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Abstract

Similarity measures for comparing clusterings is an important component, e.g., of evaluat-
ing clustering algorithms, for consensus clustering, and for clustering stability assessment.
These measures have been studied for over 40 years in the domain of exclusive hard cluster-
ings (exhaustive and mutually exclusive object sets). In the past years, the literature has
proposed measures to handle more general clusterings (e.g., fuzzy/probabilistic clusterings).
This paper provides an overview of these new measures and discusses their drawbacks. We
ultimately develop a corrected-for-chance measure (13AGRI) capable of comparing exclu-
sive hard, fuzzy/probabilistic, non-exclusive hard, and possibilistic clusterings. We prove
that 13AGRI and the adjusted Rand index (ARI, by Hubert and Arabie) are equivalent
in the exclusive hard domain. The reported experiments show that only 13AGRI could
provide both a fine-grained evaluation across clusterings with different numbers of clus-
ters and a constant evaluation between random clusterings, showing all the four desirable
properties considered here. We identified a high correlation between 13AGRI applied to
fuzzy clusterings and ARI applied to hard exclusive clusterings over 14 real data sets from
the UCI repository, which corroborates the validity of 13AGRI fuzzy clustering evaluation.
13AGRI also showed good results as a clustering stability statistic for solutions produced
by the expectation maximization algorithm for Gaussian mixture. Implementation and
supplementary figures can be found at http://sn.im/25a9h8u.
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1. Introduction

Clustering is a task that aims to determine a finite set of categories (clusters) to de-
scribe a data set according to similarities/dissimilarities among its objects (Kaufman and
Rousseeuw, 1990; Everitt et al., 2001). Several clustering algorithms are published every
year, which makes developing of effective measures to compare clusterings indispensable
(Vinh et al., 2009, 2010). Clustering algorithm A is commonly considered better than B
for a given data set X if A produces clusterings that are more similar (according to a sim-
ilarity measure1 for clustering) to a reference solution for X than those produced by B.
Similarity measures are also used for consensus clustering, clustering stability assessment,
and even for quantifying information loss (Strehl and Ghosh, 2003; Monti et al., 2003; Yu

1. Note that a dissimilarity/distance measure can always be cast into a similarity measure. For comparison
purposes, we transformed dissimilarity/distance measures into similarity measures in this work.
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et al., 2007; Beringer and Hllermeier, 2007; Vinh and Epps, 2009). A consensus clustering
technique aims to find a high-quality clustering solution by combining several (potentially
poor) solutions obtained from different methods, algorithm initializations, or perturbations
of the same data set. This combination is achieved by producing a solution that shares
the most information, quantified by a similarity measure, with the original solutions (Strehl
and Ghosh, 2003). In the context of clustering stability assessment, the method used to
generate a set of clustering solutions is considered stable if the set shows low variation,
which is considered a desirable quality (Kuncheva and Vetrov, 2006). One can apply a
clustering algorithm several times to subsamples of the original data set for any numbers
of clusters, producing a set of clusterings for each number of clusters. The number of clus-
ters for which the set of solutions is less diverse is considered a good estimate of the true
number of clusters (Borgelt and Kruse, 2006; Vinh and Epps, 2009). Another interesting
application of similarity measures is in the quantification of information loss (Beringer and
Hllermeier, 2007). To increase efficiency (e.g., in the context of data stream clustering), one
can first map the data into a low-dimensional space and cluster the transformed data. If
the transformation is almost lossless, the clustering structures in the two spaces should be
highly similar; a similarity measure can be used to assess this.

Several established measures are suitable for comparing exclusive hard clusterings
(EHCs) (Albatineh et al., 2006; Meila, 2007; Vinh et al., 2009, 2010), i.e., clusterings in
which each object exclusively belongs to one cluster. Examples of popular measures are
the Rand index (RI) (Rand, 1971), adjusted Rand index (ARI) (Hubert and Arabie, 1985),
Jaccard index (JI) (Jaccard, 1908), mutual information (Strehl and Ghosh, 2003), and vari-
ation of information (VI) (Meila, 2005). Bcubed (BC) (Bagga and Baldwin, 1998; Amigó
et al., 2009) is a measure for evaluating coreferences (e.g., a set of pronouns referring to the
same noun in a paragraph) in the natural language processing field. Coreferences can also
be viewed as EHCs (Cardie and Wagstaf, 1999), and BC satisfies some (frequently regarded
as) desirable properties that most well-known EHC measures do not (Amigó et al., 2009).
Thus, we also include BC in this work. There are other important clustering types, e.g.,
fuzzy/probabilistic clustering2 (FC), non-exclusive hard clustering (NEHC), and possibilis-
tic clustering (PC) (Campello, 2010; Anderson et al., 2010), that are not assessed using
well-established measures but that would benefit from the tasks discussed above.

Various EHC measure generalizations have recently appeared in the literature (Borgelt
and Kruse, 2006; Campello, 2007; Anderson et al., 2010; Campello, 2010) to fill this gap.
Unfortunately, all these measures exhibit critical problems that hinder their applicability.
The RI fuzzy version by Campello (2007) does not attain its maximum (i.e., 1) whenever
two identical solutions are compared, which makes it difficult to convey the similarity of
the compared solutions. The same issue is exhibited by other RI generalizations (Borgelt
and Kruse, 2006; Ceccarelli and Maratea, 2008; Rovetta and Masulli, 2009; Brouwer, 2009;
Anderson et al., 2010; Quere and Frelicot, 2011). Moreover, most of the proposed measures
are not corrected for randomness, i.e., they do not provide a constant average evaluation

2. The usage of “fuzzy” or “probabilistic” depends on the interpretation of the object membership degrees
given by the solution. Fuzzy c-means (Bezdek, 1981) and expectation maximization (EM) (Dempster
et al., 1977) give a fuzzy and a probabilistic interpretation, respectively, although the solutions they
produce come from the same domain of clusterings. We will hereafter call it fuzzy clustering in both
cases for simplicity.
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over sets of independently generated clusterings (constant baseline for short). In practice
this means that theses measures tend to favor clusterings with certain numbers of clusters
(Vinh et al., 2009, 2010), whether the compared solutions are similar or not. Additionally,
several of the measures have a low sensitivity to differences in solution quality, where close
evaluation values can result from comparing very similar or very different solutions.

Biclustering is also an important type of clustering solution, which is usually represented
by a set of pairs C , {(Ce1 , Cc1), (Ce2 , C

c
2), . . . , (Cek, C

c
k)}. Each pair (Cer , C

c
r) has two non-

empty sets of objects of different types. In gene expression analysis, Cer could be the set
of genes related to the experimental conditions in Ccr (Madeira and Oliveira, 2004). In
subspace clustering, Cer could be the set of objects related to the object features in Ccr
(Patrikainen and Meila, 2006; Günnemann et al., 2011). We do not consider this type of
clustering henceforth as it would overly extend the length and complexity of this work.
Moreover, a biclustering can always be converted to an NEHC (Patrikainen and Meila,
2006), which is one of the scenarios we investigate here.

We first develop an RI generalization, called the frand index (13FRI),3 to handle FCs.
We then develop the adjusted frand index (13AFRI) by correcting 13FRI for randomness.
Although the assumed randomness model is apparently unrelated to that assumed for ARI
(Hubert and Arabie, 1985), we prove that 13AFRI and ARI are different formulations of the
same measure in the EHC domain. Finally, we also extend the 13FRI and 13AFRI measures
to the more general domain of PCs (which include the NEHC, FC, and EHC solutions as
special cases, Section 3), resulting in the grand index (13GRI) and adjusted grand index
(13AGRI), respectively.

We defined four clearly desirable properties that a good similarity measure should dis-
play. Under this framework, our proposed measures are empirically compared in two ex-
periments with 32 others, out of which 28 are measures proposed in the past recent years
to handle more general clusterings than EHCs. Several of the measures could not distin-
guish among solutions that are close to from those that are far from the reference solution
according to the number of clusters in the first experiment. 13AGRI presented an evident,
desirable sensitivity over the ranges of the numbers of clusters. In the second experiment,
13AGRI was the only measure that exhibited a constant baseline for all scenarios of ran-
domly generated exclusive hard, fuzzy, non-exclusive hard, and possibilistic clusterings.

We applied 13AGRI and ARI to evaluate fuzzy c-means (Bezdek, 1981) and k-means
(MacQueen, 1967) solutions, respectively, over 14 real data sets from UCI repository (New-
man and Asuncion, 2010). We argue that the high correlation found between 13AGRI and
ARI evaluations is an indication of the 13AGRI evaluation appropriateness for FCs. 13AGRI
is also assessed as a stability statistic for FCs produced by the expectation maximization
for Gaussian mixture (EMGM) (Dempster et al., 1977) algorithm.

The remainder of the paper is organized as follows. Section 2 discusses evaluation of
similarity measures and establishes four desirable properties. Section 3 sets the background
of the work and reviews the measures proposed in the past years to tackle more general
clusterings than EHCs. Section 4 presents the 13FRI measure for handling FCs, devel-
ops a corrected-for-chance version of 13FRI named 13AFRI, and explains why 13FRI and

3. The number 13 is a reminder of the publication year of the measure (2013). We use a reminder in front
of each measure acronym, except for RI, ARI, JI, and BC. This helps us identify the recently proposed
measures.
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13AFRI are not suitable for comparing every type of PC. Section 5 proposes the 13GRI and
13AGRI measures by addressing the issue that prevented 13FRI and 13AFRI from being
appropriately applied to PCs. Section 6 deduces the asymptotic computational complexity
of 13FRI, 13AFRI, 13GRI, and 13AGRI and introduces an efficient algorithm to calculate
the expectations used by 13AFRI and 13AGRI. Section 7 presents four experiments, the
first two to empirically evaluate the measures according to the four desirable properties.
First experiment (Section 7.1) assesses how the measures behave when comparing solutions
produced by clustering algorithms with reference solutions across a range of the numbers
of clusters. Second experiment (Section 7.2) assesses the ability of the measures to provide
unbiased evaluations in several scenarios. Third experiment (Section 7.3) compares 13AGRI
and ARI evaluations of fuzzy and exclusive hard clusterings in 14 real data sets. Fourth
experiment (Section 7.4) uses 13AGRI as a stability statistic for FC assessment in five real
data sets. Section 8 discusses the criteria adopted to evaluate and compare the measures.
Section 9 concludes the work, and Appendix proves some properties of our measures.

2. Desirable Measure Properties

Evaluating a measure for comparing clusterings is a difficult task. Partly because different
applications may require different perspectives regarding the similarity between clusterings,
and partly because there is no universally accepted set of properties that a measure for
comparing clusterings must have. It is often the case that a measure is modified to comply
with a set of desirable properties but, as a side effect, loses another set of desirable properties
that it previously had. This is the case of variation of information (Meila, 2005) and its
corrected-for-chance version developed in (Vinh et al., 2009, 2010), where the latter gives
away the metric property to gain the property of displaying constant baseline evaluations for
randomly generated solutions. There is even a result stating that no “sensible” measure for
comparing clusterings will simultaneously satisfy three desirable properties (Meila, 2005).

In order to evaluate the usefulness of our proposed measure, we compare ours with the
ones found in the literature over four clearly desirable properties. These properties have
been chosen because they are appealing from a practical perspective and together they
can unveil flaws of several existing measures according to well established intuitions. The
properties are defined as follows:

• Maximum. A measure is told to obey this property if it attains its known maximum
value whenever two equivalent solutions are compared. The maximum has to be
invariant to the data set as well.

• Discriminant. A good measure must be able to detect the best solution among a
given set of solutions.

• Contrast. A good measure must provide progressively better (or worse) evaluations
for progressively better (or worse) solutions.

• Baseline. A measure that has a predetermined expected value over randomly gener-
ated solutions is told to have the baseline property (also, adjusted for chance).

It is a common practice to have the maximum equal to 1 and the baseline value equal to 0,
such that having the maximum property means that the measure attains 1 when comparing
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two equivalent solutions and having the baseline property means that comparing randomly
generated solutions tend to give evaluations close to zero.

A measure having a known maximum that is always attained when two equivalent
solutions are compared provides an objective goal (i.e., producing a clustering that attains
that score) and ensures the user that a better solution can be found when the evaluation
is lower than the maximum. Comparisons between evaluations of clusterings generated
from different data sets may be misguided because of different extents to which variation is
possible when the measure does not have a fixed maximum (Luo et al., 2009). As mentioned
by Vinh et al. (2010), the fact that all of the 22 different pair counting based measures
discussed in (Albatineh et al., 2006) are normalized to have a known maximum further
stresses the particular interest of the clustering community in this property.

A measure may not attain its predefined maximum for the ideal solution, but still might
be able to detect the best solution among a set of non-ideal solutions. This elicits the
measure as having the discriminant property. This property definition naturally prompts
the question “How can I know that a given solution is better than another one?” that the
measure tries to answer in the first place. However, there is one situation where the answer
is unquestionable: any reasonable measure should evaluate the ideal solution (i.e., the one
equivalent to the reference solution) as being superior to the others. If a measure somehow
evaluates a given solution better than the reference one, it is clearly flawed as a similarity
measure.

We propose the contrast property because we observed in preliminary experiments that
some measures would give flat evaluations over solutions progressively farther from the
reference one. This behavior can be problematic when such a measure is used for assessing
clustering algorithms with similar accuracy, as the measure might not be sensible enough
to capture any difference.

The contrast property is also related to the useful range of a measure (Fowlkes and
Mallows, 1983; Wu et al., 2009; Vinh et al., 2010). A measure can have known upper and
lower bounds but its evaluations can be spread out only over a small fraction of that range
in practice. As an example, for a given number of objects n, RI attains the maximum 1
for two equivalent clusterings and the minimum 0 when comparing a clustering having one
cluster and a clustering having n clusters. However, it has been reported that RI provides
evaluations almost always above 0.5, even when comparing randomly generated clusterings
(Fowlkes and Mallows, 1983; Wu et al., 2009). Knowing beforehand the useful range (i.e.,
the range within which the evaluations will fall for real applications) certainly increases the
intuitiveness of the measure.

The maximum property can be mathematically proved for each measure, but the other
properties can only be experimentally assessed and/or disproved. The discriminant and
contrast properties are somewhat subjective, but a measure that evaluates the ideal solution
worse than another solution clearly does not comply with those properties. The baseline
property does not specify a particular model for randomly generating solutions (and we
believe that specifying one would be artificial). We thus empirically evaluate the measures
regarding this property over different models of randomly generating solutions.
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U/V V1,: V2,: · · · VkV,: Sums

U1,: N1,1 N1,2 · · · N1,kV N1,+

U2,: N2,1 N2,2 · · · N2,kV N2,+
...

...
...

. . .
...

...
UkU,: NkU,1 NkU,2 · · · NkU,kV NkU,+

Sums N+,1 N+,2 · · · N+,kV N+,+

Table 1: Contingency table.

3. Background and Related Work

Let X , {x1, x2, . . . , xn} be a data set with n objects. A clustering solution with k clusters
can be represented by a matrix U , [Ur,i] ∈ Rk·n, where Ur,i expresses the membership
degree of xi to the rth cluster and U satisfies the following properties:

0 ≤ Ur,i ≤ 1 (∀r ∈ N1,k and ∀i ∈ N1,n), (1a)

0 <
∑n

i=1 Ur,i (∀r ∈ N1,k), and (1b)

0 <
∑k

r=1 Ur,i (∀i ∈ N1,n). (1c)

We say that U ∈ Mp , {U ∈ Rk·n | satisfies Equations (1)} is a possibilistic clustering
(PC). By adding more constraints, three other clustering types emerge: U ∈ Mf , {U ∈
Mp |

∑k
r=1 Ur,i = 1 ∀i} is a fuzzy/probabilistic clustering (FC), U ∈ Mneh , {U ∈

Mp | Ur,i ∈ {0, 1} ∀r, i} is a non-exclusive hard clustering (NEHC), and U ∈ Meh ,
Mf ∩Mneh is an exclusive hard clustering (EHC) (Campello, 2010; Anderson et al., 2010).
Note that Meh ⊂ Mf, Meh ⊂ Mneh, Mf ⊂ Mp, and Mneh ⊂ Mp (Figure 1). Set Mp of all
PCs covers the other sets, and a measure for this domain is applicable to virtually every
type of clustering present in the literature.

nehMM
f

Mp

Figure 1: Venn diagram representing the relationship between clustering domains.

We believe that the most popular measures for comparing EHCs are those based on pair
counting, including ARI and JI. A common approach to compute these measures begins
by obtaining a contingency matrix (Albatineh et al., 2006). Let U and V be two EHCs
with kU and kV clusters, respectively, of the same data set of n objects. Table 1 defines
their contingency table, where N = UVT is the contingency matrix and Nr,t is the number
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of objects that simultaneously belong to the rth cluster of U and tth cluster of V. The
marginal totals N+,t =

∑kU
r=1 Nr,t and Nr,+ =

∑kV
t=1 Nr,t yield the cluster sizes and the

grand total N+,+ =
∑kU,kV

r,t=1 Nr,t = n yields the number of objects in the data set. The
contingency matrix is then used to calculate the pairing variables a (the number of object
pairs in the same cluster in both U and V), b (the number of object pairs in the same cluster
in U but in different clusters in V), c (the number of object pairs in different clusters in
U but in the same cluster in V), and d (the number of object pairs in different clusters in
both U and V) (Jain and Dubes, 1988; Albatineh et al., 2006):

a =

kU,kV∑
r,t=1

(
Nr,t

2

)
=

1

2

kU,kV∑
r,t=1

N2
r,t −

N+,+

2
, (2a)

b =

kU∑
r=1

(
Nr,+

2

)
− a =

1

2

kU∑
r=1

N2
r,+ −

1

2

kU,kV∑
r,t=1

N2
r,t, (2b)

c =

kV∑
t=1

(
N+,t

2

)
− a =

1

2

kV∑
t=1

N2
+,t −

1

2

kU,kV∑
r,t=1

N2
r,t, and (2c)

d =

(
N+,+

2

)
− (a+ b+ c) =

1

2
N2

+,+ −
1

2
(

kU∑
r=1

N2
r,+ +

kV∑
t=1

N2
+,t) +

1

2

kU,kV∑
r,t=1

N2
r,t. (2d)

Albatineh et al. (2006) list 22 measures based on pair counting defined solely using a,
b, c, and d. For example, JI and RI are respectively defined as

JI(U,V) , a/(a+ b+ c) and (3)

RI(U,V) , (a+ d)/(a+ b+ c+ d). (4)

ARI is defined as (Hubert and Arabie, 1985)4

ARI(U,V) ,
a− (a+c)(a+b)

a+b+c+d
(a+c)+(a+b)

2 − (a+c)(a+b)
a+b+c+d

. (5)

As an alternative to the contingency matrix, one can define the pairing variables by
employing the co-association matrices JU , UTU and JV , VTV (Zhang et al., 2012).
When U and V are EHCs, the above definition amounts to

JU
i,j =

{
1 if ∃r such that Ur,i = 1 and Ur,j = 1

0 otherwise
. (6)

The pairing variables can be rewritten as5

a =
∑

i<j JU
i,jJ

V
i,j , b =

∑
i<j JU

i,j(1− JV
i,j),

c =
∑

i<j(1− JU
i,j)J

V
i,j , and d =

∑
i<j(1− JU

i,j)(1− JV
i,j).

(7)

4. Equation (5) in (Hubert and Arabie, 1985) for ARI is defined by combinations. However, it is equivalent
to Equation (5) defined here, as a =

∑kU,kV
r,t=1

(
Nr,t
2

)
, a+ b =

∑kU
r=1

(
Nr,+

2

)
, and a+ c =

∑kV
t=1

(
N+,t

2

)
.

5.
∑
i<j is a shorthand for

∑n−1
i=1

∑n
j=i+1.
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BC is based on bcubed precision (BCP) and bcubed recall (BCR) (Amigó et al., 2009):

BCP(U,V) ,
1

n

n∑
i=1

∑n
j=1 JU

i,jJ
V
i,j∑n

j=1 JU
i,j

and (8a)

BCR(U,V) ,
1

n

n∑
i=1

∑n
j=1 JU

i,jJ
V
i,j∑n

j=1 JV
i,j

. (8b)

BC is defined by default as:

BC(U,V) , 2 · BCP(U,V) · BCR(U,V)

BCP(U,V) + BCR(U,V)
.

3.1 Similarity Measures for Clustering

Table 2 provides an overview of recently proposed measures designed to handle more general
solutions than EHCs. For each measure, this table shows the clustering types for which it
was designed and the approach used in its formulation.

03VI, 03MI, and 05MI are three measures based on information theory (Mackay, 2003).
Let U and V be two FCs with kU and kV clusters, respectively. The joint probability P(r, t)
of an object belonging to both the rth cluster in U and tth cluster in V is defined by dividing
the contingency matrix N by n, i.e. P(r, t) , Nr,t/n. The mutual information between U
and V is defined as:

I(U,V) ,
kU,kV∑
r,t=1

P(r, t) log

(
P(r, t)

P(r, ·)P(·, t)

)
,

where P(r, ·) ,
∑kV

t=1 P(r, t) and P(·, t) ,
∑kU

r=1 P(r, t) are the marginals. The entropy
associated with U is

H(U) ,
kU∑
r=1

P(r, ·) log (P(r, ·)) .

The 03VI, 03MI, and 05MI measures are defined as:

03VI(U,V) , H(U) + H(V)− 2I(U,V),

03MI(U,V) , I(U,V)/
√

H(U)H(V), and

05MI(U,V) , 2I(U,V)/(H(U) + H(V)).

We assume base two for log(·) in the experiments (Section 7).
07CRI was developed based on a set-theoretic formulation of pairing variables. Let U

and V be two EHCs. Let R be the set of unordered object pairs belonging to the same
cluster in U, and let T be the set of unordered object pairs belonging to the same cluster
in V. The usual cardinality |R ∩ T | yields the pairing variable a; using the same approach,
variables b, c, and d can be defined by their sets. Fuzzy versions of the pairing variables
were then defined by replacing the usual set operations with counterparts from fuzzy set
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Measure EHC FC NEHC PC Based on

03VI (Meila, 2003)
* * Information theory03MI (Strehl and Ghosh, 2003)

05MI (Fred and Jain, 2005)

07CRI (Campello, 2007)
* * * * Fuzzy sets (a, b, c, d)

07CARI

08BRIp (Borgelt, 2007)
* * JU (a, b, c, d)

08BRIm

09EBC (Amigó et al., 2009) * * Precision/Recall

09CRI (Ceccarelli and Maratea, 2009)
* * * * Ṅ (a, b, c, d)†

09CARI

09HI (Hullermeier and Rifqi, 2009) * * * * Dist. (U:,i and U:,j)

09RI (Rovetta and Masulli, 2009) * * JU (ad hoc)

09BRI (Brouwer, 2009)
* * * * JU (ad hoc)

09BARI

10QRIp (Quere et al., 2010)
* * * * JU (a, b, c, d)

10QRIm

10ARI (Anderson et al., 2010)

* * * * N (a, b, c, d)?
10AARI
10ARIn
10AARIn

10CSI (Campello, 2010) * * ad hoc

10CF (Campello, 2010)
* * * * Edit distance

10CFn

11ARInm (Anderson et al., 2011)
* * * * N (a, b, c, d)?

11AARInm

11MD (Wang, 2010) * * JU (ad hoc)

11D2 (Wang, 2010) * * Hamming distance

12DB (Wang, 2012) * * Information theory

† The contingency matrix N used is not the same as the original one. Ceccarelli and Maratea
(2009) it defined as Ṅr,t ,

∑n
i=1(Ur,i + Vt,i)

α. We adopt α , 1 for simplicity.
? Measures 10ARIn, 10AARIn, 11ARInm, and 11AARInm use a normalized contingency

matrix N̂.

Table 2: General similarity measures.
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theory (Campello, 2007). Plugging the new versions of a, b, c, and d into Equations (4) and
(5) resulted in 07CRI and 07CARI, respectively, where U and V are PCs.

08BRIp and 08BRIm are RI generalizations based on the definitions of a, b, c, and d
given by Equations (7), where an arbitrary t-norm (from fuzzy set theory) replaces the
multiplication operator used to compute JU = UTU, JV = VTV, and variables a, b, c, and
d. We adopted the well-known product t-norm (>prod(x, y) , xy) and minimum t-norm
(>min(x, y) , min{x, y}) to define 08BRIp and 08BRIm, respectively.

09EBC is based on the redefinitions of BCP and BCR (Equations 8):

EBCP(U,V) ,
1

n

n∑
i=1

∑n
j=1 min{JU

i,j , J
V
i,j}∑n

j=1 JU
i,j

and (9a)

EBCR(U,V) ,
1

n

n∑
i=1

∑n
j=1 min{JU

i,j , J
V
i,j}∑n

j=1 JV
i,j

. (9b)

Equations (8) and (9) are equivalent when U and V are EHCs. 09EBC is defined by default
as:

09EBC(U,V) , 2 · EBCP(U,V) · EBCR(U,V)

EBCP(U,V) + EBCR(U,V)
,

for NEHCs U and V.
09CRI and 09CARI are based on a reformulation of contingency matrix N, where the

sum operator replaces the multiplication operator (i.e., Ṅr,t ,
∑n

i=1(Ur,i + Vt,i)), and the
subsequent pairing variable calculation uses an equivalent formulation (in the EHC domain)
to that in Equations (2) (Equations (14), (15), (16), and (21) in (Ceccarelli and Maratea,
2009)). 09CRI and 09CARI are obtained by plugging these new pairing variables into
Equations (4) and (5), respectively.

09HI is based on similarity calculations between the columns of U and V. Let RU
i,j ,

1−‖U:,i−U:,j‖ and RV
i,j , 1−‖V:,i−V:,j‖ for all i, j be the similarities between the columns

of U and V, where ‖ · ‖ is a norm that yields values in [0, 1].6 The degree of concordance
between the distances from U and V defines the measure: 09HI(U,V) , 1 −

∑
i<j |RU

i,j −
RV
i,j |/(n(n− 1)/2).

09RI is based on the co-association matrices JU and JV. The 09RI formulation given in
Equation (7) of (Rovetta and Masulli, 2009) is incorrect, and Rovetta, S. kindly provided
the correct formulation by personal communication, which we repeat here. Given JU = UTU
and JV = VTV, the following variables are computed: π ,

∑
i<j JU

i,jJ
V
i,j , σU ,

∑
i<j JU

i,j ,

and σV ,
∑

i<j JV
i,j . The 09RI measure is then given by 1 + (2π − σU − σV)/

(
n
2

)
.

09BRI and 09BARI are based on the pairing variables defined in Equations (7). For
example, variable a was defined as (

∑n
i,j=1 J̇U

i,j J̇
V
i,j−n)/2, where the co-association matrices

used are normalized: J̇U
i,j ,

∑kU
r=1(Ur,iUr,j)/(‖U:,i‖e‖U:,j‖e).7 Plugging these new variables

into Equations (4) and (5) yields 09BRI and 09BARI, respectively.
10QRIp and 10QRIm are derived from 08BRIp and 08BRIm, respectively, by normal-

izing JU and JV such that all diagonal terms equal 1, and letting U and V be PCs. The

6. We adopted the usual Euclidean norm in the experiments.
7. ‖ · ‖e is the usual Euclidean norm.
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rationale behind this normalization is that a diagonal term JU
i,i should always provide the

maximum, as it somehow represents the degree to which object xi is in the same cluster as
itself.

The 10ARI and 10AARI pairing variables are defined using the original formulation
N = UVT and Equations (2). Equations (4) and (5) are then applied to yield 10ARI and
10AARI, respectively. Anderson et al. (2010) noticed that at least 10ARI does not provide
evaluations confined in the interval [0, 1] (as RI does) for general PCs. They thus proposed
the use of a normalized contingency matrix N̂ ,

(
n/N+,+

)
N to have N̂+,+ = n to alleviate

the above issue. We denote the normalized versions of 10ARI and 10AARI by 10ARIn and
10AARIn, respectively.

It has been observed that 10ARIn and 10AARIn do not attain their maxima whenever
two equivalent solutions8 are compared (Anderson et al., 2011). 11ARInm and 11AARInm
were then defined to address this issue as:

11ARInm(U,V) , 10ARIn(U,V)/max{10ARIn(U,U), 10ARIn(V,V)} and

11AARInm(U,V) , 10AARIn(U,V)/max{10AARIn(U,U), 10AARIn(V,V)}.

The 10CSI measure was designed to handle non-exclusive and exclusive hard clusterings.
Let JU = UTU and JV = VTV be the co-association matrices, and let U+,i and V+,i be
the number of clusters to which object xi belongs, according to the respective solutions.
The agreement and disagreement between U and V according to the relative placement of
objects xi and xj are defined by 10CSI as:

agi,j , min{JU
i,j , J

V
i,j}+ min{U+,i,V+,i}+ min{U+,j ,V+,j} − 2 and

dgi,j , |J
U
i,j − JV

i,j |+ |U+,i −V+,i|+ |U+,j −V+,j |

10CSI is given by
∑

i<j a
g
i,j/
∑

i<j(a
g
i,j + dgi,j), which reduces to JI in the EHC domain.

The 10CF and 10CFn measures largely differ from the others because they are not pair-
based nor based on information theory. 10CF and 10CFn are somehow related to the edit
distance commonly used to define the compatibility degree between two strings of text (Lev-
enshtein, 1966). Campello (2010) defined the fuzzy transfer distance FTD(U,V) between
two PCs U and V as the minimum amount of membership degrees that must be given to
and/or removed from the objects of U (V) to make this clustering equivalent to V (U). We
define here 10CF as 10CF(U,V) , 1− FTD(U,V) such that it yields values in the interval
(−∞, 1] and attains 1 iff U and V are equivalent clusterings (Campello, 2010). 10CFn is
1 minus the normalized version of FTD: 10CFn(U,V) , 1 − FTD(U,V)/(nmax{kU, kV}).
10CFn(U,V) lies in the interval [0, 1] (Campello, 2010).

Let U and V be two NEHCs with kU and kV clusters, respectively. The 11MD and 11D2
measures are defined as:

11MD(U,V) , 1− 1

n

n∑
i=1

∑n
j=1 |JU

i,j − JV
i,j |∑n

j=1 max{JU
i,j , J

V
i,j}

and

11D2(U,V) , 1− 1

n2

n∑
i,j=1

|JU
i,j − JV

i,j |,

8. Clusterings U and V are equivalent iff (i) they have the same number of clusters and (ii) V can always
be transformed into U by row permutations.
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where
∑n

i,j=1 |JU
i,j − JV

i,j | is the Hamming distance when U and V are EHCs.

Let AU be the adjacency matrix of U defined as:

AU
i,j ,

{
1 ∃r : Ur,iUr,j = 1

0 otherwise
.

The normalized disconnectivity of U is given by default as (Wang, 2012):

NDisc(U) , 2(1− 1

n2

n∑
i,j=1

AU
i,j).

Let R be a (possibly degenerate) clustering resulting from the intersection between the
clusters of NEHCs U and V:

R(r+(t−1)∗kU),i , Ur,iVt,i.

The 12DB measure is defined by default as:

12DB(U,V) , 2 ·NDisc(R)−NDisc(U)−NDisc(V).

3.2 Discussion

Some authors extended pair-based measures by simply letting U and V be representations of
other clustering types (i.e., others than EHC types) in the definition of contingency matrix N
(e.g., Ceccarelli and Maratea, 2009; Anderson et al., 2010) or co-association matrices JU and
JV (e.g., Borgelt and Kruse, 2006; Borgelt, 2007; Quere and Frelicot, 2011), and computing
a, b, c, and d based on Equations (2) or Equations (7). However, the pairing variable
equations were deduced by assuming that U and V are EHCs. Without a more principled
explanation, we believe there is no reason to expect that using the same definitions would
grant meaningful values to a, b, c, and d in more general circumstances. Consider the
following identical EHCs:

U , V ,

(
1.0 0.0
0.0 1.0

)
. (10)

We have a = 0, b = 0, c = 0, and d = 1, according to the definitions given by Equations
(2) and Equations (7). There is only one pair of objects, and the objects are not clustered
together in both solutions. Now let

V̇ ,

(
0.9 0.0
0.1 1.0

)
(11)

be an FC very similar to V. Comparing U and V̇, we now have a = −0.09, b = 0.1,
c = 0.09, and d = 0.9, according to Equations (2), and a = 0, b = 0, c = −0.1, and d = 0.9,
according to Equations (7). It is hard to assign a meaningful interpretation when a pairing
variable yields a negative value. Moreover, the obtained values are no longer equivalent to
each other. This result shows that the application of Equations (2) and (7) in more general
settings must indeed be accompanied by a good justification.
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None of the measures 03VI, 03MI, 05MI, 07CRI, 07CARI, 08BRIp, 08BRIm, 09CRI,
09CARI, 09RI, 09BRI, 09BARI, 10QRIp, 10QRIm, 10ARI, 10AARI, 10ARIn, 10AARIn,
10CF, 11ARInm, and 12DB attain their maxima 1 whenever two equivalent solutions are
compared, as Section 7.1 shows. This makes interpreting the evaluation provided by these
measures difficult. Moreover, there is no reason to expect that ARI generalizations (i.e.,
07CARI, 09CARI, 09BARI, 10AARI, 10AARIn, and 11AARInm) are corrected for random-
ness in others than in EHC scenarios simply because the original ARI has this property for
EHCs (this belief is confirmed in the experiments in Section 7.2). The formulations upon
which these generalized measures are based were deduced by assuming that the compared
solutions are EHCs.

4. Frand Index

Given two FCs U (with kU clusters) and V (with kV clusters) of n objects, 13FRI recasts
each into two n-by-n matrices to retain only the essential information and to facilitate the
comparison. Let IkU be the kU-by-kU identity matrix and 1kU be the kU-by-kU matrix with
1 in each entry. Define the matrices

JU , UTU and (12a)

SU , UT(1kU − IkU)U. (12b)

Matrices JU and SU provide all pairwise information between objects for 13FRI with respect
to U. Let JV and SV be the corresponding matrices for V. 13FRI compares JU and SU with
JV and SV to measure how much U and V agree with the membership assignment of each
object pair. Let us elaborate these matrices.

JU
i,j and SU

i,j can be interpreted in several ways. For EHCs, JU
i,j = 1 (implying SU

i,j = 0)

means that objects xi and xj belong to the same cluster in solution U, and JU
i,j = 0 (implying

SU
i,j = 1) means that they belong to different clusters in U. In the EHC domain, JU is the

same matrix as that defined in Equation (6), and SU
i,j = 1− JU

i,j .

Another interpretation can be provided for JU and SU in the FC domain. If one con-
siders that an FC U produces probabilities of objects pertaining to clusters (e.g., as in EM
solutions), i.e., Ur,i is the probability of object xi belonging to the rth cluster, JU

i,j gives
the probability of objects xi and xj belonging to the same cluster according to U, and
SU
i,j = 1 − JU

i,j gives the probability that they belong to different clusters according to U,
assuming independence.

We also allow JU and SU to be defined for PCs in general (Section 5). Let us thus
consider two other interpretations for JU and SU in the PC domain. Letting U be an
NEHC, JU

i,j is the number of times xi and xj belong to the same cluster in U, and SU
i,j is the

number of times xi and xj belong to different clusters in U. If U is a more general PC, we
can say that JU

i,j is the possibility of xi and xj belonging to the same cluster in U, and SU
i,j

is the possibility of xi and xj belonging to different clusters in U.

Despite the above multitude of interpretations, we understand that JU
i,j represents a

degree of truthiness for the sentence “xi and xj belong to the same cluster”, whereas SU
i,j

yields a degree of falseness to the same sentence, according to the solution U. This reasoning
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led us to redefine the pairing variables a, b, c, and d as follows:

ȧ ,
∑
i<j

min{JU
i,j , J

V
i,j}, (13a)

ḃ ,
∑
i<j

min{JU
i,j −min{JU

i,j , J
V
i,j}, SV

i,j −min{SU
i,j ,S

V
i,j}}, (13b)

ċ ,
∑
i<j

min{JV
i,j −min{JU

i,j , J
V
i,j}, SU

i,j −min{SU
i,j ,S

V
i,j}}, and (13c)

ḋ ,
∑
i<j

min{SU
i,j ,S

V
i,j}. (13d)

Variables ȧ and ḋ measure the agreement between U and V with respect to the truthiness
and falseness of sentence “xi and xj belong to the same cluster” for each pair of objects xi
and xj ; ḃ and ċ measure the disagreement. For EHCs U and V, min{JU

i,j , J
V
i,j} = 1 means

that xi and xj are clustered together in both clusterings. Conversely, min{SU
i,j ,S

V
i,j} = 1

means that xi and xj belong to different clusters in both clusterings. In both cases, ȧ + ḋ
increases by 1. JU

i,j 6= JV
i,j means that there is a disagreement between U and V regarding

the pairing of xi and xj ; it implies that min{JU
i,j , J

V
i,j} = min{SU

i,j , S
V
i,j} = 0 and increments

ḃ+ ċ by 1. This behavior recalls the descriptive definition of a, b, c, and d given in Section
3. Comparing the definitions in Equations (7) with those in Equations (13), a = ȧ, b = ḃ,
c = ċ, and d = ḋ when comparing EHCs. Consequently, our similarity measure

13FRI(U,V) ,
ȧ+ ḋ

ȧ+ ḃ+ ċ+ ḋ
(14)

reduces to RI when U and V are EHCs.

Now, consider the more general context where U and V are FCs. We defined ȧ + ḋ
(ḃ + ċ) to measure to what extent U and V agree (disagree) with each other regarding
the object pairings. For example, the min operator in min{SU

i,j , S
V
i,j} appears to provide a

reasonable notion to what extent the solutions agree that xi and xj should not be clustered
together. When the elements of JU and JV (or SU and SV) simultaneously show high or low
values, there is a strong compatibility between U and V. This is reflected by how 13FRI
was defined.

One may ask why ḃ (and similarly for ċ) was not defined as ḃ ,
∑

i<j min{JU
i,j , S

V
i,j}.

The reason is that the amount min{JU
i,j , J

V
i,j} has already been used from JU

i,j and JV
i,j to

establish the agreement between JU
i,j and JV

i,j in ȧ. Suppose that JU
i,j = SU

i,j = JV
i,j = SV

i,j = x.

Let ȧi,j , min{JU
i,j , J

V
i,j}, and analogously define ḃi,j , ċi,j , and ḋi,j . Without the subtractions

in Equations (13b) and (13c), each variable ȧ, ḃ, ċ, and ḋ would be increased by x (i.e.,
ȧi,j = ḃi,j = ċi,j = ḋi,j = x), meaning that U and V would have only 50% agreement
regarding the placement of xi and xj , instead of 100%. This does not happen with the
original formulation because all the information regarding the placement of xi and xj has
been used in the definition of ȧi,j and ḋi,j , and then nothing is left to the definition of ḃi,j
and ċi,j . Figure 2 represents the values JU

i,j + SU
i,j = 2x and JV

i,j + SV
i,j = 2x by box heights.

Parallel line orientations define the two types of filled areas regarding the information used

2962



Comparing Hard and Overlapping Clusterings

from the co-association matrices to determine ȧi,j and ḋi,j . There is no space in the boxes
(i.e., unused information) to fill regarding variables ḃi,j and ċi,j .

a

d

J
i,j

V

Si,j
V

S
i,j

U

J
i,j

U

i,j i,j

i,j i,j

a

d

x/2

x

3x/2

2x

0

Figure 2: Graphical representation of a 13FRI evaluation where ḃi,j = ċi,j = 0.

The 13FRI measure yields values in the continuous interval [0, 1]. It attains the maxi-
mum 1 whenever equivalent solutions are compared9 and attains the minimum 0 only when
U and V are EHCs and one of them has one cluster and the other has n clusters (Propo-
sition 1 in Appendix). However, this last scenario is extreme and has little practical value
(Vinh et al., 2009, 2010), making low 13FRI evaluations nearly impossible in practice. It
is desirable that the entire interval [0, 1] be useful, for better intuitiveness. This can be
achieved by a similarity measure that takes values close to a constant α (α can always be
turned into zero by a non-linear transformation: subtracting α from the evaluation and
multiplying the result by a β that makes the maximum equals 1) when comparing random
solutions (constant baseline). When a constant baseline exists and the user knows its value
beforehand, one can compare the obtained evaluation to the baseline value and be more
confident in his conclusions. The next section shows how 13FRI can be adjusted to assume
values close to zero for randomly generated solutions.

4.1 Adjustment for Randomness

Suppose a measure assigns x to the similarity between two FCs U and V. How can we
determine if x is not just a value from the random fluctuation inherent to the measure?
A popular approach addresses this issue by subtracting the measure expectation from the
measure and normalizing the result to 1 as a maximum (Hubert and Arabie, 1985; Albatineh
et al., 2006; Vinh et al., 2009, 2010):

ASM(U,V) ,
SM(U,V)− E[SM]U,V
max{SM} − E[SM]U,V

, (15)

where SM is any similarity measure, E[SM]U,V is its expectation given U and V, max{SM}
is the maximum of SM, and ASM is its adjusted version. ASM assumes values in the range
(−∞, 1], and a positive value indicates that the similarity between U and V is greater than
what one would expect from randomly chosen solutions. As Section 7.2 indicates for our
corrected measures, this adjustment for chance can also make the measure unbiased in the
number of clusters (Vinh et al., 2009, 2010).

To correct a measure for randomness, it is necessary to specify a null model according
to which solutions are generated (Vinh et al., 2009, 2010). Given two FCs U and V, our

9. Note that JU
i,j and SU

i,j are independent of U row permutations. If U and V are equivalent clusterings,

we have JU
i,j = JV

i,j and SU
i,j = SV

i,j ∀i < j. It implies that ḃ = ċ = 0 and 13FRI(U,V) = 1.
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null model simultaneously produces two solutions from independent random permutations
of the U and V columns. Let π1, π2, . . . , πn! be every possible permutation of the numbers
in N1,n, and define the function Γπl(U) , [U:,πl(1) U:,πl(2) . . . U:,πl(n)] that applies
permutation πl to matrix U.10 A particular permutation πl of U is chosen with probability
P(πl) , 1/n!, and the permutations of U and V are considered independent events. We
thus define P(πl, πq) , 1/(n!n!). The expectation of 13FRI according to our null model
given U and V is

E[13FRI]U,V =
1

n!n!

n!∑
l,q=1

13FRI(Γπl(U),Γπq(V)). (16)

Let ȧ(JU, JV) ,
∑

i<j min{JU
i,j , J

V
i,j} and ḋ(SU,SV) ,

∑
i<j min{SU

i,j ,S
V
i,j}. Because ȧ+ ḃ+

ċ + ḋ is a constant for the proposed null model (Corollary 1 in Appendix), we rewrite the
expectation

E[13FRI]U,V = (ȧ+ ḃ+ ċ+ ḋ)−1(E[ȧ]U,V + E[ḋ]U,V), (17)

where

E[ȧ]U,V =
1

n!n!

n!∑
l,q=1

ȧ(JΓπl (U), JΓπq (V))

=
1

n!n!

n!∑
l,q=1

∑
i1<j1

min{JU
πl(i1),πl(j1), J

V
πq(i1),πq(j1)}

=
2(n− 2)!

n!n!

n!∑
q=1

∑
i1<j1

∑
i2<j2

min{JU
i2,j2 , J

V
πq(i1),πq(j1)}

=
2(n− 2)!2(n− 2)!

n!n!

∑
i1<j1

∑
i2<j2

∑
i3<j3

min{JU
i2,j2 , J

V
i3,j3}

=
4

n2(n− 1)2

∑
i1<j1

∑
i2<j2

∑
i3<j3

min{JU
i2,j2 , J

V
i3,j3}

=
2

n(n− 1)

∑
i2<j2

∑
i3<j3

min{JU
i2,j2 , J

V
i3,j3} (18)

and, analogously,

E[ḋ]U,V =
2

n(n− 1)

∑
i2<j2

∑
i3<j3

min{SU
i2,j2 , S

V
i3,j3}. (19)

Following the framework of Equation (15), the adjusted frand index is

13AFRI(U,V) ,
13FRI(U,V)− E[13FRI]U,V

1− E[13FRI]U,V
. (20)

10. U:,i is the ith column of U.
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13AFRI attains its maximum 1 in the same way as 13FRI (i.e., whenever two equivalent
clusterings are compared) and is 0 when the measure equals its expected value, under
the null model. 13AFRI can display negative evaluations, which mean that the compared
clusterings are more dissimilar than expected if they were independently generated. Its
minimum is not fixed anymore and is given by −E[SM]U,V/(max{SM} − E[SM]U,V).

Given two EHCs U and V, we have 13AFRI(U,V) = ARI(U,V) (Proposition 3 in
Appendix). In other words, 13AFRI reduces to ARI in the EHC domain. This indicates
the appropriateness of the null model for 13AFRI, which can also be further extended to
PCs (as Section 5 shows).

4.2 Discussion

13FRI could also be applied to PCs. In this case, however, 13FRI would not provide
reasonable evaluations in some scenarios where per-object membership totals (i.e., column-
wise sums of the clustering matrix) varies among solutions. Let U be an FC and recall that
an FC is also a PC. The result of multiplying U by a scalar x ∈ (0, 1) is also a PC matrix,
where the per-object membership total of each object is decreased. Notice that we have
13FRI(U,U) = 13FRI(U, xU) = 13AFRI(U,U) = 13AFRI(U, xU) = 1 for any x ∈ (0, 1].
This happens because JxU

i,j = min{JU
i,j , J

xU
i,j } and SxU

i,j = min{SU
i,j ,S

xU
i,j }, making variables ḃ

and ċ (Equations 13b and 13c) equal to zero.

Let us analyze another problematic scenario by considering the following matrices:

U ,

(
0.8 0.4
0.4 0.8

)
and V ,

(
0.6 0.4
0.4 0.6

)
.

Note that U is a PC more general than an FC. We have JU
1,2 = 0.64, SU

1,2 = 0.8, JV
1,2 = 0.48,

and SV
1,2 = 0.52. The heights of the first and second boxes in Figure 3 correspond to the

values JU
1,2+SU

1,2 = 1.44 and JV
1,2+SV

1,2 = 1, respectively. The boxes are divided by horizontal

dashed lines, creating two parts that correspond to the JU
1,2 and SU

1,2 (JV
1,2 and SV

1,2) values.

The values of ȧ = 0.48 and ḋ = 0.52 are illustrated by the filled areas, and the remaining
variables ḃ and ċ equal zero. There is an empty space of height JU

1,2+SU
1,2−(JV

1,2+SV
1,2) = 0.44

in the first box, which 13FRI ignores. We could increase JU
1,2 and SU

1,2 by any amount that
13FRI would still yield the same score. A reasonable measure for PCs should decrease the
score proportionally to the unmatched amount. The next section proposes modifying 13FRI
to address this issue.

5. Grand Index

Let TU , JU + SU and M , max{TU,TV}.11 A new variable

ė , max
{∑
i<j

(
Mi,j − TU

i,j

)
,
∑
i<j

(
Mi,j − TV

i,j

)}
(21)

11. M = max{TU,TV} means that Mi,j = max{TU
i,j ,T

V
i,j} for all i, j.
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Figure 3: Graphical representation of the problem using 13FRI when the compared clus-
tering matrices have different column-wise sums.

is introduced in 13FRI to give rise to the grand index:

13GRI(U,V) ,
ȧ+ ḋ

ȧ+ ḃ+ ċ+ ḋ+ ė
. (22)

Given two objects xi and xj , Mi,j −TU
i,j describes how much TV

i,j exceeds TU
i,j . In Figure 3,

Mi,j −TV
i,j = 0.44, which equals the height of the empty space in the first box. Proposition

5 in Appendix allows us to rewrite Equation (22) as

13GRI(U,V) =

∑
i<j min{JU

i,j , J
V
i,j}+

∑
i<j min{SU

i,j ,S
V
i,j}

max{
∑

i<j TU
i,j ,
∑

i<j TV
i,j}

.

If U and V are FCs, TU
i,j = TV

i,j = 1, ȧ+ḃ+ċ+ḋ+ė = max{
∑

i<j TU
i,j ,
∑

i<j TV
i,j} = n(n−1)/2,

and 13GRI reduces to 13FRI. As in 13FRI, 13GRI attains its maximum 1 whenever the
compared PCs U and V are equivalent solutions.12

Adopting the same null model proposed in Section 4.1, and realizing that ȧ+ ḃ+ ċ+ ḋ+ ė
is constant for this model (Corollary 2 in Appendix), we have E[13GRI]U,V = (ȧ+ ḃ+ ċ+
ḋ+ ė)−1(E[ȧ]U,V + E[ḋ]U,V). The adjusted 13GRI is then given by

13AGRI(U,V) ,
13GRI(U,V)− E[13GRI]U,V

1− E[13GRI]U,V
. (23)

Similarly to 13AFRI, 13AGRI attains its maximum 1 in the same way as 13GRI and is
0 when the measure equals its expected value. Section 7.2 shows that 13AGRI can indeed
exhibit a constant baseline close to zero for randomly generated EHC, FC, NEHC, and PC
solutions, even when the null model is clearly violated.

6. Computational Complexity and Implementation

Let IkU be the kU-by-kU identity matrix and 1kU the kU-by-kU matrix with 1 in each entry.
There are O(n2kU) computational steps to calculate JU = UTU and SU = UT(1kU − IkU)U,

12. As in the 13FRI case, we have JU
i,j = JV

i,j and SU
i,j = SV

i,j ∀i < j whenever U and V are equivalent

clusterings. Thus, TU
i,j = TV

i,j ∀i < j, making ȧ and ḋ the only possible non-null terms.
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and O(n2) steps to calculate M = max{TU,TV}. Variables ȧ, ḃ, ċ, ḋ, and ė require O(n2)
steps because of the pairwise summations

∑
i<j in their formulas (Equations 13 and 21).

13FRI and 13GRI thus require O(n2(kU + kV)) operations. Calculation of EHC pair-based
measures generally requires O(nkUkV) steps due to the contingency matrix N = UVT

computation. The possibly higher 13FRI and 13GRI complexity is the price one may have
to pay for a more general measure.

Equations (18) and (19) might suggest that 13AFRI (and 13AGRI) requires O(n4)
computational steps, making its computation infeasible for most practical scenarios. For-
tunately, the min operator allows us to reduce the computational complexity of Equations
(18) and (19) to O(n2 log n) steps. To examine how that can be accomplished, suppose
that JU

1,2 ≤ JV
i,j for all i < j (i, j ∈ N1,n) as a special case and as a didactic example. We

have
∑

i<j min{JU
1,2, J

V
i,j} = JU

1,2n(n− 1)/2 computable in constant time, reducing the total
computational cost. Let us consider the general case for calculating E[ȧ]U,V (Equation 18).
Define

1i2,j2i1,j1
,

{
1 if JU

i1,j1
≤ JV

i2,j2

0 otherwise
.

Equation (18) can be rewritten as

n(n− 1)

2
E[ȧ]U,V =

∑
i1<j1

∑
i2<j2

min{JU
i1,j1 , J

V
i2,j2}1

i2,j2
i1,j1

+
∑
i2<j2

∑
i1<j1

min{JU
i1,j1 , J

V
i2,j2}(1− 1i2,j2i1,j1

)

=
∑
i1<j1

JU
i1,j1

∑
i2<j2

1i2,j2i1,j1
+
∑
i2<j2

JV
i2,j2

∑
i1<j1

(1− 1i2,j2i1,j1
). (24)

The calculation of E[ḋ]U,V (Equation 19) is analogous; the only difference lies in using SU

and SV instead of JU and JV.

The above strategy can be applied efficiently by first rearranging the upper triangular
parts of JU and JV into vectors x and y, respectively, and sorting the resulting vectors.13

Algorithm 1 shows an implementation of the above strategy, where the first and second
terms of the right-hand side of Equation (24) are calculated by the loops in Steps 7 and 15,
respectively.

The most demanding step of Algorithm 1 in terms of computational time is Step 4,
which sorts two vectors of size n(n− 1)/2 in O(n2 log n) steps using, for example, the heap
sort algorithm. 13AGRI and 13AFRI thus require O(n2(kU + kV + log n)) computational
steps.

7. Experiments

It is a common practice to compare the accuracy of clustering algorithms by measuring how
similar their resulting clusterings are to a reference solution. The algorithm that generated
clusterings more similar to the reference solution is then regarded as the most accurate.

13. The upper triangular part of JU
i,j can be rearranged as follows: xπ(i,j) , JU

i,j (∀i < j), where π(i, j) ,
j − i+

∑i−1
t=1(n− t) = j − i(1 + i)/2 + n(i− 1).
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Algorithm 1 Compute E[ȧ]U,V

1: Represent the upper triangular part of JU into vector x
2: Represent the upper triangular part of JV into vector y
3: m← n(n− 1)/2 {size of vectors x and y}
4: Sort x and y in increasing order
5: E[ȧ]U,V ← 0
6: i, j ← m,m
7: while i > 0 do
8: while j > 0 and xi ≤ yj do
9: j ← j − 1

10: end while
11: E[ȧ]U,V ← E[ȧ]U,V + (m− j) ∗ xi
12: i← i− 1
13: end while
14: i, j ← m,m
15: while j > 0 do
16: while i > 0 and xi > yj do
17: i← i− 1
18: end while
19: E[ȧ]U,V ← E[ȧ]U,V + (m− i) ∗ yj
20: j ← j − 1
21: end while
22: E[ȧ]U,V ← E[ȧ]U,V/m

A measure must somehow adequately evaluate the similarity between the compared solu-
tions. Section 7.1 follows this idea and compares 34 measures by applying them to evaluate
solutions with different numbers of clusters produced by different clustering algorithms.
This comparison is done by considering the first three properties proposed in Section 2:
maximum, discriminant, and contrast. Synthetic data sets were generated according to the
cluster types that these algorithms search for (e.g., it is well-known that k-means (Mac-
Queen, 1967) tends to produce spherical-like clusters), and the reference solution for each
data set was defined by applying the corresponding clustering algorithm with a well-tuned
initial solution. In this scenario is then expected that the dissimilarity between the gener-
ated and reference solutions will reflect the difference in the numbers of clusters.

In a different scenario, Section 7.2 compares the measures when evaluating randomly
generated solutions, by assessing the measures according to the baseline property proposed
in Section 2. A measure should display a uniform evaluation across the range of numbers
of clusters because any resemblance between the compared solutions is only due to chance.

Section 7.3 assesses the 13AGRI evaluation validity for FCs in 14 real data sets, and
Section 7.4 uses 13AGRI as a stability statistic for estimating the number of clusters in five
real data sets.

Because 13GRI (13AGRI) is more general and becomes equivalent to 13FRI (13AFRI)
when applied to FCs, we only show the results of 13GRI (13AGRI).
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7.1 Measuring the Similarity Between Clusterings

We evaluated the measures in four synthetic data sets (Figures 4), each suitable for one of the
following clustering types: EHC, FC, NEHC, and PC. The DEHC data set (Figure 4(a)) has
nine well-separated clusters, whereas the DFC data set (Figure 4(b)) has nine overlapping
clusters. In both data sets, the clusters were generated using Gaussian distributions with
equal variances and no correlation between the attributes. The DNEHC data set (Figure
4(c)) has four clusters, but they reduce to two clusters when projected to a single axis.14 We
generated the DPC data set (Figure 4(d)) to resemble a synthetic one (Zhang and Leung,
2004) with noise added.
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Figure 4: Data set for each clustering type.

Different clustering algorithms were employed for each data set, appropriate for the
corresponding clustering type as follows: k-means for DEHC, fuzzy c-means (FCM) and
expectation maximization for Gaussian mixtures (EMGM) (Dempster et al., 1977) for DFC,
SUBCLU (Kailing et al., 2004) for DNEHC, and improved possibilistic c-means 2 (IPCM2)
(Zhang and Leung, 2004) for DPC. The FCM and IPCM2 exponent m was set to 2 (which
is commonly adopted in the literature), the SUBCLU parameter minpts was set to 5, and
the Euclidean norm was adopted; this same configuration was used in all the experiments
reported in this work. The reference solution for the combination of data set and clustering
algorithm (i.e., (DEHC, k-means), (DFC, FCM), (DFC, EMGM), (DNEHC, SUBCLU),
and (DPC, IPCM2)) was produced by applying the clustering algorithm with the right
number of clusters (or a well-tuned epsilon for SUBCLU), and the result was analyzed to
ensure that the solution could be considered ideal in the clustering space sought by the
corresponding algorithm. For example, we applied k-means to DEHC with k = 9 clusters,
using the means of the Gaussian distributions (used to generate the clusters) as the initial
centroids. The final solution had virtually the same initial centroids, corroborating the
validity of the obtained solution.

It is worth noting that we are not suggesting that the considered clustering algorithms
are not suitable for the data sets to which they have not been applied to. For example, FCM
can easily find the clustering structure in DEHC, as well as IPCM2 can find the clustering
structure in DFC. What is most important is that the data set has a clustering structure
suitable for the clustering algorithm being applied.

14. The other data sets could have a similar interpretation as well. However, we only consider subspaces in
this specific data set.
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Figure 5: EHC measure evaluations of k-means solutions for the DEHC data set.

The algorithms k-means, FCM, EMGM, and IPCM2 were applied 30 times for each
number of clusters k ∈ {2, 3, . . . ,

√
n} (the literature commonly adopts the upper threshold√

n as a rule of thumb (Pal and Bezdek, 1995; Pakhira et al., 2005)), and SUBCLU was
applied 30 times for each epsilon in the range {0.1, 0.2, . . . , 5.0}. The measures were applied
to each solution, and only the highest (which means “the best”) values attained in each k
or epsilon for a given measure were retained to generate the plots in Figures 5, 6, 7, 8, and
9. We opted to plot the highest values instead of averages because we are interested in the
solutions that are as close as possible to the reference one, for a given number of clusters
(or epsilon), and to make the results as independent as possible to the stochastic nature
of the algorithms. Measures showing the same values were joined and represented by a
single curve, and multiple figures for the same experiments were plotted for visualization
purposes.

Figure 5 shows that most generalized measures displayed the same results as RI or ARI,
when evaluating EHCs. This is expected because most of these measures were defined
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Figure 6: FC measure evaluations of FCM solutions for the DFC data set.

by extending the variables behind the RI or ARI formulations. For example, the 07CRI
measure is a fuzzy version of RI in which the pairing variables a, b, c, and d were defined
using fuzzy sets. When applied to EHCs, 07CRI reduces to RI (Campello, 2007). RI, 09HI,
10CFn, 12DB, and the measures that showed the same results as RI were weakly affected by
a positive difference between the obtained and the true numbers of clusters. RI is equal to 1
and 0.94 for the solutions with 9 and 30 clusters, respectively, which represents less than 10%
of its total range [0, 1]. This weak responsiveness to the number of clusters makes it difficult
to decide whether the solution at hand is really good or not (weak contrast property). 09CRI
exhibited an increasing evaluation across the numbers of clusters, and 09CARI produced
scores close to zero only. In fact, 09CARI resulted in evaluations close to zero for each
scenario in this section. Conversely, JI, ARI, BC, 09EBC, 10CSI, 11MD, and the measures
that showed the same results as ARI (including 13AGRI proposed here) exhibited a steady
decrease for high numbers of clusters. We believe that this more prominent responsiveness
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to differences in the clusterings is more intuitively appealing. 10CF (Figure 5(c)) attained
the maximum 1 for the right number of clusters.
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Figure 7: FC measure evaluations of EMGM solutions for the DFC data set.

Figure 6 shows FC measure evaluations of FCM solutions for the DFC data set. Only
13AGRI and 11AARInm provided both the maximum value 1 for the true number of clusters
and showed steady decreasing evaluations over the positive increase in the difference between
the obtained and true numbers of clusters. 09HI was 1 for the true number of clusters, but it
showed an asymptotic-like curve for high numbers of clusters. 03VI, 08BRIp, 09RI, 09CRI,
09CARI, 10ARI, and 10ARIn could not indicate the reference solution.

Figure 7 displays EMGM solution evaluations for the DFC data set. 07CRI, 08BRIp,
08BRIm, 09CRI, 09CARI, 09RI, 09BRI, 10QRIp, 10QRIm, 10ARI, 10ARIn, and 11ARInm
could not indicate the true number of clusters. 09HI, 10CFn, 11AARInm, 13GRI, and
13AGRI attained their maxima 1 for the right number of clusters. However, 10CFn and
13GRI showed little to no evaluation change over the solutions with number of clusters
greater than k∗ = 9 (low contrast). 10CF attained 0.92 for the right number of clusters.
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Figure 8: NEHC measure evaluations of SUBCLU solutions for the DNEHC data set.

Figure 8, in which NEHCs are evaluated, shows only the range {0.1, 0.2, . . . , 2.1} of
epsilons, as the results from 1.4 to 5.0 are identical. The reference solution has 8 clusters:
4 from data on the plane, 2 from data projected onto the x axis, and 2 from data projected
onto the y axis (Figure 4(c)). Figure 8(b) indicates the number of clusters found for each
epsilon. SUBCLU generates the reference solution only for the epsilons from 0.4 to 1.0 (we
know this by inspection), and most measures yield the highest score in this interval. 07CRI,
09CRI, 10ARI, and 10AARI judged the solution with an epsilon equal to 0.1 to be the best
one. Most of the measures identified the correct solutions, but only 09EBC, 09HI, 10CSI,
10CF, 10CFn, 11AARInm, 11MD, 11D2, 13GRI, and 13AGRI attained their maxima 1 for
these solutions. 11AARInm and 13AGRI rapidly approached zero for non-optimal epsilons.

In Figure 9, 13GRI and 13AGRI exhibited a steep fall in the evaluations and a peak 1
at the true number of clusters. The DPC data set has only 3 clusters, while the others have
9 (DEHC and DFC) or 8 (DNEHC) clusters. A steeper curve is therefore expected. 07CRI,
09HI, 09BRI, 10QRIp, 10QRIm, 10ARI, 10ARIn, and 11ARInm provided high evaluations
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Figure 9: PC measure evaluations of IPCM2 solutions for the DPC data set.

for a wide range of numbers of clusters. Measures 10ARI and 09CARI could not discriminate
between the solutions, and 09CRI could not indicate the true number of clusters. 10CFn
showed an increasing evaluation for solutions with number of clusters greater than k = 5.
10CF indicated the right number of clusters in Fig 9(c), though not evaluating it as the
maximum 1 (it was evaluated as 0.92).

Table 3 summarizes the results by indicating with “k∗” the measures that identified
the reference clustering (discriminant property) and “1” the measures that attained their
maxima for the reference solution (maximum property). 09HI, 10CFn, 11AARInm, 13GRI,
and 13AGRI are the only measures that displayed the above properties for each scenario.
However, 09HI, 10CFn, and 13GRI presented a poor sensitivity to solution variations in
most of the cases (e.g., Figures 5(a) and 5(b)), and 10CFn showed an increasing evaluation
for progressively worse solutions (Figure 9(a)). 11AARInm and 13AGRI identified the
reference solution, attained their maxima 1 for the reference clustering, and were sensitive
to the difference in the numbers of clusters in all scenarios.
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Measures EHC FCFCM FCEMGM NEHC PC

JI k∗/1 - - - -
RI k∗/1 - - - -
ARI k∗/1 - - - -
BC k∗/1 - - - -
03MI k∗/1 k∗/· k∗/· - -
05MI k∗/1 k∗/· k∗/· - -
03VI k∗/1 ·/· k∗/· - -
07CRI k∗/1 k∗/· ·/· ·/· k∗/·
07CARI k∗/1 k∗/· k∗/· ·/· k∗/·
08BRIp k∗/1 ·/· ·/· - -
08BRIm k∗/1 k∗/· ·/· - -
09EBC k∗/1 - - k∗/1 -
09CRI ·/· ·/· ·/· ·/· ·/·
09CARI ·/· ·/· ·/· ·/· ·/·
09HI k∗/1 k∗/1 k∗/1 k∗/1 k∗/1
09RI k∗/1 ·/· ·/· - -
09BRI k∗/1 k∗/· ·/· k∗/· k∗/·
09BARI k∗/1 k∗/· k∗/· k∗/· k∗/·
10QRIp k∗/1 k∗/· ·/· k∗/· k∗/·
10QRIm k∗/1 k∗/· ·/· k∗/· k∗/·
10ARI k∗/1 ·/· ·/· ·/· ·/·
10AARI k∗/1 k∗/· k∗/· ·/· k∗/1
10ARIn k∗/1 ·/· ·/· ·/· k∗/1
10AARIn k∗/1 k∗/· k∗/· ·/· k∗/1
10CSI k∗/1 - - k∗/1 -
10CF k∗/1 k∗/· k∗/· k∗/1 k∗/·
10CFn k∗/1 k∗/1 k∗/1 k∗/1 k∗/1
11ARInm k∗/1 k∗/1 ·/· ·/· k∗/1
11AARInm k∗/1 k∗/1 k∗/1 k∗/1 k∗/1
11MD k∗/1 - - k∗/1 -
11D2 k∗/1 - - k∗/1 -
13GRI k∗/1 k∗/1 k∗/1 k∗/1 k∗/1
13AGRI k∗/1 k∗/1 k∗/1 k∗/1 k∗/1
12DB k∗/1 - - ·/· -
“k∗” means that the measure identified the reference clustering, and
“1” means that the measure attained its maximum 1 for the identified
reference clustering. A cell with “-” denotes that the measure was not
developed for the corresponding clustering type.

Table 3: Maximum and discriminant properties displayed by measures.
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7.2 Comparing Randomly Generated Clusterings

The experiment in this section is based on a previously published one (Vinh et al., 2009,
2010) that assessed the ability of proposed EHC measures (based on information theory) to
yield a constant baseline for randomly generated solutions. For a particular clustering type
(EHC, FC, NEHC, or PC), random model (uniform, beta, unbalanced, or unbalanced-beta),
2-tuple (n, k∗), and k ∈ {2, 3, . . . , 2k∗}, we generated 30 clustering pairs with n objects.
Each pair contains a clustering with k clusters (representing an obtained solution) and a
clustering with k∗ clusters (representing a reference solution). We used four combinations of
the number of objects and the true number of clusters: (n = 25, k∗ = 5), (n = 100, k∗ = 5),
(n = 50, k∗ = 10), and (n = 200, k∗ = 10). The random models used to generate the
clusterings depended on the clustering type as follows:

• For EHC, we generated clusterings for both the uniform and unbalanced models.
In the uniform model, each object was uniformly assigned to one cluster. In the
unbalanced model, each object was assigned to one cluster according to the following
distribution: p1 , 0.1/k and pj , pj−1 + α s.t.

∑k
j=1 pj = 1 (it implies that α =

1.8/(k(k − 1))), where pj is the probability of assigning an object to the jth cluster;

• For FC, we generated clusterings for the uniform, beta, and uniform-beta models. Let
Xu
r be a random variable distributed according to the uniform distribution U(0, 1).

For the uniform model, object xi has a degree of membership to the rth cluster
distributed according to Xu

r /(X
u
1 +Xu

2 + · · ·+Xu
k ), where k is the number of clusters.

For the beta model, we uniformly draw ri ∈ N1,k for each object xi to indicate to
which cluster xi probably has the highest degree of membership. Formally, let Xb

r and
Y b be two random variables distributed according to the beta distributions Be(1, 5)
and Be(5, 1), respectively. Object xi has a degree of membership to the rth cluster
(r 6= ri) distributed according to Xb

r/(X
b
1 + · · ·+Xb

ri−1 +Y b+Xb
ri+1 + · · ·+Xb

k) and to

the rith cluster distributed according to Y b/(Xb
1 + · · ·+Xb

ri−1 +Y b+Xb
ri+1 + · · ·+Xb

k).

The unbalanced-beta is equal to the beta model except that ri , 1, such that the first
cluster will have most of the membership;

• For NEHC, we generated clusterings for both the uniform and unbalanced models. In
the uniform model, each object xi was uniformly assigned to ki ∈ N1,k clusters, where
ki was uniformly drawn. In the unbalanced model, each object xi was assigned to
ki ∈ N1,k clusters according to the following method. Object xi is assigned to a cluster
according to the distribution p as in the EHC unbalanced model. The distribution
p is then adjusted such that the cluster already drawn (say, the jth cluster) will not
be selected again for xi (i.e., pj ← 0) and normalized to sum 1. The second cluster
is randomly selected according to the resulting p. This process is repeated until xi is
assigned to ki clusters;

• For PC, we generated clusterings for the uniform, beta, and uniform-beta models.
The distributions used are similar to those used for FC. The only difference is the
absence of normalizing denominators in their definitions.
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Cluster (EHC,Un) (FC,UBe) (NEHC,Un) (PC,UBe)

1st 2 10.2 22 15.9
2nd 11 10.4 53 16.4
3rd 20 11.4 64 17.0
4th 29 11.7 73 19.0
5th 38 56.2 74 83.3

Table 4: Object-to-cluster membership sums for clustering samples having n = 100 objects
and k∗ = 5 clusters.
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Figure 10: Average evaluations for (EHC,U , n = 25, k∗ = 5).
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We denote a particular experimental setting using a 4-tuple. For example, (EHC,U , n =
25, k∗ = 5) refers to an EHC set generated according to the uniform model, where each clus-
tering has 25 objects. The solutions of (EHC,U , n = 25, k∗ = 5) were arranged in 30 EHC
pairs for each k ∈ {2, 3, . . . , 10}. Each pair contains an EHC with k clusters and an EHC
with k∗ clusters. Thus, the set (EHC,U , n = 25, k∗ = 5) has 30 ·9 = 270 pairs of clusterings.
The measures were then applied to evaluate the similarity between the two clusterings of
each EHC pair, and the average evaluation for each k ∈ {2, 3, . . . , 10} was calculated and
plotted in Figure 10. Similarly, Figures 11, 12, and 13 refer to the experimental settings
(FC,U , n = 100, k∗ = 5), (NEHC,U , n = 50, k∗ = 10), and (PC,Be, n = 200, k∗ = 10),
respectively. The remaining figures are not shown here to avoid cluttering but can be found
in the supplementary material: http://sn.im/25a9h8u. Those figures will be referred here
when appropriate.

Figures 10(a) and 10(b) show that 11 measures exhibited the same averages as RI and
that six measures displayed the same averages as ARI, respectively. RI and JI (to a lesser
extent) do not show a constant baseline (Hubert and Arabie, 1985; Albatineh et al., 2006),
and this behavior is again observed in Figures 10(a) and 10(b). The 13GRI and 13AGRI
measures showed the same averages as RI and ARI, respectively, because of their equivalence
in the EHC context (Corollaries 4 and 5 in Appendix). 10CF attained a peak at k = k∗

clusters in Figure 10(c) for randomly generated clusterings. BC, 09EBC, 11MD, ARI, and
the measures with similar values to ARI are the only ones that showed a constant baseline.
The others showed a tendency to favor solutions with a high or low numbers of clusters.

Figure 11 shows the results for the experimental setting (FC,U , n = 100, k∗ = 5).
03MI, 05MI, 07CARI, 09BARI, and 13AGRI displayed a constant baseline close to zero in
Figure 11(b). 07CRI, 08BRIm, and 10QRIm (Figure 11(a)) also showed constant baselines,
although not close to zero. These three measures were neither formally adjusted for chance
nor based on a measure that was. Moreover, 07CRI, 08BRIm, and 10QRIm showed a low
variance for a wide range of numbers of clusters in Figure 6. This leads us to suspect that the
uniform behavior presented in Figure 11(a) is due to a poor sensitivity to solution variations.
09BRI and 10QRIp exhibited in Figure 11(b) a monotonically decreasing curve with low
variation in values, as well as 10AARI and 10AARIn in Figure 11(a). 11AARInm produced
values greater than its supposed maximum 1 and showed a counterintuitive behavior in
Figure 11(c). 10CF, 11ARInm, and 13GRI showed a peak at k = k∗ for randomly generated
clusterings.

07CARI, 09BARI, and 13AGRI are the only measures that displayed an approximately
constant baseline close to zero in Figure 12, corresponding to the results for (NEHC,U , n =
50, k∗ = 10). As for 10QRIm in Figure 11(a), the 10QRIp measure had a constant baseline
in Figure 12(a) probably due to a low sensitivity in solution discrimination, as it is not
adjusted for chance and is based on a measure (RI) known to be biased. The same cannot
be said about 13AGRI, as it compares the solutions against a null model and exhibited a
strong sensitivity in all experiments in Section 7.1. 10AARI showed in Figure 12(b) values
greater than 1 for most solutions. 10CF (Figure 12(e)) and 13GRI (Figure 12(b)) again
showed a peak at k = k∗ for randomly generated solutions. 10ARI and 11AARInm (Figure
12(d)) produced highly irregular evaluations. 11AARInm produced −∞ (overflow) for k = 2
due to near-zero division.

2978

http://sn.im/25a9h8u


Comparing Hard and Overlapping Clusterings

2 3 4 5 6 7 8 9 10
number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

cl
us

te
rin

g 
si

m
ila

rit
y

08BRIp
09CRI
09RI
10ARI
10ARIn
07CRI
10AARI
10AARIn
09HI
08BRIm
10QRIm
10CFn

(a)

2 3 4 5 6 7 8 9 10
number of clusters

0.0

0.2

0.4

0.6

0.8

1.0

cl
us

te
rin

g 
si

m
ila

rit
y

11ARInm
13GRI
09BRI
10QRIp
07CARI
03MI
05MI
09BARI
13AGRI
03VI

(b)

2 3 4 5 6 7 8 9 10
number of clusters

14

12

10

8

6

4

2

0

2

cl
us

te
rin

g 
si

m
ila

rit
y 

(1
1A

AR
In

m
)

130

120

110

100

90

80

70

60

50

cl
us

te
rin

g 
si

m
ila

rit
y 

(1
0C

F)

(c)

Figure 11: Average evaluations for (FC,U , n = 100, k∗ = 5).

Figure 13 illustrates the results for (PC,Be, n = 200, k∗ = 10). 09BRI, 09BARI,
10QRIp, 10QRIm, and 13AGRI showed constant baselines, and the constant baselines of
13AGRI and 09BARI were close to zero. 10CF (Figure 13(d)) and 13GRI (Figure 13(b))
again scored random clusterings with k = k∗ as better solutions. 10AARI and 11AARInm
displayed highly unexpected values (Figure 13(c)).

Table 5 denotes which measures showed the baseline property. The italic n’s refer to
measures that provided constant baselines in the experiments corresponding to Figures 10,
11, 12, and 13 but not for all the remaining experiments. For example, BC and 09EBC
showed unbiased evaluations in Figure 10(b) but not in the experiment (EHC,Un, n =
100, k∗ = 5) reported in the supplementary material.

Most measures could not provide an unbiased evaluation. They usually tend to favor
random solutions with high or low numbers of clusters or show a peak in evaluating random
solutions with the same number of clusters as the reference one. This behavior is undesir-
able, as the compared solutions were independently generated. Only 09BARI and 13AGRI
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Figure 12: Average evaluations for (NEHC,U , n = 50, k∗ = 10).
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Figure 13: Average evaluations for (PC,Be, n = 200, k∗ = 10).

presented an approximately constant (and close to zero) baseline in all scenarios. The null
model of 13AGRI is clearly violated in each scenario, which suggests that adjusting 13GRI
is not just a theoretical adornment but a true correction that makes practical clustering
comparisons fairer. Recall that, contrary to 13AGRI, 09BARI did not assign the maximum
score 1 to the perfect solutions for all but the EHC scenario in the previous section.

7.3 13AGRI Evaluation Validity for FCs

We applied the k-means and FCM algorithms 30 times for each number of clusters k ∈
{2, 3, . . . , 20} to the UCI data sets (Newman and Asuncion, 2010) shown in Table 6. 13AGRI
evaluated the best clustering (according to the respective algorithm’s cost function) for each
number of clusters using the known classification as the reference solution; the reference
solution is thus an EHC. 13AGRI provides the same evaluation as ARI for k-means solutions
since k-means produces EHCs (Corollary 5 in Appendix). FCM is regarded as the fuzzy
version of k-means, both search for spherical-like clusters, and FCM tends to k-means when
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Measures EHC FC NEHC PC Measures EHC FC NEHC PC

JI n - - - 09BARI y y y y
RI n - - - 10QRIp n n n n
ARI y - - - 10QRIm n n n n
BC n - - - 10ARI n n n n
03MI n y - - 10AARI y n n n
05MI n y - - 10ARIn n n n n
03VI n n - - 10AARIn y n n n
07CRI n n y n 10CSI n - n -
07CARI y n y n 10CF n n n n
08BRIp n n - - 10CFn n n n n
08BRIm n n - - 11ARInm n n n n
09EBC n - n - 11AARInm y n n n
09CRI n n n n 11MD n - n -
09CARI - - - - 11D2 n - n -
09HI n n n n 13GRI n n n n
09RI n n - - 13AGRI y y y y
09BRI n n n n 12DB n - n -

Table 5: Did the similarity measure display approximately constant baselines?

FCM exponent m approaches 1 (Yu et al., 2004). Thus, their solutions are often similar
in the sense that converting an FCM solution into an EHC (by assigning the objects to
the clusters for which they have the highest membership degrees) results in a clustering in
which the relative assignment of objects is similar to the relative assignment of objects in
the solution produced by k-means (i.e., when objects xi and xj are assigned to the same
cluster in one solution, they are often assigned to the same cluster in the other solution).
This section examines whether 13AGRI produces similar evaluations for solutions generated
by k-means and FCM. If this is the case, we can be more confident in the validity of 13AGRI
FC evaluations since 13AGRI and ARI are equivalent in the EHC domain.

For each data set, Table 7 displays the Pearson correlations between 13AGRI evaluations
of the solutions produced by k-means and of the solutions produced by FCM across the
number of clusters in {2, 3, . . . , 20}. Five correlations were higher than 0.9, and more than
a half were higher than 0.7. Figures 14(a) and 14(b) depict 13AGRI evaluations for the
data sets on which the correlations attained the three highest and three lowest values,
respectively. Figure legends display the corresponding data set, clustering type, and the
number of classes in the a priori classification. Because the reference solutions are EHCs,
13AGRI almost always provided higher scores when evaluating EHC solutions than when
evaluating FC solutions. The lowest correlations seem to have been obtained in the data sets
for which the algorithms could not find good clusterings. For these data sets, the similarity
between the found solutions and the reference one mostly fluctuates across the numbers
of clusters as (we conjecture) there is no ideal number of clusters at which a peak on the

1. The original data set has 16 objects with missing attributes. We adopted the k-nearest neighbor algorithm
with Euclidean distance for imputation (Hastie et al., 1999) and used the resulting data set.
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Name # Objects # Attributes # Classes

Breast cancer w. d. (bcw-d) 569 30 2
Breast cancer w. o. (bcw-o)1 699 9 2
Synthetic control chart (chart) 600 60 6
Ecoli data set (ecoli) 336 7 7
Glass identification (glass) 214 9 6
Haberman (haberman) 306 3 2
Image segmentation (img) 210 19 7
Ionosphere (ion) 351 34 2
Iris (iris) 150 4 3
Pima indians diabetes (pima) 768 8 2
Connectionist bench (sonar) 208 60 2
SPECT heart (heart) 267 22 2
Vehicle silhouettes (vehicle) 846 18 4
Wine (wine) 178 13 3

Table 6: UCI data sets.

evaluation curve would be found. K-means and FCM produced rather poor solutions for
the haberman and sonar data sets according to 13AGRI. 13AGRI evaluations indicate that
k-means could uncover some structure in the chart data set because a 13AGRI score (also
an ARI score) of 0.5 is a considerable one according to our experience. However, there was
not a distinctive solution across the numbers of clusters. 13AGRI indicates the FC solution
with three clusters as the most similar to the reference one for the chart data set.

To further investigate the behavior of 13AGRI for the chart solutions, we reduced the
chart dimensionality by projecting the 60-dimensional data to the first nine principal compo-
nents (Jolliffe, 2002) explaining 90% of the variance. We identified two pairs of classes with
high degree of overlap (namely, classes decreasing trend with downward shift and increasing
trend with upward shift (Alcock, 1999)) by projecting the data onto several planes. We
joined the classes decreasing trend with downward shift and increasing trend with upward
shift, resulting in a classification (used as the reference clustering) with four classes. The
Pearson correlation between 13AGRI evaluations is now 0.91 using the same experimental
configuration as above. Figure 15 shows the evaluations for k-means and FCM solutions.
13AGRI provided high evaluations for k-means solutions with three and four clusters, while
13AGRI suggests that the best FCM solution is the one with three clusters.

Results indicate that 13AGRI when applied to FCs behaves similarly to 13AGRI (i.e.,
ARI) when applied to EHCs, particularly when the solutions uncover some data set struc-
ture. Considering that ARI is one of the most trusted similarity measures, the results
corroborate the 13AGRI evaluation validity for FCs.

7.4 Clustering Stability Assessment

We applied EMGM to subsamples of the top five data sets from the previous section (i.e.,
bcw-d, iris, wine, bcw-o, and img) 100 times for each number of clusters k ∈ {2, . . . , 20},
generating 100 Gaussian mixtures for each number of clusters and data set; these Gaussian
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bcw-d iris wine bcw-o img ecoli ion

0.99 0.99 0.98 0.98 0.91 0.89 0.83

vehicle glass pima heart haberman chart sonar

0.75 0.70 0.69 0.60 0.23 0.02 -0.45

Table 7: Correlation between 13AGRI evaluations of hard exclusive and fuzzy clusterings.
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Figure 14: 13AGRI evaluations that exhibited the three highest (a) and the three lowest
correlations (b).
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Figure 15: 13AGRI evaluations for the processed chart data set.
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bcw-d bcw-o wine iris img

0.94 0.90 0.85 0.67 0.59

Table 8: Correlation between 13AGRI evaluation and stability statistic.

mixtures are different explanations for the phenomenon that produced the data set. We
calculated a probabilistic clustering U (also known as FC) of the whole data set for each
Gaussian mixture such that Ur,i is the probability of xi belonging to the rth cluster (i.e.,
to the rth Gaussian mixture component). 13AGRI compared each of the

(
100
2

)
probabilistic

clustering pairs for each number of clusters and data set, and the average was taken as
the stability statistic (the less diverse the solution set, the higher the stability statistic)
for the corresponding number of clusters and data set. Subsamples were generated by
randomly selecting 80% of the data set objects, without replacement, as in (Monti et al.,
2003). Algorithm 2 describes how stability assessment can be used to estimate the number
of clusters and to select a promising clustering of a set of solutions.

Algorithm 2 Stability assessment

Require: Data set X.
1: for i ∈ {1, 2, . . . , 100} do
2: Si ← Randomly draw 80% of the objects from X, without reposition.
3: end for
4: for k ∈ {2, 3, . . . , 20} do
5: for i ∈ {1, 2, . . . , 100} do
6: Apply EMGM to Si finding a Gaussian mixture with k components.
7: Ui ← Calculate the probabilistic clustering of the whole data set using the found

Gaussian mixture.
8: end for
9: tk ←

∑
i<j 13AGRI(Ui,Uj)/

(
100
2

)
{stability statistic}

10: Vk ← argmaxUi{
∑

j 6=i 13AGRI(Ui,Uj)} {clustering set prototype}
11: end for
12: k

′ ← argmaxk∈{2,...,20}{tk} {estimated number of clusters}
13: U

′ ← Vk
′
; {estimated best clustering}

Table 8 shows the Pearson correlations between stability statistic (defined by Step 9)
values and 13AGRI evaluations (similarity between prototype Vk, Step 10, and the reference
clustering) for different number of clusters. The high correlations indicate that the stability
statistic, which can be used in real scenarios, approximately follows the 13AGRI evaluation
that depends on a reference solution.

Figure 16 depicts 13AGRI evaluation for each clustering set prototype (Step 10 in Algo-
rithm 2) and data set. We generated the error bar for a given k ∈ {2, . . . , 20} and data set as
follows. Let tk be the stability statistic for the set of clusterings with k clusters each (Step
9). Error bar was calculated to take 0 for the more stable clustering set (highest stability
statistic) and 0.1 for the least stable clustering set, for visualization purposes. Thus, the
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error bar value corresponding to the set of clusterings with k clusters is

tk −min{t2, t3, . . . , t20}
max{t2, t3, . . . , t20} −min{t2, t3, . . . , t20}

× 0.1.
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(a) Data set: bcw-d (k∗ = 2).
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(b) Data set: bcw-o (k∗ = 2).
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(c) Data set: wine (k∗ = 3).
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(d) Data set: iris (k∗ = 3).
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(e) Data set: img (k∗ = 7).

Figure 16: 13AGRI evaluations with error bars indicating clustering set instability.

Stability statistic precisely estimated the correct number of clusters for bcw-d (Figure
16(a)) and bcw-o (Figure 16(b)) data sets. The top two stable clustering sets in iris are the
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ones with two and three clusters. Iris data set is classified in three classes (namely, setosa,
versicolour, and virginica). However, it is well-known that the versicolour and virginica
classes have a high degree of overlap and are frequently considered a single cluster (Wu and
Yang, 2005), which corroborate the validity of the stability statistic. Although not being
able to indicate the exact number of clusters, the lowest instability values for wine and img
are around the correct number of clusters. In general, the near the number of clusters of
the clustering set to the ideal one, the more stable the clustering set tends to be. These
good preliminary results demonstrate that 13AGRI deserves further investigations on its
applicability to the estimation of the number of clusters for FCs.

8. Discussion

Sections 7.1 and 7.2 empirically explored the four measure properties proposed in Section 2.
Section 7.1 investigated the maximum, discriminant, and contrast properties by applying the
measures to gradually different solutions. The hypothesis was that the similarity between
the found clustering and the reference one is highly correlated to the difference in the number
of clusters (epsilons in the case of SUBCLU) between the compared solutions, given that
the solutions are produced by clustering algorithms capable of finding the ideal solution.
One can understand the difference between the number of clusters given to the algorithm
and the number of clusters of the reference solution as how far the domain of solutions
of the corresponding algorithm is to the reference clustering. It is expected that a good
measure should translate that difference in terms of evaluations. Section 7.1 showed that
several of the measures did not follow the above hypothesis or did so in a very loose way,
showing almost flat evaluations over the number of clusters. Moreover, several measures
could not discriminate the best solution (03VI, 07CRI, 07CARI, 08BRIp, 08BRIm, 09CRI,
09CARI, 09RI, 09BRI, 10QRIp, 10QRIm, 10ARI, 10AARI, 10ARIn, 10AARIn, 11ARInm,
and 12DB) for at least one of the clustering domains considered. We believe that this result
by itself is enough for considering those measures unsuitable for the clustering domains they
have failed. Section 7.1 concluded that 03MI, 05MI, 09BARI, and 10CF (beside the ones
that have failed for the discriminant property) did not show the maximum property, and
several measures were poorly sensitive to different solution qualities (poor contrast).

The baseline property was investigated in Section 7.2. In particular, we aimed to find
out what measures were able to perform unbiased evaluations over different numbers of
clusters. We concluded that only 09BARI and 13AGRI showed the baseline property for
every clustering domain. By correcting 13GRI for chance, we were striving to build a mea-
sure that can capture the similarity between two solutions irrespectively to their numbers
of clusters. We thus implicitly assumed that the number of clusters is not per se an indica-
tion of the similarity between clusterings (Section 7.2) but only a factor that delineates the
domain of solutions (Section 7.1).

The correction-for-chance property implemented for 13AGRI, and that other measures
displayed in Section 7.2 for certain scenarios, can also be understood as a way to stretch
out the measure such that its useful range lies between the constant baseline and the
maximum. As a matter of fact, one is not usually interested in very poor solutions (i.e.,
the ones that are far from the reference) (Meila, 2012), and those would receive negative
or close to zero evaluations by 13AGRI and other adjusted measures. The correction-for-
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chance thus increases the interpretability of the results by stressing what one should expect
from clusterings whose evaluations lie below, close to, or above the baseline.

9. Conclusions

This paper discussed the importance of similarity measures in evaluating clustering algo-
rithms, consensus clustering, clustering stability assessment, and quantifying information
loss. These and other applications led to a recent interest in measures (especially pair-based
ones) capable of comparing more general clusterings than the exclusive hard ones (usual
partitions of an object set). We provided an overview of 28 measures proposed in the past
10 years for this task and discussed some of their issues. We showed that several of these
measures do not attain the maximum whenever two equivalent solutions are compared and
that most measures are biased toward clusterings with certain numbers of clusters. More-
over, several of the discussed measures are based on equations that were originally developed
specifically for and by assuming the exclusive hard domain. Some measures thus exhibited
unexpected behavior in experiments involving more general scenarios.

We proposed the 13FRI measure that can be used to compare fuzzy/probabilistic and
exclusive hard clusterings. Based on a null model we proposed, according to which cluster-
ings are generated, and following the framework employed by Hubert and Arabie (1985) to
adjust the Rand index, 13AFRI was proposed as a corrected-for-chance version of 13FRI. We
then extended 13FRI and 13AFRI to handle more general clusterings, namely possibilistic
clusterings (including exclusive hard, fuzzy/probabilistic, and non-exclusive hard cluster-
ings), yielding 13GRI and 13AGRI, respectively. The computational complexity analysis
showed that our measures are practical.

In the first experiment involving four clustering algorithms of different natures, we
observed that some measures could not identify the best solutions, and that several could
not provide a fine-grained evaluation across the range of the numbers of clusters, whereas
13AGRI always attained its maximum 1 for the true number of clusters and displayed a
steep, discriminative evaluation curve with a clear peak at the true number of clusters
for each data set. We assessed the capability of the measures to provide an unbiased
evaluation for randomly generated solutions with different numbers of clusters in the second
experiment. A fair measure should assign a uniform evaluation across the range of the
numbers of clusters, as each generated solution is independent of the reference one (Vinh
et al., 2010). This is the case of the well-known adjusted Rand index (ARI) (Hubert and
Arabie, 1985) for the exclusive hard domain. Only 13AGRI and 09BARI (Brouwer, 2009) (a
recently proposed measure) displayed such an evaluation for all considered scenarios, which
include the exclusive hard context; however, 09BARI could not attain its maximum 1 at the
true number of clusters for all but the hard exclusive domain in the first experiment. The
other measures exhibited a preference for certain solutions, which is attributable solely to
their evaluation mechanisms. While the randomness model for 13AGRI incorporates some
assumptions about the clusterings, those generated in our experiments clearly do not follow
such a requirement. Even so, 13AGRI could provide uniform evaluations close to zero in
the experiments with randomly generated solutions.

Two more experiments involving 14 real data sets and the algorithms k-means (Mac-
Queen, 1967), fuzzy c-means (FCM) (Bezdek, 1981), and expectation maximization for
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Gaussian mixtures (Dempster et al., 1977) were performed to assess the validity of 13AGRI
evaluations in the fuzzy domain, arguably the most important domain after the exclusive
hard one, and to investigate 13AGRI’s applicability to the estimation of the number of
clusters without (of course) any knowledge about the true data structure. We argue that
the evaluations of the solutions produced by k-means and FCM for the same data set should
be similar, and this behavior presented by 13AGRI is even more important for its validity
because 13AGRI and the trusted ARI measures are equivalent when applied to solutions
generated by k-means. The stability statistic based on 13AGRI defined in our last exper-
iment showed good results indicating that 13AGRI can also be successfully applied to the
estimation of the number of clusters in the probabilistic domain.

We proved that 13AGRI and ARI are equivalent in the exclusive hard domain. This
is reassuring because (i) ARI is one of the most trusted similarity measures (Steinley,
2004; Albatineh et al., 2006), and (ii) the null model of 13AGRI was developed for general
possibilistic clusterings (including exclusive hard clusterings as a special case). As future
work, we think that 13AGRI deserves a further investigation on its conceptual properties,
specially those generally taken as useful for similarity measures for clustering, such as cluster
homogeneity sensibility, cluster completeness, and metric axioms compliance (Meila, 2007;
Amigó et al., 2009).
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Appendix A.

Proposition 1 Let U and V be two FCs such that 13FRI(U,V) = 0, n > 1, and 1 ≤
kU, kV ≤ n. It implies that U and V are EHCs and that kU = 1 and kV = n or kU = n and
kV = 1, which unambiguously determine U and V.

Proof Realize from Equations (12) that
∑kU

r=1 Ur,l = 1 ∀l implies SU
i,j = 1 − JU

i,j . To

have 13FRI(U,V) = 0, it must be the case that ȧ = ḋ = 0 (Equation 14), which implies
that min{JU

i,j , J
V
i,j} = min{1 − JU

i,j , 1 − JV
i,j} = 0 ∀i < j (Equations 13a and 13d). Hence,

JU
i,j , J

V
i,j ∈ {0, 1} and JU

i,j 6= JV
i,j for all i < j.

We first prove by contradiction that U cannot have a column i and a row r for which
Ur,i ∈ (0, 1) (the same holds for V). Assuming that the ith column of U has Ur,i ∈ (0, 1)
for an r ∈ N1,kU , we have kU > 1 and at least two elements of U:,i have values in the

open interval (0, 1) because
∑kU

t=1 Ut,i = 1. Without loss of generality, assume that i = 1
(the columns of U and V can always be simultaneously permuted without changing the
measure). We know that UT

:,1U:,j = JU
1,j = 0 ∀j ∈ N2,n because UT

:,1U:,j cannot yield 1.

Thus, JV
1,j = 1 ∀j ∈ N2,n. This implies that the columns of V are all identical and each one

has the element 1, resulting in kV = 1 because of the constraint
∑n

j=1 Vt,j > 0 ∀t. We thus

have JV
i1,j1

= 1 ∀i1 < j1 and JU
i2,j2

= 0 ∀i2 < j2. The last equality only holds with constraint
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∑n
j=1 Ut,j > 0 ∀t if each row of U has exactly one value greater than zero. The property∑kU
t=1 Ut,j = 1 ∀j of FCs and the assumption kU ≤ n then require each column of U to have

exactly one value greater than zero (and to have kU = n rows), which is the value 1. This
violates the assumption that Ur,i ∈ (0, 1), which implies that U (and V) must be a matrix
with only zeros and ones.

Suppose n = 2. If columns 1 and 2 of U are identical, columns 1 and 2 of V are different
because we have already proven that JU

i,j 6= JV
i,j . This only can happen for kU = 1 and

kV = 2 (remember the properties of an FC). Now, suppose that n > 2 and, without loss of
generality, that U:,1 and U:,2 are identical and that V:,1 and V:,2 are different. If a column
i > 2 of U differs from columns 1 and 2 of U, we conclude that columns 1 and 2 of V are
equal to column i of V. However, this implies that columns 1 and 2 of V are equal, and, as
we known, they are not. Consequently, all columns of U must be identical and all columns
of V must be different. This can only happen for kU = 1 and kV = n, which proves the
proposition.

Proposition 2 Given two EHCs U and V, we have 13FRI(U,V) = RI(U,V).

Proof Realize that ȧ, ḃ, ċ, and ḋ (Equations 13) are equivalent to a, b, c, and d (Equations
7) by assigning the values 0 and 1 to JU

i,j and JV
i,j .

Proposition 3 Given two EHCs U and V, we have 13AFRI(U,V) = ARI(U,V).

Proof Both ARI and 13AFRI use the framework of Equation (15). The expectation of
ARI given U and V is E[ARI]U,V = (E[a]U,V + E[d]U,V)/(a+ b+ c+ d) (Hubert and Arabie,
1985). We must therefore only show that E[a]U,V = E[ȧ]U,V and E[d]U,V = E[ḋ]U,V, since
a = ȧ, b = ḃ, c = ċ, and d = ḋ by Proposition 2. Let JU = UTU, JV = VTV, and N = UVT.
Because U and V are EHCs, we can rewrite min{JU

i,j , J
V
i,j} = JU

i,jJ
V
i,j . Both

∑
i<j JU

i,j and∑kU
r=1

(Nr,+
2

)
count the number of unordered object pairs in the same cluster in U. We thus

have

E[ȧ]U,V =
2

n(n− 1)

∑
i1<j1

JU
i1,j1

∑
i2<j2

JV
i2,j2

=

kU∑
r=1

(
Nr,+

2

) kV∑
t=1

(
N+,t

2

)/(n
2

)
= E[a]U,V (Equation (2) in (Hubert and Arabie, 1985)).
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Because JU
i,j = 1− SU

i,j for EHCs, we have

E[ḋ]U,V =
2

n(n− 1)

∑
i1<j1

∑
i2<j2

(1− JU
i1,j1)(1− JV

i2,j2)

=

(
n

2

)
−
∑
i1<j1

JU
i1,j1 −

∑
i2<j2

JV
i2,j2

+
∑
i1<j1

∑
i2<j2

JU
i1,j1JV

i2,j2

/(n
2

)

=

(
n

2

)
−

kU∑
r=1

(
Nr,+

2

)
−

kV∑
t=1

(
N+,t

2

)

+

kU∑
r=1

(
Nr,+

2

) kV∑
t=1

(
N+,t

2

)/(n
2

)
= E[d]U,V (Equation (3) in (Hubert and Arabie, 1985) multiplied by

(
n

2

)
and

then subtracted by E[a]U,V).

Proposition 4 Given two PCs U and V, we have ȧ+ ḃ+ ċ+ ḋ =
∑

i<j min{TU
i,j ,T

V
i,j}.

Proof Let

ȧi,j , min{JU
i,j , J

V
i,j},

ḃi,j , min{JU
i,j −min{JU

i,j , J
V
i,j}, SV

i,j −min{SU
i,j ,S

V
i,j}},

ċi,j , min{JV
i,j −min{JU

i,j , J
V
i,j}, SU

i,j −min{SU
i,j ,S

V
i,j}}, and

ḋi,j , min{SU
i,j ,S

V
i,j}.

We prove the proposition by showing that

ȧi,j + ḃi,j + ċi,j + ḋi,j = min{TU
i,j ,T

V
i,j}. (25)

Table 9 shows the six rank combinations between the values of the pairs (JU
i,j , J

V
i,j), (SU

i,j ,S
V
i,j),

and (TU
i,j ,T

V
i,j), covering all possible scenarios. Equation (25) is true for each scenario. For

conciseness, let us show the proof for Combinations 1 and 3 only.
Assuming Combination 1, we have ȧi,j = JV

i,j , ḃi,j = 0, ċi,j = 0, and

ḋi,j = SV
i,j , and Equation (25) is true. Assuming Combination 3, we have

ȧi,j = JV
i,j , ḃi,j = min{JU

i,j − JV
i,j ,S

V
i,j − SU

i,j}, ċi,j = 0, and ḋi,j = SU
i,j . Note that

TU
i,j < TV

i,j ⇒ JU
i,j + SU

i,j < JV
i,j + SV

i,j ⇒ JU
i,j − JV

i,j < SV
i,j − SU

i,j . Thus, ḃi,j = JU
i,j − JV

i,j , and
Equation (25) is true.
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# (JU
i,j , J

V
i,j) (SU

i,j , S
V
i,j) (TU

i,j ,T
V
i,j)

1 JU
i,j ≥ JV

i,j SU
i,j ≥ SV

i,j TU
i,j ≥ TV

i,j

2 JU
i,j ≥ JV

i,j SU
i,j < SV

i,j TU
i,j ≥ TV

i,j

3 JU
i,j ≥ JV

i,j SU
i,j < SV

i,j TU
i,j < TV

i,j

4 JU
i,j < JV

i,j SU
i,j ≥ SV

i,j TU
i,j ≥ TV

i,j

5 JU
i,j < JV

i,j SU
i,j ≥ SV

i,j TU
i,j < TV

i,j

6 JU
i,j < JV

i,j SU
i,j < SV

i,j TU
i,j < TV

i,j

Table 9: Rank combinations.

Corollary 1 If U and V are two FCs with n columns each, we have TU
i,j = TV

i,j = 1 and

the sum ȧ+ ḃ+ ċ+ ḋ = n(n− 1)/2.

Proposition 5 Given two PCs U and V, we have ȧ + ḃ + ċ + ḋ + ė =
max{

∑
i<j TU

i,j ,
∑

i<j TV
i,j}.

Proof Let M , max{TU,TV}. If TU
i,j ≥ TV

i,j , then min{TU
i,j ,T

V
i,j} + Mi,j − TV

i,j = TU
i,j .

If TU
i,j < TV

i,j , then min{TU
i,j ,T

V
i,j} + Mi,j − TV

i,j = TU
i,j as well. Thus,

TU
i,j = min{TU

i,j ,T
V
i,j} + Mi,j − TV

i,j , and the same reasoning works for TV
i,j =

min{TU
i,j ,T

V
i,j} + Mi,j − TU

i,j . We know that ȧ + ḃ + ċ + ḋ =
∑

i<j min{TU
i,j ,T

V
i,j}

by Proposition 4. If
∑

i<j TU
i,j ≥

∑
i<j TV

i,j , we have ė =
∑

i<j(Mi,j − TV
i,j) and

ȧ+ ḃ+ ċ+ ḋ+ ė =
∑

i<j TU
i,j ; otherwise, ȧ+ ḃ+ ċ+ ḋ+ ė =

∑
i<j TV

i,j .

Corollary 2 The sum ȧ+ ḃ+ ċ+ ḋ+ ė is constant over all simultaneous permutations of
the columns of U and V because they do not alter the sums

∑
i<j TU

i,j and
∑

i<j TV
i,j.

Corollary 3 13FRI (13AFRI) and 13GRI (13AGRI) are equivalent when applied to FCs
because max{

∑
i<j TU

i,j ,
∑

i<j TV
i,j} = n(n− 1)/2 = ȧ+ ḃ+ ċ+ ḋ.

Corollary 4 Given two EHCs U and V, we have 13GRI(U,V) = RI(U,V) because of
Proposition 2 and Corollary 3.

Corollary 5 Given two EHCs U and V, we have 13AGRI(U,V) = ARI(U,V) because of
Proposition 3 and Corollary 3.
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