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Abstract

We introduce a computationally effective algorithm for a linear model selection consisting
of three steps: screening–ordering–selection (SOS). Screening of predictors is based on the
thresholded Lasso that is `1 penalized least squares. The screened predictors are then fitted
using least squares (LS) and ordered with respect to their |t| statistics. Finally, a model
is selected using greedy generalized information criterion (GIC) that is `0 penalized LS in
a nested family induced by the ordering. We give non-asymptotic upper bounds on error
probability of each step of the SOS algorithm in terms of both penalties. Then we obtain
selection consistency for different (n, p) scenarios under conditions which are needed for
screening consistency of the Lasso. Our error bounds and numerical experiments show
that SOS is worth considering alternative for multi-stage convex relaxation, the latest
quasiconvex penalized LS. For the traditional setting (n > p) we give Sanov-type bounds
on the error probabilities of the ordering–selection algorithm. It is surprising consequence
of our bounds that the selection error of greedy GIC is asymptotically not larger than of
exhaustive GIC.

Keywords: linear model selection, penalized least squares, Lasso, generalized information
criterion, greedy search, multi-stage convex relaxation

1. Introduction

Literature concerning linear model selection has been lately dominated by analysis of the
least absolute shrinkage and selection operator (Lasso) that is `1 penalized least squares
for the ’large p - small n scenario’, where n is number of observations and p is number of
all predictors. For a broad overview of the subject we refer to Bühlmann and van de Geer
(2011). It is known that consistency of selection based on the Lasso requires strong regularity
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of an experimental matrix named irrepresentable conditions which are rather unlikely to hold
in practice (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006). However, consistency
of the Lasso predictors or consistency of the Lasso estimators of the linear model parameters
is proved under weaker assumptions such as the restricted isometry property (RIP). The last
condition means that singular values of normalized experimental submatrices corresponding
to small sets of predictors are uniformly bounded away from zero and infinity. Under those
more realistic conditions and provided that a certain lower bound on the absolute values of
model parameters called beta-min condition holds, the Lasso leads to consistent screening,
that is the set of nonzero Lasso coefficients S contains with large predetermined probability
the uniquely defined true model T . This property explains Bühlmann’s suggestion that one
should interpret the second ’s’ in ’Lasso’ as ’screening’ rather than ’selection’ (see discussion
of Tibshirani, 2011) and the task is now to remove the spurious selected predictors. To this
aim two-stage procedures as the adaptive or the thresholded Lasso have been proposed
(cf. Zou, 2006; Huang et al., 2008; Meinshausen and Yu, 2009; Zhou, 2009, 2010; van de
Geer et al., 2011). They yield selection consistency under strong version of the beta-min
condition and without such strengthening tend to diminish the number of selected spurious
predictors, but, similarly to the Lasso they yield screening consistency only. Alternative
approaches require minimization of least squares (LS) penalized by quasiconvex functions
that are closer to the `0 penalty then `1 (Fan and Li, 2001; Zou and Li, 2008; Zhang,
2010a,b; Zhang and Zhang, 2012; Huang and Zhang, 2012; Zhang, 2013; Wang et al., 2014).
These methods lead to consistent selection under RIP and considerably weaker version of
the beta-min condition, nevertheless are more computationally demanding.

Regularization is required when a model matrix is not a full rank or when n < p, but for
the traditional regression when an experimental plan is of full rank and n > p it is possible to
construct a computationally effective and selection consistent two-stage ordering–selection
(OS) procedure, as follows. First, a full model F using LS is fitted, predictors are ordered
with respect to their |t| statistics from the fit and finally, a submodel of F in a nested family
pertaining to the ordering is selected using thresholding as in Rao and Wu (1989), Bunea
et al. (2006) or generalized information criterion (GIC) as in Zheng and Loh (1995). The OS
algorithm can be treated as greedy `0 penalized LS because it requires computing a criterion
function for 2p models only instead of all 2p models. Frequently, sufficient conditions on an
experimental plan and a vector of true coefficients for consistency of such procedures are
stated in terms of the Kullback-Leibler divergence (KL) of the true model from models which
lack at least one true predictor (Zheng and Loh, 1995; Shao, 1998; Chen and Chen, 2008;
Casella et al., 2009; Pötscher and Schneider, 2011; Luo and Chen, 2013). In particular,
a bound on the probability of selection error in Shao (1998) closely resembles the Sanov
theorem in information theory on bounds of probability of a non-typical event using the KL
divergence.

In our contribution we introduce a computationally effective three-step algorithm for
linear model selection based on a screening–ordering–selection (SOS) scheme. Screening of
predictors is based on a version of the thresholded Lasso proposed by Zhou (2009, 2010)
and yields the screening set S such that |S| ≤ n. Next, an implementation of the OS
algorithm described above proposed by Zheng and Loh (1995) is applied. We give non-
asymptotic upper bounds on error probability of each step of the SOS algorithm in terms
of the Lasso and GIC penalties (Theorem 1). As a consequence of proved bounds we obtain
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selection consistency for different (n, p) scenarios under weak conditions which are sufficient
for screening consistency of the Lasso. Our assumptions allow for strong correlation between
predictors, in particular replication of spurious predictors is possible.

The SOS algorithm is an improvement of the new version of the thresholded Lasso and
turns out to be a promising competitor to multi-stage convex relaxation (MCR), the latest
quasiconvex penalized LS (Zhang, 2010b, 2013). The condition on correlation of predictors
assumed there seems to be stronger than ours, whereas the beta-min condition may be
weaker (Section 5). In our simulations for |T | � n� p scenario, SOS was faster and more
accurate than MCR (Section 8).

For case n > p we also give a bound on probability of selection error of the OS algorithm.
Our bound in this case is more general than in Shao (1998) as we allow ordering of predictors,
p = pn → ∞ , |T | = |Tn| → ∞ or the GIC penalty may be of order n (Theorem 2). It is
surprising consequence of Theorems 1-2 that the probability of selection error of greedy
GIC is asymptotically not larger than of exhaustive GIC. Thus employment of greedy
search dramatically decreases computational cost of l0 penalized LS minimization without
increasing selection error probability.

As a by-product we obtained a strengthened version of the nonparametric sparse oracle
inequality for the Lasso proved by Bickel et al. (2009) and, as its consequence, more tight
bounds on prediction and estimation error (Theorem 4). We simplified and strengthened
an analogous bound for the thresholded Lasso given by Zhou (2009, 2010) (Theorem 1
part T1). It is worth noticing that all results are proved simultaneously for two versions of
the algorithm: for the Lasso used in practice when a response is centered and predictors
are standardized as well as for its formal version for which an intercept corresponds to a
dummy predictor.

The paper is organized as follows. In Section 2 the SOS algorithm is introduced and
in Section 3 we study properties of geometric characteristics pertaining to an experimental
matrix and a vector of coefficients which are related to identifiability of a true model.
Section 4 contains our main results that is bounds on selection error probabilities for the SOS
and OS algorithm. In Section 5 we briefly discuss the MCR algorithm and compare error
bounds for SOS and MCR. Section 6 treats properties of post-model selection estimators
pertaining to SOS and MCR. Section 7 contains improved bounds on the Lasso estimation
and prediction. Section 8 presents a simulational study. Concluding remarks are given in
Section 9. Appendix contains detailed proofs of the stated results.

2. Selection Algorithm

The aim of this section is to describe the proposed selection algorithm. As in the first step
of the algorithm we use the Lasso estimator to screen predictors and since in the literature
there exist two versions of the Lasso for the linear model which differ in the treatment of the
intercept, we start this section by defining two parametrizations of the linear model related
to these versions of the Lasso. Next we state a general definition encompassing both cases,
present our implementation of the SOS scheme and finally we discuss its computational
complexity.
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2.1 Linear Regression Model Parametrizations

We consider a general regression model of real-valued responses having the following struc-
ture

yi = µ(xi.) + εi, i = 1, 2, . . . , n,

where ε1, . . . , εn are iid N(0, σ2), xi. ∈ Rp, and p = pn may depend on n. In a vector form
we have

y = µ+ ε, (1)

where µ = (µ(x1.), . . . , µ(xn.))
T , ε = (ε1, . . . , εn)T and y = (y1, . . . , yn)T .

Let X = [x1., . . . , xn.]
T = [x1, . . . , xp] be the n × p matrix of experiment. We consider

two linear parametrizations of (1). The first parametrization is:

µ = α∗ +Xβ∗, (2)

where α∗ ∈ R is an intercept and β∗ ∈ Rp is a vector of coefficients corresponding to
predictors. The second parametrization is

µ = Xβ∗, (3)

where the intercept is either set to 0 or is incorporated into vector β∗ and treated in the same
way as all other coefficients in the linear model. In order to treat both parametrizations in
the same way we write µ = X̃β̃∗ where, with 1n denoting a column of ones, X̃ = [1n, X]
and β̃∗ = (α∗, β∗T )T in the case of (2) and X̃ = X and β̃∗ = β∗ in the case of (3). We note
that (3) is convenient for theoretical considerations and simulations on synthetic data, but
(2) is natural for real data applications and occurs as a default option in popular statistical
software.

Let J ⊆ {1, 2, . . . , p} = F be an arbitrary subset of the full model F and |J | the number
of its elements, XJ is a submatrix of X with columns having indices in J , βJ is a subvector
of β with columns having indices in J . Moreover, let X̃J = [1n, XJ ] and β̃J = (α, βTJ )T in
the case of (2) or X̃J = XJ and β̃J = βJ in the case of (3). H̃J will stand for a projection
matrix onto the subspace spanned by columns of X̃J . Linear model pertaining to predictors
being columns of XJ will be frequently identified as J . We will also denote by T = Tn a
true model that is a model such that T = supp(β∗) = {j ∈ F : β∗j 6= 0} for some β∗ such

that µ = X̃β̃∗. The uniqueness of T and β∗ for a given n will be discussed in Section 3.

2.2 Practical and Formal Lasso

The Lasso introduced in Tibshirani (1996) is a popular method of estimating β∗ in the
linear model. For discussion of properties of the Lasso see for example Tibshirani (2011)
and Bühlmann and van de Geer (2011). When using the Lasso for data analytic purposes
parametrization (2) is considered, vector of responses y is centered and columns of X are
standardized. The standardization step is usually omitted in formal analysis in which
parametrization (3) is assumed, α is taken to be 0 and X consists of meaningful predictors
only, without column of ones corresponding to intercept. Alternatively, columns of X are
normalized by their norms (see for example formula 2.1 in Bickel et al., 2009). Here, in
order to accommodate considered approaches in one definition we introduce a general form
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of the Lasso. Let H0 be an n × n projection matrix, where H0 is specified as a vector
centering matrix In − 1n1

T
n/n in the case of the applied version of the Lasso pertaining to

parametrization (2) and the identity matrix In for the formal Lasso corresponding to (3).
Moreover, let

D = diag(||H0xj ||)pj=1, X0 = H0XD
−1, X0 = [x01, . . . , x0p], y0 = H0y (4)

and θ∗ = Dβ∗, µ0 = H0µ. For estimation of β∗, data (X0, y0) will be used. Note that for
the first choice of orthogonal projection in the definition of X0 columns in X are normal-
ized by their norms whereas for the second they are standardized (centered and divided
by their standard deviations). Consider the case of (2) and denote by H0J projection onto
sp{(H0xj)j∈J}. Observe that as sp{1n, (xj)j∈J} = sp{1n} ⊕ sp{(H0xj)j∈J} and conse-
quently H̃J = H0J + 1n1

T
n/n, we have that

In − H̃J = (In −H0J)H0. (5)

The above equality trivially holds also in the case of (3).
For a = (aj) ∈ Rk, let |a| =

∑k
j=1 |aj | and ||a|| = (

∑k
j=1 a

2
j )

1/2 be `1 and `2 norms,
respectively. As J may be viewed as sequence of zeros and ones on F , |J | denotes cardinality
of J .

General form of the Lasso estimator of β is defined as follows

β̂ = argminβ{||H0(y −Xβ)||2 + 2rL|Dβ|} = D−1(argminθ{||y0 −X0θ||2 + 2rL|θ|}), (6)

where a parameter rL = rnL is a penalty on l1 norm of a potential estimator of β. Thus
in the case of parametrization (2) the Lasso estimator of β may be defined without using
extended matrix X̃ by applying H0 to y − Xβ that is by centering it. In the case of
parametrization (3) H0 = In and the usual definition of the Lasso used in formal analysis
is obtained. We remark that the approaches used in theoretical considerations for which
columns of X are not normalized as in Bühlmann and van de Geer (2011) or Zhang (2013)
formally correspond to (6) with H0 = In and D = dIp, where d = max1≤j≤p ||xj ||.

Note that in the case of parametrization (2) β̂ is subvector corresponding to β of the
following minimizer

argminβ̃{||y − X̃β̃||
2 + 2rL|Dβ|} = argminα,β{||y − α1n −Xβ||2 + 2rL|Dβ|}, (7)

where the equality of minimal values of expressions appearing in (6) and (7) is obtained
when the expression ||y−α1n−Xβ||2 is minimized with respect to α for fixed β. However,
omitting centering projection H0 in (6) when the first column of X consists of ones and
corresponds to intercept, leads to lack of invariance of β̂ when the data are shifted by a
constant and yields different estimates that those used in practice. This is a difference
between the Lasso and the LS estimator: LS estimator has the same form regardless of
which of the two parametrizations (2) or (3) is applied. Using (5) we have for the LS
estimator β̂LSJ in model J that the sum of squared residuals for the projection H̃y equals

RJ = ||(In − H̃J)y||2 = ||(In −H0J)y0||2 = ||y0 −X0J θ̂
LS
J ||2 (8)

and
β̂LSJ = D−1θ̂LSJ , θ̂LSJ = argminθJ ||y0 −X0JθJ ||2.
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2.3 Implementation of the Screening–Ordering–Selection Scheme

The SOS algorithm which is the main subject of the paper is the following implementation
of the SOS scheme.

Algorithm (SOS)
Input: y,X and rL, b, r.

Screening. Compute the Lasso estimator β̂ = D−1θ̂, θ̂ = (θ̂1, . . . θ̂p)
T with a penalty

parameter rL and set S0 = {j : |θ̂j | > b}, B = b(|S0| ∨ 1)1/2, S1 = {j : |θ̂j | > B}.
Ordering. Fit the model S1 by ordinary LS and order predictors Ô = (j1, j2, . . . , j|S1|)

using values of corresponding squared t statistics t2j1 ≥ t
2
j2
≥ . . . ≥ t2j|S1|

.

Selection. In the nested family G = {∅, {j1}, {j1, j2}, . . . , S1} choose a model T̂ ≡ T̂S1,Ô

according to the generalized information criterion (GIC) T̂ = argminJ∈G{RJ + |J |r},
where r = rn is a penalty pertaining to GIC.

Output: T̂SOS = T̂ , β̂SOS = β̂LS
T̂
.

The OS algorithm is intended for the case p < n and is a special case of SOS for which
S1 is taken equal to F .

We note that empty set in the definition of G corresponds to µ = 0 in the case of
parametrization (3) and µ = α∗ in the case of (2). It is easy to check also that

t2j
n− |S1|

=
RS1\{j} −RS1

RS1

, (9)

thus ordering with respect to decreasing values of (t2j ) in the second step of the procedure
is the same as ordering of (RS1\{j}) in decreasing order.

2.4 Computational Complexity of the SOS Algorithm

There are many approximate algorithms for the Lasso estimator (6) as quadratic program
solvers or coordinate descent in Friedman et al. (2010). The popular LARS method proposed
in Efron et al. (2004) can be used to compute exactly, in finitely many steps, the whole Lasso
regularized solution path which is piecewise linear with respect to rL. It has been shown
recently in Mairal and Yu (2012) that, in the worst case, the number of linear segments of
this path is exactly (3p+1)/2, so the overall computational cost of the Lasso is O(3ppn), see
Rosset and Zhu (2007). Hence, by the most popular criterion of computational complexity
LARS does not differ from, for example, an exhaustive search for the `0 penalized LS
problem. However, experience with data suggests that the number of linear segments of the
LARS regularization path is typically O(n), so LARS execution requires O(npmin(n, p))
flops, see Rosset and Zhu (2007) and Bühlmann and van de Geer (2011), chapter 2.12. Thus
taking into account the result in Mairal and Yu (2012) on uniform approximation of the
Lasso regularization paths, for typical data set the Lasso may be considered computationally
efficient (cf. also discussion on the page 7 in Zhang (2013)).

In Section 4 we will discuss conditions on X and β∗T , under which S1 includes a unique
true model T and |S1| ≤ n or even |S1| ≤ 4|T | with high probability. In this case we can
use LS to fit a linear model, thus the ordering step takes O(n|S1|2) calculations by the
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QR decomposition of the matrix X0S1 . Computing (RJ)J∈G in the selection step demands
also only one QR decomposition of X0S1 with columns ordered according to Ô. Indeed,
let X0S1 = QW , where an orthogonal matrix Q = [q1, . . . , q|S1|]. The following iterative
procedure can be used

R∅ = ||y0||2; for k = 1, . . . , |S1| do R{1,...,k} = R{1,...,k−1} − (qTk y0)2 endfor.

Observe, that from (9) the ordering part demands GIC only for |S1| models that is for
S1 \ {j}, j ∈ S1. Thus two last parts of the SOS algorithm or, equivalently, the OS
algorithm demands GIC only for 2|S1| models instead of all 2|S1| and we can call it greedy
`0 penalized LS.

We conclude that the SOS algorithm is computationally efficient and the most time
expensive part of it is the screening. The same conclusion follows from our simulations
described in Section 8.

3. A True Model Identifiability

In this section we consider two types of linear model characteristics which will be used to
quantify the difficulty of selection or, equivalently, a true model identifiability problem, and
we study the interplay between them.

3.1 Kullback-Leibler Divergences

Let T be given true model that is T ⊆ F such that µ = X̃β̃∗ = X̃T β̃
∗
T and T = supp(β∗T ) =

{j ∈ F : β∗j,T 6= 0}. For J ⊆ F define

δ(T ‖ J) = ||(In − H̃J)X̃T β̃∗T ||
2.

In view of (5) we obtain

δ(T ‖ J) = ||(In−H0J)H0X̃T β̃∗T ||
2 = ||(In−H0J)H0XTβ

∗
T ||2 = ||(In−H0J)X0T θ

∗
T ||2. (10)

Let KL(β̃∗T ‖ β̃J) = Eβ̃∗T
log(fβ̃∗T

/fβ̃J ) be the Kullback-Leibler divergence of the normal

density fβ̃∗T
of N(X̃T β̃

∗
T , σ

2
In) from the normal density fβ̃J of N(X̃J β̃J , σ

2
In). Let Σ =

XT
0 X0 be a coherence matrix if H0 is the identity matrix and a correlation matrix if H0 =

In − 1n1
T
n/n. Let ΣJ stands for a submatrix of Σ with columns having indices in J and

let λmin(ΣJ), λmax(ΣJ) denote extremal eigenvalues of ΣJ . The following proposition lists
the basic properties of the parameter δ. Observe also that δ(T ‖ J) is a parameter of
non-centrality of χ2 distribution of RJ that is RJ ∼ χ2

n−|J |(δ(T ‖ J)).

Proposition 1

(i) δ(T ‖ J) = 2σ2 min
β̃J

KL(β̃∗T ‖ β̃J) = 2σ2 min
β̃J

KL(β̃J ‖ β̃∗T ).

(ii) δ(T ‖ J) = min
θJ

∣∣∣∣∣
∣∣∣∣∣[X0,T\J , X0,J ]

(
θ∗T\J
θJ

) ∣∣∣∣∣
∣∣∣∣∣
2

≥ λmin(ΣJ∪T )||θ∗T\J ||
2 (11)
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The following scaled Kullback-Leibler divergence will be employed in our main results
in Section 4.

δ(T, s) = min
j∈T,J⊇T,|J |≤s

δ(T ‖ J \ {j}).

This coefficient was previously used to prove selection consistency in Zheng and Loh
(1995); Chen and Chen (2008); Luo and Chen (2013) and to establish asymptotic law of
post-selection estimators in Pötscher and Schneider (2011). Similar coefficients appear in
proofs of selection consistency in Shao (1998) and Casella et al. (2009). Obviously, δ(T, s)
is a nonincreasing function of s.

Identifiability of a true model is stated in the proposition below in terms of

δ(T ) = min
J+T,|J |≤|T |

δ(T ‖ J).

Proposition 2 There exists at most one true model T such that δ(T ) > 0.

Assume by contradiction that T ′ is a different true model, that is we have T ′ = supp(β̃) for
some β̃ such that µ = X̃β̃. Then by symmetry we can assume |T | ≤ |T ′|. Hence |T ′ \T | > 0
and δ(T ′) ≤ δ(T ′ ‖ T ) = 0.
It is easy to see that if δ(T ) > 0 then columns of XT are linearly independent and, conse-
quently, there exists at most one β̃∗T such that µ = X̃T β̃

∗
T .

In Section 4.2 we infer identifiability of a true model T from Proposition 2 and the
following inequality

δ(T, p) ≤ δ(T ). (12)

Indeed, for any J such that J + T and |J | ≤ |T | there exists j ∈ T such that J ⊆ F \ {j}.
Thus we obtain δ(T ‖ F \ {j}) ≤ δ(T ‖ J) and minimizing both sides yields (12).

3.2 Restricted Eigenvalues

For J ⊆ F , J̄ = F \ J and c > 0 let

κ2(J, c) = min
ν 6=0,|νJ̄ |≤c|νJ |

νTΣν

νTJ νJ
and κ2(s, c) = min

J :|J |≤s
κ(J, c).

Both coefficients will be called restricted eigenvalues of Σ. Observe that

κ2(J, c) = min
ν 6=0,|νJ̄ |≤c|νJ |

||X0ν||2

||νJ ||2
= min

ν 6=0,|νJ̄ |≤c|νJ |

||X0νJ −X0νJ̄ ||2

||νJ ||2
. (13)

The coefficient κ(s, c) is a modified version of an index introduced in Bickel et al. (2009).
Modification consists in replacing X appearing in the original definition by X0 and omitting
the term n−1/2. Pertaining parameters for a fixed set of predictors J and their various
modifications were introduced and applied to bound the Lasso errors by van de Geer and
Bühlmann (2009).

In order to study relations between sparse and restricted eigenvalues we set

κ2(J, 0) = min
ν 6=0,supp(ν)⊆J

νTΣν

νT ν
and κ2(s, 0) = min

J :|J |≤s
κ2(J, 0).
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Note that ifX0 is defined in (4) or in remark below (6) applies we have that max1≤j≤p ||x0j || ≤
1. Thus from Rayleigh-Ritz theorem we have

κ2(J, 0) = λmin(ΣJ) ≤ tr(ΣJ)

|J |
≤ 1 ∧ λmax(ΣJ). (14)

The upper bound above equals 1 when the columns are normalized or standardized. Note
that κ(J, c) and κ(s, c) are nonincreasing functions of both arguments. Moreover, κ2(J, c) ≤
κ2(J, 0) and κ2(s, c) ≤ κ2(s, 0). This holds in view of an observation that for any fixed J
and c > 0, any ν such that supp(ν) ⊆ J satisfies ν = νJ and thus |νJ̄ | ≤ c|νJ |. It is easy
to show also that κ2(J, c) → κ2(J, 0) and κ2(s, c) → κ2(s, 0) monotonically when c → 0+.
Another less obvious bound, which is used in the following is stated below.

Proposition 3 For any s ∈ N and c > 0

κ2(s, c) ≤ (bcc+ 1)κ2((bcc+ 1)s, 0).

Condition κ(s, c) > 0 imposed on matrix X is called restricted eigenvalue condition in
Bickel et al. (2009) for their slightly different κ. Proposition 3 generalizes an observation
there (p. 1720) that if the restricted eigenvalue condition holds for c ≥ 1, then all square
submatrices of Σ of size 2s are necessarily positive definite. Indeed, the proposition above
implies that κ(2s, 0) > 0 from which the observation follows. Positiveness of κ(T, c) which
due to the restriction on vectors ν over which minimization is performed can hold even for
p > n, is a certain condition on weak correlation of columns. This condition, which will be
assumed later, is much less stringent than κ(|T |, c) > 0, as it allows for example replication
of columns belonging to the complement of T . Moreover κ(T, c) > 0 for c ≥ 1 implies
identifiability of a true model.

Proposition 4 There exists at most one true model T such that κ(T, 1) > 0.

It follows that if κ(T, 1) > 0, then columns of XT are linearly independent and, conse-
quently, there exists at most one β̃∗T such that µ = X̃T β̃

∗
T .

The following κ−δ inequalities follow from the Propositions 1 (ii) and the Proposition 3.
We set θ∗min = minj∈T |θ∗j | and t = |T |.

Proposition 5 We have

κ2(T, 3)θ∗2min ≤ δ(T, t) (15)

and

κ2(t, 3)θ∗2min ≤ 4δ(T, 4t). (16)

4. Error Bounds for the SOS and OS Algorithms

In this section we present the main result that is non-asymptotic bounds on the error
probabilities for all steps of the SOS algorithm. The errors of consecutive steps of SOS
constitute decomposition of the selection error into four parts. Two errors which can be
possibly committed in the selection step correspond to two situations when the selected
model is a proper subset or a superset of T .
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4.1 Error Bounds for SOS

Let Sn be a family of models having no more than s predictors where s is defined below and
Tn = {S ∈ Sn : S ⊇ T} consists of all true models in Sn. Observe that |Tn| =

∑s−t
k=0

(
p−t
k

)
.

Moreover, let OS1 denote a set of all correct orderings of S1 that is orderings such that
all true variables in S1 precede the spurious ones. To simplify notation set δs = δ(T, s),
δt = δ(T, t) and κ = κ(T, 3). We also define two constants c1 = (3 + 6

√
2)−1 ≈ 0.087 and

c2 = (6+4
√

2)−1 ≈ 0.086. We assume for the remaining part of the paper that p ≥ t+1 ≥ 2
as boundary cases are easy to analyze. Moreover, we assume the following condition which
ensures that the size of S1 defined in the first step of the SOS algorithm does not exceed n
with large probability and consequently LS could be performed on data (y0, X0S1). It states
that

s = s(T ) = t+ bt1/2κ−2c ≤ n. (17)

Theorem 1 (T1) If for some a ∈ (0, 1) 8a−1σ2 log p ≤ r2
L ≤ b2/36 ≤ c2

1t
−1κ4θ∗2min, then

P (S1 6∈ Tn) ≤ exp

(
−

(1− a)r2
L

8σ2

)(
πr2

L

8σ2

)−1/2

. (18)

(T2) If for some a ∈ (0, 1) a−1σ2 log p ≤ c2(s− t+ 2)−1δs, then

P (S1 ∈ Tn, Ô 6∈ OS1) ≤ 3

2
exp

(
− (1− a)c2δs

σ2

)(
πc2δs
σ2

)−1/2

. (19)

(T3) If for some a ∈ (0, 1) (a) r < at−1δt and (b) 8a−1σ2 log t ≤ (1− a)2δt, then

P (S1 ∈ Tn, Ô ∈ OS1 , |T̂SOS | < t) ≤ 1

2
exp

(
− (1− a)3δt

8σ2

)(
π(1− a)2δt

8σ2

)−1/2

. (20)

(T4) If for some a ∈ (0, 1) 4a−1σ2 log p ≤ r, then

P (S1 ∈ Tn, Ô ∈ OS1 , |T̂SOS | > t) ≤ exp

(
− (1− a)r

2σ2

)(
πr

2σ2

)−1/2

. (21)

A regularity condition on the plan of experiment X̃ and the true β̃∗ induced by the
assumption of Theorem 1 (T1), namely 8a−1σ2 log p ≤ c2

1t
−1κ4θ∗2min, is known as the beta-

min condition. Its equivalent form, which is popular in the literature states that for some
a ∈ (0, 1) √

8c−2
1 a−1σ2tκ−4 log p ≤ min

j∈T
||H0xj || |β∗j |. (22)

Observe that (22) implies that κ > 0, so it guarantees identifiability of T in view of Propo-
sition 4.

Note that bounds in (T2) and (T3) as well as the bounds in Theorem 2 below can be
interpreted as results analogous to the Sanov theorem in information theory on bounding
probability of a non-typical event (cf. for example Cover and Thomas (2006), Section 11.4),
as in view of Proposition 1 (i) δs may be expressed as minβ∈B 2σ2KL(β ‖ β∗) for a certain
set B such that β∗ /∈ B.
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The first corollary provides an upper bound on a selection error of the SOS algorithm
under simpler conditions. The assumption r2

L = 4r is quite arbitrary, but results in the
same lower bound for penalty and almost the same bound on error probability as in the
Corollary 3 below. Note that boundary values of r2

L and r of order log p are allowed in
Corollaries 1–3.

Corollary 1 Assume (17) and r2
L = 4r. If for some a ∈ (0, 1− c1) we have

(i) 4a−1σ2 log p ≤ r ≤ b2/144 ≤ (c2
1/4)at−1κ4θ∗2min and (ii) r ≤ (4c2/3)t−1/2κ2δs, then

P (T̂SOS 6= T ) ≤ 4 exp

(
− (1− a)r

2σ2

)(
πr

2σ2

)−1/2

.

We consider now the results above under stronger conditions. We replace κ = κ(T, 3) in
(17) and the assumption (T1) by smaller κt = κ(t, 3) and additionally assume the following
weak correlation condition

κ−2
t ≤ 3t1/2, (23)

which is weaker than a condition κ−2
t ≤ t1/2 in Theorem 1.1 in Zhou (2009, 2010). Observe

that (23) is stronger than inequality (17) with κt instead of κ. Indeed, (23) implies in view
of definition of s, that s ≤ 4t. Next, from Proposition 3 we obtain 0 < t−1/2/3 ≤ κ2

t ≤
4κ(4t, 0), but obviously κ(4t, 0) = 0 for 4t > n, hence 4t ≤ n and s ≤ n. Moreover, we
obtain from (16) that (c2

1/4)at−1κ4
t θ
∗2
min < (4c2/3)t−1/2κ2

t δs as δs ≥ δ4t and 16c2/(3c
2
1) ≥ 1.

Hence the Corollary 1 simplifies to the following corollary.

Corollary 2 Assume (23) and r = r2
L/4. If for some a ∈ (0, 1− c1) we have

16a−1σ2 log p ≤ r2
L ≤ b2/36 ≤ c2

1at
−1κ4

t θ
∗2
min, then

P (T̂SOS 6= T ) ≤ 4 exp

(
−

(1− a)r2
L

8σ2

)(
πr2

L

8σ2

)−1/2

.

Theorem 1 shows that the SOS algorithm is an improvement of the adaptive and the
thresholded Lasso (see Zou, 2006; Huang et al., 2008; Meinshausen and Yu, 2009; Zhou,
2009, 2010; van de Geer et al., 2011) as under weaker assumptions on an experimental
matrix than assumed there we obtain much stronger result, namely selection consistency.
Indeed, assumptions of Theorem 1 are stated in terms of κ(T, 3), δs and δt instead of κ(t, 3),
thus allowing for example replication of spurious predictors. Discussion of assumptions of
Corollary 2 shows that the original conditions in Zhou (2009, 2010) are stronger than our
conditions ensuring screening consistency of the thresholded Lasso. We stress also that
our bounds are valid in both cases when the formal or the practical Lasso is used in the
screening step. In Section 5 our results will be compared with a corresponding result for
MCR.

4.2 Error Bounds for OS

Now we state the corresponding bounds for error probabilities of the OS algorithm in the
case of p ≤ n. We recall that in the case of OS S1 = F . Thus Sn = Tn = {S1} and
P (S1 6∈ Tn) = 0.
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Theorem 2 If for some a ∈ (0, 1) a−1σ2 log(t(p− t)) ≤ c2δp, then

P (Ô 6∈ O) ≤ 3

2
exp

(
− (1− a)c2δp

σ2

)(
πc2δp
σ2

)−1/2

.

Moreover, (T3) and (T4) of Theorem 1 hold.

Observe that assumptions of Theorem 2 imply that δp > 0 which guarantees uniqueness
of T in view of (12).

The next corollary is analogous to Corollary 1 and provides an upper bound on a se-
lection error of the OS algorithm under simpler conditions. This bound is more general
than in Shao (1998) as we allow for greedy selection (specifically ordering of predictors),
p = pn →∞, t = tn →∞ or GIC penalty may be of order n.

Corollary 3 If for some a ∈ (0, 2c2) 4a−1σ2 log p ≤ r ≤ min
(
at−1δt, 2c2δp

)
, then

P (T̂OS 6= T ) ≤ 3 exp

(
− (1− a)r

2σ2

)(
πr

2σ2

)−1/2

.

It is somewhat surprising consequence of the Corollary 1–3 that, from an asymptotic
point of view, the selection error of the SOS and OS algorithms, which are versions of a
greedy GIC, is not greater than the selection error of a plain, exhaustive GIC. Specifically,
if we define the exhaustive GIC selector by

T̂E = argminJ :J⊆F,|J |≤p{RJ + |J |r},

then it follows from the lower bound in (37) below, that for an arbitrary fixed index j0 6∈ T
and r > 0 we have

P (T̂E 6= T ) ≥ P (RT∪{j0} −RT > r) ≥ r

r + σ2
exp

(
− r

2σ2

)(
πr

2σ2

)−1/2

. (24)

If the penalty term satisfies log p � r � min(δt/t, δp) for n → ∞, then from Corollary 3
and (24) we obtain

lim
n

logP (T̂OS 6= T ) ≤ lim
n

logP (T̂E 6= T ). (25)

The last inequality indicates that it pays off to apply greedy algorithm in this context as a
greedy search dramatically reduces `0 penalized LS without increasing its selection error.

The bounds on the selection error given in Corollaries 1–3 imply consistency of SOS
and OS provided rn → ∞ and its strong consistency provided rn ≥ c log n for some c >
2σ2/(1− a). For boundary penalty rn = 4a−1σ2 log pn where a ∈ (0, 2c2), we obtain strong
consistency of these algorithms if nca/(1−a) ≤ pn for some c > 0.5. Comparison of selection
errors probabilities of the SOS and OS algorithms for p < n requires further research.

972



Combined `1 and Greedy `0 Penalized Least Squares

5. Comparison of SOS and MCR

The SOS algorithm also turns out to be a competitor of iterative approaches which require
minimization of more demanding LS penalized by quasiconvex functions (Fan and Li, 2001;
Zou and Li, 2008; Zhang, 2010a,b; Zhang and Zhang, 2012; Huang and Zhang, 2012; Zhang,
2013; Wang et al., 2014). In this section we compare selection error bounds for SOS and
multi-stage convex relaxation (MCR) studied in Zhang (2010b, 2013) which is the latest
example of this group of algorithms. In Section 8 we compare SOS and MCR in numerical
experiments.

5.1 Multi-stage Convex Relaxation Algorithm

Results in Zhang (2013) concern parametrization of the linear model without intercept given
in (3). Moreover, coordinates of β are not individually penalized in MCR. In concordance
with the discussion below equation (6) this corresponds to H0 = In and D = dIp, where
d = max1≤j≤p ||xj ||. Obviously,

X0 = H0XD
−1 = X/d, y0 = y, Xβ∗ = µ = µ0 = X0θ

∗, H0J = HJ , J ⊆ F

and ||x0j || ≤ 1. The MCR procedure finds for given rZ , bZ > 0 approximate solution of the
quasiconvex minimization problem

β̂MCR = d−1argminθ
{
||y −X0θ||2 + 2rZ

p∑
j=1

(|θj | ∧ bZ)
}
. (26)

As was shown in Zhang (2010b) a local minimum of (26) could be approximated by the
following iterative convex minimization algorithm.

Algorithm (MCR)
Input: y,X and rZ , bZ , l.

Compute d, X0 = X/d, S̄ = F
for k = 1, 2, . . . , l do

θ̂ = argminθ{||y −X0θ||2 + 2rZ |θS̄ |}
S̄ = {j ∈ F : |θ̂j | ≤ bZ}

endfor
S = F \ S̄

Output: T̂MCR = S, β̂MCR = θ̂S/d.

Since X0θ = X0SθS +X0S̄θS̄ and (I −HS)X0S = 0, we obtain

||y −X0θ||2 = ||HS(y −X0S̄θS̄)−X0SθS ||2 + ||(I −HS)(y −X0S̄θS̄)||2. (27)

Let θS = W+
S Q

T
S (y −X0S̄θS̄), where X0S = QSWS , QS is an orthogonal matrix, W+

S is a
pseudoinverse of WS and QS ,WS are computed from the QR or SVD decomposition of X0S .
Then θS is the LS solution for the response y−X0S̄θS̄ and predictors X0S and the first term
on the right in (27) equals 0. Thus if we set y� = (I −HS)y and X�S̄ = (I −HS)X0S̄ , then

||y −X0θ||2 = ||(I −HS)(y −X0S̄θS̄)||2 = ||y� −X�S̄θS̄)||2.
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It follows that for computing θ̂ in the MCR algorithm, we can use the Lasso and LS
subroutines separately as in the following (cf. Zou and Li (2008), Algorithm 2).

Algorithm (MCR via Lasso and LS)
Input: y,X and rZ , bZ , l.

Compute d, X�S̄ = X/d, y� = y, S = ∅, S̄ = F
for k = 1, 2, . . . , l do

θ̂S̄ = argminθS̄{||y� −X�S̄θS̄ ||
2 + 2rZ |θS̄ |}

θ̂S = W+
S Q

T
S (y −X0S̄ θ̂S̄), where X0S = QSWS

and QS ,WS are computed from the QR or SVD decomposition of X0S

S = {j ∈ F : |θ̂j | > bZ}, S̄ = F \ S
X�S̄ = X0S̄ −QS(QTSX0S̄), y� = y −QS(QTSy)

endfor
Output: T̂MCR = S, β̂MCR = θ̂S/d.

In the above algorithm θ̂S̄ is the Lasso estimator for the response y� and the experimental
matrix X�S̄ and θ̂S is the LS estimator with the experimental matrix X0S and the response
equal to residuals of the Lasso fit y−X0S̄ θ̂S̄ . When one of the iterations returns S such that
|S| > n then the LS estimator can be calculated using the SVD decomposition instead of the
QR decomposition. The above algorithm allows for usage of one of many implementations
of the Lasso and is applied in our numerical experiments in Section 8.

5.2 Error Bound for MCR

In order to compare our results with selection error bounds in Zhang (2013), we restate his
result using our notation. The proof of its equivalence with the original form is deferred
to the Appendix. We stress that the Zhang’s result holds for more general case of sub-
Gaussian errors whereas we consider Gaussian errors only. Let c3 = 2/49 and recalling that
Σ = XT

0 X0 = d−2XTX and ΣJ = XT
0JX0J we define sparse eigenvalues of Σ

λs = min
J :|J |≤s

λmin(ΣJ) = min
ν:supp(ν)≤s

||X0ν||2

||ν||2
= κ2(s, 0),

Λs = max
J :|J |≤s

λmax(ΣJ) = max
ν:supp(ν)≤s

||X0ν||2

||ν||2
.

Theorem 3 (Zhang, 2013) Assume that there exist s ≥ 1.5t and a ∈ (0, 1) such that
(i) (sparse eigenvalue condition) Λs/λ1.5t+2s ≤ 1 + s/(1.5t) and
(ii) c−1

3 a−1σ2 log p ≤ r2
Z ≤ b2Zλ2

1.5t+s/81 ≤ (18)−2λ2
1.5t+sθ

∗2
min,

then for l > b1.24 ln tc+ 1 we have

P (T̂MCR 6= T ) ≤ exp

(
−

(1− a)c3r
2
Z

σ2

)(
πc3r

2
Z

σ2

)−1/2

.

Now we compare Theorem 3 with Corollary 2. Both results assume variants of the
beta-min condition and bounds on (restricted or sparse) eigenvalues of Σ, namely the weak
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correlation condition (23) in Corollary 2 and the sparse eigenvalue condition in Theorem
3, which is similar to restricted isometry property described in the Introduction. More
specifically, observe that according to (14)

0 ≤ λs′ ≤ λs ≤ Λ1 = 1 ≤ Λs ≤ Λs′ ≤ s′ ∧ n

for 1 ≤ s < s′ ≤ p and obviously λs = 0 for s > n. Then it follows from the sparse eigen-
value condition that λ4.5t ≥ λ1.5t+2s > 0 and thus 4.5t ≤ n whereas the weak correlation
condition stipulates that 4t ≤ n. Whence the condition on correlation of predictors assumed
in Theorem 3 is stronger than the corresponding assumption in the Corollary 2, moreover,
Corollary 1 allows for replications of spurious predictors. However, from Proposition 3 we
have t−1/2κ2

t < 4λ4t ≤ 4λ3t and thus for the minimal allowed s = 1.5t and disregarding
constants, Theorem 3 imposes weaker variant of the beta-min condition. It is worth noting
that the considered algorithms as well as the error bounds assuming uniform weak corre-
lation of predictors (Corollary 2 and Theorem 3) do not depend on n. Remaining error
bounds require explicitly s ≤ n.

6. Properties of Post-model Selection Estimators

We list now several properties of post-model selection estimators which follow from the
main results. Let B̂ = B(T̂ , y) be any event defined in terms of given selector T̂ and y and
B = B(T, y) be an analogous event pertaining to T and y. Let Bc and B̂c be complements
of B and B̂, respectively. Observe that we have

P (B̂) ≤ P (B̂, T̂ = T ) + P (T̂ 6= T ) ≤ P (B) + P (T̂ 6= T ).

Analogously, P (B̂c) ≤ P (Bc) + P (T̂ 6= T ), which implies P (B) ≤ P (B̂) + P (T̂ 6= T ). Both
inequalities yield

|P (B̂)− P (B)| ≤ P (T̂ 6= T ). (28)

In particular, when B = {G > u} and B̂ = {Ĝ > u} and G is some pivotal quantity
then (28) implies that P (B̂) is approximated by P (B) uniformly in u. For example, let
ˆ̃
βT denote the LS estimator fitted on T , h = t + 1 for parametrization (2) and h = t for
parametrization (3) and define

f = f(T, y) =
||X̃T

ˆ̃
βLST − X̃T β̃

∗
T ||2/h

||y − X̃T
ˆ̃
βLST ||2/(n− h)

.

Observe that the variable f follows a Fisher-Snedecor distribution Fh,n−h. Then the bound
on the selection error given in Corollary 1, the assumption ε ∼ N(0, σ2

In) and (28) imply
the following corollary.

Corollary 4 Assume that conditions of Corollary 1 are satisfied. Then

sup
u∈R
|P (f̂ ≤ u)− P (f ≤ u)| ≤ 4 exp

(
− (1− a)r

2σ2

)(
πr

2σ2

)−1/2

.
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Note that any a priori upper bound on h in conjunction with Corollary 4 yields an approx-
imate confidence region for β̃∗

T̂
.

Moreover, it follows from the Corollary 7 below that the Lasso estimator has the follow-
ing estimation and prediction errors

Corollary 5 Assume that conditions of Corollary 7 are satisfied. Then

||Xβ̂ −Xβ∗|| = OP
(
t1/2n κ−1

n

√
log pn

)
, |D(β̂ − β∗)| = OP

(
tnκ
−2
n

√
log pn

)
,

where κn = κ(Tn, 3).

Analogous properties of post-selection estimators are given below without proof for λn =
λmin(ΣTn).

Corollary 6 (i) Assume that conditions of Corollary 1 are satisfied. Then

||Xβ̂SOS −Xβ∗|| = OP
(
t1/2n

)
, |D(β̂SOS − β∗)| = OP

(
tnλ
−1/2
n

)
,

(ii) Assume that conditions of Theorem 3 are satisfied. Then

||Xβ̂MCR −Xβ∗|| = OP
(
t1/2n

)
, |D(β̂MCR − β∗)| = OP

(
tnλ
−1/2
n

)
,

In view of the inequality κ2
n < λn it is seen that the estimation and prediction rates for

the SOS and MCR post-selection estimators are better by the factor κ−1
n

√
log pn than the

corresponding rates for the Lasso.

7. Error Bounds for the Lasso Estimator

We assume from now on that the general model (1) holds. Let µ0 = H0µ, µβ = H0Xβ = X0θ

for an arbitrary β ∈ Rp and µβ̂ = H0Xβ̂ = X0θ̂. Moreover, ∆ = θ̂ − θ = D(β̂ − β) and

recall that ∆J stands for subvector of ∆ restricted to coordinates in J and Jβ = supp(β) =
{j : βj 6= 0}. Finally let A =

⋂p
j=1{2|xT0jε| ≤ rL} and Ac be a complement of A. From the

Mill inequality (see the right hand side inequality in (37) below) we obtain for Z ∼ N(0, 1)

P (Ac) ≤
p∑
j=1

P (2|xT0jε| > rL) = pP
(
Z2 >

r2
L

4σ2

)
≤ p exp

(
−

r2
L

8σ2

)(
πr2

L

8σ2

)−1/2

. (29)

As a by-product of the proofs of the theorems above we state in this section a strengthened
version of the Lasso error bounds and their consequences.

Theorem 4 (i) On A we have

||µ0 − µβ̂|| ≤ ||µ0 − µβ||+ 3rL|Jβ|1/2κ−1(Jβ, 3). (30)

(ii) Moreover, on the set A ∩ {β : |∆| ≤ 4|∆J |} we have

rL|∆| ≤ 2||µ0 − µβ||2 + 8r2
L|Jβ|κ−2(Jβ, 3). (31)
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Squaring both sides of (30) yields the following bound

||µ0 − µβ̂||
2 ≤

(
||µ0 − µβ||+

3rL|Jβ|1/2

κ(Jβ, 3)

)2
= inf

a>0
(1 + a)

(
||µ0 − µβ||2 +

9r2
L|Jβ|

aκ2(Jβ, 3)

)
,

where the equality above is easily seen. Obviously κ(|Jβ|, 3) ≤ κ(Jβ, 3), hence (30) is tighter
than Theorem 6.1 in Bickel et al. (2009) if we disregard a small difference in normalization
of X mentioned in Section 3. Moreover, the bound above is valid for both the practical and
the formal Lasso.

Let us note that as β in (30) is arbitrary, the minimum over all β ∈ RP can be taken.
Analogously we can minimize the right hand side of (31) over all β : |∆| ≤ 4|∆J |. Note
also that if a parametric model µ = X̃J β̃J holds, then (33) below implies that indeed a
condition |∆| ≤ 4|∆J | is satisfied. The next corollary strengthens the `1 estimation error
inequality (7.7) and the predictive inequality (7.8) in Theorem 7.2 in Bickel et al. (2009).
Note that X below does not need to have normalized columns and the constant appearing
in (7.7) and (7.8) in Bickel et al. (2009) is 16.

Corollary 7 Let β be such that µ0 = µβ. Then (31) and (30) have the following form

|∆| ≤ 8rL|Jβ|κ−2(Jβ, 3) and ||µβ̂ − µβ||
2 ≤ 9r2

L|Jβ|κ−2(Jβ, 3). (32)

Moreover, we have on A the following bounds.

Corollary 8

||∆J || ≤ 3rL|Jβ|1/2κ−2(Jβ, 3) and |∆J | ≤ 3rL|Jβ|κ−2(Jβ, 3).

8. Simulational Study

In this section we investigate the performance of our implementation of SOS and compare
it with MCR. We describe the framework of numerical experiments, discuss their results
and draw conclusions. More detailed results are presented in Appendix A.4.

8.1 Description of the Experiments

We consider three models with number of potential predictors p exceeding number of ob-
servations n. The first model M1 was analyzed in Zhang (2013). Beside it we introduce
two models M2 and M3 which seem to fit even more to the sparse high-dimensional sce-
nario t � n � p and are described in Table 1, columns 1 − 4. Observe that sparseness
of the model measured by ratio p/t increases from 8.3 for M1 to 100 for M2 and to 400
for M3. Corresponding ratios p/n are 2.5, 10 and 20, respectively. Note also that the as-
sumptions of either Corollary 2 or Theorem 3 are not satisfied for M1 as 4t > n, whereas
two remaining models satisfy 10t ≤ n. In all simulations the n × p matrix of experiment
X with iid standard normal entries is generated and then its columns are normalized to
have `2-norm equal to

√
n. A noise level is specified by σ = 1. For each replication of

the true model, elements of β∗T are independently generated from uniform distribution with
parameters given in the column 5 of Table 1. Such layout resulted in signal to noise ra-
tio SNR = ||XTβ

∗
T ||/

√
E||ε||2 = ||XTβ

∗
T ||/
√
n and it values averaged over replications are

given in column 6 of Table 1.
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model t n p β∗T SNR SOS accuracy MCR accuracy

M1 30 100 250 U(1, 10) 33 72 / 71 56 / 97
M2 10 100 1000 U(1, 10)/2 9.5 91 / 88 73 / 82
M3 5 100 2000 U(1, 10)/3 4.5 85 / 77 69 / 73

Table 1: Summary of the simulations (details explained in the text).

All computations have been performed using open source software R (see supplemental
material at http://www.mimuw.edu.pl/~pokar/Publications/) using two frequently used
Lasso implementations: lars (Efron et al., 2004) and glmnet (Friedman et al., 2010).
Preliminary experiments indicated that using lars yields higher selection accuracies for
SOS as well as for MCR than when using glmnet; even on grids of order 105 the gain in
accuracy was around 10%. Moreover, for such dense grids glmnet was considerably slower.
Thus in main numerical experiments lars has been used. We established that accuracy of
SOS for all models is the highest when r ≈ 20 and thus the value of r is fixed at 20. The
MCR procedure is implemented via the Lasso and LS as described in Section 5.1. Similarly
to Zhang (2013) we fixed number of iterations l = 8 for MCR. Thus compared algorithms
have mutually corresponding parameters (rL, b) and (rZ , bZ). As in Zhang (2013) we found
optimal grid parameters for which selection accuracy is the highest one. In particular
we confirmed high selection accuracy for the best parameters shown in Table 1 in Zhang
(2013). Namely, the highest selection accuracy of MCR reported there is 93% for penalty
and the threshold both equal 0.94 whereas we found selection accuracy 95% for both these
parameters equal to 5. The difference is minor taking into account that the original penalty
in Zhang (2013) corresponds in our implementation to 2rZ/

√
n = rZ/5.

As a measure of performance of both algorithms we present in columns 7− 8 of Table 1
a percent of correct screening and percent of correct selection separated by the slash that
is 100 × P̂ (T ⊆ S) / 100 × P̂ (T̂ = T ). In simulations for the SOS algorithm, we used as
a screening set S = S0 = {j : |θ̂j | > b}, since a double-pass screening S1 does not lead
to significant improvement of selection accuracy. Similarly, for MCR we considered as a
screening set S = {j : |θ̂j | > bZ} after the first iteration of the algorithm. Knowledge of
both screening and selection errors allows us to estimate errors pertaining to ordering and
greedy selection for SOS as well as advantage of MCR over the thresholded Lasso. Note
that algorithms behave differently in that whereas for MCR probability of correct selection
is larger than that of screening after the first iteration, the opposite is true for SOS. Both
measures for all grid parameters are reported in Appendix A.4.

All results are based on N = 5000 replicates as for estimation a success probability
π ≈ 0.75 (corresponding crudely to our selection accuracies) in N Bernoulli experiments
with prescribed error η = 0.01 and confidence level 1 − γ = 0.9, we need N ≈ π(1 −
π)η−2(Φ−1(1 − γ/2))2 ≈ 5000, where Φ−1 denotes the quantile function of the standard
normal distribution.

978

http://www.mimuw.edu.pl/~pokar/Publications/


Combined `1 and Greedy `0 Penalized Least Squares

8.2 Conclusions from the Experiments

Computing time of both SOS and MCR is dominated by calls to the lars function which
is used to compute the Lasso, and as MCR uses l = 8 calls of this function and SOS only
one, so MCR is around eight time slower than SOS.

For model M1, MCR is substantially more precise then SOS in selecting the true subset
of variables: 97% versus 71%. Recall that the highest accuracy given in Zhang (2013) is
93%. The SOS selection error is mostly due to the screening error of the Lasso as in the
case of relatively large number of true predictors compared to n, the Lasso finds it difficult
to filtering in all of them.

For models M2 and M3, SOS is more precise than MCR by approximately 5%. We
note that optimal grid penalty rL for SOS and MCR coincide whereas the threshold b is
approximately twice as large for MCR as for SOS. As the results for SOS are better in
these cases it turns out that thresholding the Lasso, ranking the remaining estimators and
optimizing GIC in the nested family is superior to MCR iterations performed on the same
initial Lasso estimator.

In conclusion, if we expect large number of genuine predictors compared to sample size,
MCR is preferable, but for the sparse high-dimensional scenario SOS may be faster and
more accurate.

For practical model selection we recommend the following easily achievable strategy.
After performing the Lasso, we look at the paths of parameters and choose only those
whose magnitude is substantially larger than others. This yields screening set S on which
LS is computed, and then screened regressors are ordered according to their |t| statistics
from the fit. Finally we look for an ’elbow’ of RJ in the nested family of the models
J ∈ {∅, {j1}, {j1, j2}, . . . , S} which determines a cut-off point.

9. Concluding Remarks

We introduce the three-step SOS algorithm for a linear model selection. The most compu-
tationally demanding part of the method is screening of predictors by the Lasso. Ordering
and greedy GIC could be computed using only two QR decompositions of X0S1 . In the
paper we give non-asymptotic upper bounds on error probabilities of each step of SOS
in terms of the Lasso and GIC penalties (Theorem 1). As corollaries we obtain selection
consistency for different (n, p) scenarios under conditions which are needed for screening
consistency of the Lasso (Corollaries 1-2). The SOS algorithm is an improvement of the
new version of the thresholded Lasso (Zhou, 2009, 2010) and turns out to be competitive
for MCR, the latest quasiconvex penalized LS (Zhang, 2010b, 2013). The condition on cor-
relation of predictors assumed there seems to be stronger than ours, whereas the beta-min
condition may be weaker (compare discussion of Corollary 2 and Theorem 3). Theoretical
comparison of SOS and MCR, in general, requires comparing λ3t and κ2(T, 3) and remains
an open problem. In simulations for the sparse high-dimensional scenario, SOS was faster
and more accurate than MCR. For a traditional setting when n > p we give Sanov-type
bounds on error probabilities of the OS algorithm (Theorem 2). It is surprising consequence
of Theorems 1-2 that the selection error of greedy GIC is asymptotically not larger than of
exhaustive GIC, see formula (25). Comparison of selection errors probabilities of the SOS
and OS algorithms for p < n requires further research.
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It is worth noticing that all results are proved for general form of the Lasso defined in
(6), which encompasses two versions of the estimator: algorithm used in practice as well as
its formal version.
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Appendix A: Proofs and Supplemental Tables.

In the Appendix we provide all proofs and supplemental tables for numerical experiments.

A.1 Proofs for Section 3.

Proof of Proposition 1. We have

2σ2KL(β̃∗T ||β̃J) = 2σ2Eβ̃∗T

(
||y − X̃J β̃J ||2 − ||y − X̃T β̃

∗
T ||2

2σ2

)
= ||X̃T β̃

∗
T − X̃J β̃J ||2.

The last expression is symmetric with respect to β̃∗T and β̃J , thus KL(β̃∗T ||β̃J) = KL(β̃J ||β̃∗T )
and the second equality in (i) follows. For the proof of the first equality in (i) observe that
δ(T ||J) = minβ̃J ||X̃T β̃

∗
T − X̃J β̃J ||2. The equality in (ii) follows from (10), the inequality

there follows from Rayleigh-Ritz theorem.

Proof of Proposition 3. We can assume that c ≥ 1. Consider a model J and a vector
ν such that J ⊇ supp(ν) and |J | = (bcc + 1)s and κ2(bcc + 1)s, 0) = νTΣν/νT ν. Sort
coordinates of ν in nonincreasing order |νj1 | ≥ |νj2 | . . . ≥ |νj(bcc+1)s

| and let J0 = {j1, . . . , js}.
Then we have |J0| = s, |νJ̄0

| ≤ bcc|νJ0 | ≤ c|νJ0 | and (bcc+ 1)νTJ0
νJ0 ≥ νT ν. Thus

κ2(s, c) ≤ νTΣν

νTJ0
νJ0

≤ (bcc+ 1)
νTΣν

νT ν
= (bcc+ 1)κ2((bcc+ 1)s, 0)

and the conclusion follows.

Proof of Proposition 4. Assume by contradiction that there are two different true mod-
els T1, T2 such that Ti = supp(βi) = supp(θi) for some different βi = Dθi, i = 1, 2 and
µ0 = X0θ1 = X0θ2. It is enough to prove that assumptions imply γ(T1, 1)γ(T2, 1) = 0,
where γ(J, c) = inf{||X0θJ −X0θJ̄ ||, |θJ | = 1, |θJ̄ | ≤ c} as in view of (13) and Schwarz in-
equality κ(J, c)/

√
|J | ≤ γ(J, c). Define a vector θ with support equal to T1∪T2 in such a way

that θT1∩T2 = θT1∩T2,1− θT1∩T2,2, θT1\T2
= θT1\T2,1 and θT2\T1

= θT2\T1,2. As assumptions on
T1 and T2 are symmetric we may assume that |θT1\T2

| ≥ |θT2\T1
| and let θo = θ/|θT1 |. Then

|θoT1
| = 1 and |θo

T̄1
| = |θoT2\T1

| ≤ 1. Moreover, XθoT1
= Xθo

T̄1
which yields γ(T1, 1) = 0.

Proof of Proposition 5. To prove (i) observe that (11) and (14) imply for j ∈ T

κ2(T, 3) ≤ κ2(T, 0) ≤ θ∗−2
j δ(T ‖ T \ {j}).
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For (ii) we have

κ2(t, 3)/4 ≤ κ2(4t, 0) = min
J :|J |≤4t

λmin(ΣJ) ≤ min
J :J⊇T,|J |≤4t

λmin(ΣJ)

= min
J :J+T,|J∪T |≤4t

λmin(ΣJ∪T ) ≤ θ∗−2
min min

J :J+T,|J∪T |≤4t
δ(T ||J)

≤ θ∗−2
min min

j∈T,J⊇T,|J |≤4t
δ(T ||J \ {j}) = θ∗−2

minδ(T, 4t),

where the first inequality follows from the Proposition 3 and the third from (11).

A.2 Proofs for Section 6.

We now proceed to prove Theorem 4 and its corollaries. The following modified version of
Lemma 1 in Bunea et al. (2007) holds.

Lemma 1 (i) We have on A for an arbitrary β ∈ Rp and J = {j : βj 6= 0}

||µ0 − µβ̂||
2 + rL|∆| ≤ ||µ0 − µβ||2 + 4rL|∆J |. (33)

(ii) Moreover, we have

||µ0 − µβ̂||
2 ≤ ||µ0 − µβ||2 + 3rL|∆J |. (34)

Proof. It follows from (6) that

||H0(ε+ µ−Xβ̂)||2 + 2rL|Dβ̂| ≤ ||H0(ε+ µ−Xβ)||2 + 2rL|Dβ|.

Equivalently, as H0 is symmetric and idempotent, we get

||H0(µ−Xβ̂)||2 ≤ ||H0(µ−Xβ)||2 + 2εTH0X(β̂ − β) + 2rL(|Dβ| − |Dβ̂|).

Thus we obtain the basic inequality

||µ0 − µβ̂||
2 ≤ ||µ0 − µβ||2 + 2εTX0(θ̂ − θ) + 2rL(|θ| − |θ̂|).

On A we have |2εTX0(θ̂ − θ)| ≤ 2 maxj |xT0jε||θ̂ − θ| ≤ rL|θ̂ − θ| and whence on this set

||µ0 − µβ̂||
2 + rL|θ̂ − θ| ≤ ||µ0 − µβ||2 + 2rL(|θ̂ − θ|+ |θ| − |θ̂|).

Note that for j 6∈ J |θ̂j − θj |+ |θj | − |θ̂j | = 0 and thus

||µ0 − µβ̂||
2 + rL|θ̂ − θ| ≤ ||µ0 − µβ||2 + 2rL(|θ̂J − θJ |+ |θJ | − |θ̂J |).

Thus (i) follows from triangle inequality and (ii) from (i) in view of |θ̂J − θJ | ≤ |θ̂ − θ|.

Proof of Theorem 4. Proof of (i). Let J = Jβ and κ = κ(J, 3). We consider two cases:
(a) |∆| > 4|∆J | and (b) |∆| ≤ 4|∆J |. In the case (a) it follows from (33) that stronger
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inequality ||µ0 − µβ̂|| ≤ ||µ0 − µβ|| holds. When (b) is satisfied we have |∆J̄ | ≤ 3|∆J | and

it follows from the definition of κ that κ2||∆J ||2 ≤ ||X0∆||2 = ||µβ̂ − µβ||
2 and thus

||∆J || ≤ ||µβ̂ − µβ||κ
−1. (35)

Using (35) and Jensen inequality we get

|∆J | ≤ |J |1/2||µβ̂ − µβ||κ
−1. (36)

It follows now from (34), (36) and triangle inequality that

||µ0 − µβ̂||
2 ≤ ||µ0 − µβ||2 + 3rL|J |1/2κ−1(||µ0 − µβ̂||+ ||µ0 − µβ||)

and whence

(||µ0 + µβ̂||+ ||µ0 − µβ||)(||µ0 − µβ̂|| − ||µ0 − µβ||) ≤ 3rL|J |1/2κ−1(||µ0 − µβ̂||+ ||µ0 − µβ||)

from which the conclusion follows.

Proof of (ii). Define m = ||µ0 − µβ||, m̂ = ||µ0 − µβ̂|| and c = 2rL|J |1/2κ−1. Using (33),

(36) which holds provided |∆| ≤ 4|∆J |, and triangle inequality we get

m̂2 + rL|∆| ≤ m2 + 2c(m̂+m) ≤ 2m2 + c2 + m̂2 + c2,

from which the desired bound follows.

Proof of Corollary 8. The proof follows from inequality (35), (36) and the second in-
equality in Corollary 7.

A.3 Proofs for Section 4.

The next lemma states bounds on upper tail of χ2
k distribution

Lemma 2 Let Wk denote variable having χ2
k distribution.(i) (Gordon, 1941 and Mill, 1926)

We have for k = 1 and x > 0

wxklxk ≤ P (Wk ≥ x) ≤ wxk, (37)

where wxk = e−x/2(x2 )k/2−1Γ−1(k2 ) and lxk = x
x−k+2 .

(ii) (Inglot and Ledwina, 2006) Let k > 1 and x > k − 2. Then

wxk ≤ P (Wk ≥ x) ≤ wxklxk. (38)

Proof. We provide the unified reasoning for both cases. For x > 0 and k ∈ Z let Ik(x) =∫∞
x t(k/2)−1e−t/2 dt. Integration by parts yields

Ik(x) = 2x(k/2)−1e−x/2 + (k − 2)Ik−2(x). (39)
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It is easy to see that the following inequalities hold for x > 0 and k ∈ Z

0 ≤ Ik−2(x) ≤ Ik(x)/x. (40)

We treat cases k = 1 and k > 1 separately, as k = 1 is the only integer for which the second
term on the RHS of (39) is negative. Dividing both sides of (39) by 2k/2Γ(k/2), noting that
the LHS is then P (Wk ≥ x) and using (40) we have for k = 1 and x > 0

P (Wk ≥ x) ≤ e−x/2
(x

2

)−1/2
Γ−1

(1

2

)
and

P (Wk ≥ x) ≥ e−x/2
(x

2

)−1/2
Γ−1

(1

2

)(
1− 1

1 + x

)
,

which proves (37). Analogously for k = 2, 3, . . . we obtain from (39) inequalities proved by
Inglot and Ledwina (2006)

P (Wk ≥ x) ≤ e−x/2
(x

2

)k/2−1
Γ−1

(k
2

)(
1 +

k − 2

x− k + 2

)
for x > k − 2, and for x > 0

P (Wk ≥ x) ≥ e−x/2
(x

2

)k/2−1
Γ−1

(k
2

)
,

which proves (38).

Now we state the main lemma from which Theorems 1 and 2 follow. Let us recall that
c1 = (3 + 6

√
2)−1 and c2 = (6 + 4

√
2)−1. Define T on = Tn \ {T} and observe that for OS

algorithm we have P (S1 6∈ Tn) = 0 and as p ≥ t+ 1, Tn = T on = {F}, so |T on | = 1.

Lemma 3 (T1) If r2
L ≤ b2/36 ≤ c2

1t
−1κ4θ∗2min, then

P (S1 6∈ Tn) ≤ p exp

(
−

r2
L

8σ2

)(
πr2

L

8σ2

)−1/2

.

(T2) If s ≤ n, then

P (S1 ∈ Tn, Ô 6∈ OS1) ≤ 3

2
|T on |t(s− t) exp

(
− c2δs

σ2

)(
πc2δs
σ2

)−1/2

.

(T3) If for some a ∈ (0, 1) r ≤ at−1δt, then

P (S1 ∈ Tn, Ô ∈ OS1 , |T̂ | < t) ≤ t

2
exp

(
− (1− a)2δt

8σ2

)(
π(1− a)2δt

8σ2

)−1/2

.

(T4) Assume that r/σ2 ≥ 2 and (r/σ2)− log(r/σ2) ≥ 2 log p. Then

P (S1 ∈ Tn, Ô ∈ OS1 , |T̂ | > t) ≤ (p− t)(s− t) exp

(
− r

2σ2

)(
πr

2σ2

)−1/2

.
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Proof. Observe that we may assume that t > 0 in proofs of (T2) − (T3) as for t = 0
probabilities appearing in those parts are 0 and the conclusions are trivially satisfied.

Proof of (T1). It follows from (29) or equivalently from Lemma 2 that it is enough to
prove that {S1 ∈ Tn} ⊇ A that is that on A we have

T ⊆ S1 and |S1| ≤ t+ b
√
tκ−2c. (41)

For parametric models µβ = µ0 and from (33) we have |∆| ≤ 4|∆T | or equivalently
4|∆T̄ | ≤ 3|∆|, which together with the first part of (32) yields

|∆T̄ | ≤ 6rLtκ
−2. (42)

From the assumption 6rL ≤ b and (42) we obtain |S0 \ T | < |∆T̄ |/b ≤ tκ−2, |S0| <
t(1 + κ−2) and B < b

√
t(1 + κ−2). Using this and the first part of Corollary 8 we have

||∆T ||+B < θ∗min or

||∆T ||2 < (θ∗min −B)2.

Indeed, from Corollary 8, the fact that κ ≤ 1 and the assumption of the lemma, respectively,
we have

||∆T ||+B < 3rLt
1/2κ−2 + b

√
t(1 + κ−2) ≤ 0.5bt1/2κ−2(1 + 2

√
κ4 + κ2)

≤ 0.5(1 + 2
√

2)bt1/2κ−2 = (6c1)−1bt1/2κ−2 ≤ θ∗min.

Evidently, |T \ S1|(θ∗min − B)2 ≤ ||∆T ||2 < (θ∗min − B)2 and thus we have T ⊆ S1 on
A. But S1 ⊆ S0, hence |S0| ≥ t and B ≥ bt1/2. Thus using (42) again, we have
|S1 \ T | < |∆T̄ |/B ≤ t1/2κ−2. Hence |S1 \ T | ≤ bt1/2κ−2c and we obtain (41).

Proof of (T2). Let for J1 ∈ Sn \Tn and J2 ∈ Tn WJ1J2 = εT (H̃J1 − H̃J1∩J2)ε, σ2WJ2J1 =
εT (H̃J2 − H̃J1∩J2)ε and σZJ1 = β̃∗TT X̃T

T (I − H̃J1)ε/
√
δJ1 , where δJ1 = δ(T ‖ J1). Then we

have that WJ1J2 ∼ χ2
d, where d ≤ |J1 \ J2|, WJ2J1 ≥ 0 and ZJ1 ∼ N(0, 1). We will use a

popular decomposition of a difference between sums of squared residuals

RJ1 −RJ2 = β̃∗TT X̃T
T (I − H̃J1)X̃T β̃

∗
T + 2β̃∗TT X̃T

T (I − H̃J1)ε
+ εT (I − H̃J1)ε− εT (I − H̃J2)ε
= δJ1 + 2

√
δJ1σZJ1 − σ2WJ1J2 + σ2WJ2J1

≥ δJ1

(
1 +

2σZJ1√
δJ1

− σ2WJ1J2

δJ1

)
.

For fixed S ∈ T on let j̄ = S \ {j}. Then we have from (9)

{S1 ∈ T on , Ô 6∈ OS1} ⊆
⋃
S∈T o

n

⋃
j1∈T

⋃
j2∈S\T

{Rj̄1 ≤ Rj̄2}

⊆
⋃
S∈T o

n

⋃
j1∈T

⋃
j2∈S\T

{
−

2σZj̄1√
δj̄1

+
σ2Wj̄1j̄2

δj̄1
≥ 1
}
,
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where Zj̄1 ∼ N(0, 1) and Wj̄1j̄2 ∼ χ
2
d, with d ≤ 1. Thus it follows that for W = Z2 denoting

r.v. with χ2
1 distribution, we get

P (S1 ∈ T on , Ô 6∈ OS1) ≤
∑
S∈T o

n

∑
j1∈T

∑
j2∈S\T

P
(
−

2σZj̄1√
δj̄1

+
σ2Wj̄1j̄2

δj̄1
≥ 1
)

≤
∑
S∈T o

n

∑
j1∈T

∑
j2∈S\T

(
P
(
−

2σZj̄1√
δj̄1
≥ c
)

+ P
(σ2Wj̄1j̄2

δj̄1
≥ 1− c

))
≤ |T on |t(s− t)

(1

2
P
(
Z2 ≥ c2δs

4σ2

)
+ P

(
W ≥ (1− c)δs

σ2

))
,

where j1 ∈ T and j2 ∈ S\T are fixed and we used δj̄1 ≥ δs. Choosing c such that c2/4 = 1−c
that is c = 1− 2c2 in view of Lemma 2 we get the desired bound.

Proof of (T3). Reasoning as previously we have for j̄ = T \ {j}

{S1 ∈ Tn, Ô ∈ OS1 , |T̂ | < t} ⊆
⋃
S⊂T
{RS + r|S| ≤ RT + r|T |} ⊆

⋃
j∈T
{Rj̄ ≤ RT + rt}.

Thus in view of Lemma 2 and the assumption rt < aδt we obtain

P (S1 ∈ Tn, Ô ∈ OS1 , |T̂ | < t) ≤
∑
j∈T

P (Rj̄ ≤ RT + rt)

≤
∑
j∈T

P
(
− 2σZj̄ ≥

√
δj̄

(
1− rt

δj̄

))
≤ tP

(
− 2σZ ≥

√
δt

(
1− rt

δt

))
=

t

2
P
(
W ≥ 1

4σ2
δt

(
1− rt

δt

)2)
≤ t

2
exp

(
− (1− a)2δt

8σ2

)(
π(1− a)2δt

8σ2

)−1/2

.

Proof of (T4). Observe first that for m > 0

P (S1 ∈ Tn, Ô ∈ OS1 , |T̂ | = t+m)
≤ P (RT∪{j1,...,jm} + (t+m)r ≤ RT + tr for some j1, . . . , jm ∈ F \ T )

≤
(
p− t
m

)
P (σ2Wm ≥ mr) ≤

(p− t)m

m!
P (σ2Wm ≥ mr) = Bm,

where Wm ∼ χ2
m. This follows since for any fixed J = T ∪ {j1, . . . , jm} we have RT −RJ ∼

σ2χ2
d, where d ≤ m and Wd ≤Wm in stochastic order. We will show that under conditions

given in (T4) Bm ≥ Bm+1 for any m = 1, 2, . . . thus yielding

P (S1 ∈ Tn, Ô ∈ OS1 , |T̂ | ≥ t+m) ≤ (s− t−m+ 1)Bm,

which for m = 1 coincides with the desired inequality. Let Qm = Bm/Bm+1, r̄ = r/σ2 and
observe that for m > 1 we have in view of (38) (note that mr̄ ≥ m− 2 as r̄ ≥ 2)

Qm ≥
m+ 1

p
er̄/2

( m

m+ 1

)m/2−1 1(
(m+ 1)r̄/2

)1/2 Γ((m+ 1)/2)

Γ(m/2)

(m+ 1)r̄ −m+ 1

(m+ 1)r̄
.
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Using the inequality for gamma functions (cf. formula 2.2 in Laforgia, 1984)

Γ
(m+ 1

2

)/
Γ
(m

2

)
≥
(m− 1/2

2

)1/2

we have that

Qm ≥ exp
{ r̄

2
− 1

2
log r̄ − log p

}
f1(m, r̄),

where

f1(m, r̄) =
( m

m+ 1

)m/2−1
(m+ 1)1/221/2

(m− 1/2

2

)1/2 (m+ 1)r̄ −m+ 1

(m+ 1)r̄
.

Thus in order to show that Qm ≥ 1 for m > 1 in view of assumptions it is enough to
show that f1(m, r̄) > 1. As f(m, ·) is increasing, it suffices to check that f1(m, 2) > 1. Let

f2(m) = (m−1/2
m+1 )(m−1)/2(m+3

2 ). We have f1(m, 2) > f2(m) and f2(2) > 1 thus it is enough
to show that f2 is increasing. Let

f3(m) = log(2f2(m)) =
m− 1

2
log

m− 1/2

m+ 1
+ log(m+ 3).

We have that

f ′3(m) =
1

2
log

m− 1/2

m+ 1
+
m− 1

2

m+ 1

(m− 1/2)

3

2(m+ 1)2
+

1

m+ 3

≥ 1

2

−3

−3 + 2(m+ 1)
+

3(m− 1)

4(m− 1/2)(m+ 1)
+

1

m+ 3
,

where the last inequality follows from log(1 + x) > x/(1 + x) for x > −1. As 1/(m+ 3) ≥
3/(−6 + 2(m+ 1)) it follows that f ′3 > 0 which implies that f3 and thus f2 is increasing.

Proof of Theorem 1. The result readily follows from Lemma 3. For (T1) we observe that

−
r2
L

8σ2
+ log p ≤ −

(1− a)r2
L

8σ2

is equivalent to 8σ2a−1 log p ≤ r2
L. Similar reasoning yields (T4). Consider derivation of

(T2). From the bound

|T on | = |Tn| − 1 =
s−t∑
k=1

(
p− t
k

)
≤ (p− t) + . . .+

(p− t)s−t

(s− t)!
≤ (p− t)s−t

(s− t)!
(s− t)

it follows that |T on |t(s− t) ≤ (p− t)s−tt(s− t) ≤ ps−tt(s− t). Thus the bound in (T2) will
follow from −c2δn/σ

2 + (s− t) log p+ log(s− t) + log t ≤ −c2(1− a)δs/σ
2 which is implied

by (s− t+ 2) log p ≤ c2aδs/σ
2. For (T3) we observe that

−(1− a)2δt
8σ2

+ log t ≤ −(1− a)3δt
8σ2

is equivalent to 8σ2 log t ≤ (1− a)2aδt.
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Proof of Corollary 1. We proceed by showing that assumptions (i) and (ii) imply all
assumptions of Theorem 1. We first note that (i) with the assumption r2

L = 4r is stronger
than the assumption in Theorem 1 (T1). Next, observe that condition

4a−1σ2 log p ≤ (4c2/3)t−1/2κ2δs (43)

is stronger than the assumption in Theorem 1 (T2). Indeed, as κ ≤ 1 ≤ t we have

s− t+ 2 = bt1/2κ−2c+ 2 ≤ t1/2κ−2 + 2 ≤ 3t1/2κ−2.

Obviously, left inequalities in (i) and (ii) imply (43). Moreover, the assumption of Theorem
1 (T4) is satisfied. Furthermore, from the first κ − δ inequality (15) and assumption a ∈
(0, 1− c1) we obtain that (i) is stronger than both conditions in Theorem 1 (T3).

In order to justify the conclusion, in view of the fact that e−(1−a)x(πx)−1/2 is decreasing
function of x > 0, it is enough to show that the expressions in the exponents of the bounds
(19) and (20) are larger than r/(2σ2) that is a value in the exponents of the bounds (18)
and (21) . In the case of (19) the condition is equivalent to r ≤ 2c2δs, which is implied by
(ii). In the case of (20) the ensuing inequality is implied by r ≤ ((1 − a)2/4)κ2θ∗2min which
in turn is implied by (i) as a ∈ (0, 1− c1).

Proof of Theorem 2. Let us recall that for OS algorithm we have P (S1 6∈ Tn) = 0 and
|T on | = 1, so the results follow from Lemma 3 analogously to Theorem 1.

Proof of Corollary 3. We proceed as in the proof of Corollary 1. The following condition

4a−1σ2 log p ≤ 2c2δs. (44)

is stronger than the assumption in Theorem 2. The assumption imply (44) and the assump-
tion of (T4). Furthermore, from the first κ− δ inequality (15) and assumption a ∈ (0, 2c2)
we obtain that the assumption is stronger than both conditions in (T3).

Next we show that the powers in the exponents of the bounds (19) and (20) are larger
than r/(2σ2). In the case of (19) the condition is equivalent to r ≤ 2c2δs which is implied by
the assumption. In the case of (20) the ensuing inequality is implied by r ≤ ((1− a)2/4)δt,
which is implied by r ≤ at−1δt because for a ∈ (0, 1) a condition a ≤ (1−a)2/4 is equivalent
to a ∈ (0, 2c2).

A.4 Proof for Section 5.

Proof of Theorem 3. Let vTj = xTj (I − HT ) for j 6∈ T and 0 otherwise and uTj =

eTj (XT
TXT )−1XT

T for j ∈ T and 0 otherwise, where ej is the unit vector having 1 as the jth
coordinate. Let

A =
{
∀j ∈ F |vTj ε| <

2rZ
7

, |uTj ε| <
2rZ
7λt

}
.

Using the left part of the assumption (ii), we observe that the following statement, which
is equivalent of Lemma 3 in Zhang (2013) in the case of Gaussian errors, holds

P (Ac) ≤ exp
(−c3(1− a)r2

Z

σ2

)(c3πr
2
Z

σ2

)−1/2
. (45)
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Then the proof of Theorem 3 follows the lines of the original proof in Zhang (2013), but
just before the end we simplify the condition l > l0 + 1, noting that

l0 =
ln t

2 ln(λ1.5t+sbZ/(6rZ))
≤ ln t

2 ln(1.5)
< 1.24 ln t.

In order to prove (45) observe that for j 6∈ T var(vTj ε) = σ2xTj (I − HT )xj ≤ σ2 and

Wj = (vTj ε)
2/var(vTj ε) ∼ χ2

1. Thus using Mill’s inequality (37) we have

P
(
|vTj ε| ≥

2rZ
7

)
≤ P

(
Wj ≥

2c3r
2
Z

σ2

)
≤ exp

(−c3r
2
Z

σ2

)(c3πr
2
Z

σ2

)−1/2
. (46)

Using the same reasoning for j ∈ T with var(uTj ε) = σ2eTj (XT
TXT )−1ej ≤ σ2λ−1

t and

W̃j = (uTj ε)
2/var(uTj ε) ∼ χ2

1, we have

P
(
|uTj ε| ≥

2rL

7
√
λt

)
≤ P

(
W̃j ≥

2c3r
2
Z

σ2

)
≤ exp

(−c3r
2
Z

σ2

)(c3πr
2
Z

σ2

)−1/2
. (47)

From (46) and (47) we obtain with c = 2c3r
2
Z/σ

2

P (Ac) ≤
∑
j∈T

P (W̃j ≥ c) +
∑
j 6∈T

P (Wj ≥ c) ≤ p exp
(−c3r

2
Z

σ2

)(c3πr
2
Z

σ2

)−1/2
.

Finally, we observe that inequality

−c3r
2
Z/σ

2 + log p ≤ −(1− a)c3r
2
Z/σ

2

is equivalent to the left part of the assumption (ii) of the theorem c−1
3 a−1σ2 log p ≤ r2

Z , thus
yielding (45).
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A.4 Tables for Section 8.

rL \ b 1.3 1.9 2.5 3.1 3.7

0.01 74.9 / 55.9 73.8 / 65.3 72.5 / 70.5 70.8 / 70.3 68.7 / 68.4
1.0 74.9 / 57.9 73.8 / 67.0 72.5 / 71.0 70.8 / 70.5 68.7 / 68.6
2.5 74.7 / 60.7 73.6 / 68.7 72.3 / 71.3 70.6 / 70.4 68.6 / 68.6
5.0 74.0 / 64.7 72.8 / 70.2 71.6 / 71.1 69.5 / 69.5 67.6 / 67.6
10.0 70.1 / 67.2 68.4 / 68.1 66.5 / 66.5 64.2 / 64.2 62.0 / 62.0

Table 2: Screening / selection accuracy of SOS for M1, r = 20.

rL \ b 0.6 0.9 1.2 1.5 1.8

5.0 95.7 / 74.0 94.2 / 78.8 92.6 / 83.9 90.6 / 86.0 88.5 / 85.7
10.0 95.5 / 78.1 94.2 / 83.4 92.5 / 86.7 90.5 / 87.1 87.8 / 85.4
15.0 94.7 / 82.0 93.1 / 85.9 91.3 / 87.5 89.1 / 86.6 86.1 / 84.2
20.0 93.1 / 85.1 91.2 / 86.7 89.1 / 86.4 86.1 / 84.2 83.6 / 82.2
30.0 87.6 / 84.7 85.1 / 83.1 82.2 / 80.9 78.4 / 77.4 75.2 / 74.4

Table 3: Screening / selection accuracy of SOS for M2, r = 20.

rL \ b 0.4 0.8 1.2 1.6 2.0

2.5 93.0 / 69.4 90.1 / 70.0 86.4 / 74.4 82.4 / 75.5 78.3 / 74.3
5.0 93.0 / 69.7 90.1 / 71.6 86.4 / 75.3 82.4 / 76.0 78.2 / 74.7
10.0 92.5 / 70.0 89.4 / 72.8 85.6 / 76.3 81.9 / 76.2 77.8 / 74.8
15.0 91.7 / 71.2 88.6 / 74.8 84.9 / 76.9 80.4 / 76.0 76.5 / 74.2
25.0 88.7 / 74.8 84.8 / 76.8 80.5 / 76.0 76.0 / 73.7 72.2 / 71.0
35.0 82.0 / 76.1 77.4 / 74.2 73.2 / 71.6 68.7 / 67.9 64.5 / 64.2

Table 4: Screening / selection accuracy of SOS for M3, r = 20.

rZ \ bZ 4.0 5.0 6.0 7.0

0.5 67.5 / 63.0 63.3 / 90.9 57.8 / 95.6 50.7 / 94.2
2.5 67.5 / 75.0 63.3 / 94.1 57.8 / 96.3 50.7 / 94.6
5.0 66.2 / 84.5 61.9 / 95.4 56.0 / 96.9 48.7 / 94.8
10.0 60.8 / 90.4 55.2 / 96.5 49.0 / 96.9 41.8 / 94.2
20.0 43.8 / 93.9 37.3 / 96.8 31.4 / 96.0 25.6 / 90.0
30.0 28.0 / 94.2 23.0 / 95.3 18.9 / 90.0 15.1 / 78.8

Table 5: Screening / selection accuracy of MCR for M1, l = 8.
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rZ \ bZ 2.5 3.0 3.5 4.0

2.5 82.5 / 40.0 76.6 / 72.2 70.3 / 79.9 63.7 / 76.5
5.0 82.0 / 49.5 76.0 / 76.2 69.8 / 80.8 63.3 / 76.3
10.0 80.9 / 64.2 75.3 / 80.2 68.9 / 81.1 62.1 / 75.2
15.0 78.5 / 72.7 72.8 / 81.9 66.5 / 80.4 59.6 / 73.2
20.0 75.6 / 76.8 69.7 / 81.5 63.3 / 78.0 56.5 / 70.9
25.0 71.6 / 78.1 65.2 / 79.6 59.0 / 74.0 52.8 / 67.1

Table 6: Screening / selection accuracy of MCR for M2, l = 8.

rZ \ bZ 1.3 1.95 2.6 3.25

5.0 85.8 / 0.2 79.0 / 28.5 71.4 / 67.1 63.1 / 68.5
10.0 85.5 / 1.6 78.0 / 45.8 70.7 / 71.1 62.4 / 68.4
15.0 84.6 / 7.7 77.4 / 58.5 69.4 / 72.5 61.2 / 66.9
20.0 82.9 / 22.2 75.5 / 66.9 67.1 / 72.2 59.2 / 65.0
25.0 80.2 / 40.4 72.2 / 71.4 64.5 / 70.6 56.7 / 62.6
30.0 77.1 / 53.6 69.1 / 71.2 61.2 / 67.1 54.0 / 59.3
40.0 67.1 / 64.1 60.0 / 64.3 53.1 / 58.5 46.4 / 50.9

Table 7: Screening / selection accuracy of MCR for M3, l = 8.
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