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Abstract

We develop an R package fastclime for solving a family of regularized linear program-
ming (LP) problems. Our package efficiently implements the parametric simplex algorithm,
which provides a scalable and sophisticated tool for solving large-scale linear programs. As
an illustrative example, one use of our LP solver is to implement an important sparse pre-
cision matrix estimation method called CLIME (Constrained L1 Minimization Estimator).
Compared with existing packages for this problem such as clime and flare, our package
has three advantages: (1) it efficiently calculates the full piecewise-linear regularization
path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely
coded in C and is highly portable. This package is designed to be useful to statisticians
and machine learning researchers for solving a wide range of problems.

Keywords: high dimensional data, sparse precision matrix, linear programming, para-
metric simplex method, undirected graphical model

1. Introduction and Parametric Simplex Method

We introduce an R package, fastclime, that efficiently solves a family of regularized LP
problems. Our package has two major components. First, we provide an interface function
that implements the parametric simplex method (PSM). This algorithm can efficiently solve
large-scale LPs. Second, we apply the PSM to implement an important sparse precision ma-
trix estimation method called CLIME (Cai et al., 2011), which is useful in high-dimensional
graphical models. In the rest of this section, we describe briefly the main idea of the PSM.
We refer readers who are unfamiliar with simplex methods in general to Vanderbei (2008).
Consider the LP problem

max cTβ subject to: Aβ ≤ b, β ≥ 0,
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where A ∈ Rn×d, c ∈ Rd and b ∈ Rn are given and, “≥” and “≤” are defined component-
wise. Simplex methods expect problems in “equality form”. Therefore, the first task is to
introduce new variables which we tack onto the end of β and make it a longer vector β̂. We
rewrite the constraints with the new variables on the left and the old ones on the right:

max cTβN subject to: βB = b−AβN , βB ≥ 0, βN ≥ 0.

Here, N = {1, 2, . . . , d}, B = {d+1, d+2, . . . , d+n}, and βB and βN denote subvectors of β̂
associated with the indices in the set. In each iteration, one variable on the left is swapped
with one on the right. In general, the variables on the left are called basic variables and
the variables on the right are called nonbasic variables. As the algorithm progresses, the
set of nonbasic variables changes and the objective function is re-expressed purely in terms
of the current nonbasic variables and therefore the coefficients for the objective function
change. In a similar manner, the coefficients in the linear equality constraints also change.
We denote these changed quantities by Â, b̂, and ĉ. Associated with each of these updated
representations of the equations of the problem is a particular candidate “solution” obtained
by setting βN = 0 and reading off the corresponding values for basic variables βB = b̂. If
b̂ ≥ 0, then the candidate solution is feasible (that is, satisfies all constraints). If in addition
ĉ ≤ 0, then the solution is optimal.

Each variant of the simplex method is defined by the rule for choosing the pair of
variables to swap at each iteration. The PSM’s rule is described as follows (Vanderbei,
2008). Before the algorithm starts, it parametrically perturbs b and c:

max(c+ λc∗)Tβ subject to: Aβ ≤ b+ λb∗, β ≥ 0. (1)

Here b∗ ≥ 0 and c∗ ≤ 0; they are called perturbation vectors. With this choice, the perturbed
problem is optimal for large λ. The method then uses pivots to systematically reduce λ
to smaller values while maintaining optimality as it goes. Once the interval of optimal λ
values covers zero, we simply set λ = 0 and read off the solution to the original problem.
Sometimes there is a natural choice of the perturbation vectors b∗ and c∗ suggested by the
underlying problem for which it is known that the initial solution to the perturbed problem
is optimal for some value of λ. Otherwise, the solver generates perturbations on its own.

If we are only interested in solving generic LPs, the PSM is comparable to any other
variant of the simplex method. However, as we will see in the next section, the parametric
simplex method is particularly well-suited to machine learning problems since the relaxation
parameter λ in (1) is naturally related to the regularization parameter in sparse learning
problems. This connection allows us to solve a full range of learning problems corresponding
to all the regularization parameters. If a regularized learning problem can be formulated as
(1), then the entire solution path can be obtained by solving one LP with the PSM. More
precisely, at each iteration of the PSM, the current “solution” is the optimal solution for
some interval of λ values. If these solutions are stored, then when λ reaches 0, we have the
optimal solution to every λ-perturbed problem for all λ between 0 and the starting value.

We describe the application of the PSM to sparse precision matrix estimation in Section
2. Numerical benchmark and comparisons with other implementations of the precision
matrix estimation are provided in Section 3. For details of examples and how to use the
package, we refer the user to the companion vignette and package references.
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2. Application to Sparse Precision Matrix Estimation

Estimating large covariance and precision matrices is a fundamental problem which has
many applications in modern statistics and machine learning. We denote Ω = Σ−1, where
Σ is the population covariance matrix. Under Gaussian model, the sparse precision ma-
trix Ω encodes the conditional independence relationships among the variables and that
is why sparse precision matrices are closely related to undirected graphs. Recently, sev-
eral sparse precision matrix estimation methods have been proposed, including penalized
maximum-likelihood estimation (MLE) (Banerjee et al., 2008; Friedman et al., 2007b,a,
2010), neighborhood selection method (Meinshausen and Bühlmann, 2006) and LP based
methods (Cai et al., 2011; Yuan, 2011). In general, solvers based on penalized MLE meth-
ods, such as QUIC (Hsieh et al., 2011) and HUGE (Zhao and Liu, 2012), are faster than the
others. However, these MLE methods aim to find an approximate solution quickly whereas
the linear programming methods are designed to find solutions that are correct essentially
to machine precision. The comparison of classification performance can be found in Cai
et al. (2011) and it is shown that CLIME uniformly outperforms the MLE methods. Be-
cause of the good theoretical properties shown by CLIME, we would like to develop a fast
algorithm for implementing this method which serves as an important building block for
more sophisticated learning algorithms.

The CLIME solves the following optimization problem

min ‖Ω‖1 subject to: ‖ΣnΩ− Id‖max ≤ λ and Ω ∈ Rd×d,

where Id is the d-dimensional identity matrix, Σn is the sample covariance matrix, and
λ > 0 is a tuning parameter. Here ‖Ω‖1 =

∑
j,k |Ω|j,k and ‖ · ‖max is the elementwise

sup-norm. This minimization problem can be further decomposed into d smaller problems,
which allows us to recover the precision matrix in a column by column fashion. For the i-th
subproblem, we get the i-th column of Ω, denoted as β̂, by solving

min ‖β‖1 subject to: ‖Σnβ − ei‖∞ ≤ λ and β ∈ Rd, (2)

where ‖β‖1 =
∑d

j=1 |βj | and ei ∈ Rd is the i-th basis vector.

The original clime package manually sets a default path for λ and solves the LP problem
for each different value of λ. In this paper, we propose to use the PSM to solve this problem
more efficiently. CLIME can be easily formulated in parametric simplex LP form. Let β+

and β− be the positive and negative parts of β. Since β = β+ − β− and ‖β‖1 = β+ + β−,
Equation (2) becomes:

minβ+ + β− subject to:

(
Σn −Σn

−Σn Σn

)(
β+

β−

)
≤
(
λ+ ei
λ− ei

)
. (3)

Comparing (1) and (3), we can give the following identification:

A =

(
Σn −Σn

−Σn Σn

)
, b =

(
ei
−ei

)
, c =

−1
...
−1

 , b∗ =

1
...
1

 , c∗ =

0
...
0

 .
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The path of λ defined by the PSM corresponds to the path of λ as described in CLIME.
Therefore, CLIME can be solved efficiently by the PSM; furthermore, when the optimal
solution is sparse, the parametric simplex is able to find the optimal solution after very few
iterations.

3. Performance Benchmark

For our experiments we focused solely on CLIME. We compare the timing performance of
our package with the packages flare and clime. Flare uses the Alternating Direction
Method of Multipliers (ADMM) algorithm to evaluate CLIME (Li et al., 2012), whereas
clime solves a sequence of LP problems for a certain specific set of values of λ. As explained
in Section 1, our method calculates the solution for all λ, while flare and clime use a dis-
crete set of λ values as specified in the function. We fix the sample size n to be 200 and vary
the data dimension d from 50 to 800. We generate our data using fastclime.generator,
without any particular data structures. Clime and fastclime are based on algorithms
that solve problems to machine precision (10−5). Flare, on the other hand, is an ADMM-
based algorithm that stops when the change from one iteration to the next drops below the
same threshold. As shown in Table 1, fastclime performances significantly faster than
clime when d equals 50 and 100. When d becomes large, we are not able to obtain re-
sults from clime in one hour. We also notice that, in most cases, fastclime performances
consistently better than flare, and it has a smaller deviation compared with flare. The
reason fastclime outperforms the other methods is primarily because the PSM only solves
one LP problem to get the entire solution path for all λ quickly and without using much
memory. The code is implemented on a i5-3320 2.6GHz computer with 8G RAM, and the
R version used is 2.15.0.

Method d=50 d=100 d=200 d=400 d=800

clime 103.52(9.11) 937.37(6.77) N/A N/A N/A
flare 0.632(0.335) 1.886(0.755) 10.770(0.184) 74.106(33.940) 763.632(135.724)
fastclime 0.248(0.0148) 0.928(0.0268) 9.928(3.702) 53.038(1.488) 386.880(58.210)

Table 1: Average Timing Performance of Three Solvers in Seconds

4. Summary and Acknowledgements

We developed a new package named fastclime, for solving linear programming problems
with a relaxation parameter and high dimensional sparse precision matrix estimation. We
plan to maintain and support this package in the future. Han Liu is supported by NSF
Grants III-1116730 and NSF III-1332109, NIH R01MH102339, NIH R01GM083084, and
NIH R01HG06841, and FDA HHSF223201000072C. Robert Vanderbei is supported by ONR
Grant N000141310093.
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