
Journal of Machine Learning Research 15 (2014) 501-532 Submitted 2/13; Revised 10/13; Published 2/14

Improving Markov Network Structure Learning Using
Decision Trees

Daniel Lowd lowd@cs.uoregon.edu
Department of Computer and Information Science
University of Oregon
Eugene, OR 97403, USA

Jesse Davis jesse.davis@cs.kuleuven.be

Department of Computer Science

Katholieke Universiteit Leuven

3001 Heverlee, Belgium

Editor: Max Chickering

Abstract

Most existing algorithms for learning Markov network structure either are limited to learn-
ing interactions among few variables or are very slow, due to the large space of possible
structures. In this paper, we propose three new methods for using decision trees to learn
Markov network structures. The advantage of using decision trees is that they are very fast
to learn and can represent complex interactions among many variables. The first method,
DTSL, learns a decision tree to predict each variable and converts each tree into a set
of conjunctive features that define the Markov network structure. The second, DT-BLM,
builds on DTSL by using it to initialize a search-based Markov network learning algorithm
recently proposed by Davis and Domingos (2010). The third, DT+L1, combines the fea-
tures learned by DTSL with those learned by an L1-regularized logistic regression method
(L1) proposed by Ravikumar et al. (2009). In an extensive empirical evaluation on 20 data
sets, DTSL is comparable to L1 and significantly faster and more accurate than two other
baselines. DT-BLM is slower than DTSL, but obtains slightly higher accuracy. DT+L1
combines the strengths of DTSL and L1 to perform significantly better than either of them
with only a modest increase in training time.

Keywords: Markov networks, structure learning, decision trees, probabilistic methods

1. Introduction

A Markov network is an undirected, probabilistic graphical model for compactly represent-
ing a joint probability distribution over a set of random variables. In general, these variables
can be discrete, continuous, or a mix; in this paper, we consider the case when all variables
are discrete. Markov networks have been widely used in a number of domains, including
computer vision, computational biology, and natural language processing. The structure
of a Markov network defines which direct interactions among the variables are included
in the model. This structure can be represented as a set of features, each of which is a
Boolean-valued function of a subset of the variables. The parameters of a Markov network
define the relative strength of those interactions. Selecting a Markov network structure that

c©2014 Daniel Lowd and Jesse Davis.

Lowd and Davis

includes the most important interactions in a domain is therefore essential for building an
accurate model of that domain.

For some tasks, such as image processing, the structure of the Markov network may be
hand crafted to fit the problem. In other problems, the structure is unknown and must be
learned from data. These learned structures may be interesting in themselves, since they
show the most significant direct interactions in the domain. In many domains, however, the
goal is not an interpretable structure but an accurate final model. It is this last scenario
that is the focus of our paper: learning the structure of a Markov network in order to
accurately estimate marginal and conditional probabilities.

Learning an effective structure is difficult due to the very large structure space—the
number of possible sets of conjunctive features is doubly-exponential in the number of
variables. As a result, most previous approaches to learning Markov network structure
are either very slow or limited to relatively simple features, such as only allowing pairwise
interactions. In this paper, we propose to overcome these limitations by using decision tree
learners, which are able to quickly learn complex structures involving many variables.

Our first method, DTSL (Decision Tree Structure Learner), learns probabilistic decision
trees to predict the value of each variable and then converts the trees into sets of conjunctive
features. We propose and evaluate several different methods for performing the conversion.
Finally, DTSL merges all learned features into a global model. Weights for these features
can be learned using any standard Markov network weight learning method. DTSL is
similar in spirit to work by Ravikumar et al. (2010), who learn a sparse logistic regression
model for each variable and combine the features from each local model into a global network
structure. DTSL can also be viewed as converting a dependency network (Heckerman et al.,
2000) with decision trees into a consistent Markov network.

Our second method, DT-BLM (Decision Tree Bottom-Up Learning), builds on DTSL
by using the BLM algorithm of Davis and Domingos (2010) to further refine the structure
learned by DTSL. This algorithm is much slower, but usually more accurate than DTSL.
Furthermore, it serves as an example of how decision trees can be used to improve search-
based structure learning algorithms by providing a good initial structure.

Our third method, DT+L1, combines the structure learned by DTSL with the pairwise
interactions learned by L1-regularized logistic regression (L1) (Ravikumar et al., 2010).
The trees used by DTSL are good at capturing higher-order interactions, but each leaf is
mutually exclusive. In contrast, L1 captures many independent interaction terms, but each
interaction is between just two variables. Their combination offers the potential to represent
both kinds of interaction, leading to better performance in many domains.

We conducted an extensive empirical evaluation on 20 real-world data sets. We found
that DTSL offers similar accuracy and speed as L1, performing better on data sets where
it finds interesting tree structure and worse on data sets where it does not. Over 90%
of the running time was spent learning weights, so there is potential to improve learning
times even more with more sophisticated weight learning algorithms. The hybrid DT-BLM
algorithm is often more accurate than DTSL, but is also much slower due to the additional
refinement step. DT+L1 often has the best overall accuracy and runs much faster than
DT-BLM, making it a very good algorithm overall. We also evaluated two other baseline
structure learners, but they were not competitive with L1 and the three variants of DTSL.

502

Improving Markov Network Structure Learning Using Decision Trees

This journal paper is an extended and improved version of the conference paper (Lowd
and Davis, 2010). The extensions include two additional algorithms (DT-BLM and DT+L1)
and more extensive experiments, including seven additional data sets and learning curves.
The presentation has also been expanded and polished.

2. Markov Networks

This section provides a basic overview about Markov networks.

2.1 Representation

A Markov network is a model for the joint probability distribution of a set of variables
X = (X1, X2, . . . , Xn) (Della Pietra et al., 1997). It is often expressed as an undirected
graph G and a set of potential functions φk. The graph has a node for each variable, and
the model has a potential function for each clique in the graph. The joint distribution
represented by a Markov network is:

P (X=x) =
1

Z

∏
k

φk(x{k}) (1)

where x{k} is the state of the variables that appear in the kth clique, and Z is a normalization
constant called the partition function.

The graph encodes the following conditional independencies: sets of variables XA and
XB are conditionally independent given evidence Y if all paths between their corresponding
nodes in the graph pass through nodes from Y. Any probability distribution that can
be represented as a product of potential functions over the cliques of the graph, as in
Equation (1), satisfies these independencies; for positive distributions, the converse holds
as well.

One of the limitations of the graph structure is that it says nothing about the structure
of the potential functions themselves. The most standard representation of a potential
function over discrete variables is a table with one value for each variable configuration, but
this requires a number of parameters that is exponential in the size of the clique. To learn
an effective probability distribution, we typically need a finer-grained parametrization that
permits a compact distribution even when the cliques are relatively large.

Therefore, we focus on learning the log-linear representation of a Markov network, in
which the clique potentials are replaced by an exponentiated weighted sum of features of
the state:

P (X=x) =
1

Z
exp

∑
j

wjfj(x{j})

 .

A feature fj(x{j}) may be any real-valued function of the state. For discrete data, a feature
typically is a conjunction of tests of the form Xi = xi, where Xi is a variable and xi is
a value of that variable. We say that a feature matches an example if it is true of that
example. Any positive probability distribution over a discrete domain can be represented
as log-linear model with conjunctive features. For example, a product of tabular potential
functions could be converted into a log-linear model by constructing one conjunctive feature
for each row of each table, using the log of the potential function value as the feature weight.

503

Lowd and Davis

In this paper, we will refer to this set of conjunctive features as the structure of the
Markov network. This detailed structure specifies not only the independencies of the dis-
tribution, but also the specific interaction terms that are most significant. If desired, the
simpler undirected graph structure can be constructed from the features by adding an edge
between each pair of nodes whose variables appear together in a feature.

2.2 Inference

The main inference task in graphical models is to compute the conditional probability of
some variables (the query) given the values of some others (the evidence), by summing
out the remaining variables. This problem is #P-complete. Thus, approximate inference
techniques are required. One widely used method is Markov chain Monte Carlo (MCMC)
(Gilks et al., 1996), and in particular Gibbs sampling, which proceeds by sampling each
variable in turn given its Markov blanket, the variables it appears with in some potential or
feature. These samples can be used to answer probabilistic queries by counting the number
of samples that satisfy each query and dividing by the total number of samples. Under
modest assumptions, the distribution represented by these samples will eventually converge
to the true distribution. However, convergence may require a very large number of samples,
and detecting convergence is difficult.

2.3 Weight Learning

The goal of weight learning is to select feature weights that maximize a given objective
function. One of the most popular objective functions is the log-likelihood of the training
data. In a Markov network, the negative log-likelihood is a convex function of the weights,
and thus weight learning can be posed as a convex optimization problem. However, this op-
timization typically requires evaluating the log-likelihood and its gradient in each iteration.
This is typically intractable to compute exactly due to the partition function. Further-
more, an approximation may work poorly: Kulesza and Pereira (2007) have shown that
approximate inference can mislead weight learning algorithms.

A more computationally efficient alternative, widely used in areas such as spatial statis-
tics, social network modeling, and language processing, is to optimize the pseudo-likelihood
or pseudo-log-likelihood (PLL) instead (Besag, 1975). Pseudo-likelihood is the product of
the conditional probabilities of each variable given its Markov blanket; pseudo-log-likelihood
is the log of the pseudo-likelihood:

logP •w(X=x) =
V∑
j=1

N∑
i=1

logPw(Xi,j =xi,j |MBx(Xi,j)) (2)

where V is the number of variables, N is the number of examples, xi,j is the value of the jth
variable of the ith example, MBx(Xi,j) is the state of Xi,j ’s Markov blanket in the data.
PLL and its gradient can be computed efficiently and optimized using any standard convex
optimization algorithm, since the negative PLL of a Markov network is also convex.

504

Improving Markov Network Structure Learning Using Decision Trees

3. Structure Learning in Markov Networks

Our goal in structure learning is to find a succinct set of features that can be used to
accurately represent a probability distribution in a domain of interest. Other goals include
learning the independencies or causal structure in the domain, but we focus on accurate
probabilities. In this section, we briefly review four categories of approaches for Markov
network structure learning, along with their strengths and weaknesses.

Global Search-Based Learning. One of the common approaches is to perform a global
search for a set of features that accurately captures high-probability regions of the instance
space (Della Pietra et al., 1997; McCallum, 2003). The algorithm of Della Pietra et al.
(1997) is the most canonical example of this approach. The algorithm starts with a set of
atomic features, each consisting of one state of one variable. It creates candidate features
by conjoining each feature to each other feature, including the original atomic features. It
calculates the weight for each candidate feature by assuming that all other feature weights
remain unchanged, which is done for efficiency reasons. It uses Gibbs sampling for infer-
ence when setting the weight. Then, it evaluates each candidate feature f by estimating
how much adding f would increase the log-likelihood. It adds the feature that results in
the largest gain to the feature set. This procedure terminates when no candidate feature
improves the model’s score.

Recently, Davis and Domingos (2010) proposed an alternative bottom-up approach,
called Bottom-up Learning of Markov Networks (BLM), for learning the structure of a
Markov network. BLM starts by treating each complete example as a long feature in the
Markov network. The algorithm repeatedly iterates through the feature set. It considers
generalizing each feature to match its k nearest previously unmatched examples by dropping
variables. If incorporating the newly generalized feature improves the model’s score, it is
retained in the model. The process terminates when no generalization improves the score.

These discrete search approaches are often slow due to the exponential number of pos-
sible features, leading to a doubly-exponential space of possible structures. Even a greedy
search through this space must use the training data to repeatedly evaluate many candi-
dates.

Optimization-Based Learning. Instead of performing a discrete search through possible
structures, other recent work has framed the search as a continuous weight optimization
problem with L1 regularization for sparsity (Lee et al., 2007; Schmidt and Murphy, 2010).
The final structure consists of all features that are assigned non-zero weights. These methods
are somewhat more efficient, but are typically limited to relatively short features. For
example, in the approach of Lee et al. (2007), the set of candidate features must be specified
in advance, and must be small enough that the gradient of all feature weights can be
computed. Even including interactions among three variables requires a cubic number
of features. Learning higher-order interactions quickly becomes infeasible. Schmidt and
Murphy (2010) propose an algorithm that can learn longer features, as long as they satisfy
a hierarchical constraint: longer features are only included when all subsets of the feature
have been assigned non-zero weights. In experiments, this method does identify some longer
features, but most features are short.

Independence Test Based Learning. Another line of work attempts to identify the
Markov network structure directly by performing independence tests (Spirtes et al., 1993).

505

Lowd and Davis

The basic idea is that if two variables are conditionally independent given some other vari-
ables then there should be no edge between them in the Markov network. Thus, instead
of searching for interactions among the variables, these methods search for independencies.
The challenge is the large number of conditional independencies to test: simply testing for
marginal independence among each pair of variables is quadratic in the number of variables,
and the complexity grows exponentially with the size of the separating set. Some variants
of this approach search for the Markov blanket of each variable, the minimal set of variables
that renders it conditionally independent from all others (Bromberg et al., 2009). Using
independencies in the data to infer additional independencies can speed up this search, but
many tests are still required. Furthermore, reliably recovering the independencies may not
necessarily lead to the most accurate probabilistic model, since that is not the primary goal
of these methods.

Learning Local Models. Ravikumar et al. (2010) proposed the alternative idea of learning
a local model for each variable and then combining these models into a global model. Their
method learns the structure by trying to discover the Markov blanket of each variable. It
considers each variable Xi in turn and builds an L1-regularized logistic regression model
to predict the value of Xi given the remaining variables. L1 regularization encourages
sparsity, so that most of the variables end up with a weight of zero. The Markov blanket of
Xi is all variables that have non-zero weight in the logistic regression model. Under certain
conditions, this is a consistent estimator of the structure of a pairwise Markov network. In
practice, when learned from real-world data, these Markov blankets are often incompatible
with each other; for example, Xi may be in the inferred Markov blanket of Xj while the
reverse does not hold. There are two methods for resolving these conflicts. One is to
include an edge if either Xi is in Xj ’s Markov blanket or Xj is in Xi’s Markov blanket.
The other method is to include an edge only if Xi is in Xj ’s Markov blanket and Xj is in
Xi’s Markov blanket. In the final model, if there is an edge between Xi and Xj then the
log-linear model includes a pairwise feature involving those two variables. All weights are
then learned globally using any standard weight learning algorithm. While this approach
greatly improves the tractability of structure learning, it is limited to modeling pairwise
interactions, ignoring all higher-order effects. Furthermore, it still exhibits long run times
for domains that have large numbers of variables.

4. Decision Tree Structure Learning (DTSL)

We now describe our method for learning Markov network structure from data, decision
tree structure learning (DTSL). Algorithm 1 outlines our basic approach. For each variable
Xi, we learn a probabilistic decision tree to represent the conditional probability of Xi given
all other variables, P (Xi|X − Xi). Each tree is converted to a set of conjunctive features
capable of representing the same probability distribution as the tree. Finally, all features
are taken together in a single model and weights are learned globally using any standard
weight learning algorithm.

This is similar in spirit to learning a dependency network (Heckerman et al., 2000): Both
dependency networks (with tree distributions) and DTSL learn a probabilistic decision
tree for each variable and combine the trees to form a probabilistic model. However, a
dependency network may not represent a consistent probability distribution, and inference

506

Improving Markov Network Structure Learning Using Decision Trees

!"#$%"#&'(!"#)%"#*'(!"#*%"#)'(

+$(

+,(

-.+)/+$%+,0(((1(

Figure 1: Example of a probabilistic decision tree.

can only be done by Gibbs sampling. In contrast, the Markov networks learned by DTSL
always represent consistent probability distributions and allow inference to be done by any
standard technique, such as loopy belief propagation (Murphy et al., 1999), mean field, or
MCMC.

We now describe each step of DTSL in more detail.

Algorithm 1 The DTSL Algorithm

function DTSL(training examples D, variables X)
F ← ∅
for all Xi ∈X do
Ti ← LearnTree(D,Xi)
Fi ← GenerateFeatures(Ti)
F ← F ∪ Fi

end for
M ←LearnWeights(F,D)
return M

4.1 Learning Trees

A probabilistic decision tree represents a probability distribution over a target variable, Xi,
given a set of inputs. Each interior node tests the value of an input variable and each of its
outgoing edges is labeled with one of the outcomes of that test (e.g., true or false). Each leaf
node contains the conditional distribution (e.g., multinomial) of the target variable given
the test outcomes specified by its ancestor nodes and edges in the tree. We focus on discrete
variables and consider tests of the form Xj = xj , where Xj is a variable and xj is value
of that variable. Each conditional distribution is represented by a multinomial. Figure 1
contains an example of a probabilistic decision tree.

We can learn a probabilistic decision tree from data in a depth-first manner, one split
at a time. We select a split at the root, partition the training data into the sets matching
each outgoing branch, and recurse. We select each split to maximize the conditional log-
likelihood of the target variable. This is very similar to using information gain as the split
criterion. We used multinomials as the leaf distributions with a Dirichlet prior (α = 1)
for smoothing. In order to help avoid overfitting, we used a structure prior P (S) ∝ κp,

507

Lowd and Davis

where p is the number of parameters and κ < 1 represents a multiplicative penalty for
each additional parameter in the model, as in Chickering et al. (1997). To further avoid
overfitting, we set the minimum number of examples at each leaf to 10. Any splits that
would result in fewer examples in a leaf are rejected.

Pseudocode for the tree learning subroutine is in Algorithm 2.

Algorithm 2 DTSL Tree Learning Subroutine

function LearnTree(training examples D, variable Xi)
best split← ∅
best score← 0
for all Xj ∈X −Xi do
for all xj ∈ Val(Xj) do
S ← (Xj = xj)
if Score(S,Xi, D) > best score then

best split ← S
best score ←Score(S,Xi, D)

end if
end for

end for
if best score > log κ then

(Dt, Df)←SplitData(D, best split)
TL ←LearnTree(Dt, Xi)
TR ←LearnTree(Df , Xi)
return new TreeVertex(best split, TL, TR)

else
Use D to estimate P (Xi)
return new TreeLeaf(P (Xi))

end if

4.2 Generating Features

While decision trees are not commonly thought of as a log-linear model, any decision tree can
be converted to a set of conjunctive features. In addition to a direct translation (Default),
we explored four modifications (Prune, Prune-10, Prune-5, and Nonzero) which could
yield structures with easier weight learning or better generalization.

The Default feature generation method is a direct translation of a probabilistic decision
tree to an equivalent set of features. For each state of the target variable, we generate a
feature for each path from the root to a leaf. The feature’s conditions specify a single state
of the target variable and all variable tests along the path in the decision tree. For example,
to convert the decision tree in Figure 1 to a set of rules, we generate two features for each
leaf, one where X4 is true and one where X4 is false. The complete list of features is as
follows:

1. X1 = T ∧X4 = T

2. X1 = T ∧X4 = F

508

Improving Markov Network Structure Learning Using Decision Trees

3. X1 = F ∧X2 = T ∧X4 = T

4. X1 = F ∧X2 = T ∧X4 = F

5. X1 = F ∧X2 = F ∧X4 = T

6. X1 = F ∧X2 = F ∧X4 = F

By using the log probability at the leaf as the rule’s weight, we obtain a log linear model
representing the same distribution. By applying this transformation to all decision trees,
we obtain a set of conjunctive features that comprise the structure of our Markov network.
However, their weights may be poorly calibrated (e.g., due to the same feature appearing
in several decision trees), so weight learning is still necessary.

The Prune method expands the set of features generated by Default in order to make
learning and inference easier. One disadvantage of the Default procedure is that it gener-
ates very long features with many conditions when the source trees are deep. Intuitively, we
would like to capture the coarse interactions with short features and the finer interactions
with longer features, rather than representing everything with long features. In the Prune
method, we generate additional features for each path from the root to an interior node,
not just paths from the root to a leaf. Each feature’s conditions specify a single state of
the target variable and all variable tests along the path in the decision tree. However, we
include paths ending at any node, not just at leaves.

Specifically, for each state of the target variable and node in the tree (leaf or non-
leaf), we generate a feature that specifies the state of the target variable and contains a
condition for each ancestor of the node. This is equivalent to applying the Default feature
generation method to all possible “pruned” versions of a decision tree, that is, where one or
more interior nodes are replaced with leaves. This yields four additional rules, in addition
to those enumerated above:

1. X4 = T

2. X4 = F

3. X1 = F ∧X4 = T

4. X1 = F ∧X4 = F

The Prune-10 and Prune-5 methods begin with the features generated by Prune and
remove all features with more than 10 and 5 conditions, respectively. This can help avoid
overfitting.

Our final feature generation method, Nonzero, is similar to Default, but removes
all false variable constraints in a post-processing step. For example, the decision tree in
Figure 1 would be converted to the following set of rules:

1. X1 = T ∧X4 = T

2. X1 = T

3. X2 = T ∧X4 = T

4. X2 = T

5. X4 = T

This simplification is designed for sparse binary domains such as text, where a value of false
or zero contains much less information than a value of true or one.

509

Lowd and Davis

4.3 Asymptotic Complexity

Next, we explore DTSL’s efficiency by analyzing its asymptotic complexity. Let n be the
number of variables, m be the number of training examples, and l be the number of values
per variable. The complexity of selecting the first split is O(lmn), since we must compute
statistics for each of the l values of each of the n variables using all of the m examples. At
the next level, we now have two splits to select: one for the left child and one for the right
child of the original split. However, since the split partitions the training data into two sets,
each of the m examples is only considered once, either for the left split or the right split,
leading to a total time of O(lmn) at each level. If each split assigns a fraction of at least 1/k
examples to each child, then the depth is at most O(logk(m)), yielding a total complexity
of O(lmn logk(m)) for one tree, and O(lmn2 logk(m)) for the entire structure. Depending
on the patterns present in the data, the depth of the learned trees could be much less than
logk(m), leading to faster run times in practice. For large data sets or streaming data, we
can apply the Hoeffding tree algorithm, which uses the Hoeffding bound to select decision
tree splits after enough data has been seen to make a confident choice, rather than using
all available data (Domingos and Hulten, 2000).

5. Decision Tree Bottom-Up Learning (DT-BLM)

The DTSL algorithm works by first using a decision tree learner to generate a set of conjunc-
tive features and then learning weights for those features. In this section, we propose using
decision trees within the context of the BLM Markov network structure learning algorithm
(Davis and Domingos, 2010), which is described in Section 3.

BLM starts with a large set of long (i.e., specific) features and simplifies them to make
them more general. The standard BLM algorithm uses the set of all training examples
as the initial feature set. However, BLM could, in principle, generalize any set of initial
features. The key idea of DT-BLM is to run BLM on the features from DTSL.

Algorithm 3 outlines the DT-BLM algorithm. DT-BLM receives a set of training exam-
ples, D, a set of variables, X, and a set of integers, K, as input. It begins by running DTSL.
Of the five feature conversion methods, it selects whichever one results in the best scoring
model on validation data. Then DT-BLM employs the standard BLM learning procedure,
but uses the features learned by DTSL as the initial feature set. The main loop in BLM
involves repeatedly iterating through the feature set, calling the GeneralizeFeature
method on each feature f in the feature set F .

The GeneralizeFeature method, outlined in Algorithm 4, proposes and scores several
candidate feature generalizations. Specifically, it creates one generalization, f ′, for each
k ∈ K by finding the set of examples Uk which are f ’s k nearest unmatched examples. Next,
it creates f ′ by dropping each variable-value test in f that does not match all examples in
Uk, which has the effect of generalizing f ′ to match all examples in this set. It also scores
the effect of removing f from F .

DT-BLM measures the distance between a feature and an example using the generalized
value difference metric (GVDM), which tends to perform better in practice than the simpler

510

Improving Markov Network Structure Learning Using Decision Trees

Hamming distance (Davis and Domingos, 2010). Formally, the distance, D(f, e) is:

D(f, e) =
∑
c∈f

GVDM(f, e, c)

where f is a feature, e is an example, c ranges over the variables in f and

GVDM(f, e, c) =
∑
h

∑
fi∈f,fi 6=c

|P (c = h|fi)− P (c = h|efi)|
Q

where h ranges over the possible values of variable c, fi is the value of the ith variable in
f , efi is the value of the attribute referenced by fi in e, and Q is an integer. For a variable
c that appears in f , GVDM measures how well the other variables in f predict c. The
intuition is that if c appears in a feature then the other variables should be good predictors
of c.

Each generalization is evaluated by replacing f with the generalization in the model,
relearning the weights of the modified feature set, and scoring the new model as:

S(D,F ′, α) = PLL(D,F ′)− α
∑
fi∈F ′

|fi|

where PLL(D,F ′) is the train set pseudo-likelihood of feature set F ′, α is a penalty term to
avoid overfitting, and |fi| is the number of variable-value tests in feature fi. The procedure
returns the best scoring generalized feature set, F ′. DT-BLM updates F to F ′ if F ′ has a
better score. The process terminates after making one full loop over the feature set without
changing F by accepting a generalization.

The advantage of DT-BLM over DTSL is that it can refine individual features based on
their global contribution to the pseudo-likelihood. This can lead to simpler models in terms
of both the number and length of the features. One advantage of DT-BLM over BLM is
that the features selected by DTSL are already very effective, so BLM is less likely to end
up in a bad local optimum. A second advantage is that it removes the restriction that BLM
can never learn a model that has more features than examples. This is valuable for domains
which are most effectively modeled with a large number of short features (e.g., text). The
principle disadvantage of DT-BLM is speed: it can be much slower than DTSL, since it is
doing a secondary search over feature simplifications. We have also found that DT-BLM
is sensitive to the Gaussian weight prior used during the BLM structure search, unlike the
standard BLM algorithm. This means that DT-BLM requires more tuning time than BLM,
as discussed more extensively in our empirical evaluation in Section 7.

Note that DT-BLM is similar in spirit to Bayesian network structure learning algorithms
that combine independence-test and search-based learning techniques (Tsamardinos et al.,
2006). These algorithms work in two phases. In the first step, they identify a superset of
the edges that could be included in the network using independence tests. In the second
step, a search through the space of possible structures is performed, but it is restricted
to only consider including candidate edges identified in the first step. Typically, a greedy,
general-to-specific search is employed. These algorithms differ from DT-BLM in three key
ways: DT-BLM searches for features and not edges; DT-BLM uses decision trees to identify
candidate features and not independence tests; and DT-BLM uses a specific-to-general
search and not a general-to-specific search to refine the structure.

511

Lowd and Davis

Algorithm 3 The DT-BLM Algorithm

function DT-BLM(training examples D, variables X, K)
F ← ∅
for all Xi ∈X do
Ti ← LearnTree(Xi, D)
Fi ← GenerateFeatures(Ti)
F ← F ∪ Fi

end for
repeat

for all features f ∈ F do
F ′ ← GeneralizeFeature(D, F , f , K)
if Score(TS, F ′) > Score(TS, F) then
F ← F ′

end if
end for

until no generalization improves the score
return M

Algorithm 4 Feature generalization subroutine used by DT-BLM.

function GeneralizeFeature(training examples D, feature set F , feature f , K)
Fbest = F
for all k ∈ K do
Uk = k nearest examples to f that do not match f
f ′ = f excluding each test in f that does not match all examples in Uk.
F ′ ← F with f replaced by f ′

if Score(D,F ′) > Score(D,Fbest) then
Fbest ← F ′

end if
end for
F ′ = F without f
if Score(D,F ′) > Score(D,Fbest) then
Fbest ← F ′

end if
return Fbest

6. Combining DTSL and L1 (DT+L1)

In this section we propose DT+L1, a very simple way to combine DTSL and Ravikumar et
al.’s L1 algorithm. DT+L1 works as follows. First, DTSL and L1 are run normally. That
is, each method is run to completion (i.e., learning both the features and weights) to find
the best model. Second, DT+L1 takes the union of the best DTSL feature set and the best
L1 feature set. Third, DT+L1 learns the weights for the combined feature set and returns
this as the final model.

512

Improving Markov Network Structure Learning Using Decision Trees

The advantage of this approach is that it combines the strengths of both algorithms.
DTSL excels at learning long features that capture complex interactions. Ravikumar et al.’s
L1 approach only learns pairwise features, which occur less frequently in DTSL’s learned
models. One disadvantage is that DT+L1 will be more time intensive than either approach
independently. DT+L1 involves performing parameter tuning to select the best model for
both DTSL and L1 and then another run of weight learning, including parameter tuning,
on the combined feature set. Another potential problem is that the combined model will
have more features, which may lead to a more complex inference task.

7. Empirical Evaluation

We evaluate our algorithms on 20 real-world data sets. The goals of our experiments are
three-fold. First, we want to determine how the different feature generation methods affect
the performance of DTSL and DT-BLM (Section 7.3). Second, we want to compare the
accuracy of DTSL, DT-BLM, and DT+L1 to each other as well as to several state-of-the-art
Markov network structure learners: the algorithm of Della Pietra et al. (1997), which we
refer to as DP; BLM (Davis and Domingos, 2010); and L1-regularized logistic regression
(Ravikumar et al., 2010) (Section 7.4). Finally, we want to compare the running time of
these learning algorithms, since this greatly affects their practical utility (Section 7.5).

7.1 Methodology

We used DTSL, DT-BLM, DT+L1, and each of the baselines to learn structures on 20 data
sets.

DTSL was implemented in OCaml. For both BLM and DP, we used the publicly avail-
able code of Davis and Domingos (2010). Since DT-BLM is built on both DTSL and BLM,
it used a combination of the DTSL and BLM code as well. For Ravikumar et al.’s ap-
proach, we tried both the OWL-QN (Andrew and Gao, 2007) and LIBLINEAR (Fan et al.,
2008) software packages. Our initial experiments and evaluation were done using OWL-QN,
but we later discovered that LIBLINEAR was much faster with nearly identical accuracy.
Therefore, to be as fair as possible to L1, we report the running times for LIBLINEAR.

The output of each structure learning algorithm is a set of conjunctive features. To
learn weights, we optimized the pseudo-likelihood of the data via the limited-memory BFGS
algorithm (Liu and Nocedal, 1989) since optimizing the likelihood of the data is prohibitively
expensive for the domains we consider.

Like Lee et al. (2007), we evaluated our algorithm using test set conditional marginal
log-likelihood (CMLL). To make results from different data sets more comparable, we report
normalized CMLL (NCMLL), which is CMLL divided by the number of variables in the
domain. Calculating the NCMLL requires dividing the variables into a query set Q and an
evidence set E. Then, for each test example we computed:

NCMLL(X = x) =
1

|X|
∑
i∈Q

logP (Xi = xi|E).

For each domain, we divided the variables into four disjoint sets. One set served as the query
variables while the remaining three sets served as evidence. We repeated this procedure so

513

Lowd and Davis

that each set served as the query variables once. We computed the conditional marginal
probabilities using Gibbs sampling, as implemented in the open-source Libra toolkit.1 For
all domains, we ran 10 independent chains, each with 100 burn-in samples and followed
by 1,000 samples for computing the probability. CMLL is related to PLL (Equation 2),
since both measure the ability of the model to predict individual variables given evidence.
However, we used approximately 75% of the variables as evidence when computing CMLL,
while PLL always uses all-but-one variable as evidence.

We tuned all algorithms using separate validation sets, the same validation sets used by
Van Haaren and Davis (2012). For DTSL, we selected the structure prior κ for each domain
that maximized the total log-likelihood of all probabilistic decision trees on the validation
set. The values of κ we used were powers of 10, ranging from 0.0001 to 1.0. When learning
the weights for each feature generation method, we placed a Gaussian prior with mean 0
on each feature weight and then tuned the standard deviation to maximize PLL on the
validation set, with values of 100, 10, 1, and 0.1. For comparisons to other algorithms, we
selected the DTSL model with the best pseudo-likelihood on the validation set. We chose
to use pseudo-likelihood for tuning instead of CMLL because it is much more efficient to
compute.

For L1, on each data set we tried the following values of the LIBLINEAR tuning pa-
rameter C: 0.001, 0.01, 0.05, 0.1, 0.5, 1 and 5.2 We also tried both methods of making the
Markov blankets consistent. These parameter settings allowed us to explore a variety of
different models, ranging from those containing all pairwise interactions to those that were
very sparse. We also tuned the weight prior as we did with DTSL. Tuning the standard
deviation of the Gaussian weight prior allowed us to get better results than reported by
Davis and Domingos (2010).

For BLM and DP, we kept the tuning settings used by Davis and Domingos (2010).
We tried performing additional tuning of the weight prior for BLM, but it did not lead to
improved results. For DT+L1, we combined the DTSL and L1 structures and relearned the
final weights, including tuning the Gaussian weight prior on the validation set.

All of our code is available at http://ix.cs.uoregon.edu/~lowd/dtsl under a modi-
fied BSD license.

7.2 Data Sets

For our experiments, we used the same set of 20 domains as Van Haaren and Davis (2012),
13 of which were previously used by Davis and Domingos (2010).3 All variables are binary-
valued. Basic statistics for all data sets are in Table 1, ordered by number of variables in the
domain. “Density” refers to the fraction of non-zero entries. Below, we provide additional
information about each data set.

1. Libra is available from http://libra.cs.uoregon.edu/.
2. C is the inverse of the L1 regularization weight λ used by OWL-QN (Andrew and Gao, 2007). Larger C

values almost always resulted in generating all pairwise features.
3. These data sets are publicly available at http://alchemy.cs.washington.edu/papers/davis10a.

514

http://ix.cs.uoregon.edu/~lowd/dtsl
http://libra.cs.uoregon.edu/
http://alchemy.cs.washington.edu/papers/davis10a

Improving Markov Network Structure Learning Using Decision Trees

Data Set # Train Ex. # Tune Ex. # Test Ex. # Vars Density

1. NLTCS 16,181 2,157 3,236 16 0.332
2. MSNBC 291,326 38,843 58,265 17 0.166
3. KDDCup 2000 180,092 19,907 34,955 64 0.008
4. Plants 17,412 2,321 3,482 69 0.180
5. Audio 15,000 2,000 3,000 100 0.199
6. Jester 9,000 1,000 4,116 100 0.608
7. Netflix 15,000 2,000 3,000 100 0.541
8. Accidents 12,758 1,700 2,551 111 0.291
9. Retail 22,041 2,938 4,408 135 0.024
10. Pumsb Star 12,262 1,635 2,452 163 0.270
11. DNA 1,600 400 1,186 180 0.253
12. Kosarek 33,375 4,450 6,675 190 0.020
13. MSWeb 29,441 3,270 5,000 294 0.010
14. Book 8,700 1,159 1,739 500 0.016
15. EachMovie 4,524 1,002 591 500 0.059
16. WebKB 2,803 558 838 839 0.064
17. Reuters-52 6,532 1,028 1,540 889 0.036
18. 20 Newsgroups 11,293 3,764 3,764 910 0.049
19. BBC 1,670 225 330 1,058 0.078
20. Ad 2,461 327 491 1,556 0.008

Table 1: Data set characteristics.

We used four clickstream prediction domains: KDDCup 2000, MSNBC, Anonymous
MSWeb,4 and Kosarek.5 Each data point was a single session, with one binary-valued
variable for each page, area, or category of the site, indicating if it was visited during that
session or not. For KDD Cup 2000 (Kohavi et al., 2000), we used the subset of Hulten
and Domingos (2002), which consisted of 65 page categories. We dropped one category
that was never visited in the training data. The MSNBC anonymous web data contains
information about which top-level MSNBC pages were visited during a single session. The
MSWeb anonymous web data contains visit data for 294 areas (Vroots) of the Microsoft
web site, collected during one week in February 1998. Kosarek is clickstream data from a
Hungarian online news portal.

Five of our domains were from recommender systems: Audio, Book, EachMovie, Jester
and Netflix. The Audio data set consists of information about how often a user listened to
a particular artist.6 The data was provided by the company Audioscrobbler before it was
acquired by Last.fm. We focused on the 100 most listened-to artists. We used a random
subset of the data and reduced the problem to “listened to” or “did not listen to.” The

4. KDDCup 2000, MSNBC, and Anonymous MSWeb, are available from the UCI machine learning repos-
itory (Blake and Merz, 2000).

5. The Kosarek, Pumsb Star, Accidents, and Retail data sets are available at http://fimi.ua.ac.be/

data/.
6. The Audio data set is available at http://www-etud.iro.umontreal.ca/~bergstrj/audioscrobbler_

data.html.

515

http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/
http://www-etud.iro.umontreal.ca/~bergstrj/audioscrobbler_data.html
http://www-etud.iro.umontreal.ca/~bergstrj/audioscrobbler_data.html

Lowd and Davis

Book Crossing (Book) data set (Ziegler et al., 2005) consists of a user’s rating of how much
they liked a book. We considered the 500 most frequently rated books. We reduced the
problem to “rated” or “not rated” and considered all people who rated at least two of these
books. EachMovie7 is a collaborative filtering data set in which users rate movies they
have seen. We focused on the 500 most-rated movies, and reduced each variable to “rated”
or “not rated”. The Jester data set (Goldberg et al., 2001) consists of users’ real-valued
ratings for 100 jokes. For Jester, we selected all users who had rated all 100 jokes, and
reduced their preferences to “like” and “dislike” by thresholding the real-valued preference
ratings at zero. Finally, we considered a random subset of the Netflix challenge data and
focused on the 100 most frequently rated movies. We reduced the problem to “rated” or
“not rated.”

We used four text domains: 20 Newsgroups, Reuters-52, WebKB,8 and BBC.9 For
20 Newsgroups, we only considered words that appeared in at least 200 documents. For
Reuters, WebKB, and BBC, we only considered words that appeared in at least 50 doc-
uments. For all four data sets, we created one binary feature for each word. The text
domains contained roughly a 50-50 train-test split, whereas all other domains used around
75% of the data for the training, 10% for tuning, and 15% for testing. Thus we split the
test set of these domains to make the proportion of data devoted to each task more closely
match the other domains used in the empirical evaluation.

The remaining seven data sets have no unifying theme. Plants consists of different plant
types and locations where they are found.4 We constructed one binary feature for each
location, which is true if the plant is found there. DNA10 is DNA sequences for primate
splice-junctions; we used the binary-valued encoding provided. The National Long Term
Care Survey (NLTCS) data consist of binary variables that measure an individual’s ability
to perform different daily living activities.11 Pumsb Star contains census data for population
and housing.5 Accidents contains anonymized traffic incident data.5 Retail is market basket
data from a Belgian retail store.5

7.3 Feature Generation Methods

First, we compared the accuracy of DTSL with different feature generation methods: De-
fault, Prune, Prune-10, Prune-5, and Nonzero. Table 2 lists the NCMLL of each
method on each data set. For each data set, the method with the best NCMLL on the
test set is in bold, and the method with the best PLL on the validation set is underlined.
The results are shown graphically in the top half of Figure 2. The data sets are shown in
the same order as in Table 1. Each bar represents the negative NCMLL of DTSL with one
feature generation method on one data set. Lower is better. To make the differences easier
to see, we subtracted the negative NCMLL for Default from each bar, so that positive
values (above the x-axis) are worse than Default and negative values (below the x-axis)
are better than Default.

7. The EachMovie data set was provided by Compaq at http://research.compaq.com/SRC/eachmovie/;
as of October 2004, it is no longer available for download.

8. 20 Newsgroups and Reuters-52 are available at http://web.ist.utl.pt/~acardoso/datasets/.
9. The BBC data set is available at http://mlg.ucd.ie/datasets/bbc.html.

10. The DNA data set is available at http://www.cs.sfu.ca/~wangk/ucidata/dataset/DNA/.
11. NLTCS is available at http://lib.stat.cmu.edu/datasets/.

516

http://research.compaq.com/SRC/eachmovie/
http://web.ist.utl.pt/~acardoso/datasets/
http://mlg.ucd.ie/datasets/bbc.html
http://www.cs.sfu.ca/~wangk/ucidata/dataset/DNA/
http://lib.stat.cmu.edu/datasets/

Improving Markov Network Structure Learning Using Decision Trees

D
T

S
L

D
T

-B
L

M
D

at
a

S
et

D
e
fa

u
lt

N
o
n
z
e
r
o

P
r
u
n
e

P
r
u
n
e
-1
0

P
r
u
n
e
-5

D
e
fa

u
lt

N
o
n
z
e
r
o

P
r
u
n
e

P
r
u
n
e
-1
0

P
r
u
n
e
-5

N
L
T

C
S

-0
.3

28
-0

.3
26

-0
.3

2
6

-0
.3
2
5

-0
.3

2
6

-0
.3
2
4

-0
.3

2
6

-0
.3
2
4

-0
.3
2
4

-0
.3

2
5

M
S

N
B

C
-0
.3
3
6

-0
.3

44
-0
.3
3
6

-0
.3

4
0

-0
.3

5
8

-0
.3
3
6

-0
.3

4
4

-0
.3
3
6

-0
.3

3
9

-0
.3

5
7

K
D

D
C

u
p

20
00

-0
.0
3
2

-0
.0

33
-0
.0
3
2

-0
.0
3
2

-0
.0
3
2

-0
.0
3
2

-0
.0

3
3

-0
.0
3
2

-0
.0
3
2

-0
.0
3
2

P
la

n
ts

-0
.1

46
-0

.1
48

-0
.1
4
3

-0
.1

4
5

-0
.1

5
3

-0
.1

4
2

-0
.1

4
8

-0
.1
4
1

-0
.1

4
4

-0
.1

5
3

A
u

d
io

-0
.3

80
-0
.3
7
5

-0
.3

7
9

-0
.3

7
9

-0
.3

8
4

-0
.3

7
5

-0
.3
7
3

-0
.3

7
5

-0
.3

7
5

-0
.3

8
0

J
es

te
r

-0
.5

12
-0
.5
0
5

-0
.5

1
1

-0
.5

1
1

-0
.5

1
4

-0
.5

0
7

-0
.5
0
3

-0
.5

0
7

-0
.5

0
7

-0
.5

0
9

N
et

fl
ix

-0
.5

43
-0
.5
3
2

-0
.5

4
1

-0
.5

4
1

-0
.5

4
5

-0
.5

4
0

-0
.5
3
2

-0
.5

3
9

-0
.5

3
9

-0
.5

4
2

A
cc

id
en

ts
-0

.1
50

-0
.1
4
7

-0
.1

5
0

-0
.1

5
0

-0
.1

6
9

-0
.1

4
8

-0
.1

4
6

-0
.1

4
6

-0
.1
4
5

-0
.1

6
7

R
et

ai
l

-0
.0
7
8

-0
.0

79
-0

.0
7
9

-0
.0
7
8

-0
.0

7
9

-0
.0
7
8

-0
.0

7
9

-0
.0
7
8

-0
.0
7
8

-0
.0

7
9

P
u

m
sb

S
ta

r
-0

.1
04

-0
.0
9
8

-0
.1

0
1

-0
.1

0
2

-0
.1

0
8

-0
.1

0
5

-0
.0
9
9

-0
.1

0
0

-0
.0
9
9

-0
.1

1
0

D
N

A
-0
.3
8
4

-0
.3

85
-0
.3
8
4

-0
.3
8
4

-0
.3
8
4

-0
.3

8
4

-0
.3

8
5

-0
.3
8
3

-0
.3
8
3

-0
.3

8
4

K
os

ar
ek

-0
.0
5
3

-0
.0
5
3

-0
.0
5
3

-0
.0
5
3

-0
.0
5
3

-0
.0
5
3

-0
.0
5
3

-0
.0
5
3

-0
.0
5
3

-0
.0
5
3

M
S

W
eb

-0
.0
2
9

-0
.0

30
-0
.0
2
9

-0
.0

3
0

-0
.0

3
0

-0
.0
2
9

-0
.0

3
0

-0
.0
2
9

-0
.0
2
9

-0
.0

3
0

B
o
ok

-0
.0
6
9

-0
.0

70
-0
.0
6
9

-0
.0
6
9

-0
.0
6
9

-0
.0
6
8

-0
.0

6
9

-0
.0
6
8

-0
.0
6
8

-0
.0

6
9

E
ac

h
M

ov
ie

-0
.1

09
-0

.1
04

-0
.1
0
2

-0
.1
0
2

-0
.1

0
5

-0
.1

0
1

-0
.1

0
2

-0
.1
0
0

-0
.1
0
0

-0
.1

0
2

W
eb

K
B

-0
.1
7
9

-0
.1
7
9

-0
.1
7
9

-0
.1
7
9

-0
.1

8
0

-0
.1

7
8

-0
.1

7
7

-0
.1
7
7

-0
.1
7
7

-0
.1

7
8

R
eu

te
rs

-5
2

-0
.0
9
2

-0
.0
9
2

-0
.0
9
2

-0
.0

9
4

-0
.0

9
3

-0
.0

9
3

-0
.0

9
2

-0
.0
9
1

-0
.0
9
1

-0
.0

9
2

20
N

ew
sg

ro
u

p
s

-0
.1

70
-0

.1
69

-0
.1
6
6

-0
.1
6
6

-0
.1

6
7

-0
.1
6
3

-0
.1

6
5

-0
.1

6
5

-0
.1

6
5

-0
.1

6
5

B
B

C
-0

.2
38

-0
.2
3
7

-0
.2

4
0

-0
.2

4
0

-0
.2

4
1

-0
.2
3
7

-0
.2
3
7

-0
.2
3
7

-0
.2
3
7

-0
.2
3
7

A
d

-0
.0
1
2

-0
.1

44
-0

.0
1
6

-0
.0

1
6

-0
.0

1
7

-0
.0
1
6

-0
.1

5
1

-0
.0

2
0

-0
.0

1
9

-0
.0

2
2

T
a
b

le
2:

N
C

M
L

L
o
f

D
T

S
L

(l
ef

t)
an

d
D

T
-B

L
M

(r
ig

h
t)

w
it

h
d

iff
er

en
t

co
n
ve

rs
io

n
m

et
h

o
d

s.
F

or
ea

ch
al

go
ri

th
m

an
d

d
at

a
se

t,
th

e
m

et
h

o
d

w
it

h
th

e
b

es
t

te
st

se
t

N
C

M
L

L
is

in
b

ol
d

an
d

th
e

m
et

h
o
d

w
it

h
th

e
b

es
t

va
li

d
at

io
n

se
t

P
L

L
is

u
n

d
er

li
n

ed
.

517

Lowd and Davis

DTSL

Prune−5

 −0.015

 −0.01

 −0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
eg

at
iv

e
N

C
M

LL
 r

el
at

iv
e

to
 D

ef
au

lt

Data Set

Nonzero
Prune
Prune−10

DT-BLM

Prune−5

 −0.015

 −0.01

 −0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
C

M
LL

 r
el

at
iv

e
to

 D
ef

au
lt

Data Set

Nonzero
Prune
Prune−10

Figure 2: Performance of different feature conversion methods with DTSL (top) and DT-
BLM (bottom), relative to Default. Lower values indicate better performance.
Positive values (above the x-axis) indicate methods that performed worse than
Default, and negative values (below the x-axis) indicate methods that performed
better than Default.

518

Improving Markov Network Structure Learning Using Decision Trees

For DTSL, Prune is more accurate than Default on 15 data sets. Prune-10 rarely
improved on the accuracy of Prune and Prune-5 often did worse. Nonzero was the most
accurate method on seven data sets for DTSL. Overall, Prune did better on more data
sets, but Nonzero worked especially well on Audio, Jester, and Netflix, three relatively
dense collaborative filtering data sets. When we investigated these data sets further, we
found that Default, Prune, and Prune-10 were overfitting, since they obtained better
PLLs than Nonzero on the training data but worse PLLs on the validation data. Prune-
5 was underfitting, obtaining worse PLLs than Nonzero on both training and validation
data. We hypothesize that Nonzero provides beneficial regularization by removing many
features. Long features are more likely to have one or more false variable constraints, and
are therefore more likely to be removed by Nonzero. If these longer features are the source
of the overfitting problems, then placing a stricter prior on the weights of longer features
might offer a similar benefit.

The results on DT-BLM are similar, as shown in the right side of Table 2 and the bottom
half of Figure 2. For DT-BLM, Prune is more accurate on 18 data sets, although many of
these differences are very small. Nonzero is most accurate on five data sets, but Prune
is relatively close on three of them. On average, the additional feature refinement done
by DT-BLM seems to render it somewhat less sensitive to the choice of feature generation
method.

Our tuning procedure uses the PLL of the validation set for model selection. Thus, the
model we select may be different from the one with the best NCMLL on the test set, since
it is selected according to a different metric on different evaluation data. For both DTSL
and DT-BLM, the method selected with the validation set (underlined in Table 2) is often
the same as the one with the best NCMLL (bold in Table 2). When they are different, the
NCMLL of the alternative model is very close. This suggests that PLL does a reasonably
good job of model selection for DTSL and DT-BLM on these data sets.

For DTSL, additional characteristics of the features generated by each method are shown
in Figures 3 and 4. “Average feature length” is the average number of conditions per feature.
The Prune method leads to roughly twice as many features as Default, which is what one
would expect, since half of the nodes in a balanced binary tree are leaves and the other half
are interior nodes. Nonzero typically yields the shortest and the fewest rules, as expected.

7.4 Accuracy

We then compared DTSL, DT-BLM, and DT+L1 to three standard Markov network struc-
ture learners: L1-regularized logistic regression (Ravikumar et al., 2010), BLM (Davis and
Domingos, 2010), and DP (Della Pietra et al., 1997). For DTSL and DT-BLM, we used the
feature generation method that performed best on the validation set. In some cases, such
as KDDCup 2000, this was not the method that performed best on the test data.

Figure 5 shows how DTSL, DT-BLM, DT+L1, and the three baselines compare in
terms of NCMLL. For each data set, bars above the x-axis indicate algorithms that perform
worse than DTSL, and bars below the x-axis indicate algorithms that perform better. Raw
numbers for NCMLL and NPLL can be found in Table 3. NPLL is the pseudo-log-likelihood
divided by the number of variables in the domain. The NPLL results are qualitatively similar
to the NCMLL results, except for Pumsb Star and DNA, where L1 ranks better according

519

Lowd and Davis

T
est

set
C

M
L

L
T

est
set

N
P

L
L

D
a
ta

S
et

D
P

B
L

M
L

1
D

T
S

L
D

T
-B

L
M

D
T

+
L

1
D

P
B

L
M

L
1

D
T

S
L

D
T

-B
L

M
D

T
+

L
1

N
L
T

C
S

-0
.3

2
6

-0.32
8

-0.32
7

-0
.3

2
5

-0
.3
2
4

-0
.3

2
5

-0
.3

0
7

-0
.3

1
1

-0.309
-0.309

-0
.3
0
7

-0.308
M

S
N

B
C

-0
.3

4
9

-0.34
4

-0.36
9

-0
.3

3
7

-0
.3
3
6

-0
.3
3
6

-0
.2

9
9

-0
.2

8
8

-0.356
-0
.2
5
2

-0
.2
5
2

-0
.2
5
2

K
D

D
C

u
p

2
0
00

-0
.0

3
3

-0
.0
3
2

-0.03
3

-0
.0
3
2

-0
.0
3
2

-0
.0
3
2

-0
.0

3
4

-0
.0

3
2

-0.032
-0.032

-0
.0
3
1

-0
.0
3
1

P
lan

ts
-0

.1
5
9

-0.15
1

-0.15
6

-0
.1

4
3

-0
.1
4
1

-0
.1
4
1

-0
.1

3
5

-0
.1

3
3

-0.136
-0.124

-0
.1
2
2

-0
.1
2
2

A
u

d
io

-0
.3

9
2

-0.37
5

-0
.3
7
0

-0
.3

7
5

-0
.3

7
3

-0
.3
7
0

-0
.3

8
5

-0
.3

6
8

-0
.3
6
2

-0.370
-0.367

-0.366
J
ester

-0
.5

3
7

-0.53
0

-0
.4
9
6

-0
.5

0
5

-0
.5

0
3

-0
.5

0
4

-0
.5

2
8

-0
.5

2
6

-0
.4
8
8

-0.498
-0.497

-0.492
N

etfl
ix

-0
.5

7
4

-0.56
5

-0
.5
2
3

-0
.5

3
2

-0
.5

3
2

-0
.5

2
5

-0
.5

6
1

-0
.5

6
0

-0
.5
1
1

-0.523
-0.524

-0.514
A

ccid
en

ts
-0

.2
7
0

-0.33
9

-0.14
9

-0
.1

4
7

-0
.1

4
6

-0
.1
4
1

-0
.2

4
0

-0
.2

9
6

-0.112
-0
.1
0
5

-0.106
-0
.1
0
5

R
etail

-0
.0

7
9

-0.07
9

-0.07
9

-0
.0
7
8

-0
.0
7
8

-0
.0
7
8

-0
.0

7
5

-0
.0

7
7

-0
.0
7
6

-0
.0
7
6

-0
.0
7
6

-0
.0
7
6

P
u

m
sb

S
tar

-0
.1

8
3

-0.62
3

-0.08
5

-0
.1

0
1

-0
.1

0
0

-0
.0
8
4

-0
.1

4
5

-0
.1

7
6

-0
.0
5
9

-0
.0
5
9

-0
.0
5
9

-0
.0
5
9

D
N

A
-0

.5
4
1

-0.55
4

-0
.3
8
4

-0
.3
8
4

-0
.3
8
4

-0
.3
8
4

-0
.5

2
3

-0
.5

4
5

-0.326
-0
.3
2
3

-0
.3
2
3

-0
.3
2
3

K
o
sarek

-0
.0

5
7

-0.05
4

-0.05
4

-0
.0

5
3

-0
.0

5
3

-0
.0
5
2

-0
.0

5
6

-0
.0

5
3

-0.052
-0.052

-0
.0
5
1

-0
.0
5
1

M
S

W
eb

-0
.0

3
1

-0.03
0

-0.03
0

-0
.0
2
9

-0
.0
2
9

-0
.0
2
9

-0
.0

3
0

-0
.0

2
9

-0.030
-0
.0
2
7

-0
.0
2
7

-0
.0
2
7

B
o
o
k

-0
.0

7
8

-0.06
9

-0.07
3

-0
.0

6
9

-0
.0
6
8

-0
.0
6
8

-0
.0

7
6

-0
.0

6
8

-0.073
-0.068

-0
.0
6
7

-0
.0
6
7

E
ach

M
ov

ie
-0

.1
3
4

-0.11
7

-0.10
4

-0
.1

0
2

-0
.1
0
0

-0
.1
0
0

-0
.1

3
2

-0
.1

1
6

-0.101
-0.102

-0
.0
9
9

-0
.0
9
9

W
eb

K
B

-0
.2

1
0

-0.19
6

-0.17
9

-0
.1

7
9

-0
.1

7
7

-0
.1
7
6

-0
.2

0
1

-0
.1

9
3

-0.175
-0.175

-0.173
-0
.1
7
2

R
eu

ters-5
2

-0
.1

1
9

-0.10
2

-0
.0
9
1

-0
.0

9
2

-0
.0

9
2

-0
.0
9
1

-0
.1

3
0

-0
.1

0
1

-0.090
-0.091

-0
.0
8
9

-0.090
2
0

N
ew

sgrou
p

s
-0

.1
8
8

-0.17
6

-0
.1
6
5

-0
.1

6
9

-0
.1
6
5

-0
.1

6
6

-0
.1

7
2

-0
.1

7
5

-0
.1
6
3

-0.167
-0
.1
6
3

-0.166
B

B
C

-0
.2

5
8

-0.25
1

-0.24
5

-0
.2
3
7

-0
.2
3
7

-0
.2

4
0

-0
.2

5
0

-0
.2

4
7

-0.246
-0.236

-0
.2
3
5

-0.241
A

d
-0

.0
3
3

-0.02
5

-0
.0
0
6

-0
.0

1
7

-0
.0

2
2

-0
.0
0
6

-0
.0

3
3

-0
.0

0
8

-0
.0
0
4

-0.008
-0.008

-0
.0
0
4

T
a
b

le
3:

T
est

set
N

C
M

L
L

an
d

N
P

L
L

for
all

algorith
m

s.
T

h
e

D
T

S
L

featu
re

gen
eration

m
eth

o
d

w
as

selected
u

sin
g

th
e

valid
ation

set.
T

h
e

b
est

resu
lt

for
ea

ch
m

etric
is

sh
ow

n
in

b
old

.
T

h
e

m
eth

o
d

w
ith

th
e

b
est

valid
ation

set
P

L
L

is
u

n
d

erlin
ed

.

520

Improving Markov Network Structure Learning Using Decision Trees

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 F
ea

tu
re

 L
en

gt
h

Data Set

Default
Nonzero

Prune
Prune-10
Prune-5

Figure 3: Average feature length for each DTSL feature generation method on each data
set.

0

10,000

20,000

30,000

40,000

50,000

60,000

 2 4 6 8 10 12 14 16 18 20

N
um

be
r

of
 F

ea
tu

re
s

Data Set

Default
Nonzero

Prune
Prune-10
Prune-5

Figure 4: Number of features for each DTSL feature generation method on each data set.

to NCMLL than NPLL, and 20 Newsgroups and BBC, where BLM ranks worse according
to NCMLL than NPLL. Table 3 also shows which model has the best validation set NPLL.
Note that in 19 out of the 20 data sets this corresponds to the model with the best NCMLL,
indicating that PLL is a good objective function to optimize for this evaluation metric. We
focus our subsequent discussion on the NCMLL results, which we believe to be a better
measure of model accuracy than NPLL for typical queries.

Overall, DP and BLM are fairly inaccurate, DTSL and L1 are roughly comparable,
and DT-BLM is slightly better than DTSL. DT+L1 usually does at least as well as both
DTSL and L1, making it the most reliably accurate algorithm overall. DTSL is always

521

Lowd and Davis

 −0.02

 −0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
eg

at
iv

e
N

C
M

LL
 r

el
at

iv
e

to
 D

T
S

L

Data Set

DP
BLM
L1
DT−BLM
DT+L1

Figure 5: Normalized negative CMLL, relative to DTSL. Lower values indicate better per-
formance. Positive values (above the x-axis) indicate methods that performed
worse than DTSL, and negative values (below the x-axis) indicate methods that
performed better than DTSL.

more accurate than DP and BLM, except for three data sets where it is tied with BLM.
DTSL is significantly more accurate than both DP and BLM (p < 0.001) according to a
Wilcoxon signed-ranks test in which the test set NCMLL of each data set appears as one
sample in the significance test. DT-BLM represents a modest improvement in accuracy over
DTSL, performing slightly better than DTSL on 11 data sets and worse on only one. On the
remaining eight data sets, the difference in NCMLL was less than 0.001. A Wilcoxon signed-
ranks test indicates that DT-BLM is significantly more accurate than DTSL (p < 0.05).
Since DT+L1 includes the features from both DTSL and L1, it usually does at least as well
as both methods, and sometimes better. DT+L1 is the most accurate method (including
ties) on 15 out of 20 data sets, while DT-BLM is one of the most accurate methods on only
11 data sets, DTSL on five, and L1 on seven. DT+L1 is more accurate than both L1 and
DTSL (p < 0.05) according to a Wilcoxon signed-ranks test.

Comparisons between DTSL or DT-BLM and L1 are interesting because they demon-
strate the relative strengths of using trees versus logistic regression for generating features.
DTSL performs better than L1 on 11 data sets and worse on seven. Similarly, DT-BLM
performs better than L1 on 12 data sets and worse on six. These differences are not signifi-
cant according to a Wilcoxon signed-ranks test. The relative performance of DTSL and L1
seems to vary greatly from data set to data set. To better understand what makes DTSL
perform better or worse than L1, we examined the average length of the features learned by
DTSL. For the domains where DTSL performs worse than L1, the average feature length

522

Improving Markov Network Structure Learning Using Decision Trees

is 3.22, indicating relatively shallow trees with simple features. For the domains where
DTSL performs better, the average feature length is 6.04. This supports the hypothesis
that DTSL does better on domains with higher-order interactions that can be discovered
by decision trees, while L1 does better on domains with many low-order interactions that
can be modeled as pairwise features. DT-BLM’s features show a similar trend. Figure 6
shows the average feature length for each algorithm on each data set.

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 F
ea

tu
re

 L
en

gt
h

Data Set

DP
BLM

L1
DTSL

DT-BLM
DT+L1

Figure 6: Average feature length for each algorithm on each data set.

We also examined the number of features learned by each algorithm (see Figure 7).
When DTSL learned many more features than L1, it typically did better than L1 (NLTCS,
MSNBC, KDDCup, Plants, Kosarek, EachMovie) or the same (DNA, WebKB). However,
when L1 learned many more features than DTSL, it sometimes did better (Reuters-52, Ad)
and sometimes did worse (Retail, MSWeb, Book). Thus, the number of features learned
does not appear to correlate strongly with the relative performance of these two algorithms.

Figures 8 and 9 contain learning curves comparing DTSL and DT-BLM to L1. For the
most part, all three algorithms exhibit a similar dependence on the amount of training data.
The exceptions to this are Pumsb Star and Ad, where DTSL shows signs of overfitting. The
relative performance of L1 goes up and down somewhat in NLTCS, DNA, EachMovie, and
20 Newsgroups, but in most data sets the ranking of the methods is stable across all amounts
of training data. For some data sets (MSNBC, KDDCup 2000, Plants), L1 appears to have
converged to a different asymptotic error rate than DTSL, due to its different learning
bias. This is consistent with the hypothesis that some data sets are simply better suited
to the learning bias of L1, and some are better suited to the longer conjunctive features
representable by trees.

7.5 Learning Time

A comparison of running times is shown in Figure 10 (excluding DP), with raw numbers in
Table 4. The timing results shown include parameter tuning. L1 was fastest on nine data
sets; DTSL was fastest on 10; and BLM was fastest on one data set (Ad). Results excluding

523

Lowd and Davis

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

 2 4 6 8 10 12 14 16 18 20

N
um

be
r

of
 F

ea
tu

re
s

Data Set

DP
BLM

L1
DTSL

DT-BLM
DT+L1

Figure 7: Number of features for each algorithm on each data set.

tuning time are similar—L1 is fastest on six data sets; DTSL on 13; and BLM on one. For
DT+L1, we report the total time required for learning both the DTSL and L1 structures,
as well as the additional time required for weight learning.

We use the geometric mean running time of each algorithm to summarize performance
over all data sets. On average, DTSL is 5% slower than L1, 4.6 times faster than BLM, and
21.7 times faster than DP. DTSL is significantly faster than both BLM and DP according
to a Wilcoxon signed-ranks test on the log of the training time (p < 0.05). Although the
geometric mean running time of DTSL is slightly worse than L1’s, its arithmetic mean is
slightly better, mainly because DTSL tends to be faster on the larger, slower data sets such
as 20 Newsgroups and BBC.

DT-BLM is 19.7 times slower than DTSL and 10.6 times slower than BLM; these differ-
ences are also significant under the same test (p < 0.01). DT-BLM is slower than BLM for
two reasons. First, some data sets have more DTSL features than examples in the original
training data. For example, BBC has only 1,670 examples but results in 5,475 features
in DTSL’s model. Since DT-BLM runs on DTSL features instead of the original training
data, more features means a longer running time. Second, DT-BLM is more sensitive to the
width of the Gaussian prior than BLM is, so DT-BLM has one extra parameter to tune. If
we instead use the best Gaussian prior width from DTSL, the algorithm runs roughly four
times faster, but remains slower than BLM.

Table 5 shows a division of the total learning time, including tuning, divided into the
time spent learning the structure (i.e., the features) and the time spent on weight learning.
With respect to the number of variables, DTSL has better scaling characteristics for feature
generation than Ravikumar et al.’s L1 approach. The number of variables seems to have a
greater effect on run time than the number of examples. Each additional variable requires
learning one extra model. Furthermore, each individual learning task is more complex
because the target variable can depend on one additional input variable. The most striking
observation is that the majority of time is spent learning the feature weights. For L1, on

524

Improving Markov Network Structure Learning Using Decision Trees

NLTCS MSNBC KDDCup 2000

-0.39
-0.38
-0.37
-0.36
-0.35
-0.34
-0.33
-0.32

 1 2 5 10 16.181

C
M

L
L

Training Examples in 1000s

-0.41
-0.40
-0.39
-0.38
-0.37
-0.36
-0.35
-0.34
-0.33

 0 1 2 5 10 50 100 291.326

C
M

L
L

Training Examples in 1000s

-0.04
-0.04
-0.04
-0.04
-0.04
-0.03
-0.03
-0.03

 0 1 2 5 10 50 100 180.092

C
M

L
L

Training Examples in 1000sPlants Audio Jester

-0.26

-0.24

-0.22

-0.20

-0.18

-0.16

-0.14

 1 2 5 10 17.412

C
M

L
L

Training Examples in 1000s

-0.52
-0.50
-0.48
-0.46
-0.44
-0.42
-0.40
-0.38
-0.36

 1 2 5 10 15

C
M

L
L

Training Examples in 1000s

-0.62
-0.60
-0.58
-0.56
-0.54
-0.52
-0.50
-0.48

 1 2 5 9

C
M

L
L

Training Examples in 1000sNetflix Accidents Retail

-0.64

-0.62

-0.60

-0.58

-0.56

-0.54

-0.52

 1 2 5 10 15

C
M

L
L

Training Examples in 1000s

-0.26

-0.24

-0.22

-0.20

-0.18

-0.16

-0.14

 1 2 5 12.758

C
M

L
L

Training Examples in 1000s

-0.10
-0.10
-0.09
-0.09
-0.09
-0.09
-0.09
-0.08
-0.08
-0.08
-0.08

 1 2 5 10 22.041

C
M

L
L

Training Examples in 1000sPumsb Star DNA Kosarek

-0.17
-0.16
-0.15
-0.14
-0.13
-0.12
-0.11
-0.10
-0.09
-0.08

 1 2 5 12.262

C
M

L
L

Training Examples in 1000s

-0.45
-0.44
-0.43
-0.42
-0.41
-0.40
-0.39
-0.38

 1 1.6

C
M

L
L

Training Examples in 1000s

-0.07

-0.07

-0.06

-0.06

-0.05

-0.05

 1 2 5 10 20 33.375

C
M

L
L

Training Examples in 1000s

Figure 8: NCMLL vs. thousands of training examples for DT+L1 (circles), DT-BLM
(pluses), DTSL (x marks), and L1 (boxes) on the first 12 data sets. Higher
is better.

525

Lowd and Davis

MSWeb Book EachMovie

-0.04
-0.04
-0.04
-0.04
-0.04
-0.03
-0.03
-0.03
-0.03

 1 2 5 10 20 29.441

C
M

L
L

Training Examples in 1000s

-0.10

-0.09

-0.08

-0.08

-0.07

-0.07

-0.06

 1 2 5 8.7

C
M

L
L

Training Examples in 1000s

-0.15
-0.14
-0.14
-0.13
-0.13
-0.12
-0.12
-0.11
-0.11
-0.10
-0.10
-0.09

 1 2 4 4.524

C
M

L
L

Training Examples in 1000sWebKB Reuters-52 20 Newsgroups

-0.22
-0.21
-0.21
-0.20
-0.20
-0.19
-0.19
-0.18
-0.18
-0.17

 1 2 2.803

C
M

L
L

Training Examples in 1000s

-0.13
-0.12
-0.12
-0.11
-0.11
-0.10
-0.10
-0.09
-0.09

 1 2 5 6.532

C
M

L
L

Training Examples in 1000s

-0.20
-0.20
-0.19
-0.18
-0.18
-0.17
-0.17
-0.16
-0.16

 1 2 5 11.293

C
M

L
L

Training Examples in 1000sBBC Ad

-0.27
-0.27
-0.26
-0.26
-0.25
-0.24
-0.24
-0.23

 1 1.67

C
M

L
L

Training Examples in 1000s

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

 1 2 2.461

C
M

L
L

Training Examples in 1000s

Figure 9: NCMLL vs. thousands of training examples for DT+L1 (circles), DT-BLM
(pluses), DTSL (x marks), and L1 (boxes) on the last 8 data sets. Higher is
better.

average, weight learning accounts for 93.8% of the total run time. For DTSL, this rises to
99.1% of the total run time. The factor that most influences weight learning time is the
number of features: models with more features lead to longer weight learning times. Thus,
more efficient weight learning techniques would substantially improve the running time of
both structure learning algorithms.

7.6 Discussion

Both DTSL and L1 are typically faster and more accurate than DP and BLM. DTSL
excels in domains that depend on higher-order interactions, while L1 performs better in
domains that require many pairwise interactions. Therefore, neither algorithm dominates
or subsumes the other; rather, they discover complementary types of structure.

DTSL has two weaknesses. The first is a higher risk of overfitting, since it often generates
many very specialized features. For the most part, this can be remedied with careful tuning

526

Improving Markov Network Structure Learning Using Decision Trees

102

103

104

105

106

102 103 104 105 106

B
L

M
 r

un
 ti

m
e

(s
)

DTSL run time (s)

102

103

104

105

106

102 103 104 105 106

L
1

ru
n

tim
e

(s
)

DTSL run time (s)

103

104

105

106

107

102 103 104 105 106

D
T

-B
L

M
 r

un
 ti

m
e

(s
)

DTSL run time (s)

102

103

104

105

106

102 103 104 105 106

D
T

+
L

1
ru

n
tim

e
(s

)

DTSL run time (s)

Figure 10: Running time on each data set in seconds (y-axis) relative to DTSL’s running
time (x-axis). Points below the line y=x represent data sets where DTSL was
slower than the other algorithm. All times include tuning.

on a validation set. The second is a limited ability to capture many independent interactions.
For instance, to capture pairwise interactions between a variable and k other variables would
require a decision tree with 2k leaves, even though such interactions could be represented
exactly by O(k) features.

DT-BLM extends DTSL by further refining the features it generates, merging them
into a smaller set of more essential features. This leads to modest but consistent gains in
accuracy over DTSL at the cost of significantly longer learning times.

527

Lowd and Davis

Data Set DP BLM L1 DTSL DT-BLM DT+L1
NLTCS 1,934 8,836 157 1,089 21,430 2,001
MSNBC 438,611 116,315 782 10,597 2,533,367 19,606
KDDCup 2000 335,398 51,744 4,036 23,201 1,012,635 30,463
Plants 423,593 321,880 6,474 16,118 682,405 24,145
Audio 653,111 402,441 8,611 28,738 155,970 45,829
Jester 583,969 341,830 23,769 13,771 485,892 38,078
Netflix 653,099 472,792 49,582 26,560 962,730 76,944
Accidents 637,574 364,282 41,982 25,436 120,434 69,045
Retail 279,507 384,011 10,698 25,030 405,059 36,090
Pumsb Star 707,530 489,854 66,971 17,578 318,017 87,292
DNA 197,406 1,666 4,570 661 6,635 7,365
Kosarek 626,336 130,962 21,353 47,363 1,947,259 69,363
MSWeb 426,199 83,727 30,393 47,363 2,635,238 78,579
Book 641,338 72,398 38,444 40,409 1,405,667 82,966
EachMovie 694,509 66,983 42,923 25,873 1,401,549 70,613
WebKB 715,885 26,754 63,010 22,113 1,192,672 86,727
Reuters-52 790,165 144,641 118,166 82,467 202,551 202,237
20 Newsgroups 792,268 520,361 364,512 235,778 1,201,506 601,137
BBC 864,000 8,944 56,293 8,661 12,352 66,197
Ad 719,893 6,196 23,375 15,373 354,843 40,083
Arith. Mean 559,116 200,831 48,805 35,709 852,911 86,738
Geom. Mean 416,573 87,876 18,268 19,172 378,405 48,662

Table 4: Run time in seconds, including parameter tuning. The best run time is shown in
bold.

DT+L1 extends DTSL by including the features from L1, allowing it to capture many
pairwise interactions and some higher-order interactions in the same model. As a result,
DT+L1 does well overall across all data sets. DT+L1 is slower than DTSL but still much
faster than DT-BLM. The accuracy of DT+L1 could perhaps be improved by performing
additional tuning, rather than simply combining the models learned by DTSL and L1, or
by using the features from DT-BLM. However, these modifications would also increase the
learning time. The main risk of the expanded feature set used by DT+L1 is overfitting,
which could explain its slightly worse performance on Jester and BBC.

8. Conclusions and Future Work

In this paper, we presented three new methods for using decision trees to learn the structure
of Markov networks: DTSL, DT-BLM, and DT+L1.

DTSL is similar to the approach of Ravikumar et al. (2010), except that it uses decision
trees in place of L1-regularized logistic regression. This allows it to learn longer features
capturing interactions among more variables, which yields substantially better performance
in several domains. DTSL is also similar to methods for learning dependency networks with
tree conditional probability distributions (Heckerman et al., 2000). However, dependency
networks may not represent consistent probability distributions and require that inference

528

Improving Markov Network Structure Learning Using Decision Trees

L1 Learning Times DTSL Learning Times

Data Set Structure Weights Total Structure Weights Total

NLTCS 7 151 157 2 1,087 1,089
MSNBC 155 626 782 126 10,471 10,597
KDDCup 2000 1,469 2,567 4036 780 22,421 23,201
Plants 126 6,348 6,474 34 16,084 16,118
Audio 138 8,473 8,611 49 28,688 28,738
Jester 79 23,690 23,769 27 13,745 13,771
Netflix 157 49,426 49,582 47 26,513 26,560
Accidents 213 41,769 41,982 43 25,393 25,436
Retail 306 10,392 10,698 112 24,918 25,030
Pumsb Star 293 66,679 66,971 43 17,534 17,578
DNA 38 4,532 4,570 6 655 661
Kosarak 1,210 20,143 21,353 238 47,125 47,363
MSWeb 2,254 28,140 30,393 485 46,878 47,363
Book 1,694 36,751 38,444 256 40,153 40,409
EachMovie 1,321 41,602 42,923 191 25,681 25,873

WebKB 2,052 60,959 63,010 212 21,901 22,113
Reuters-52 5,713 112,453 118,166 589 81,878 82,467
20 Newsgroups 9,971 354,541 364,512 1,455 234,323 235,778
BBC 1,555 54,738 56,293 173 8,488 8,661
Ad 4,510 18,865 23,375 740 14,634 15,373

Arith. Mean 1,663 47,142 48,805 280 35,428 35,709
Geom. Mean 507 17,060 18,267 110 18,987 19,173

Table 5: Run time for Ravikumar et al.’s algorithm and DTSL divided into time spent on
structure learning and weight learning. Time is in seconds and includes parameter
tuning.

be done with Gibbs sampling, while the Markov networks learned by DTSL have neither of
those limitations.

In terms of speed, we found that DTSL and L1-regularized logistic regression (Raviku-
mar et al., 2010) had similar speed, while BLM (Davis and Domingos, 2010) and Della
Pietra et al. (1997) were significantly slower. With a faster weight learning method, this
comparison would be even more favorable to DTSL and L1, since most of their time was
spent on the final weight learning step. In terms of accuracy, DTSL is comparable in ac-
curacy to other approaches, placing ahead of all three baselines on nine out of 20 data
sets.

The other two methods are extensions of DTSL that combine it with other structure
learning algorithms. DT-BLM builds on DTSL by running the BLM bottom-up structure
learning algorithm on the features generated by DTSL. This usually leads to slightly better
accuracy, but is also much slower. DT+L1 extends DTSL by adding the features learned by
L1-regularized logistic regression. This hybrid approach is very effective: DT+L1 is one of
the most accurate methods on 15 out of 20 data sets and runs much faster than DT-BLM.

529

Lowd and Davis

Future work includes exploring other methods of learning local structure, such as rule
sets, boosted decision trees, and neural networks; determining sufficient conditions for the
asymptotic consistency of local learning; further improving speed, perhaps by using frequent
itemsets; and incorporating faster methods for weight learning, since structure learning is
no longer the bottleneck.

Acknowledgments

The authors would like to thank the anonymous reviewers for many helpful suggestions.
We also thank Jan Van Haaren for his valuable feedback on the article. DL is partly
supported by ARO grant W911NF-08-1-0242 and NSF grant IIS-1118050. The views and
conclusions contained in this document are those of the authors and should not be inter-
preted as necessarily representing the official policies, either expressed or implied, of ARO
or the United States Government. JD is partially supported by the research fund KU Leu-
ven (CREA/11/015 and OT/11/051), and EU FP7 Marie Curie Career Integration Grant
(#294068).

References

G. Andrew and J. Gao. Scalable training of l1-regularized log-linear models. In Proceedings
of the Twenty-Fourth International Conference on Machine Learning, pages 33–40. ACM
Press, 2007.

J. Besag. Statistical analysis of non-lattice data. The Statistician, 24:179–195, 1975.

C. Blake and C. J. Merz. UCI repository of machine learning databases. Machine-readable
data repository, Department of Information and Computer Science, University of Cali-
fornia at Irvine, Irvine, CA, 2000. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

F. Bromberg, D. Margaritis, and V. Honavar. Efficient Markov network structure discovery
using independence tests. Journal of Artificial Intelligence Research, 35(2):449–484, 2009.

D. Chickering, D. Heckerman, and C. Meek. A Bayesian approach to learning Bayesian
networks with local structure. In Proceedings of the Thirteenth Conference on Uncertainty
in Artificial Intelligence, pages 80–89, Providence, RI, 1997. Morgan Kaufmann.

J. Davis and P. Domingos. Bottom-up learning of Markov network structure. In Proceedings
of the Twenty-Seventh International Conference on Machine Learning, pages 271–278,
Haifa, Israel, 2010. ACM Press.

S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19:380–392, 1997.

P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of the Sixth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 71–80, Boston, MA, 2000. ACM Press.

530

Improving Markov Network Structure Learning Using Decision Trees

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear: A library for
large linear classification. Journal of Machine Learning Research, (9):1871–1874, 2008.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte Carlo
in Practice. Chapman and Hall, London, UK, 1996.

K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time collabo-
rative filtering algorithm. Information Retrieval, 4(2):133–151, 2001.

D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency
networks for inference, collaborative filtering, and data visualization. Journal of Machine
Learning Research, 1:49–75, 2000.

G. Hulten and P. Domingos. Mining complex models from arbitrarily large databases in
constant time. In Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 525–531, Edmonton, Canada, 2002. ACM
Press.

R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng. KDD-Cup 2000 organizers’
report: Peeling the onion. SIGKDD Explorations, 2(2):86–98, 2000.

A. Kulesza and F. Pereira. Structured learning with approximate inference. In Advances
in Neural Information Processing Systems 20, pages 785–792, 2007.

S.-I. Lee, V. Ganapathi, and D. Koller. Efficient structure learning of Markov networks
using L1-regularization. In Advances in Neural Information Processing Systems 19, pages
817–824. MIT Press, 2007.

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45(3):503–528, 1989.

D. Lowd and J. Davis. Learning Markov network structure with decision trees. In Proceed-
ings of the 10th IEEE International Conference on Data Mining (ICDM), pages 334–343,
Sydney, Australia, 2010. IEEE Computer Society Press.

A. McCallum. Efficiently inducing features of conditional random fields. In Proceedings
of the Nineteenth Conference on Uncertainty in Artificial Intelligence, pages 403–410,
Acapulco, Mexico, 2003. Morgan Kaufmann.

K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate inference:
An empirical study. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial
Intelligence, pages 467–475. Morgan Kaufmann, Stockholm, Sweden, 1999.

P. Ravikumar, M. J. Wainwright, and J. Lafferty. High-dimensional ising model selection
using L1-regularized logistic regression. Annals of Statistics, 38(3):1287–1319, 2010.

M. Schmidt and K. Murphy. Convex structure learning in log-linear models: Beyond pair-
wise potentials. In Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 709–716, 2010.

531

Lowd and Davis

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. Springer, New
York, NY, 1993.

I. Tsamardinos, L. Brown, and C. Aliferis. The max-min hill-climbing Bayesian network
structure learning algorithm. Machine Learning, 65(1):31–78, 2006.

J. Van Haaren and J. Davis. Markov network structure learning: A randomized feature gen-
eration approach. In Proceedings of the Twenty-Sixth National Conference on Artificial
Intelligence, pages 1148–1154. AAAI Press, 2012.

C. Ziegler, S. McNee, J. Konstan, and G. Lausen. Improving recommendation lists through
topic diversification. In Proceedings of the Fourteenth International World Wide Web
Conference, pages 22–32, 2005.

532

	Introduction
	Markov Networks
	Representation
	Inference
	Weight Learning

	Structure Learning in Markov Networks
	Decision Tree Structure Learning (DTSL)
	Learning Trees
	Generating Features
	Asymptotic Complexity

	Decision Tree Bottom-Up Learning (DT-BLM)
	Combining DTSL and L1 (DT+L1)
	Empirical Evaluation
	Methodology
	Data Sets
	Feature Generation Methods
	Accuracy
	Learning Time
	Discussion

	Conclusions and Future Work

