present experimental results using synthetic and real-world
application data that demonstrate the considerable improvements in performance of our
method when compared to previous methods.

Keywords: covariance, graphical model, regularization, optimization, Gaussian Markov
random field

1. Introduction

Statistical problems under modern data settings are increasingly high-dimensional, so that
the number of parameters is very large, potentially outnumbering even the number of obser-
vations. An important class of such problems involves estimating the graph structure of a
Gaussian Markov random field (GMRF), with applications ranging from biological inference
in gene networks, analysis of fMRI brain connectivity data and analysis of interactions in
social networks. Specifically, given n independently drawn samples {y1,y2, . . . ,yn} from a
p-variate Gaussian distribution, so that yi ∼ N (µ,Σ), the task is to estimate its inverse co-
variance matrix Σ−1, also referred to as the precision or concentration matrix. The non-zero
pattern of this inverse covariance matrix Σ−1 can be shown to correspond to the underlying
graph structure of the GMRF. An active line of work in high-dimensional settings, where
p� n, is based on imposing constraints on the model space; in the GMRF case a common
structured constraint is that of sparsity of the inverse covariance matrix. Accordingly, re-
cent papers by Banerjee et al. (2008); Friedman et al. (2008); Yuan and Lin (2007) have
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proposed an estimator that minimizes the Gaussian negative log-likelihood regularized by
the `1 norm of the entries (typically restricted to those on the off-diagonal) of the inverse co-
variance matrix, which encourages sparsity in its entries. This estimator has been shown to
have very strong statistical guarantees even under very high-dimensional settings, including
convergence in Frobenius and spectral norms (Rothman et al., 2008; Lam and Fan, 2009;
Ravikumar et al., 2011), as well as in recovering the non-zero pattern of the inverse co-
variance matrix, or alternatively the graph structure of the underlying GMRF (Ravikumar
et al., 2011). Moreover, the resulting optimization problem is a log-determinant program,
which is convex, and can be solved in polynomial time.

For such large-scale optimization problems arising from high-dimensional statistical es-
timation however, standard optimization methods typically suffer sub-linear rates of conver-
gence (Agarwal et al., 2010). This would be too expensive for the Gaussian MLE problem,
since the number of matrix entries scales quadratically with the number of nodes. Luckily,
the log-determinant problem has special structure; the log-determinant function is strongly
convex and one can thus obtain linear (i.e., geometric) rates of convergence via the state-
of-the-art methods. However, even linear rates in turn become infeasible when the problem
size is very large, with the number of nodes in the thousands and the number of matrix
entries to be estimated in the millions. Here we ask the question: can we obtain superlinear
rates of convergence for the optimization problem underlying the `1-regularized Gaussian
MLE?

For superlinear rates, one has to consider second-order methods which at least in part
use the Hessian of the objective function. There are however some caveats to the use of such
second-order methods in high-dimensional settings. First, a straightforward implementation
of each second-order step would be very expensive for high-dimensional problems. Secondly,
the log-determinant function in the Gaussian MLE objective acts as a barrier function for the
positive definite cone. This barrier property would be lost under quadratic approximations
so there is a danger that Newton-like updates will not yield positive-definite matrices, unless
one explicitly enforces such a constraint in some manner.

In this paper, we present QUIC (QUadratic approximation of Inverse Covariance ma-
trices), a second-order algorithm, that solves the `1-regularized Gaussian MLE. We perform
Newton steps that use iterative quadratic approximations of the Gaussian negative log-
likelihood. The computation of the Newton direction is a Lasso problem (Meier et al.,
2008; Friedman et al., 2010), which we then solve using coordinate descent. A key facet of
our method is that we are able to reduce the computational cost of a coordinate descent
update from the naive O(p2) to O(p) complexity by exploiting the structure present in the
problem, and by a careful arrangement and caching of the computations. Furthermore, an
Armijo-rule based step size selection rule ensures sufficient descent and positive definiteness
of the intermediate iterates. Finally, we use the form of the stationary condition character-
izing the optimal solution to focus the Newton direction computation on a small subset of
free variables, but in a manner that preserves the strong convergence guarantees of second-
order descent. We note that when the solution has a block-diagonal structure as described in
Mazumder and Hastie (2012); Witten et al. (2011), the fixed/free set selection in QUIC can
automatically identify this block diagonal structure and avoid updates to the off-diagonal
block elements. A preliminary version of this paper appeared in Hsieh et al. (2011). In this
paper, we provide a more detailed analysis along with proofs of our algorithm, and cover a
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more general weighted regularization case of the regularized inverse covariance estimation
problem. We show that QUIC can automatically identify the sparsity structure under the
block-diagonal case. We also conduct more experiments on both synthetic and real data
sets to compare QUIC with other solvers. Our software package QUIC with MATLAB
and R interface1 is public available at http://www.cs.utexas.edu/~sustik/QUIC/.

The outline of the paper is as follows. We start with a review of related work and the
problem setup in Section 2. In Section 3, we present our algorithm that combines quadratic
approximation, Newton’s method and coordinate descent. In Section 4, we show superlinear
convergence of our method. We summarize the experimental results in Section 5, where
we compare the algorithm using both real data and synthetic examples from Li and Toh
(2010). We observe that our algorithm performs overwhelmingly better (quadratic instead
of linear convergence) than existing solutions described in the literature.

Notation. In this paper, boldfaced lowercase letters denote vectors and uppercase
letters denote p×p real matrices. Sp++ denotes the space of p×p symmetric positive definite
matrices while X � 0 and X � 0 means that X is positive definite and positive semidefinite,
respectively. The vectorized listing of the elements of a p × p matrix X is denoted by
vec(X) ∈ Rp2 and the Kronecker product of the matrices X and Y is denoted by X⊗Y . For
a real-valued function f(X), ∇f(X) is a p× p matrix with (i, j) element equal to ∂

∂Xij
f(X)

and denoted by ∇ijf(X), while ∇2f(X) is the p2 × p2 Hessian matrix. We will use the `1
and `∞ norms defined on the vectorized form of matrix X: ‖X‖1 :=

∑
i,j |Xij | and ‖X‖∞ :=

maxi,j |Xij |. We also employ elementwise `1-regularization, ‖X‖1,Λ :=
∑

i,j λij |Xij |, where
Λ = [λij ] with λij > 0 for off-diagonal elements, and λii ≥ 0 for diagonal elements.

2. Background and Related Work

Let y be a p-variate Gaussian random vector, with distribution N (µ,Σ). Given n inde-
pendently drawn samples {y1, . . . ,yn} of this random vector, the sample covariance matrix
can be written as

S =
1

n− 1

n∑
k=1

(yk − µ̂)(yk − µ̂)T , where µ̂ =
1

n

n∑
k=1

yk. (1)

Given a regularization penalty λ > 0, the `1-regularized Gaussian MLE for the inverse
covariance matrix can be written as the solution of the following regularized log-determinant
program:

arg min
X�0

{
− log detX + tr(SX) + λ

p∑
i,j=1

|Xij |
}
. (2)

The `1 regularization promotes sparsity in the inverse covariance matrix, and thus en-
courages a sparse graphical model structure. We consider a generalized weighted `1 reg-
ularization, where given a symmetric nonnegative weight matrix Λ = [λij ], we can as-
sign different nonnegative weights to different entries, obtaining the regularization term
‖X‖1,Λ =

∑p
i,j=1 λij |Xij |. In this paper we will focus on solving the following generalized

1. The QUIC R package is also available from CRAN.
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sparse inverse covariance estimation problem:

X∗ = arg min
X�0

{
− log detX + tr(SX) + ‖X‖1,Λ

}
= arg min

X�0
f(X), (3)

where X∗ = (Σ∗)−1. In order to ensure that problem (3) has a unique minimizer, as we show
later, it is sufficient to require that λij > 0 for off-diagonal entries, and λii ≥ 0 for diagonal
entries. The standard off-diagonal `1 regularization variant λ

∑
i 6=j |Xij | is a special case

of this weighted regularization function. For further details on the background and utility
of `1 regularization in the context of GMRFs, we refer the reader to Yuan and Lin (2007);
Banerjee et al. (2008); Friedman et al. (2008); Duchi et al. (2008); Ravikumar et al. (2011).

Due in part to its importance, there has been an active line of work on efficient opti-
mization methods for solving (2) and (3). Since the regularization term is non-smooth and
hard to solve, many methods aim to solve the dual problem of (3):

Σ∗ = argmax
|Wij−Sij |≤λij

log detW, (4)

which has a smooth objective function with bound constraints. Banerjee et al. (2008)
propose a block-coordinate descent method to solve the dual problem (4), by updating
one row and column of W at a time. They show that the dual of the corresponding
row subproblem can be written as a standard Lasso problem, which they then solve by
Nesterov’s first order method. Friedman et al. (2008) follow the same strategy, but propose
to use a coordinate descent method to solve the row subproblems instead; their method is
implemented in the widely used R package called glasso. In other approaches, the dual
problem (4) is treated as a constrained optimization problem, for which Duchi et al. (2008)
apply a projected subgradient method called PSM, while Lu (2009) proposes an accelerated
gradient descent method called VSM.

Other first-order methods have been pursued to solve the primal optimization problem
(2). d’Aspremont et al. (2008) apply Nesterov’s first order method to (2) after smoothing
the objective function; Scheinberg et al. (2010) apply an augmented Lagrangian method to
handle the smooth and nonsmooth parts separately; the resulting algorithm is implemented
in the ALM software package. In Scheinberg and Rish (2010), the authors propose to
directly solve the primal problem by a greedy coordinate descent method called SINCO.
However, each coordinate update of SINCO has a time complexity of O(p2), which becomes
computationally prohibitive when handling large problems. We will show in this paper
that after forming the quadratic approximation, each coordinate descent update can be
performed in O(p) operations. This trick is one of the key advantages of our proposed
method, QUIC.

One common characteristic of the above methods is that they are first-order iterative
methods that mainly use gradient information at each step. Such first-order methods have
become increasingly popular in recent years for high-dimensional problems in part due to
their ease of implementation, and because they require very little computation and memory
at each step. The caveat is that they have at most linear rates of convergence (Bertsekas,
1995). To achieve superlinear convergence rates, one has to consider second-order methods,
which have only recently attracted some attention for the sparse inverse covariance estima-
tion problem. Li and Toh (2010) handle the non-smoothness of the `1 regularization in the
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objective function by doubling the number of variables, and solving the resulting constrained
optimization problem by an inexact interior point method. Schmidt et al. (2009) propose
a second order Projected Quasi-Newton method (PQN) that solves the dual problem (4),
since the dual objective function is smooth. The key difference of our method when com-
pared to these recent second order solvers is that we directly solve the `1-regularized primal
objective using a second-order method. As we show, this allows us to leverage structure in
the problem, and efficiently approximate the generalized Newton direction using coordinate
descent. Subsequent to the preliminary version of this paper (Hsieh et al., 2011), Olsen et al.
(2012) have proposed generalizations to our framework to allow various inner solvers such as
FISTA, conjugate gradient (CG), and LBFGS to be used, in addition to our proposed coor-
dinate descent scheme. Also, Lee et al. (2012) have extended the quadratic approximation
algorithm to solve general composite functions and analyze the convergence properties.

3. Quadratic Approximation Method

We first note that the objective f(X) in the non-differentiable optimization problem (3),
can be written as the sum of two parts, f(X) = g(X) + h(X), where

g(X) = − log detX + tr(SX) and h(X) = ‖X‖1,Λ. (5)

The first component g(X) is twice differentiable, and strictly convex. The second part,
h(X), is convex but non-differentiable. Following the approach of Tseng and Yun (2007)
and Yun and Toh (2011), we build a quadratic approximation around any iterate Xt for this
composite function by first considering the second-order Taylor expansion of the smooth
component g(X):

ḡXt(∆) ≡ g(Xt) + vec(∇g(Xt))
T vec(∆) +

1

2
vec(∆)T∇2g(Xt) vec(∆). (6)

The Newton direction D∗t for the entire objective f(X) can then be written as the solution
of the regularized quadratic program:

D∗t = arg min
∆

{
ḡXt(∆) + h(Xt + ∆)

}
. (7)

We use this Newton direction to compute our iterative estimates {Xt} for the solution of
the optimization problem (3). This variant of Newton method for such composite objec-
tives is also referred to as a “proximal Newton-type method,” and was empirically studied
in Schmidt (2010). Tseng and Yun (2007) considered the more general case where the Hes-
sian ∇2g(Xt) is replaced by any positive definite matrix. See also the recent paper by Lee
et al. (2012), where convergence properties of such general proximal Newton-type methods
are discussed. We note that a key caveat to applying such second-order methods in high-
dimensional settings is that the computation of the Newton direction appears to have a
large time complexity, which is one reason why first-order methods have been so popular
for solving the high-dimensional `1-regularized Gaussian MLE.

Let us delve into the Newton direction computation in (7). Note that it can be rewritten
as a standard Lasso regression problem (Tibshirani, 1996):

arg min
∆

1

2
‖H

1
2 vec(∆) +H−

1
2b‖22 + ‖Xt + ∆‖1,Λ, (8)
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where H = ∇2g(Xt) and b = vec(∇g(Xt)). Many efficient optimization methods exist
that solve Lasso regression problems, such as the coordinate descent method (Friedman
et al., 2007), the gradient projection method (Polyak, 1969), and iterative shrinking meth-
ods (Daubechies et al., 2004; Beck and Teboulle, 2009). When applied to the Lasso problem
of (7), most of these optimization methods would require the computation of the gradient
of ḡXt(∆):

∇ḡXt(∆) = H vec(∆) + b. (9)

The straightforward approach for computing (9) for a general p2 × p2 Hessian matrix H
would take O(p4) time, making it impractical for large problems. Fortunately, for the sparse
inverse covariance problem (3), the Hessian matrix H has the following special form (see
for instance Boyd and Vandenberghe, 2009, Chapter A.4.3):

H = ∇2g(Xt) = X−1
t ⊗X

−1
t ,

where ⊗ denotes the Kronecker product. In Section 3.1, we show how to exploit this special
form of the Hessian matrix to perform one coordinate descent step that updates one element
of ∆ in O(p) time. Hence a full sweep of coordinate descent steps over all the variables
requires O(p3) time. This key observation is one of the reasons that makes our Newton-like
method viable for solving the inverse covariance estimation problem.

There exist other functions which allow efficient Hessian times vector multiplication.
As an example, we consider the case of `1-regularized logistic regression. Suppose we are
given n samples with feature vectors x1, . . . ,xn ∈ Rp and labels y1, . . . , yn, and we solve
the following `1-regularized logistic regression problem to compute the model parameter w:

arg min
w∈Rp

n∑
i=1

log(1 + e−yiw
Txi) + λ‖w‖1.

Following our earlier approach, we can decompose this objective function into smooth and
non-smooth parts, g(w) + h(w), where

g(w) =
n∑
i=1

log(1 + e−yiw
Txi) and h(w) = λ‖w‖1.

In order to apply coordinate descent to solve the quadratic approximation, we have to
compute the gradient as in (9). The Hessian matrix ∇2g(w) is a p × p matrix, so direct
computation of this gradient costs O(p2) flops. However, the Hessian matrix for logistic
regression has the following simple form

H = ∇2g(w) = XDXT ,

where D is a diagonal matrix with Dii = e−yiw
T xi

(1+e−yiw
T xi )2

and X = [x1, x2, . . . , xn]. Therefore

we can write

∇g(w + ∆) = (∇2g(w)) vec(∆) + b = XD(XT vec(∆)) + b. (10)

The time complexity to compute (10) is only proportional to the number of nonzero elements
in the data matrix X, which can be much smaller than O(p2) for high-dimensional sparse
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data sets. Therefore similar quadratic approximation approaches are also efficient for solving
the `1-regularized logistic regression problem as shown by Friedman et al. (2010); Yuan et al.
(2012).

In the following three subsections, we detail three innovations which make our quadratic
approximation algorithm feasible for solving (3). In Section 3.1, we show how to compute the
Newton direction using an efficient coordinate descent method that exploits the structure
of Hessian matrix, so that we reduce the time complexity of each coordinate descent update
step from O(p2) to O(p). In Section 3.2, we employ an Armijo-rule based step size selection
to ensure sufficient descent and positive-definiteness of the next iterate. Finally, in Section
3.3 we use the form of the stationary condition characterizing the optimal solution, to focus
the Newton direction computation to a small subset of free variables, in a manner that
preserves the strong convergence guarantees of second-order descent. A high level overview
of our method is presented in Algorithm 1. Note that the initial point X0 has to be a
feasible solution, thus X0 � 0, and the positive definiteness of all the following iterates Xt

will be guaranteed by the step size selection procedure (step 6 in Algorithm 1).

Algorithm 1: QUadratic approximation for sparse Inverse Covariance estimation
(QUIC overview)

Input : Empirical covariance matrix S (positive semi-definite, p× p), regularization
parameter matrix Λ, initial iterate X0 � 0.

Output: Sequence {Xt} that converges to arg minX�0 f(X), where
f(X) = g(X) + h(X), where g(X) = − log detX + tr(SX), h(X) = ‖X‖1,Λ.

1 for t = 0, 1, . . . do

2 Compute Wt = X−1
t .

3 Form the second order approximation f̄Xt(∆) := ḡXt(∆) + h(Xt + ∆) to
f(Xt + ∆).

4 Partition the variables into free and fixed sets based on the gradient, see
Section 3.3.

5 Use coordinate descent to find the Newton direction D∗t = arg min∆ f̄Xt(Xt + ∆)
over the set of free variables, see (13) and (16) in Section 3.1. (A Lasso problem.)

6 Use an Armijo-rule based step-size selection to get α such that Xt+1 = Xt + αD∗t
is positive definite and there is sufficient decrease in the objective function,
see (21) in Section 3.2.

7 end

3.1 Computing the Newton Direction

In order to compute the Newton direction, we have to solve the Lasso problem (7). The
gradient and Hessian for g(X) = − log detX + tr(SX) are (see, for instance, Boyd and
Vandenberghe, 2009, Chapter A.4.3)

∇g(X) = S −X−1 and ∇2g(X) = X−1 ⊗X−1. (11)

In order to formulate our problem accordingly, we can verify that for a symmetric matrix
∆ we have tr(X−1

t ∆X−1
t ∆) = vec(∆)T (X−1

t ⊗X
−1
t ) vec(∆), so that ḡXt(∆) in (7) can be
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rewritten as

ḡXt(∆) = − log detXt + tr(SXt) + tr((S −Wt)
T∆) +

1

2
tr(Wt∆Wt∆), (12)

where Wt = X−1
t .

In Friedman et al. (2007), Wu and Lange (2008), the authors show that coordinate
descent methods are very efficient for solving Lasso type problems. An obvious way to
update each element of ∆ in (7) requires O(p2) floating point operations since Wt⊗Wt is a
p2 × p2 matrix, thus yielding an O(p4) procedure for computing the Newton direction. As
we show below, our implementation reduces the cost of updating one variable to O(p) by
exploiting the structure of the second order term tr(Wt∆Wt∆).

For notational simplicity, we will omit the iteration index t in the derivations below
where we only discuss a single Newton iteration; this applies to the rest of the this section
and Section 3.2 as well. (Hence, the notation for ḡXt is also simplified to ḡ.) Furthermore,
we omit the use of a separate index for the coordinate descent updates. Thus, we simply
use D to denote the current iterate approximating the Newton direction and use D′ for
the updated direction. Consider the coordinate descent update for the variable Xij , with
i < j that preserves symmetry: D′ = D+ µ(eie

T
j + eje

T
i ). The solution of the one-variable

problem corresponding to (7) is:

arg min
µ

ḡ(D + µ(eie
T
j + eje

T
i )) + 2λij |Xij +Dij + µ|. (13)

We expand the terms appearing in the definition of ḡ after substituting D′ = D+µ(eie
T
j +

eje
T
i ) for ∆ in (12) and omit the terms not dependent on µ. The contribution of tr(SD′)−

tr(WD′) yields 2µ(Sij−Wij), while the regularization term contributes 2λij |Xij+Dij+µ|, as
seen from (13). The quadratic term can be rewritten (using the fact that tr(AB) = tr(BA)
and the symmetry of D and W ) to yield:

tr(WD′WD′) = tr(WDWD) + 4µwT
i Dwj + 2µ2(W 2

ij +WiiWjj), (14)

where wi refers to the i-th column of W . In order to compute the single variable update
we seek the minimum of the following quadratic function of µ:

1

2
(W 2

ij +WiiWjj)µ
2 + (Sij −Wij + wT

i Dwj)µ+ λij |Xij +Dij + µ|. (15)

Letting a = W 2
ij + WiiWjj , b = Sij −Wij + wT

i Dwj , and c = Xij + Dij the minimum is
achieved for:

µ = −c+ S(c− b/a, λij/a), (16)

where

S(z, r) = sign(z) max{|z| − r, 0} (17)

is the soft-thresholding function. Similarly, when i = j, for D′ = D + µeie
T
i , we get

tr(WD′WD′) = tr(WDWD) + 2µwT
i Dwi + µ2(W 2

ii). (18)
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Therefore the update rule for Dii can be computed by (16) with a = W 2
ii, b = Sii −Wii +

wT
i Dwi, and c = Xii +Dii.

Since a and c are easy to compute, the main computational cost arises while evaluating
wT
i Dwj , the third term contributing to coefficient b above. Direct computation requires

O(p2) time. Instead, we maintain a p× p matrix U = DW , and then compute wT
i Dwj by

wT
i uj using O(p) flops, where uj is the j-th column of matrix U. In order to maintain the

matrix U , we also need to update 2p elements, namely two coordinates of each uk when
Dij is modified. We can compactly write the row updates of U as follows: ui· ← ui·+ µwj·
and uj· ← uj· + µwi·, where ui· refers to the i-th row vector of U .

3.1.1 Update Rule when X is Diagonal

The calculation of the Newton direction can be simplified if X is also a diagonal matrix.
For example, this occurs in the first Newton iteration when we initialize QUIC using the
identity (or diagonal) matrix. When X is diagonal, the Hessian ∇2g(X) = X−1 ⊗X−1 is
also a diagonal matrix, which indicates that all one variable sub-problems are independent
of each other. Therefore, we only need to update each variable once to reach the optimum
of (7). In particular, by examining (16), the optimal solution D∗ij is

D∗ij =

S
(
− Sij

WiiWjj
,

λij
WiiWjj

)
if i 6= j,

−Xii + S
(
Xii − Sii−Wii

W 2
ii

, λii
W 2

ii

)
if i = j,

(19)

where, as a reminder, Wii = 1/Xii. Thus, in this case, the closed form solution for each
variable can be computed in O(1) time, so the time complexity for the first Newton direction
is further reduced from O(p3) to O(p2).

3.1.2 Updating Only a Subset of Variables

In our QUIC algorithm we compute the Newton direction using only a subset of the vari-
ables we call the free set. We identify these variables in each Newton iteration based on
the value of the gradient (we will discuss the details of the selection in Section 3.3). In the
following, we define the Newton direction restricted to a subset J of the variables.

Definition 1 Let J denote a (symmetric) subset of variables. The Newton direction re-
stricted to J is defined as:

D∗J(X) ≡ arg min
D:Dij=0
∀(i,j)/∈J

tr(∇g(X)TD) +
1

2
vec(D)T∇2g(X) vec(D) + ‖X +D‖1,Λ. (20)

The cost to compute the Newton direction is thus substantially reduced when the free set
J is small, which as we will show in Section 3.3, occurs when the optimal solution of the
`1-regularized Gaussian MLE is sparse.

3.2 Computing the Step Size

Following the computation of the Newton direction D∗ = D∗J(X) (restricted to the subset
of variables J), we need to find a step size α ∈ (0, 1] that ensures positive definiteness of
the next iterate X + αD∗ and leads to a sufficient decrease of the objective function.

2919



Hsieh, Sustik, Dhillon and Ravikumar

We adopt Armijo’s rule (Bertsekas, 1995; Tseng and Yun, 2007) and try step-sizes α ∈
{β0, β1, β2, . . . } with a constant decrease rate 0 < β < 1 (typically β = 0.5), until we find
the smallest k ∈ N with α = βk such that X +αD∗ is (a) positive-definite, and (b) satisfies
the following sufficient decrease condition:

f(X + αD∗) ≤ f(X) + ασδ, δ = tr(∇g(X)TD∗) + ‖X +D∗‖1,Λ − ‖X‖1,Λ, (21)

where 0 < σ < 0.5. Notice that Condition (21) is a generalized version of Armijo line search
rule for `1-regularized problems (see (Tseng and Yun, 2007; Yun and Toh, 2011) for the
detail). We can verify positive definiteness while we compute the Cholesky factorization
(costs O(p3) flops) needed for the objective function evaluation that requires the compu-
tation of log det(X + αD∗). The Cholesky factorization dominates the computational cost
in the step-size computations. We use the standard convention in convex analysis that
f(X) = +∞ when X is not in the effective domain of f , i.e., X is not positive definite.
Using this convention, (21) enforces positive definiteness of X + αD∗. Condition (21) has
been proposed in Tseng and Yun (2007); Yun and Toh (2011) to ensure that the objective
function value not only decreases but decreases by a certain amount ασδ, where δ mea-
sures the closeness of the current solution to the global optimal. Our convergence proofs
presented in Section 4 rely on this sufficient decrease condition.

In the rest of this section we present several lemmas about the step size computation.
The reader mostly interested in the algorithm description may skip forward to Section 3.3
and revisit the details afterwards.

We start out by proving three important properties that we call (P1–P3) regarding the
line search procedure governed by (21):

P1. The condition (21) is satisfied for some (sufficiently small) α, establishing that the
algorithm does not enter into an infinite line search step. We note that in Proposition 3
below we show that the line search condition (21) can be satisfied for any symmetric
matrix D (even one which is not the Newton direction).

P2. For the Newton direction D∗, the quantity δ in (21) is negative, which ensures that
the objective function decreases. Moreover, to guarantee that Xt converges to the
global optimum, |δ| should be large enough when the current iterate Xt is far from
the optimal solution. In Proposition 4 we will prove the stronger condition that
δ ≤ −(1/M2)‖D∗‖2F for some constant M . ‖D∗‖2F can be viewed as a measure of the
distance from optimality of the current iterate Xt, and this bound ensures that the
objective function decrease is proportional to ‖D∗‖2F .

P3. When X is close enough to the global optimum, the step size α = 1 will satisfy the
line search condition (21). We will show this property in Proposition 5. Moreover,
combined with the global convergence of QUIC proved in Theorem 12, this property
suggests that after a finite number of iterations α will always be 1; this also implies
that eventually only one Cholesky factorization is needed per iteration (to evaluate
log det(X + αD∗) for computing f(X + αD)).
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3.2.1 Detailed Proofs for P1-3

We first show the following useful property. For any matrices X,D, real number 0 ≤ α ≤ 1
and Λ ≥ 0 that generates the norm ‖·‖1,Λ, we have

‖X + αD‖1,Λ = ‖α(X +D) + (1− α)X‖1,Λ ≤ α‖X +D‖1,Λ + (1− α)‖X‖1,Λ. (22)

The above inequality can be proved by the convexity of ‖·‖1,Λ, and will be used repeatedly
in this paper. Next we show an important property that all the iterates Xt will have
eigenvalues bounded away from zero. Since the updates in our algorithm satisfy the line
search condition (21), and δ is always a negative number (see Proposition 4), the function
value is always decreasing. It also follows that all the iterates {Xt}t=0,1,... belong to the
level set U defined by:

U = {X | f(X) ≤ f(X0) and X ∈ Sp++}. (23)

Lemma 2 The level set U defined in (23) is contained in the set {X | mI � X � MI}
for some constants m,M > 0, if we assume that the off-diagonal elements of Λ and the
diagonal elements of S are positive.

Proof We begin the proof by showing that the largest eigenvalue of any X ∈ U is bounded
by M , a constant that depends only on Λ, f(X0) and the matrix S. We note that S � 0
and X � 0 implies tr(SX) ≥ 0 and therefore:

f(X0) ≥ f(X) ≥ − log detX + ‖X‖1,Λ. (24)

Since ‖X‖2 is the largest eigenvalue of the p×p matrix X, we have log detX ≤ p log(‖X‖2).
Combine with (24) and the fact that the off-diagonal elements of Λ are no smaller than some
λ > 0:

λ
∑
i 6=j
|Xij | < ‖X‖1,Λ ≤ f(X0) + p log(‖X‖2). (25)

Similarly, ‖X‖1,Λ ≥ 0 implies that:

tr(SX) < f(X0) + p log(‖X‖2). (26)

Next, we introduce γ = mini Sii and β = maxi 6=j |Sij | and split tr(SX) into diagonal and
off-diagonal terms in order to bound it:

tr(SX) =
∑
i

SiiXii +
∑
i 6=j

SijXij ≥ γ tr(X)− β
∑
i 6=j
|Xij |.

Since ‖X‖2 ≤ tr(X),

γ‖X‖2 ≤ γ tr(X) ≤ tr(SX) + β
∑
i 6=j
|Xij |.

Combine with (25) and (26) to get:

γ‖X‖2 ≤ (1 + β/λ)(f(X0) + p log(‖X‖2)). (27)
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The left hand side of inequality (27), as a function of ‖X‖2, grows much faster than the
right hand side (note γ > 0), and therefore ‖X‖2 can be upper bounded by M , where M
depends on the values of f(X0), S and Λ.

In order to prove the lower bound, we consider the smallest eigenvalue of X denoted by
a and use the upper bound on the other eigenvalues to get:

f(X0) > f(X) > − log detX ≥ − log a− (p− 1) logM, (28)

which shows that m = e−f(X0)M−(p−1) is a lower bound for a.

We note that the conclusion of the lemma also holds if the conditions on Λ and S are
replaced by only the requirement that the diagonal elements of Λ are positive, see Banerjee
et al. (2008). We emphasize that Lemma 2 allows the extension of the convergence results
to the practically important case when the regularization does not penalize the diagonal,
i.e., Λii = 0 ∀i. In subsequent arguments we will continue to refer to the minimum and
maximum eigenvalues m and M established in Lemma 2.

Proposition 3 (corresponds to Property P1) For any X � 0 and symmetric D, there
exists an ᾱ > 0 such that for all α < ᾱ, the matrix X + αD satisfies the line search
condition (21).

Proof When α < σn(X)/‖D‖2 (where σn(X) stands for the smallest eigenvalue of X and
‖D‖2 is the induced 2-norm of D, i.e., the largest eigenvalue in magnitude of D), we have
‖αD‖2 < σn(X), which implies that X + αD � 0. So we can write:

f(X + αD)− f(X) = g(X + αD)− g(X) + ‖X + αD‖1,Λ − ‖X‖1,Λ
≤ g(X + αD)− g(X) + α(‖X +D‖1,Λ − ‖X‖1,Λ), by (22)

= α tr((∇g(X))TD) +O(α2) + α(‖X +D‖1,Λ − ‖X‖1,Λ)

= αδ +O(α2).

Therefore for any fixed 0 < σ < 1 and sufficiently small α, the line search condition (21)
must hold.

Proposition 4 (corresponds to Property P2) δ = δJ(X) as defined in the line search
condition (21) satisfies

δ ≤ −(1/‖X‖22)‖D∗‖2F ≤ −(1/M2)‖D∗‖2F , (29)

where M is as in Lemma 2.

Proof We first show that δ = δJ(X) in the line search condition (21) satisfies

δ = tr((∇g(X))TD∗) + ‖X +D∗‖1,Λ − ‖X‖1,Λ ≤ − vec(D∗)T∇2g(X) vec(D∗), (30)

where D∗ = D∗J(X) is the minimizer of the `1-regularized quadratic approximation defined
in (20).
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According to the definition of D∗ ≡ D∗J(X) in (20), for all 0 < α < 1 we have:

tr(∇g(X)TD∗) +
1

2
vec(D∗)T∇2g(X) vec(D∗) + ‖X +D∗‖1,Λ ≤

tr(∇g(X)TαD∗) +
1

2
vec(αD∗)T∇2g(X) vec(αD∗) + ‖X + αD∗‖1,Λ. (31)

We combine (31) and 22 to yield:

tr(∇g(X)TD∗) +
1

2
vec(D∗)T∇2g(X) vec(D∗) + ‖X +D∗‖1,Λ ≤

α tr(∇g(X)TD∗) +
1

2
α2 vec(D∗)T∇2g(X) vec(D∗) + α‖X +D∗‖1,Λ + (1− α)‖X‖1,Λ.

Therefore

(1−α)[tr(∇g(X)TD∗) + ‖X +D∗‖1,Λ−‖X‖1,Λ] +
1

2
(1−α2) vec(D∗)T∇2g(X) vec(D∗) ≤ 0.

Divide both sides by 1− α > 0 to get:

tr(∇g(X)TD∗) + ‖X +D∗‖1,Λ − ‖X‖1,Λ +
1

2
(1 + α) vec(D∗)T∇2g(X) vec(D∗) ≤ 0.

By taking the limit as α ↑ 1, we get:

tr(∇g(X)TD∗) + ‖X +D∗‖1,Λ − ‖X‖1,Λ ≤ − vec(D∗)T∇2g(X) vec(D∗),

which proves (30).

Since ∇2g(X) = X−1 ⊗X−1 is positive definite, (30) ensures that δ < 0 for all X � 0.
Since the updates in our algorithm satisfy the line search condition (21), we have established
that the function value is decreasing. It also follows that all the iterates {Xt}t=0,1,... belong
to the level set U defined by (23). Since ∇2g(X) = X−1 ⊗X−1, the smallest eigenvalue of
∇2g(X) is 1/‖X‖22, and we combine with Lemma 2 to get (29).

The eigenvalues of any iterate X are bounded by Lemma 2, and therefore ∇2g(X) =
X−1 ⊗ X−1 is Lipschitz continuous. Next, we prove that α = 1 satisfies the line search
condition in a neighborhood of the global optimum X∗.

Proposition 5 (corresponds to Property P3) Assume that ∇2g is Lipschitz continu-
ous, i.e., ∃L > 0 such that ∀t > 0 and any symmetric matrix D,

‖∇2g(X + tD)−∇2g(X)‖F ≤ L‖tD‖F = tL‖D‖F . (32)

Then, if X is close enough to X∗, the line search condition (21) will be satisfied with step
size α = 1.

Proof We need to derive a bound for the decrease in the objective function value. We
define g̃(t) = g(X+tD), which yields g̃′′(t) = vec(D)T∇2g(X+tD) vec(D). First, we bound
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|g̃′′(t)− g̃′′(0)|:

|g̃′′(t)− g̃′′(0)| = | vec(D)T (∇2g(X + tD)−∇2g(X)) vec(D)|
≤ ‖ vec(D)T (∇2g(X + tD)−∇2g(X))‖2‖ vec(D)‖2 (by Cauchy-Schwartz)

≤ ‖ vec(D)‖22‖∇2g(X + tD)−∇2g(X)‖2 (by definition of ‖ · ‖2 norm)

≤ ‖D‖2F ‖∇2g(X + tD)−∇2g(X)‖F (since ‖ · ‖2 ≤ ‖ · ‖F for any matrix)

≤ ‖D‖2F tL‖D‖F by (32)

= tL‖D‖3F .

Therefore, an upper bound for g̃′′(t):

g̃′′(t) ≤ g̃′′(0) + tL‖D‖3F = vec(D)T∇2g(X) vec(D) + tL‖D‖3F .

Integrate both sides to get

g̃′(t) ≤ g̃′(0) + t vec(D)T∇2g(X) vec(D) +
1

2
t2L‖D‖3F

= tr((∇g(X))TD) + t vec(D)T∇2g(X) vec(D) +
1

2
t2L‖D‖3F .

Integrate both sides again:

g̃(t) ≤ g̃(0) + t tr((∇g(X))TD) +
1

2
t2 vec(D)T∇2g(X) vec(D) +

1

6
t3L‖D‖3F .

Taking t = 1 we have

g(X +D) ≤ g(X) + tr(∇g(X)TD) +
1

2
vec(D)T∇2g(X) vec(D) +

1

6
L‖D‖3F

f(X +D) ≤ g(X) + ‖X‖1,Λ + (tr(∇g(X)TD) + ‖X +D‖1,Λ − ‖X‖1,Λ)

+
1

2
vec(D)T∇2g(X) vec(D) +

1

6
L‖D‖3F

≤f(X) + δ +
1

2
vec(D)T∇2g(X) vec(D) +

1

6
L‖D‖3F

≤f(X) +
δ

2
+

1

6
L‖D‖3F by (30)

≤f(X) + (
1

2
− 1

6
LM2‖D‖F )δ (by Proposition 4)

≤f(X) + σδ (assuming D is close to 0).

The last inequality holds if 1/2−LM2‖D‖F /6 > σ which is guaranteed if X is close enough
to X∗ and consequently D is close to 0 and σ < 0.5. (Note δ < 0 as well.) In this case the
line search condition (21) holds with α = 1.
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3.3 Identifying Which Variables to Update

In this section, we use the stationary condition of the Gaussian MLE problem to select
a subset of variables to update in any Newton direction computation. Specifically, we
partition the variables into free and fixed sets based on the value of the gradient at the start
of the outer loop that computes the Newton direction. We define the free set Sfree and
fixed set Sfixed as:

Xij ∈ Sfixed if |∇ijg(X)| ≤ λij , and Xij = 0,

Xij ∈ Sfree otherwise. (33)

We will now show that a Newton update restricted to the fixed set of variables would not
change any of the coordinates in that set. In brief, the gradient condition |∇ijg(X)| ≤ λij
entails that the inner coordinate descent steps, according to the update in (16), would set
these coordinates to zero, so they would not change since they were zero to begin with.

To derive the optimality condition, we begin by introducing the minimum-norm subgra-
dient of f and relate it to the optimal solution X∗ of (3).

Definition 6 The minimum-norm subgradient gradSij f(X) is defined as follows:

gradSij f(X) =


∇ijg(X) + λij if Xij > 0,

∇ijg(X)− λij if Xij < 0,

sign(∇ijg(X)) max(|∇ijg(X)| − λij , 0) if Xij = 0.

Lemma 7 For any index set J , gradSijf(X) = 0 ∀(i, j) ∈ J if and only if ∆∗ = 0 is a
solution of the following optimization problem:

arg min
∆

f(X + ∆) such that ∆ij = 0 ∀(i, j) /∈ J. (34)

Proof Any optimal solution ∆∗ for (34) must satisfy the following, for all (i, j) ∈ J ,

∇ijg(X + ∆∗)


= −λij if Xij + ∆∗ij > 0,

= λij if Xij + ∆∗ij < 0,

∈ [−λij λij ] if Xij + ∆∗ij = 0.

(35)

It can be seen immediately that ∆∗ = 0 satisfies (35) if and only if gradSij f(X) = 0 for all
(i, j) ∈ J .

In our case, ∇g(X) = S −X−1 and therefore

gradSijf(X) =


(S −X−1)ij + λij if Xij > 0,

(S −X−1)ij − λij if Xij < 0,

sign((S −X−1)ij) max(|(S −X−1)ij | − λij , 0) if Xij = 0.

Our definition of the fixed and free sets is clearly motivated by the minimum norm subgra-
dient. A variable Xij belongs to the fixed set if and only if Xij = 0 and gradSijf(X) = 0.
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Therefore, taking J = Sfixed in Lemma 7, we can show that for any Xt and corresponding
fixed and free sets Sfixed and Sfree as defined by (33), ∆∗ = 0 is the solution of the following
optimization problem:

arg min
∆

f(Xt + ∆) such that ∆ij = 0 ∀(i, j) ∈ Sfree.

Based on the above property, if we perform block coordinate descent restricted to the
fixed set, then no updates would occur. We then perform the coordinate descent updates
restricted to only the free set to find the Newton direction. With this modification, the
number of variables over which we perform the coordinate descent update (16) can be
potentially reduced from p2 to the number of non-zeros in Xt. When the solution is sparse
(depending on the value of Λ) the number of free variables can be much smaller than p2 and
we can obtain huge computational gains as a result. In essence, we very efficiently select a
subset of the coordinates that need to be updated.

The attractive facet of this modification is that it leverages sparsity of the solution and
intermediate iterates in a manner that falls within the block coordinate descent framework
of Tseng and Yun (2007). The index sets J0, J1, . . . corresponding to the block coordinate
descent steps in the general setting of Tseng and Yun (2007)[p. 392] need to satisfy a
Gauss-Seidel type of condition: ⋃

j=0,...,T−1

Jt+j ⊇ N ∀t = 1, 2, . . . (36)

for some fixed T , where N denotes the full index set. In our framework J0, J2, . . . denote
the fixed sets at various iterations, and J1, J3, . . . denote the free sets. Since J2i and J2i+1

is a partitioning of N the choice T = 3 will suffice. But will the size of the free set be
small? We initialize X0 to a diagonal matrix, which is sparse. The following lemma shows
that after a finite number of iterations, the iterates Xt will have a similar sparsity pattern
as the limit X∗. Lemma 8 is actually an immediate consequence of Lemma 14 in Section 4.

Lemma 8 Assume that {Xt} converges to X∗, the optimal solution of (3). If for some
index pair (i, j), |∇ijg(X∗)| < λij (so that X∗ij = 0), then there exists a constant t̄ > 0 such
that for all t > t̄, the iterates Xt satisfy

|∇ijg(Xt)| < λij and (Xt)ij = 0. (37)

Note that |∇ijg(X∗)| < λij implies X∗ij = 0 from the optimality condition of (3). This
theorem shows that after t̄-th iteration we can ignore all the indexes that satisfies (37), and
in practice we can use (37) as a criterion for identifying the fixed set. A similar variable
selection strategy is used in SVM (so called shrinking) and `1-regularized logistic regression
problems as mentioned in Yuan et al. (2010). In our experiments, we demonstrate that this
strategy reduces the size of the free set very quickly.

Lemma 8 suggests that QUIC can identify the zero pattern in finite steps. As we will
prove later, QUIC has an asymptotic quadratic convergence rate and therefore once the zero
pattern is correctly recognized, the algorithm often converges in a few additional iterations.
Hence, the time needed to converge to the global optimum is not much more than the time
needed to arrive at the zero pattern of the inverse covariance matrix.
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3.4 The Block-Diagonal Structure of X∗

It has been shown recently (Mazumder and Hastie, 2012; Witten et al., 2011) that when
the thresholded covariance matrix E defined by Eij = S(Sij , λ) = sign(Sij) max(|Sij |−λ, 0)
has the following block-diagonal structure:

E =


E1 0 . . . 0
0 E2 . . . 0
...

...
...

...
0 0 0 Ek

 , (38)

then the solution X∗ of the inverse covariance estimation problem (2) also has the same
block-diagonal structure:

X∗ =


X∗1 0 . . . 0
0 X∗2 . . . 0
...

...
...

...
0 0 0 X∗k

 .
This result can be extended to the case when the elements are penalized differently, i.e.,
λij ’s are different. Then, if Eij = S(Sij , λij) is block diagonal, so is the solution X∗ of
(3), see Hsieh et al. (2012). Thus each X∗i can be computed independently. Based on this
observation one can decompose the problem into sub-problems of smaller sizes, which can
be solved much faster. In the following, we show that our updating rule and fixed/free set
selection technique can automatically detect this block-diagonal structure for free.

Recall that we have a closed form solution in the first iteration when the input is a
diagonal matrix. Based on (19), since Xij = 0 for all i 6= j in this step, we have

Dij = XiiXjjS(−Sij , λij) = −XiiXjjS(Sij , λij) for all i 6= j.

We see that after the first iteration the nonzero pattern of X will be exactly the same as
the nonzero pattern of the thresholded covariance matrix E as depicted in (38). In order
to establish that the same is true at each subsequent step, we complete our argument using
induction, by showing that the non-zero structure is preserved.

More precisely, we show that the off-diagonal blocks always belong to the fixed set
if |Sij | ≤ λij . Recall the definition of the fixed set in (33). We need to check whether
|∇ijg(X)| ≤ λij for all (i, j) in the off-diagonal blocks of E, whenever X has the same
block-diagonal structure as E. Taking the inverse preserves the diagonal structure, and
therefore ∇ijg(X) = Sij −X−1

ij = Sij for all such (i, j). We conclude noting that Eij = 0
implies that |∇ijg(X)| ≤ λij , meaning that (i, j) will belong to the fixed set.

We decompose the matrix into smaller blocks prior to running Cholesky factorization
to avoid the O(p3) time complexity on the whole problem. The connected components of
X can be detected in O(‖X‖0) time, which is very efficient when X is sparse. A detailed
description of QUIC is presented in Algorithm 2.

4. Convergence Analysis

In Section 3, we introduced the main ideas behind our QUIC algorithm. In this section, we
first prove that QUIC converges to the global optimum, and then show that the convergence
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Algorithm 2: QUadratic approximation for sparse Inverse Covariance estimation
(QUIC)

Input : Empirical covariance matrix S (positive semi-definite p× p), regularization
parameter matrix Λ, initial X0 � 0, parameters 0 < σ < 0.5, 0 < β < 1

Output: Sequence of Xt converging to arg minX�0 f(X), where
f(X) = g(X) + h(X), where g(X) = − log detX + tr(SX), h(X) = ‖X‖1,Λ.

1 Compute W0 = X−1
0 .

2 for t = 0, 1, . . . do
3 D = 0, U = 0
4 while not converged do
5 Partition the variables into fixed and free sets:
6 Sfixed := {(i, j) | |∇ijg(Xt)| ≤ λij and (Xt)ij = 0},

Sfree := {(i, j) | |∇ijg(Xt)| > λij or (Xt)ij 6= 0}.
7 for (i, j) ∈ Sfree do
8 a = w2

ij + wiiwjj , b = sij − wij + wT
·iu·j , c = xij + dij

9 µ = −c+ S(c− b/a, λij/a)
10 dij ← dij + µ, ui· ← ui· + µwj·, uj· ← uj· + µwi·
11 end

12 end
13 for α = 1, β, β2, . . . do
14 Compute the Cholesky factorization LLT = Xt + αD.
15 if Xt + αD � 0 then
16 Compute f(Xt + αD) from L and Xt + αD
17 if f(Xt + αD) ≤ f(Xt) + ασ [tr(∇g(Xt)D) + ‖Xt +D‖1,Λ − ‖X‖1,Λ] then
18 break
19 end

20 end

21 end
22 Xt+1 = Xt + αD

23 Compute Wt+1 = X−1
t+1 reusing the Cholesky factor.

24 end

rate is quadratic. Banerjee et al. (2008) showed that for the special case where Λij = λ
the optimization problem (2) has a unique global optimum and that the eigenvalues of the
primal optimal solution X∗ are bounded. In the following, we show this result for more
general Λ where only the off-diagonal elements need to be positive.

Theorem 9 There exists a unique minimizer X∗ for the optimization problem (3), where
λij > 0 for i 6= j, and λij ≥ 0.

Proof According to Lemma 2, the level set U defined in (23) contains all the iterates, and
it is in turn contained in the compact set S ≡ {X | mI � X � MI}. According to the
Weierstrass extreme value theorem (Apostol, 1974), any continuous function in a compact
set attains its minimum. Furthermore, ∇2g(X) = X−1 ⊗ X−1 implies ∇2g(X) � M−2I.
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Since ‖X‖1,Λ is convex and − log det(X) is strongly convex, we have that f(X) is strongly
convex on the compact set S, and therefore the minimizer X∗ is unique (Apostol, 1974).

4.1 Convergence Guarantee

In order to show that QUIC converges to the optimal solution, we consider a more general
setting of the quadratic approximation algorithm: at each iteration, the iterate Yt is updated
by Yt+1 = Yt + αtD

∗
Jt

(Yt) where Jt is a subset of variables chosen to update at iteration
t, D∗Jt(Yt) is the Newton direction restricted to Jt defined by (20), and αt is the step size
selected by the Armijo rule given in Section 3.2. The algorithm is summarized in Algorithm
3. Similar to the block coordinate descent framework of Tseng and Yun (2007), we assume
the index set Jt satisfies a Gauss-Seidel type of condition:⋃

j=0,...,T−1

Jt+j ⊇ N ∀t = 1, 2, . . . . (39)

Algorithm 3: General Block Quadratic Approximation method for Sparse Inverse
Covariance Estimation

Input : Empirical covariance matrix S (positive semi-definite p× p), regularization
parameter matrix Λ, initial Y0, inner stopping tolerance ε

Output: Sequence of Yt.
1 for t = 0, 1, . . . do
2 Generate a variable subset Jt.
3 Compute the Newton direction D∗t ≡ D∗Jt(Yt) by (20).

4 Compute the step-size αt using the Armijo-rule based step-size selection in (21).
5 Update Yt+1 = Yt + αtD

∗
t .

6 end

In QUIC, J0, J2, . . . denote the fixed sets and J1, J3, . . . denote the free sets. If
{Xt}t=0,1,2,... denotes the sequence generated by QUIC, then

Y0 = Y1 = X0, Y2 = Y3 = X1, . . . , Y2i = Y2i+1 = Xi.

Moreover, since each J2i and J2i+1 is a partitioning of N , the choice T = 3 will satisfy (39).
In the rest of this section, we show that {Yt}t=0,1,2,... converges to the global optimum, thus
{Xt}t=0,1,2,... generated by QUIC also converges to the global optimum.

Our first step towards the convergence proof is a lemma on convergent subsequences.

Lemma 10 For any convergent subsequence Yst → Ȳ where Ȳ is a limit point, we have
D∗st ≡ D

∗
Jst

(Yst)→ 0.

Proof The objective value decreases according to the line search condition (21) and
Proposition 4. According to Lemma 2, f(Yst) cannot converge to negative infinity, so
f(Yst)− f(Yst+1)→ 0. The line search condition (21) implies that αstδst → 0.
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We proceed to prove the statement by contradiction. If D∗st does not converge to 0,
then there exists an infinite index set T ⊆ {s1, s2, . . .} and η > 0 such that ‖D∗t ‖F > η
for all t ∈ T . According to Proposition 4, δst is bounded away from 0, therefore δst 6→ 0,
while αst → 0. We can assume without loss of generality that αst < 1 ∀t, that is the line
search condition is not satisfied in the first attempt. We will work in this index set T in
the derivations that follow.

The line search step size αt < 1 (t ∈ T ) satisfies (21), but αt = αt/β does not satisfy (21)
by the minimality of our line search procedure. So we have:

f(Yt + αtD
∗
t )− f(Yt) > σαtδt. (40)

If Yt + αtD
∗
t is not positive definite, then as is standard, f(Yt + αtD

∗
t ) = ∞, so (40) still

holds. We expand (40) and apply 22 to get

σαtδt ≤ g(Yt + αtD
∗
t )− g(Yt) + ‖Yt + αtD

∗
t ‖1,Λ − ‖Yt‖1,Λ

≤ g(Yt + αtD
∗
t )− g(Yt) + αt(‖Yt +D∗t ‖1,Λ − ‖Yt‖1,Λ), ∀t ∈ T .

By the definition of δt, we have:

σδt ≤
g(Yt + αtD

∗
t )− g(Yt)

αt
+ δt − tr(∇g(Yt)

TD∗t ),

(1− σ)(−δt) ≤
g(Yt + αtD

∗
t )− g(Yt)

αt
− tr(∇g(Yt)

TD∗t ).

By Proposition 4 we have δt ≤ −(1/M2)‖D∗t ‖2F , so using ‖D∗t ‖ to denote ‖D∗t ‖F for the rest
of the proof, we get

(1− σ)M−2‖D∗t ‖2 ≤
g(Yt + αtD

∗
t )− g(Yt)

αt
− tr(∇g(Yt)

TD∗t )

(1− σ)M−2‖D∗t ‖ ≤
g
(
Yt + αt‖D∗t ‖

D∗t
‖D∗t ‖

)
− g(Yt)

αt‖D∗t ‖
− tr

(
∇g(Yt)

T D∗t
‖D∗t ‖

)
.

We set α̂t = αt‖D∗t ‖. Since ‖D∗t ‖ > η for all t ∈ T we have:

(1− σ)M−2η <
g
(
Yt + α̂t

D∗t
‖D∗t ‖

)
− g(Yt)

α̂t
− tr

(
∇g(Yt)

T D∗t
‖D∗t ‖

)

=
α̂t tr

(
∇g(Yt)

D∗t
‖D∗t ‖

)
+O(α̂2

t )

α̂t
− tr

(
∇g(Yt)

T D∗t
‖D∗t ‖

)
= O(α̂t). (41)

Again, by Proposition 4,

−αtδt ≥ αtM−2‖D∗t ‖2 > M−2αt‖D∗t ‖η.

Since {αtδt}t → 0, it follows that {αt‖D∗t ‖}t → 0 and {α̂t}t → 0. Taking limit of (41) as
t ∈ T and t→∞, we have

(1− σ)M−2η ≤ 0,
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a contradiction, finishing the proof.

Now that we have proved that D∗Jt converges to zero for the converging subsequence,

we next show that D∗J is closely related to the minimum-norm subgradient gradSf(Y ) (see
Definition 6), which in turn is an indicator of optimality as proved in Lemma 7.

Lemma 11 For any index set J and positive definite Y , D∗J(Y ) = 0 if and only if gradSij f(Y ) =
0 for all (i, j) ∈ J .

Proof The optimality condition of (20) can be written as

∇ijg(X) + (∇2g(X) vec(D))ij


= −λ if Xij +Dij > 0

= λ if Xij +Dij < 0

∈ [−λ, λ] if Xij +Dij = 0,

∀(i, j) ∈ J. (42)

D∗J(Y ) = 0 if and only if D∗ = 0 satisfies (42), and this condition is equivalent to (35)
restricted to (i, j) ∈ J , which in turn is equivalent to the optimality condition of f . Therefore
D∗J(Y ) = 0 iff gradSij f(Y ) = 0 for all (i, j) ∈ J .

Based on these lemmas, we are now able to prove our main convergence theorem.

Theorem 12 Algorithm 3 converges to the unique global optimum Y ∗.

Proof Since all the iterates Yt are in a compact set (as shown in Lemma 2), there exists
a subsequence {Yt}T that converges to a limit point Ȳ . Since the cardinality of each index
set Jt selected is finite, we can further assume that Jt = J̄0 for all t ∈ T̄ , where T̄ is a
subsequence of T . From Lemma 10, D∗

J̄0
(Yt)→ 0. By continuity of ∇g(Y ) and ∇2g(Y ), it

is easy to show that D∗
J̄0

(Yt) → D∗
J̄0

(Ȳ ). Therefore D∗
J̄0

(Ȳ ) = 0. Based on Lemma 11, we
have

gradSijf(Y ) = 0 for all (i, j) ∈ J̄0.

Furthermore, {D∗
J̄0

(Yt)}T → 0 and ‖Yt−Yt+1‖F ≤ ‖D∗J̄0(Yt)‖F , so {Yt+1}t∈T also converges

to Ȳ . By considering a subsequence of T if necessary, we can further assume that Jt+1 = J̄1

for all t ∈ T . By the same argument, we can show that {D∗Jt+1
(Yt)}T → 0, so D∗

J̄1
(Ȳ ) = 0.

Similarly, we can show that D∗
J̄t

(Ȳ ) = 0 ∀t = 0, . . . , T−1 can be assumed for an appropriate

subset of T . With assumption (39) and Lemma 11 we have

gradSij f(Ȳ ) = 0 ∀i, j. (43)

Using Lemma 7 with J as the set of all variables, we can show that (43) implies that Ȳ is
the global optimum.

It is straightforward to generalize Theorem 12 to prove the convergence of block coordi-
nate descent when the Hessian ∇2g(X) is replaced by another positive definite matrix. The
proof strategies are similar to Tseng and Yun (2007) and we omit the detailed derivation
in this paper.
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4.2 Asymptotic Convergence Rate

Newton methods on constrained minimization problems:
The convergence rate of the Newton method on bounded constrained minimization has
been studied in Levitin and Polyak (1966) and Dunn (1980). Here, we briefly mention their
results.

Assume we want to solve a constrained minimization problem

min
x∈Ω

F (x),

where Ω is a nonempty subset of Rn denoting the constraint set and F : Rn → R has a
second derivative ∇2F (x). Then beginning from x0, the natural Newton updates entail
computing the (k + 1)-st iterate xk+1 as

xk+1 = arg min
x∈Ω
∇F (xk)

T (x− xk) +
1

2
(x− xk)

T∇2F (xk)(x− xk). (44)

For simplicity, we assume that F is strictly convex, and has a unique minimizer x∗ in Ω.
Then the following theorem holds.

Theorem 13 (Theorem 3.1 in Dunn, 1980) Assume F is strictly convex, has a unique
minimizer x∗ in Ω, and that ∇2F (x) is Lipschitz continuous. Then for all x0 sufficiently
close to x∗, the sequence {xk} generated by (44) converges quadratically to x∗.

This theorem is proved in Dunn (1980). In our case, the objective function f(X) is non-
smooth so Theorem 13 does not directly apply. Instead, we will first show that after a finite
number of iterations the sign of the iterates {Xt} generated by QUIC will not change, so
that we can then use Theorem 13 to establish asymptotic quadratic convergence.

Quadratic convergence rate for QUIC:
Unlike as in (44), our Algorithm 3 does not perform an unrestricted Newton update: it iter-
atively selects subsets of variables {Jt}t=1,... (fixed and free sets), and computes the Newton
direction restricted to the free sets. In the following, we show that the sequence {Xt}t=1,2,...

generated by QUIC does ultimately converge quadratically to the global optimum.
Assume X∗ is the optimal solution, then we can divide the index set with λij 6= 0 into

three subsets:

P = {(i, j) | X∗ij > 0}, N = {(i, j) | X∗ij < 0}, Z = {(i, j) | X∗ij = 0}. (45)

From the optimality condition for X∗,

∇ijg(X∗)


= −λij if (i, j) ∈ P,
= λij if (i, j) ∈ N,
∈ [−λij , λij ] if (i, j) ∈ Z.

(46)

Lemma 14 Assume that the sequence {Xt} converges to the global optimum X∗. Then
there exists a t̄ such that for all t > t̄,

(Xt)ij


≥ 0 if (i, j) ∈ P,
≤ 0 if (i, j) ∈ N,
= 0 if (i, j) ∈ Z.

(47)
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Proof We prove the case for (i, j) ∈ P by contradiction, the other two cases can be
handled similarly. If we cannot find a t̄ satisfying the first condition in (47), then there
exists an infinite subsequence {Xat} such that for each at there exists a (i, j) ∈ P such that
(Xat)ij < 0. Since the cardinality of P is finite, we can further find a specific pair (i, j) ∈ P
such that (Xst)ij < 0 for all st, where st is a subsequence of at. We consider the update
from Xst−1 to Xst . From Lemma 5, we can assume that st is large enough so that the step
size equals 1, therefore Xst = Xst−1 +D∗(Xst−1) where D∗(Xst−1) is defined in (20). Since
(Xst)ij = (Xst−1)ij + (D∗(Xst−1))ij < 0, from the optimality condition of (20) we have(

∇g(Xst−1) +∇2g(Xst−1) vec(D∗(Xst−1))
)
ij

= λij . (48)

Since D∗(Xst−1) converges to 0, (48) implies that {∇ijg(Xst−1)} will converge to λij . How-
ever, (46) implies ∇ijg(X∗) = −λij , and by the continuity of ∇g we get that {∇ijg(Xt)}
converges to ∇ijg(X∗) = −λij , a contradiction, finishing the proof.

The following lemma shows that the coordinates from the fixed set remain zero after a finite
number of iterations.

Lemma 15 Assume Xt → X∗. There exists a t̄ > 0 such that variables in P or N will not
be selected to be in the fixed set Sfixed, when t > t̄. That is,

Sfixed ⊆ Z.

Proof Since Xt converges to X∗, (Xt)ij converges to X∗ij > 0 if (i, j) ∈ P and to X∗ij < 0
if (i, j) ∈ N . Recall that (i, j) belongs to the fixed set only if (Xt)ij = 0. When t is large
enough, (Xt)ij 6= 0 when Xt ∈ P ∪ N , therefore P and N will be disjoint from the fixed
set. Moreover, by the definition of the fixed set (33), indexes with λij = 0 will never be
selected. We proved that the fixed set will be a subset of Z when t is large enough.

Theorem 16 The sequence {Xt} generated by the QUIC algorithm converges quadratically
to X∗, that is for some constant κ > 0,

lim
t→∞

‖Xt+1 −X∗‖F
‖Xt −X∗‖2F

= κ.

Proof First, if the index sets P,N and Z (related to the optimal solution) are given,
the optimum of (2) is the same as the optimum of the following constrained minimization
problem:

min
X

− log det(X) + tr(SX) +
∑

(i,j)∈P

λijXij −
∑

(i,j)∈N

λijXij

s.t. Xij ≥ 0 ∀(i, j) ∈ P, Xij ≤ 0 ∀(i, j) ∈ N, Xij = 0 ∀(i, j) ∈ Z. (49)

In the following, we show that when t is large enough, QUIC solves the minimization
problem described by (49).
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1. The constraints in (49) are satisfied by QUIC iterates after a finite number of steps,
as shown in Lemma 14. Thus, the `1-regularized Gaussian MLE (3) is equivalent to
the smooth constrained objective (49), since the constraints in (49) are satisfied when
solving (3).

2. Since the optimization problem in (49) is smooth, it can be solved using constrained
Newton updates as in (44). The QUIC update direction D∗J(Xt) is restricted to a
set of free variables in J . This is exactly equal to the unrestricted Newton update as
in (44), after a finite number of steps, as established by Lemma 15. In particular, at
each iteration the fixed set is contained in Z, which is the set which always satisfies
(D∗t )Z = 0 for large enough t.

3. Moreover, by Lemma 5 the step size is α = 1 when t is large enough.

Therefore our algorithm is equivalent to the constrained Newton method in (44), which
in turn converges quadratically to the optimal solution of (49). Since the revised prob-
lem (49) and our original problem (3) has the same minimum, we have shown that QUIC
converges quadratically to the optimum of (3).

Note that the constant κ is an increasing function of the Lipschitz constant of ∇2g(X)
(as shown in Dunn, 1980), which is related to the quality of quadratic approximation.
We have shown in Lemma 2 that mI � X � MI, therefore the Lipschitz constant of
∇2g(X) = X−1 ⊗X−1 is also upper bounded.

In the next section, we show that this asymptotic convergence behavior of QUIC is
corroborated empirically as well.

5. Experimental Results

We begin this section by comparing QUIC to other methods on synthetic and real data
sets. Then, we present some empirical analysis of QUIC regarding the use of approximate
Newton directions and effects of parameterization.

5.1 Comparisons with Other Methods

We now compare the performance of QUIC on both synthetic and real data sets to other
state-of-the-art methods. We have implemented QUIC in C++ with MATLAB interface,
and all experiments were executed on 2.83GHz Xeon X5440 machines with 32G RAM and
Linux OS.

We include the following algorithms in our comparisons:

• ALM: the Alternating Linearization Method proposed by Scheinberg et al. (2010).
We use their MATLAB source code for the experiments.

• ADMM: another implementation of the alternating linearization method implemented
by Boyd et al. (2012). The MATLAB code can be downloaded from http://www.

stanford.edu/~boyd/papers/admm/. We found that the default parameters (which
we note are independent of the regularization penalty) yielded slow convergence; we
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set the augmented Lagrangian parameter to ρ = 50 and the over-relaxation parameter
to α = 1.5. These parameters achieved the best speed on the ER data set.

• glasso: the block coordinate descent method proposed by Friedman et al. (2008).
We use the latest version glasso 1.7 downloaded from http://www-stat.stanford.

edu/~tibs/glasso/. We directly call their Fortran procedure using a MATLAB
interface.

• PSM: the Projected Subgradient Method proposed by Duchi et al. (2008). We use
the MATLAB source code provided in the PQN package (available at http://www.

cs.ubc.ca/~schmidtm/Software/PQN.html).

• SINCO: the greedy coordinate descent method proposed by Scheinberg and Rish
(2010). The code can be downloaded from https://projects.coin-or.org/OptiML/

browser/trunk/sinco.

• IPM: An inexact interior point method proposed by Li and Toh (2010). The source
code can be downloaded from http://www.math.nus.edu.sg/~mattohkc/Covsel-0.

zip.

• PQN: the projected quasi-Newton method proposed by Schmidt et al. (2009). The
source code can be downloaded from http://www.di.ens.fr/~mschmidt/Software/

PQN.html.

In the following, we compare QUIC and the above state-of-the-art methods on synthetic
and real data sets with various settings of λ. Note that we use the identity matrix as the
initial point for QUIC, ADMM, SINCO, and IPM. Since the identity matrix is not a dual
feasible point for dual methods (including glasso, PSM and PQN), we use S + λI as the
dual initial point, which is the default setting in their original package.

5.1.1 Experiments on Synthetic Data Sets

We first compare the run times of the different methods on synthetic data. We generate
the two following types of graph structures for the underlying Gaussian Markov Random
Fields:

• Chain Graphs: The ground truth inverse covariance matrix Σ−1 is set to be Σ−1
i,i−1 =

−0.5 and Σ−1
i,i = 1.25.

• Graphs with Random Sparsity Structures: We use the procedure given in Example 1
in Li and Toh (2010) to generate inverse covariance matrices with random non-zero
patterns. Specifically, we first generate a sparse matrix U with nonzero elements
equal to ±1, set Σ−1 to be UTU and then add a diagonal term to ensure Σ−1 is
positive definite. We control the number of nonzeros in U so that the resulting Σ−1

has approximately 10p nonzero elements.

Given the inverse covariance matrix Σ−1, we draw a limited number, n = p/2 i.i.d. sam-
ples from the corresponding GMRF distribution, in order to simulate the high-dimensional
setting.
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Data set Parameter Properties of the solution

pattern p ‖Σ−1‖0 λ ‖X∗‖0 TPR FPR

chain 1000 2998 0.4 3028 1 3× 10−5

chain 4000 11998 0.4 11998 1 0

chain 10000 29998 0.4 29998 1 0

random
1000 10758

0.12 10414 0.69 4× 10−3

0.075 55830 0.86 0.05

random 4000 41112
0.08 41936 0.83 6× 10−3

0.05 234888 0.97 0.05

random 10000 91410
0.08 89652 0.90 4× 10−6

0.04 392786 1 3× 10−3

Table 1: The parameters and properties of the solution for the synthetic data sets. p stands
for dimension, ‖Σ−1‖0 indicates the number of nonzeros in ground truth inverse
covariance matrix, ‖X∗‖0 is the number of nonzeros in the solution. TPR and
FPR denote the true and false recovery rates, respectively, defined in (50).

Table 1 shows the attributes of the synthetic data sets that we used in the timing
comparisons. The dimensionality varies from {1000, 4000, 10000}. For chain graphs, we
select λ so that the solution has (approximately) the correct number of nonzero elements.
In order to test the performance of the algorithms under different values of λ, for the
case of random-structured graphs we considered two λ values; one of which resulted in the
discovery of the correct number of non-zeros and one which resulted in five-times thereof.
We measured the accuracy of the graph structure recovered by the true positive rate (TPR)
and false positive rate (FPR) defined as

TPR =
|{(i, j) | (X∗)ij > 0 and Qij > 0}|

|{(i, j) | Qij > 0}|
,FPR =

|{(i, j) | (X∗)ij > 0 and Qij = 0}|
|{(i, j) | Qij = 0}|

,

(50)

where Q is the ground truth sparse inverse covariance.

Since QUIC does not natively compute a dual solution, the duality gap cannot be used
as a stopping condition.2 In practice, we can use the minimum-norm sub-gradient (see
Definition 6) as the stopping condition. There is no additional computational cost to this
approach because X−1 is computed as part of the QUIC algorithm. In the experiments, we
report the time for each algorithm to achieve ε-accurate solution defined by f(Xk)−f(X∗) <
εf(X∗). The global optimum X∗ is computed by running QUIC until it converges to a
solution with ‖ gradS f(Xt)‖ < 10−13.

Table 2 shows the results for ε = 10−2 and 10−6, where ε = 10−2 tests the ability of the
algorithm to get a good initial guess (the nonzero structure), and ε = 10−6 tests whether the
algorithm can achieve an accurate solution. Table 2 shows that QUIC is consistently and

2. Note that W = X−1 cannot be expected to satisfy the dual constraints |Wij − Sij | ≤ λij . One could
project X−1 in order to enforce the constraints and use the resulting matrix to compute the duality gap.
Our implementation provides this computation only if the user requests it.
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(a) Objective value versus time on
chain1000
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(b) Objective value versus time on ran-
dom1000
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(c) True positive rate versus time on
chain1000
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(d) True positive rate versus time on ran-
dom1000
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(e) False positive rate versus time on
chain1000
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Figure 1: Comparison of algorithms on two synthetic data sets: chain1000 and random1000.
The regularization parameter λ is chosen to recover (approximately) correct num-
ber of nonzero elements (see Table 1). We can see that QUIC achieves a solution
with better objective function value as well as better true positive and false pos-
itive rates in both data sets. Notice that each marker in the figures indicates one
iteration. Note that all results are averaged over 5 replicated runs.

overwhelmingly faster than other methods, both initially with ε = 10−2, and at ε = 10−6.
Moreover, for the p = 10000 random pattern, there are p2 = 100 million variables and the

2937



Hsieh, Sustik, Dhillon and Ravikumar

Parameters Time (in seconds)

pattern p λ ε QUIC ALM Glasso PSM IPM SINCO PQN ADMM

chain 1000 0.4
10−2 < 1 19 9 16 86 120 110 62
10−6 2 42 20 35 151 521 210 281

chain 4000 0.4
10−2 11 922 460 568 3458 5246 672 1028
10−6 54 1734 1371 1258 5754 * 10525 2584

chain 10000 0.4
10−2 217 13820 10250 8450 * * * *
10−6 987 28190 * 19251 * * * *

random 1000
0.12

10−2 < 1 42 7 20 72 61 33 35
10−6 1 28250 15 60 117 683 158 252

0.075
10−2 1 66 14 24 78 576 15 56
10−6 7 * 43 92 146 4449 83 *

random 4000
0.08

10−2 23 1429 864 1479 4928 7375 2052 1025
10−6 160 * 1743 4232 8097 * 4387 *

0.05
10−2 66 * 2514 2963 5621 * 2746 *
10−6 479 * 5712 9541 13650 * 8718 *

random 10000
0.08

10−2 338 26270 14296 * * * * *
10−6 1125 * * * * * * *

0.04
10−2 804 * * * * * * *
10−6 2951 * * * * * * *

Table 2: Running time comparisons on synthetic data sets. See also Table 1 regarding the
data set properties. We use ∗ to indicate that the run time exceeds 30,000 seconds
(8.3 hours). The results show that QUIC is overwhelmingly faster than other
methods, and is the only one which is able to scale up to solve problems with
p = 10000.

selection of fixed/free sets helps QUIC to focus on a small subset of the variables. We
converge to the solution in about 15 minutes, while other methods fail to obtain even an
initial guess within 8 hours.

In some applications, researchers are primarily interested in just the graph structure
represented by the solution. Therefore, in addition to the objective function value, we fur-
ther compare the true positive and false positive rates of the nonzero pattern of the iterates
Xt obtained by each algorithm. In Figure 1, we use two synthetic data sets, chain1000 and
random1000, as examples. For each algorithm, we plot the objective function value, true
positive rate, and false positive rate of the iterates Xt versus run time. For both ground
truth pattern we generate 5 data sets and report the average results in Figure 1. For the
methods that solve the dual problem, the sparse inverse covariance matrix Xt = W−1

t is
usually dense, so we consider elements with absolute value larger than 10−6 as nonzero
elements. We can see that QUIC not only obtains lower objective function value efficiently,
but also recovers the ground truth structure of GMRF faster than other methods.
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5.1.2 Experiments on Real Data sets

We use the real world biology data sets preprocessed by Li and Toh (2010) to compare
the performance of our method with other state-of-the-art methods. In the first set of
experiments, we set the regularization parameter λ to be 0.5, which achieves reasonable
sparsity for the following data sets: Estrogen (p = 692), Arabidopsis (p = 834), Leukemia
(p = 1, 225), Hereditary (p = 1, 869). In Figure 2 we plot the relative error (f(Xt) −
f(X∗))/f(X∗) (on a log scale) against time in seconds. We can observe from Figure 2 that
under the setting of large λ and sparse solution, QUIC can be seen to achieve super-linear
convergence while other methods exhibit at most a linear convergence. Overall, we see that
QUIC can be five times faster than other methods, and can be expected to be even faster
if a higher accuracy is desired.
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Figure 2: Comparison of algorithms on real data sets with λ = 0.5. The results show that
QUIC converges faster than the other methods. Notice that each marker in the
figures indicates one iteration. All the results are averaged over five runs.
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In the second set of experiments, we compare the algorithms under different values of
the regularization parameter λ on the ER data set. In Figure 2(a) we show the results for
λ = 0.5. We then decrease λ to 0.1, 0.05, 0.01 using the same data sets and show the results
in Figure 6. A smaller λ yields a denser solution, and we list the density of the converged
solution X∗ in Figure 6. From Figure 6 we can see that QUIC is the most efficient method
when λ is large (solution is sparse), but IPM and PSM outperform QUIC when λ is small
(solution is dense). However, such cases are usually not so useful in practice because when
solving the `1-regularized MLE problem one usually wants a sparse graph structure for the
GMRF. The main reason that QUIC is so efficient for large λ is that with fixed/free set
selection, the coordinate descent method can focus on a small portion of variables, while in
PSM and IPM the whole matrix is updated at each iteration.

5.2 Empirical Analysis of QUIC

Next we present some empirical analysis of QUIC regarding the effects of several param-
eters. We also demonstrate that the fixed/free set selection in QUIC significantly reduce
the computational complexity.

5.2.1 Effect of Approximate Newton Directions

In the convergence analysis of Section 4, we assumed that each Newton direction D∗t is
computed exactly by solving the Lasso subproblem (20). In our implementation we use an
iterative (coordinate descent) solver to compute D∗t , which after a finite set of iterations
only solves the problem approximately. In the first experiment we explore how varying
the accuracy to which we compute the Newton direction affects overall performance. In
Figure 3 we plot the total run times for the ER biology data set from Li and Toh (2010)
corresponding to different numbers of inner iterations used in the coordinate descent solver.

We can observe that QUIC with one inner iteration converges faster in the beginning,
but eventually achieves just a linear convergence rate, while QUIC with 20 inner iterations
converges more slowly in the beginning, but eventually achieves quadratic convergence.
Based on this observation, we propose an adaptive stopping condition: we set the number
of coordinate descent steps to be dαte for the t-th outer iteration, where α is a constant;
we use α = 1/3 in our experiments. Figure 3(b) shows that by using this adaptive stop-
ping condition, QUIC is not only efficient in the beginning, but also achieves quadratic
convergence.

5.2.2 Line Search Parameters

We demonstrate the robustness of QUIC to line search parameters σ and β. The results
are shown in Figure 4.

5.2.3 Fixed/free Set Selection

To further demonstrate the power of fixed/free set selection, we use Hereditarybc data set
as an example. In Figure 5, we plot the size of the free set versus the number of Newton
iterations. Starting from a total of 18692 = 3, 493, 161 variables, the size of the free set
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Figure 3: The behavior of QUIC when varying the number of inner iterations. Figure 3(a)
show that QUIC with one inner iteration converges faster in the beginning but
eventually achieves just linear convergence, while QUIC with 20 inner iterations
converges slower in the beginning, but has quadratic convergence. Figure 3(b)
shows that by adaptively setting the number of iterations in QUIC, we get the
advantages of both cases. Notice that each marker in the figures indicates one
iteration.
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Figure 4: Comparison of different line search parameters on the Leukemia data set. Figure
4(a) shows that QUIC is robust to a wide range of β values, but becomes slower
when β is too small. Figure 4(b) demonstrates that QUIC is robust with respect
to σ.
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Figure 5: Size of free sets and objective value versus iterations. For both data sets, the
sizes of free sets are always less than 6‖X∗‖0 when running QUIC algorithm.

progressively drops, in fact to less than 120, 000 in the very first iteration. We can see the
super-linear convergence of QUIC even more clearly when we plot it against the number of
iterations.

We further analyze the proportion of time taken by the two main steps of QUIC:
coordinate descent updates and line search procedure (in line search, the most time intensive
computation is the Cholesky factorization). We have looked at the ratio of time consumed
by those two steps on different data sets. We found that when the size of the free set
is large, QUIC will spend most of its time on coordinate updates. For example, in the
Hereditarybc data set with λ = 0.5, where the size of free set is 0.11p2 in the beginning,
coordinate descent takes 85.1% of the total run time, while line search only takes 14.9% of
the total run time. In contrast, for data sets with small size of free set, coordinate descent
updates will take noticeable less time. For example, when running on the ER data set with
λ = 0.5, where the size of free set is 0.033p2 in the beginning, 59.6% of the total time is
spent on coordinate descent.

5.2.4 Block-diagonal Structure

As discussed earlier, Mazumder and Hastie (2012); Witten et al. (2011) showed that when
the thresholded covariance matrix E = max(|S| − λ, 0) is block-diagonal, then the problem
can be naturally decomposed into sub-problems. This observation has been implemented
in the latest version of glasso. In the end of Section 3, we showed that the fixed/free
set selection can automatically identify the block-diagonal structure of the thresholded
matrix, and thus QUIC can benefit from block-diagonal structure even when we do not
explicitly decompose the matrix in the beginning. In the following experiment we show
that with input sample covariance S with block-diagonal structure represented by E (see
Section 3.4), QUIC still outperforms glasso. Moreover, we show that when some off-
diagonal elements are added into the problem, while QUIC is still efficient because of its
fixed/free set selection, glasso on the other hand suddenly becomes much slower.
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(b) Time taken on ER data set, λ = 0.1, ‖X
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(c) Time taken on ER data set, λ = 0.05,
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Figure 6: Comparison of algorithms on the ER data set (p = 692) under different λ. The
results show that QUIC converges faster for larger λ where solutions are sparse,
while IPM and PSM are faster for smaller λ which produces denser solutions.
Note that each marker in the figures indicates one iteration, and that all the
results are averaged over 5 replicated runs.

We generate synthetic data with block-diagonal structure as follows. We generate a
sparse 150×150 inverse covariance matrix Θ̄ as discussed in Section 5.1.1, and then replicate
Θ̄ eight times on the diagonal blocks to form a 1200 × 1200 block-diagonal matrix. Using
this inverse covariance matrix to generate samples, we compare the following methods:

• QUIC: our proposed algorithm.

• glasso: In the latest version of glasso, the matrix is first decomposed into connected
components based on the thresholded covariance matrix max(|S| − λ), and then each
sub-problem is solved individually.
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We then test the two algorithms for regularization parameter λ taking values from the set
{0.017, . . . , 0.011}. When λ = 0.017, the thresholded covariance matrix E has eight blocks,
while when λ = 0.011 the block structure reduces to a single block. For each single λ trial, we
compare the time taken by QUIC and glasso to achieve (f(Xt)− f(X∗))/f(X∗) < 10−5.
Figure 7 shows the experimental results. We can see that both methods are very fast for
the case where the problem can be decomposed into 8 sub-problems (large λ); however,
when we slightly increase λ so that there is only 1 connected component, QUIC is much
faster than glasso. This is because even for the non-decomposable case, QUIC can still
keep most of the elements of the very sparse off-diagonal blocks in the fixed set to speed up
the process, while glasso cannot benefit from this sparse structure.
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Figure 7: In this figure, we show the performance of QUIC and glasso for a sparse syn-
thetic data with clustered structure. Using the same input covariance matrix S,
we test the time for each algorithm to achieve (f(Xt) − f(X∗))/f(X∗) < 10−5

under various values of λ. When λ = 0.017, the problem can be decomposed into
8 sub-problems, while when λ = 0.011 there is only one connected component.
We can see that for the smaller values of λ, QUIC’s approach of free/fixed set
selection is able to exploit the sparsity structure of the solution, while glasso’s
training time increases dramatically.
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