
Journal of Machine Learning Research 16 (2015) 3905-3909 Submitted 3/14; Revised 1/15; Published 12/15

partykit : A Modular Toolkit for Recursive Partytioning in R

Torsten Hothorn Torsten.Hothorn@R-project.org
Institut für Epidemiologie, Biostatistik und Prävention, Universität Zürich

Achim Zeileis Achim.Zeileis@R-project.org

Institut für Statistik, Universität Innsbruck

Editor: Cheng Soon Ong

Abstract
The R package partykit provides a flexible toolkit for learning, representing, summarizing, and
visualizing a wide range of tree-structured regression and classification models. The functionality
encompasses: (a) basic infrastructure for representing trees (inferred by any algorithm) so that
unified print/plot/predict methods are available; (b) dedicated methods for trees with constant
fits in the leaves (or terminal nodes) along with suitable coercion functions to create such trees
(e.g., by rpart, RWeka, PMML); (c) a reimplementation of conditional inference trees (ctree, orig-
inally provided in the party package); (d) an extended reimplementation of model-based recursive
partitioning (mob, also originally in party) along with dedicated methods for trees with parametric
models in the leaves. Here, a brief overview of the package and its design is given while more
detailed discussions of items (a)–(d) are available in vignettes accompanying the package.

Keywords: recursive partitioning, regression trees, classification trees, statistical learning, R

1. Overview

In the more than fifty years since Morgan and Sonquist (1963) published their seminal paper on “au-
tomatic interaction detection”, a wide range of methods has been suggested that is usually termed
“recursive partitioning” or “decision trees” or “tree(-structured) models” etc. The particularly in-
fluential algorithms include CART (classification and regression trees, Breiman et al., 1984), C4.5
(Quinlan, 1993), QUEST/GUIDE (Loh and Shih, 1997; Loh, 2002), and CTree (Hothorn et al.,
2006) among many others (see Loh, 2014, for a recent overview). Reflecting the heterogeneity of
conceptual algorithms, a wide range of computational implementations in various software systems
emerged: Typically the original authors of an algorithm also provide accompanying software but
many software systems, including Weka (Witten and Frank, 2005) or R (R Core Team, 2014), also
provide collections of various types of trees. Within R the list of prominent packages includes rpart
(Therneau and Atkinson, 1997, implementing CART), RWeka (Hornik et al., 2009, with interfaces
to J4.8, M5’, LMT from Weka), and party (Hothorn et al., 2015, implementing CTree and MOB)
among many others. See the CRAN task view “Machine Learning” (Hothorn, 2014) for an overview.

All of these algorithms and software implementations have to deal with similar challenges. How-
ever, due to the fragmentation of the communities in which they are published – ranging from
statistics over machine learning to various applied fields – many discussions of the algorithms do not
reuse established theoretical results and terminology. Similarly, there is no common “language” for
the software implementations and different solutions are provided by different packages (even within
R) with relatively little reuse of code. The partykit aims at mitigating the latter issue by providing
a common unified infrastructure for recursive partytioning in the R system for statistical comput-
ing. In particular, partykit provides tools for representing, printing, plotting trees and computing
predictions. The design principles are:

c©2015 Torsten Hothorn and Achim Zeileis.



Hothorn and Zeileis

• One ‘agnostic’ base class (‘party’) encompassing a very wide range of different tree types.

• Subclasses for important types of trees, e.g., trees with constant fits (‘constparty’) or with
parametric models (‘modelparty’) in each terminal node (or leaf).

• Nodes are recursive objects, i.e., a node can contain child nodes.

• Keep the (learning) data out of the recursive node and split structure.

• Basic printing, plotting, and predicting for raw node structure.

• Customization via suitable panel or panel-generating functions.

• Coercion from existing object classes in R (rpart, J48, etc.) to the new class.

• Usage of simple/fast S3 classes and methods.

In addition to all of this generic infrastructure, two specific tree algorithms are implemented in
partykit as well: ctree for conditional inference trees (Hothorn et al., 2006) and mob for model-
based recursive partitioning (Zeileis et al., 2008).

2. Installation and Documentation

The partykit package is an add-on package for the R system for statistical computing. It is available
from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=

partykit and can be installed from within R, e.g., using install.packages. It depends on R
(at least 2.15.0) as well as the base packages graphics, grid, stats, and the recommended sur-
vival. Furthermore, various suggested packages are needed for certain special functionalities in
the package. To install all of these required and suggested packages in one go, the command in-

stall.packages("partykit", dependencies = TRUE) can be used.
In addition to the stable release version on CRAN, the current development release can be

installed from R-Forge (Theußl and Zeileis, 2009). In addition to source and binary packages the
entire version history is available through R-Forge’s Subversion source code management system.

Along with the package extensive documentation with examples is shipped. The manual pages
provide basic technical information on all functions while much more detailed descriptions along
with hands-on examples are provided in the four package vignettes. First, the vignette "partykit"

introduces the basic ‘party’ class and associated infrastructure while three further vignettes discuss
the tools built on top of it: "constparty" covers the eponymous class (as well as the simplified
‘simpleparty’ class) for constant-fit trees along with suitable coercion functions, and "ctree" and
"mob" discuss the new ctree and mob implementations, respectively. Each of the vignettes can be
viewed within R via vignette(“name”, package = "partykit") and the underlying source code
(in R with LATEX text) is also available in the source package.

3. User Interface

The partykit package provides functionality at different levels. First, there is basic infrastructure
for representing, modifying, and displaying trees and recursive partitions – these tools are mostly
intended for developers and described in the next section. Second, there are tools for inferring trees
from data or for importing trees inferred by other software into partykit.

While originally an important goal for the development of partykit was to provide infrastructure
for the authors’ own tree induction algorithms CTree and MOB, the design was very careful to
separate as much functionality as possible into more general classes that are useful for a far broader
class of trees. In particular, to be able to print/plot/predict different trees in a unified way, there

3906

http://CRAN.R-project.org/package=partykit
http://CRAN.R-project.org/package=partykit


A Modular Toolkit for Recursive Partytioning

Algorithm Software implementation Object class Original reference
CART/RPart rpart::rpart + as.party constparty Breiman et al. (1984)
C4.5/J4.8 Weka/RWeka::J48 + as.party constparty Quinlan (1993)
QUEST SPSS/AnswerTree + pmmlTreeModel simpleparty Loh and Shih (1997)
CTree ctree constparty Hothorn et al. (2006)
MOB mob, lmtree, glmtree, . . . modelparty Zeileis et al. (2008)
EvTree evtree::evtree constparty Grubinger et al. (2014)

Table 1: Selected implementations of tree algorithms that can be interfaced through partykit. The
second column lists external software, R functions from other packages (with :: syntax)
and from partykit.

Gender

1

Male Female

Age

2

Adult Child

Node 3 (n = 1667)

N
o

Ye
s

0

0.2

0.4

0.6

0.8

1

Class

4

3rd 1st, 2nd

Node 5 (n = 48)

N
o

Ye
s

0

0.2

0.4

0.6

0.8

1
Node 6 (n = 16)

N
o

Ye
s

0

0.2

0.4

0.6

0.8

1

Class

7

3rd 1st, 2nd, Crew

Node 8 (n = 196)

N
o

Ye
s

0

0.2

0.4

0.6

0.8

1
Node 9 (n = 274)

N
o

Ye
s

0

0.2

0.4

0.6

0.8

1

Class
p < 0.001

1

3rd 1st, 2nd, Crew

Node 2 (n = 706)

Normal
Male&Adult

Preferential
Female|Child

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

●

●

Class
p < 0.001

3

2nd 1st, Crew

Node 4 (n = 285)

Normal
Male&Adult

Preferential
Female|Child

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

●

●

Node 5 (n = 1210)

Normal
Male&Adult

Preferential
Female|Child

Ye
s

N
o

0

0.2

0.4

0.6

0.8

1

●

●

Figure 1: Tree visualizations of survival on Titanic: ‘rpart’ tree converted with as.party and
visualized by partykit (left); and logistic-regression-based tree fitted by glmtree (right).

are so-called coercion functions for transforming trees learned in other software packages (inside
and outside of R) to the classes provided by partykit. Specifically, tree objects learned by rpart

(Therneau and Atkinson, 1997, implementing CART, Breiman et al., 1984) and by J48 from RWeka
(Hornik et al., 2009, interfacing Weka’s J4.8 algorithm for C4.5, Quinlan, 1993) can be coerced
by as.party to the same object class ‘constparty’. This is a general class that can in principle
represent all the major classical tree types with constant fits in the terminal nodes. Also, the same
class is employed for conditional inference trees (CTree) that can be learned with the ctree function
directly within partykit or evolutionary trees from package evtree (Grubinger et al., 2014).

Not only trees learned within R can be transformed to the proposed infrastructure but also trees
from other software packages. Either a dedicated interface has to be created using the building blocks
described in the next section (e.g., as done for the J4.8 tree in RWeka) or PMML (Predictive Model
Markup Language) can be used as an intermediate exchange format. This is an XML standard
created by an international consortium (Data Mining Group, 2014) that includes a <TreeModel> tag
with support for constant-fit classification and regression trees. The function pmmlTreeModel allows
to read these files and represents them as ‘simpleparty’ objects in partykit. The reason for not
using the ‘constparty’ class as above is that the PMML format only stores point predictions (e.g.,
a mean or proportion) rather than all observations from the learning sample. So far, the PMML
interface has been tested with output from the R package pmml and SPSS’s AnswerTree model. The
latter includes an implementation of the QUEST algorithm (Loh and Shih, 1997).

3907



Hothorn and Zeileis

Finally, the partykit function mob implements model-based recursive partitioning (MOB) along
with “mobster” interfaces for certain models (e.g., lmtree, glmtree). These return objects of class
‘modelparty’ where nodes are associated with statistical models (as opposed to simple constant fits).
In principle, this may also be adapted to other model trees (such as GUIDE, LMT, or M5’) but no
such interface is currently available.

All of these different trees (see Table 1 for an overview) use the same infrastructure at the core
but possibly with different options enabled. In all cases, the functions print, plot, and predict can
be used to create textual and graphical displays of the tree and for computing predictions on new
data, respectively. As an example for the visualizations, Figure 1 shows two different trees fitted to
the well-known data on survival of passengers on the ill-fated maiden voyage of the RMS Titanic:
The left panel shows a CART tree with constant fits learned by rpart and converted to partykit. The
right panel shows a MOB tree learned with partykit with a logistic regression for treatment effects in
the terminal nodes. Additionally, the are further utility functions, e.g., nodeapply can be employed
to access further information stored in the nodes of a tree and nodeprune can prune selected nodes.

4. Developer Infrastructure

The unified infrastructure at the core of partykit is especially appealing for developers who either
want to implement new tree algorithms or represent trees learned in other systems.

Here, we briefly outline the most important classes and refer to the vignettes for more details:

‘partysplit’: Split with integer ID for the splitting variable, breakpoint(s), indexes for the kids.

‘partynode’: Node specification with integer ID, a ‘partysplit’, and a list of kids (if any) that are
‘partynode’ objects again.

‘party’: Tree with a recursive ‘partynode’ and a ‘data.frame’ (optionally empty), potentially plus
information about fitted values and ‘terms’ allowing to preprocess new data for predictions.

All classes have an additional slot for storing arbitrary information at any level of the tree. This
is exploited by ‘constparty’, ‘simpleparty’, and ‘modelparty’ which store the observed response,
point predictions, and fitted parametrics models, respectively.

5. Discussion and Outlook

Package partykit provides a toolkit for trees in R that gives emphasis to flexibility and extensibility.
The infrastructure is easily accessible and accompanied by detailed manual pages and package vi-
gnettes. The package facilitates the implementation of new algorithms or interfacing other software
by providing common building blocks for computing on trees (representation, printing, plotting,
predictions, etc.). Using these building blocks developers of tree software can focus on implement-
ing the learning algorithm (selection of variables and split points, stopping criteria, pruning, etc.).
The package also provides functions for inferring trees where the computationally intensive parts
are either in C (ctree) or employ R’s fitting functions (mob). The simple and lean base classes
that separate data and tree structure are also appealing for storing forests – a first proof-of-concept
reimplementation of cforest is in the package with further extension planned. Users and developers
that have questions or comments about the package can either contact the maintainers or use the
forum on R-Forge at https://R-Forge.R-project.org/forum/forum.php?forum_id=852.

Acknowledgments

We are thankful to the organizers and participants of the“Workshop on Classification and Regression
Trees”(March 2014), sponsored by the Institute for Mathematical Sciences of the National University
of Singapore, for helpful feedback and stimulating discussions.

3908

https://R-Forge.R-project.org/forum/forum.php?forum_id=852


A Modular Toolkit for Recursive Partytioning

References

Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classification and
Regression Trees. Wadsworth, California, 1984.

Data Mining Group. Predictive model markup language, 2014. URL http://www.dmg.org/. Ver-
sion 4.2.

Thomas Grubinger, Achim Zeileis, and Karl-Peter Pfeiffer. evtree: Evolutionary learning of globally
optimal classification and regression trees in R. Journal of Statistical Software, 61(1), 1–29 2014.

Kurt Hornik, Christian Buchta, and Achim Zeileis. Open-source machine learning: R meets Weka.
Computational Statistics, 24(2):225–232, 2009.

Torsten Hothorn. CRAN task view: Machine learning & statistical learning, 2014. URL http:

//CRAN.R-project.org/view=MachineLearning. Version 2014-12-18.

Torsten Hothorn, Kurt Hornik, and Achim Zeileis. Unbiased recursive partitioning: A conditional
inference framework. Journal of Computational and Graphical Statistics, 15(3):651–674, 2006.

Torsten Hothorn, Kurt Hornik, Carolin Strobl, and Achim Zeileis. party: A Laboratory for Recursive
Partytioning, 2015. URL http://CRAN.R-project.org/package=party. R package version 1.0-
20.

Wei-Yin Loh. Regression trees with unbiased variable selection and interaction detection. Statistica
Sinica, 12(2):361–386, 2002.

Wei-Yin Loh. Fifty years of classification and regression trees. International Statistical Review, 82
(3):329–348, 2014.

Wei-Yin Loh and Yu-Shan Shih. Split selection methods for classification trees. Statistica Sinica, 7
(4):815–840, 1997.

James N. Morgan and John A. Sonquist. Problems in the analysis of survey data, and a proposal.
Journal of the American Statistical Association, 58(302):415–434, 1963.

John R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, 1993.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statis-
tical Computing, Vienna, Austria, 2014. URL http://www.R-project.org/.

Terry M. Therneau and Elizabeth J. Atkinson. An introduction to recursive partitioning using the
rpart routine. Technical Report 61, Section of Biostatistics, Mayo Clinic, Rochester, 1997. URL
http://www.mayo.edu/hsr/techrpt/61.pdf.

Stefan Theußl and Achim Zeileis. Collaborative software development using R-Forge. The R Journal,
1(1):9–14, May 2009.

Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann, San Francisco, 2nd edition, 2005.

Achim Zeileis, Torsten Hothorn, and Kurt Hornik. Model-based recursive partitioning. Journal of
Computational and Graphical Statistics, 17(2):492–514, 2008.

3909

http://www.dmg.org/
http://CRAN.R-project.org/view=MachineLearning
http://CRAN.R-project.org/view=MachineLearning
http://CRAN.R-project.org/package=party
http://www.R-project.org/
http://www.mayo.edu/hsr/techrpt/61.pdf

	Overview
	Installation and Documentation
	User Interface
	Developer Infrastructure
	Discussion and Outlook

