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Abstract

We consider a learning algorithm generated by a regularization scheme with a concave
regularizer for the purpose of achieving sparsity and good learning rates in a least squares
regression setting. The regularization is induced for linear combinations of empirical fea-
tures, constructed in the literatures of kernel principal component analysis and kernel
projection machines, based on kernels and samples. In addition to the separability of the
involved optimization problem caused by the empirical features, we carry out sparsity and
error analysis, giving bounds in the norm of the reproducing kernel Hilbert space, based on
a priori conditions which do not require assumptions on sparsity in terms of any basis or
system. In particular, we show that as the concave exponent q of the concave regularizer
increases to 1, the learning ability of the algorithm improves. Some numerical simulations
for both artificial and real MHC-peptide binding data involving the `q regularizer and the
SCAD penalty are presented to demonstrate the sparsity and error analysis.

Keywords: Sparsity, concave regularizer, reproducing kernel Hilbert space, regularization
with empirical features, `q-penalty, SCAD penalty.

1. Introduction

Kernel methods provide efficient learning algorithms for analyzing nonlinear features, pro-
cessing complex data, and studying data structures or relations. One may use a (unknown)
probability measure ρX to model the distribution and structures of data on a compact
metric space X (input space) and a Mercer kernel K : X × X → R to quantify by its
value K(x, u) similarities between two data points x and u. Then some ideas of kernel
methods may be understood (Cristianini and Shawe-Taylor, 2000) in terms of eigenfunc-
tions {φi} of the integral operator LK defined by LK(f) =

∫
X K(·, x)f(x)dρX(x) on the

reproducing kernel Hilbert space (RKHS) (HK , ‖ · ‖K) of functions on X induced by the
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kernel K. These eigenfunctions can be used to represent a feature map and provide in-
sightful, generally nonlinear, features regarding a particular learning problem. As the data
distribution ρX is unknown, one needs to learn or approximate the features from a data set
x = {xi}mi=1 ⊂ X and then carries out learning tasks based on the learned data dependent
approximate features.

Here we are interested in a class of data dependent features {φxi }∞i=1 on X, called em-
pirical features, constructed from the data set x and the kernel K. They have been used in
kernel principal component analysis (Schölkopf et al., 1998), kernel ridge regression (Cris-
tianini and Shawe-Taylor, 2000; Hastie et al., 2001), kernel projection machines (Blanchard
et al., 2004), and spectral algorithms (Lo Gerfo et al., 2008; Caponnetto and Yao, 2010).
They are defined by means of an empirical integral operator Lx

K on HK expressed as

Lx
Kf =

1

m

m∑
i=1

f(xi)Kxi , f ∈ HK , (1)

where Kx := K(·, x) is a function in HK for x ∈ X. It can be seen from the reproducing
property f(xi) = 〈f,Kxi〉K that the operator Lx

K is symmetric, positive and of rank at most
m. Denote {(λxi , φxi )}i the normalized eigenpairs of Lx

K with (possibly multiple) eigenvalues
λx1 ≥ λx2 ≥ · · · ≥ λxm ≥ 0 = λxm+1 = · · ·, then the eigenfunctions {φxi }i form an orthonormal
basis of HK and they are called empirical features.

In this paper we consider some empirical feature-based regularization schemes in a re-
gression setting and study sparsity of these learning algorithms when the regularizer is a con-
cave function. Here the output space is Y = R. With a sample z = {(xi, yi)}mi=1 ∈ (X×Y )m,
the learning algorithm producing the output function

fz =
∞∑
i=1

czi φ
x
i (2)

is given in terms of its coefficient sequence cz = (czi )
∞
i=1 by the regularization scheme

cz = arg min
c∈`2

 1

m

m∑
i=1

 ∞∑
j=1

cjφ
x
j (xi)− yi

2

+ γ
∞∑
j=1

Ω(|cj |)

 , (3)

where γ > 0 is a regularization parameter and Ω : [0,∞) → [0,∞) is a nonzero concave
function satisfying Ω(0) = 0. We shall show under some regularity assumptions that the
above learning algorithm has strong sparsity in the sense that with confidence, the number
of nonzero coefficients in the expression (2) is of order O(mθsp) with 0 < θsp < 1, much
smaller than the sample size m.

The scheme (3) with special forms of regularizers can be found in the literature of kernel
methods. When the regularization on the sequence c = (cj)j is replaced by the restriction
cj = 0 for j > N , the scheme is the kernel principal component regression (Schölkopf et al.,
1998) or spectral cut-off algorithm (Lo Gerfo et al., 2008; Caponnetto and Yao, 2010) where
detailed error analysis can be found. The case Ω(|c|) = |c|2 corresponds to the kernel ridge
regression (Cristianini and Shawe-Taylor, 2000; Hastie et al., 2001) with error analysis well
conducted in a large literature (Caponnetto and De Vito, 2007; Bauer et al., 2007; Smale
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and Zhou, 2007). The kernel projection machines can be expressed (Blanchard et al., 2004)
by taking Ω to be the indicator function of the set (0,∞) and

∑
Ω(|cj |) to be the number of

nonzero terms in the sequence c, hence correspond to the classical variable subset selection
method. These algorithms were applied and analyzed for classification and regression in
(Zwald, 2005; Zwald and Blanchard, 2006; Blanchard and Zwald, 2008).

A main choice of the regularizer in scheme (3) is Ω(|c|) = |c|q with 0 < q < 2. It
can be viewed as a kernel version of the classical bridge regression (Frank and Friedman,
1993) which has advantages in some applications. To describe more details, we express
the empirical features explicitly in terms of eigenpairs of the kernel (Gramian) matrix
K := (K(xi, xj))

m
i,j=1 (see e.g. Schölkopf et al. (1998); Guo and Zhou (2012)): if λ̂xi > 0 is

the i-th largest eigenvalue of K with a corresponding normalized eigenvector µ̂i ∈ Rm, then

λxi = λ̂xi /m and φxi =
∑m

j=1(µ̂i)jKxj/
√
λ̂xi . In particular, when X ⊂ Rn and K is the linear

kernel K(x, y) = x · y, we know that φxi is exactly the i-th principal component of the data
matrix Ax = [x1, . . . , xm]T ∈ Rm×n and K is the kernel matrix K = AxA

T
x . So the scheme

(3) may be viewed as regularized kernel principal component analysis (RKPCA). Moreover,
a large statistical literature with the linear kernel on Rn reveals advantages of various
methods (Frank and Friedman, 1993): principal component regression and ridge regression
perform well in reducing variances when many variables together collectively effect the
response with no small variable subset standing out. In particular, ridge regression (with
q = 2 in Ω(|c|) = |c|q) has the best performance when a prior distribution of the regression
vector in a Bayesian framework is Gaussian or rotationally invariant setting no preference
for any particular directions. A Gaussian process interpretation can be used to understand
some advantages of the kernel ridge regression. On the other hand, the variable subset
selection method (with q = 0) has an optimal performance when the prior distribution puts
the entire probability mass on the variable axes, only a few variables have influences on
the response, but no information as to which ones is available. Bridge regression may have
advantages when the prior distribution is concentrated along some favored directions. It
also provides ways for automatic variable selection, for optimizing the power index q ∈ (0, 2)
and expanding the model selection criterion by estimating jointly the optimal values of q
and γ. As an extension to deal with nonlinear features in RKHSs, it is expected that the
kernel bridge regression included in (3) has the same flexibility and some advantages, which
will be simulated for real MHC-peptide binding data in subsection 5.2 and discussed in our
sparsity and error analysis.

A crucial property of empirical features is their orthogonality with respect to the discrete
measure 1

m

∑m
i=1 δxi stated as 1

m

∑m
i=1 φ

x
j (xi)φ

x
l (xi) = δj,lλ

x
j . This is a classical fact and

simplifies the empirical error term in (3) as 1
m

∑m
i=1

(∑∞
j=1 cjφ

x
j (xi)− yi

)2
=
∑m

i=1 λ
x
i c

2
i −

2
∑m

i=1 λ
x
i S

z
i ci + 1

m

∑m
i=1 y

2
i , where Sz

i is a number defined in terms of the sample z as

Sz
i =

{
1

mλxi

∑m
j=1 yjφ

x
i (xj), if λxi > 0,

0, otherwise.
(4)

This simplification easily implies that the optimization problem (3) can be solved separately
for each coefficient ci, and czi = 0 for i ≥ m+ 1. So we may replace the summations in (2)
and (3) by those up to m (we keep them for the convenience of the proofs).
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Theorem 1 Let Ω : [0,∞) → [0,∞), γ > 0 and z ∈ (X × Y )m. Then a sequence cz =
(czi )

∞
i=1 is a solution to (3) if and only if for each i, czi is a minimizer of the univariate

function defined by

hi(c) = hλxi ,Sz
i ,γ,Ω

(c) = λxi (c− Sz
i )2 + γΩ(|c|), c ∈ R. (5)

2. Main Results on Sparsity and Error Analysis

The main purpose of this paper is to show that both strong sparsity and fast learning
rate can be achieved by the learning algorithm (2) when the regularizing function Ω in (3)
is concave. We describe the main ideas in this section and will provide detailed general
analysis in Section 4 while some numerical simulations for both artificial and real data will
be presented in Section 5.

2.1 Concave regularizing functions

The concavity of regularizing functions plays a central role in achieving sparsity in this
paper. It has the following nice property.

Theorem 2 If Ω : [0,∞) → [0,∞) is a nonzero continuous concave function satisfying
Ω(0) = 0, then Ω(1) > 0, and that

Ω(c) ≥ Ω(1)c, ∀c ∈ (0, 1] (6)

and

Ω(c) ≤ Ω(1)c, ∀c ∈ [1,∞). (7)

Theorem 2 is part of Proposition 10 in Section 3 which will give more properties for
concave regularizing functions.

Note that (6) is a lower bound for Ω on (0, 1]. Our error bounds will be presented by
means of the asymptotic behavior of the concave regularizing function Ω near the origin,
which is characterized by a concave exponent q ∈ [0, 1].

Definition 3 We say that a concave regularizing function Ω has a concave exponent q ∈
[0, 1] if there is a positive constant C∗Ω such that

Ω(c) ≤ C∗Ωcq, ∀c ∈ (0, 1]. (8)

Theorem 2 tells us that the concave exponent q in (8) is at most 1. We also know from
Proposition 10 in Section 3 that (8) is always true with q = 0 and C∗Ω = Ω(1). Sharper
error bounds with better q are possible. The following are two such families of concave
regularizing functions: `q-regularizer (0 < q ≤ 1) which is well studied for bridge regression
(Frank and Friedman, 1993; Fu and Knight, 2000; Liu et al., 2007; Xu et al., 2012), and
SCAD penalties (Fan and Li, 2001).

Example 1 Let 0 < q ≤ 1 and Ω : [0,∞)→ [0,∞) be the `q-regularizer given by Ω(c) = cq.
Then (8) is satisfied with C∗Ω = 1.
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Example 2 Let b > 2 and Ω : [0,∞) → [0,∞) be a SCAD penalty given as a concave
continuous function by Ω(0) = 0 and

Ω′(c) =


1, for 0 < c < 1,
c−b
1−b , for 1 < c < b,

0, for c > b.

Then Ω(c) = c for c ∈ [0, 1], Ω(c) = 1+b
2 −

(c−b)2

2(b−1) for c ∈ (1, b] and Ω(c) = 1+b
2 for c ∈ (b,∞).

Hence (8) is satisfied with q = 1 and C∗Ω = 1. Moreover, we have Ω(c) ≤ 1+b
2 for every

c ∈ [1,∞).

In our results for sparsity and error analysis, we shall use a general power index q ∈ [0, 1]
instead of the universal choice of q = 0.

2.2 Sparsity and learning rates

Throughout the paper, we assume that the sample set z is drawn independently according
to a Borel probability measure ρ on X × Y and that for some constant M > 0, |y| ≤ M
almost surely. The regression function in our regression setting is defined as a function fρ
on X given by

fρ(x) =

∫
Y
ydρ(y|x), x ∈ X,

where ρ(·|x) is the conditional measure induced by ρ at x ∈ X. The regularity assumption
we shall take for the regression function is

fρ = LrK(gρ) for some r > 0 and gρ ∈ HK . (9)

Here LK is a compact, self-adjoint and positive operator on HK having eigenpairs {(λi, φi)}i
with the eigenvalues {λi} forming a nonincreasing sequence tending to 0 and and eigen-
functions {φi} an orthonormal basis of HK . Its r-th power LrK is given by LrK(

∑
i ciφi) =∑

i ciλ
r
iφi and assumption (9) means fρ =

∑
i diλ

r
iφi for some sequence {di} ∈ `2 repre-

senting gρ =
∑

i diφi. The exponent r in (9) measures the decay of the coefficients {diλri }
of fρ with respect to the orthonormal basis {φi} of HK , and thereby the regularity of the
regression function fρ.

Let us illustrate our general analysis for strong sparsity and learning rates by two special
cases, derived from Corollary 16 (with α1 = α2 = α) and Corollary 17 (with β1 = β2 = β)
in Section 4, for which the eigenvalues of the integral operator LK decay polynomially or
exponentially.

Theorem 4 Assume (9) with r > 1
2 , and that Ω has a concave exponent q ∈ [0, 1] with (8)

valid. Suppose that for some positive constants D1, D2 and α, the eigenvalues {λi} of LK
decay polynomially as

D1i
−α ≤ λi ≤ D2i

−α, ∀i ∈ N (10)

with 2αmax {r, 1} > 1. Let 0 < δ < 1. If we choose

γ = C1(D2/λ1)r+1

(
log

4m

δ

)1+2r

m−
1+r
1+2r , (11)
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then with confidence 1− δ we have

czi = 0, ∀ mθsp + 1 ≤ i ≤ m with θsp =
1

α(1 + 2r)
< 1 (12)

and

‖fz − fρ‖K ≤ C2

(
log

4m

δ

)1+2r

m−θrate , θrate =
αmin{4r, 4r(2− q)} − 2(2− q)

4(2r + 1)(2− q)α
,

where C1 and C2 are constants independent of m or δ (to be specified in the proof).

The eigenvalue decay condition (10) is typical for Sobolev smooth kernels on domains
in Euclidean spaces, with the power index α depending on the smoothness of the kernel
(Reade, 1984).

The regularity assumptions (9) and (10) impose restrictions on the concave exponent
q ∈ [0, 1]. To see this, we express gρ =

∑
i diφi with (di)i ∈ `2 and fρ = LrK(gρ) =

∑
i λ

r
idiφi.

A natural requirement for fρ corresponding to the `q-regularizer is (λridi)i ∈ `q. Imposing
this uniformly with respect to the coefficient sequence (di)i is the same as the boundedness
from `2 to `q of the diagonal operator Dλr associated with the fixed non-indreasing sequence
(λri )i. This problem together with asymptotic behaviors of the entropy numbers of Dλr has
been widely studied in the literature of function spaces and approximation theory (Edmunds
and Triebel, 1996; Kühn, 2008) and the boundedness can be characterized by the condition

(λri )i ∈ `s with
1

s
=

1

q
− 1

2
. (13)

Under the eigenvalue decay assumption (10), the characterization condition (13) is equiva-

lent to
∑∞

i=1 i
−αrs =

∑∞
i=1 i

− 2αrq
2−q <∞, which can be stated as

q >
2

2αr + 1
. (14)

Thus the concave exponent q is tailored to the regularity assumption and the eigenvalue
decay, and a larger regularity index r leads to a wider range of the concave exponent q.

Combining the regularity assumption (9) and the eigenvalue decay condition (10) has
been an approach for error analysis of learning algorithms. In particular, the minimax rates
of convergence in the L2

ρX
metric was derived in (Caponnetto and De Vito, 2007) under

these conditions with the restrictions α > 1 and 0 < r ≤ 1
2 . Moreover, the well-known

regularized least squares regression (RLS) scheme

fz = arg min
f∈HK

{
1

m

m∑
i=1

(f(xi)− yi)2 + γ‖f‖2K

}
(15)

achieves these rates in probability as ‖fz − fρ‖2L2
ρX

= O(m
− α(2r+1)
α(2r+1)+1 ). Error estimates

in the HK metric provide error analysis for the distribution mismatch problem (where
the distribution for predictions might be different from the sampling distribution ρX) and

6



Sparsity of Empirical Feature-Based Regularization Schemes

for sampling processes with nonidentical distributions (Smale and Zhou, 2009; Zhou, 2003).
Such estimates for the RLS algorithm (15) were conducted in (Smale and Zhou, 2007; Bauer

et al., 2007) where the learning rates are ‖fz−fρ‖K = O(m−
r

2r+2 ) under the same restriction
0 < r ≤ 1

2 and the maximum exponent is 1
6 when r = 1

2 . The maximum exponent for the
RLS algorithm (15) cannot be improved further for r > 1

2 and this is called a saturation
effect in the theory of inverse problems (Bauer et al., 2007).

As pointed out in (Bauer et al., 2007; Lo Gerfo et al., 2008), spectral cut-off algorithms
do not suffer from the saturation phenomenon. Theorem 4 confirms this advantage for the
algorithm (2) in the range r > 1

2 (the range 0 < r ≤ 1
2 is covered by Corollary 16 in Section

4). To be specific, let 1
2 < q ≤ 1 and r ≥ 1

4q−2 . Then the power index θrate for the learning
rate in Theorem 4 is

θrate =
2rα− 2 + q

2(2r + 1)(2− q)α
(16)

which becomes larger as the regularity index r increases, and can be arbitrarily close to 1
2

when r is large enough (fρ is smooth enough) and q = 1. This applied to the case when Ω
is the SCAD penalty given in Example 2. Even in the range 0 < q ≤ 1

2 , for a sufficiently
large r, the power index θrate in Theorem 4 can be arbitrarily close to 1

2(2−q) .

The estimate (12) for sparsity in Theorem 4 tells us that with confidence, the output
function fz =

∑
czi φ

z
i has at mostmθsp nonzero coefficients with a sparsity exponent θsp < 1,

a small proportion of the m coefficients in the expression (2). Moreover, θsp decreases,
leading to better sparsity, as r increases. Note that by our analysis, the restriction (14) is
the only influence of the concave exponent q for the sparsity.

Theorem 5 Assume (9) with r > 1
2 , and that Ω has a concave exponent q ∈ [0, 1] with (8)

valid. Suppose that for some positive constants D1, D2 and β, the eigenvalues {λi} of LK
decay exponentially as

D1β
−i ≤ λi ≤ D2β

−i, ∀i ∈ N. (17)

Let 0 < δ < 1. If we choose γ as (11), then with confidence 1− δ we have

czi = 0, ∀ log(m+ 1)

(1 + 2r) log β
+ 1 ≤ i ≤ m (18)

and

‖fz − fρ‖K ≤ C2

(
log

4m

δ

)2r+1

m−θrate , θrate = min

{
r

(2− q)(1 + 2r)
,

(2− q)r
(2− q)(1 + 2r)

}
,

where C2 is a constant independent of m or δ (to be specified in the proof).

Remark 6 The eigenvalue decay condition (17) is typical for analytic kernels on domains
in Euclidean spaces (Reade, 1984). When the regularity index r is large enough, the power
index θrate for the learning rate is 1

2(2−q) − ε with an arbitrarily small ε > 0. So the learning

rate depends on the concave exponent q, better as q increases. On the other hand, (18) tells

us that with confidence, the output function fz =
∑
czi φ

z
i has at most log(m+1)

(1+2r) log β nonzero

coefficients, a logarithmic proportion of the m coefficients in the expression (2).
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2.3 Minimax lower bound

The learning rate stated in Theorem 4 is close to be optimal when r is large. One might use
some existing methods for dealing with the L2

ρX
error in the literature (Yang and Barron,

1999; Bauer et al., 2007; Caponnetto and De Vito, 2007; DeVore et al., 2004; Suzuki et al.,
2012; Raskutti et al., 2012; Steinwart et al., 2009) to give lower bounds. Here we focus on the
error in theHK-metric and present a minimax lower bound. Denote κ = maxx∈X

√
K(x, x).

Definition 7 Let P(α, r,M,R,D1, D2) be the set of all Borel probability measures ρ on
X × Y such that the regularity assumption (9) is satisfied with ‖gρ‖K ≤ R, (10) holds true,
and the conditional measure ρ(·|x) is supported on [−M,M ] for almost all x ∈ X.

Theorem 8 Let α, r,R,D1, D2 be positive constants and M ≥ 4κr+
1
2R. Let fz ∈ HK be

the output of an arbitrary learning algorithm based on the sample z = {(xi, yi)}mi=1. Then
for every 0 < δ < 1, there exists a positive constant Cδ,α,r,M,R,D1,D2 such that

lim
m→∞

inf
fz

sup
ρ∈P(α,r,M,R,D1,D2)

Pz∼ρm
{
‖fz − fρ‖K ≥ Cδ,α,r,M,R,D1,D2m

− αr
α(1+2r)+1

}
≥ 1− δ.

The proof of Theorem 8 follows from a more general result to be given in Appendix B.
The power index αr

α(2r+1)+1 for the minimax lower bound stated in Theorem 8 corresponds to

the upper bound index (16) in Theorem 4 for a smoother regularity class with r′ = r+ 2−q
2α .

This shows the gap between our upper bound and the minimax lower bound. It would be
interesting to derive minimax rates of convergence in the HK-metric which can be achieved
by the learning algorithm (2) with Ω(c) = cq for 0 < q ≤ 1.

2.4 Connections to ridge regression and some other learning algorithms

The classical RLS algorithm (15) can be stated as the scheme (2) by taking the regularizer
Ω(c) = c2 corresponding to the ridge regression. This follows from a representer theorem

for (15), the identities span{Kxj}mj=1 = span{φxj }mj=1 and
∥∥∥∑∞j=1 cjφ

x
j

∥∥∥2

K
=
∑∞

j=1 |cj |2.

The regularizer Ω(c) = cq with 0 < q ≤ 2 correspond to the bridge regression. When
1 < q ≤ 2, this regularizer is convex instead of being concave. It has the special property
that Ω′+(0) = 0 where Ω′+(c) denotes the right-side derivative of Ω at c ∈ [0,∞). This leads
to the observation that sparsity is hardly achieved for the learning algorithm (2) associated
with such a convex regularizer.

Theorem 9 Let Ω : [0,∞) → [0,∞), γ > 0 and Ω(0) = 0. If Ω′+(0) = 0, then for each i,
czi vanishes if and only if either λxi = 0 or Sz

i = 0.

An elastic net learning algorithm (Zou and Hastie, 2005) can be introduced by taking
the regularizer in (3) as

Ωen(c) = c+ ζc2, (19)

where ζ > 0 is an elastic net parameter controlling the proportion of the `2-norm square in
the regularizer Ωen. Though the regularizer Ωen is strictly convex, it does not satisfy the
assumption Ω′+(0) = 0 in Theorem 9. When ζ is small, this regularizer is actually close to
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the `1-penalty. Hence we would expect that the corresponding learning algorithm with a
strictly convex regularizer has strong sparsity. This is beyond the discussion in this paper.

Let us mention that the learning scheme (2) is closely related to spectral algorithms (Lo
Gerfo et al., 2008; Caponnetto and Yao, 2010) which can be stated in terms of the empirical
features {φxj }mj=1 and a filter function gγ : [0, 1]→ R as

fz =

m∑
j=1

√
λxj /m

(
m∑
i=1

(µ̂j)iyi

)
gγ(λxj )φxj ,

where {(mλxj , µ̂j)} are the normalized eigenpairs of the kernel matrix K.
Our analysis relies heavily on the special form of the least squares loss, as seen from

Theorem 1. It would be interesting to establish similar analysis for schemes associated with
other loss functions such as those in the minimum error entropy principle, at least when
the scaling parameter is large (Hu et al., 2015).

3. Properties of Concave Regularizing Functions

In this section we give some properties of concave regularizing functions, and then estimate
the solution cz to (3) by means of the explicit expression stated in Theorem 1.

Proposition 10 Let Ω : [0,∞) → [0,∞) be a nonzero continuous concave function satis-
fying Ω(0) = 0. Then it has the following properties.

(a) The function Ω is nondecreasing on [0,∞), and Ω(c) > 0 for c ∈ (0,∞). The right-
hand derivative Ω′+ is well defined, nonincreasing, finite, and nonnegative on (0,∞).
At the origin, Ω′+(0) ∈ (0,∞].

(b) We have Ω(c) ≥ Ω(1)c for c ∈ [0, 1], and Ω(c) ≤ Ω(1)c for c ∈ [1,∞).

(c) There holds Ω(a+ b) ≤ Ω(a) + Ω(b) for any a, b > 0.

(d) The positive function Ω(c)
c defined on (0,∞) is nonincreasing and satisfies limc→0+

Ω(c)
c =

Ω′+(0).

(e) The positive function Ω(c)
c2

defined on (0,∞) is continuous and strictly decreasing from

limc→0+
Ω(c)
c2

= +∞ to limc→∞
Ω(c)
c2

= 0.

Proposition 10 will be proved in Appendix C.
For our analysis, we need the following two auxiliary functions.

Definition 11 Define an auxiliary function Ω∗ : (0,∞) → (0,∞) of a positive function Ω
as

Ω∗(λ) = inf
c∈(0,∞)

{
Ω(c)

c
+ λc

}
, λ ∈ (0,∞).

Define another auxiliary function Ω̃ : (0,∞)→ (0,∞) as

Ω̃(λ) = arg sup

{
c ∈ (0,∞) :

Ω(c)

c2
≥ λ

}
, λ ∈ (0,∞).

9
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Remark 12 The value −Ω∗(λ) is exactly equal to the value at the point −λ of the conjugate

function of Ω(c)
c defined in the literature of optimization.

We can now estimate the solution cz to (3) in terms of Sz
i , λ

x
i and γ, by means of the

explicit expression stated in Theorem 1.

Theorem 13 Let γ > 0 and Ω : [0,∞)→ [0,∞) be a nonzero continuous concave function
satisfying Ω(0) = 0.

(a) Both functions Ω∗ and Ω̃ are well-defined and positive on (0,∞). The function Ω∗ is
nondecreasing while Ω̃ is non-increasing.

(b) Let i ∈ N. If

|Sz
i | <

Ω∗(
λxi
γ )

2
λxi
γ

, (20)

then czi = 0. If |Sz
i | >

Ω∗(
λxi
γ

)

2
λx
i
γ

, then czi has the same sign as Sz
i and satisfies |Sz

i | −

Ω̃
(
λxi
γ

)
≤ |czi | ≤ |Sz

i |.

(c) Let dx ≤ m be the rank of the Gramian matrix K. Then λxi = 0 if and only if i > dx.
Hence czi = 0 for i > dx.

Proof (a) The first statement follows easily from the definitions of the auxiliary functions
and Proposition 10.

(b) Since γ > 0, when λxi = 0 or Sz
i = 0, our statement follows from Theorem 1. So

we consider the case that λxi > 0 and Sz
i 6= 0. By symmetry we only need to prove our

statement for the case Sz
i > 0.

With λxi > 0 and Sz
i > 0, we find that the left-side derivative of the function hi is

(hi)
′
−(c) = 2λxi (c − Sz

i ) − γΩ′+(|c|) < 0 for c ∈ (−∞, 0], hence all its possible minimizers
are achieved on [0,∞). Let us consider the difference function hi(c) − hi(0) for c > 0 and
factorize it as

hi(c)− hi(0) = cgi(c), where gi(c) := γ
Ω(c)

c
+ λxi c− 2λxi S

z
i . (21)

If |Sz
i | <

Ω∗(
λxi
γ

)

2
λx
i
γ

, then infc>0 gi(c) > 0 which implies hi(c)− hi(0) = cgi(c) > 0 for every

c > 0. Hence in this case hi has the only minimizer at 0 = czi .

If |Sz
i | >

Ω∗(
λxi
γ

)

2
λx
i
γ

, then γ infc>0

{
Ω(c)
c +

λxi
γ c
}
< 2λxi S

z
i meaning that infc>0 gi(c) < 0.

It follows that a minimizer c∗ of the function gi on (0,∞) satisfies gi(c∗) < 0. Hence
hi(c∗)− hi(0) = c∗gi(c∗) < 0. So 0 is not a minimizer of hi.

Since Ω is nondecreasing on [0,∞), we know that hi is strictly increasing on (Sz
i ,∞).

Hence the minimizer czi of hi satisfies 0 < czi ≤ Sz
i . We also know from hi(c

z
i ) ≤ hi(Sz

i ) that

hi(c
z
i ) = λxi (czi − Sz

i )2 + γΩ(czi ) ≤ hi(Sz
i ) = λxi (Sz

i − Sz
i )2 + γΩ(Sz

i ) = γΩ(Sz
i ).

10
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Express Sz
i as Sz

i − czi + czi . Proposition 10 (c) yields Ω(Sz
i ) = Ω(Sz

i − czi + czi ) ≤ Ω(czi ) +
Ω(Sz

i − czi ). It follows that

λxi (czi − Sz
i )2 ≤ γΩ(Sz

i − czi ).

Therefore,
Ω(Sz

i − czi )
(Sz
i − czi )

2 ≥
λxi
γ
.

By the definition of the function Ω̃, this implies that Sz
i − czi ≤ Ω̃

(
λxi
γ

)
. This proves the

range of czi and verifies out second statement.
(c) It is well-known (e. g. Guo and Zhou (2012)) that the first dx eigenvalues of the

matrix K are given by {mλxi }d
x

i=1 while λxi = 0 for i ≥ dx + 1. So λxi = 0 if and only if
i > dx. In this case, condition (20) is satisfied and by the conclusion in part (b), czi = 0.
The proof of Theorem 13 is thus complete.

4. General Analysis for Sparsity and Error Bounds

In this section we present a general result on sparsity and error bounds for the learning
algorithm (2) generated by the regularization scheme (3) based on empirical features and
concave regularizing functions. To this end, we need the following bounds for the auxiliary
functions Ω∗ and Ω̃.

Lemma 14 If Ω : [0,∞) → [0,∞) is a nonzero continuous concave function satisfying
Ω(0) = 0, then there exists a positive constant CΩ,1 such that

Ω∗(λ) ≥ CΩ,1 min{
√
λ, 1}, ∀λ > 0. (22)

If moreover, Ω has a concave exponent q ∈ [0, 1] with (8) valid, then there exists a positive
constant CΩ,2 such that

Ω̃(λ) ≤ CΩ,2 max

{(
1

λ

)1/(2−q)
,

1

λ

}
∀λ > 0. (23)

Proof For c ∈ (0, 1], we apply Proposition 10 (d) and find

Ω(c)

c
+ λc ≥ Ω(1) + λc ≥ Ω(1) ≥ Ω(1) min{

√
λ, 1}.

For c ∈ (1,∞), we have Ω(c) ≥ Ω(1). Then Ω(c)
c + λc ≥ Ω(1)

c + λc ≥ 2
√

Ω(1)λ ≥
2
√

Ω(1) min{
√
λ, 1}. Thus (22) holds with CΩ,1 = max{Ω(1), 2

√
Ω(1)}.

To prove (23), we let λ ∈ (0,∞). Denote Ω̃(λ) as c∗. We know from the definition of

Ω̃(λ) that Ω(c∗)
(c∗)2 ≥ λ.

When c∗ ≤ 1, we use condition (8) and find Ω(c∗) ≤ C∗Ω(c∗)q. But Ω(c∗) ≥ λ(c∗)2. So

C∗Ω(c∗)q ≥ λ(c∗)2 and c∗ ≤ (C∗Ω)1/(2−q) ( 1
λ

)1/(2−q)
.

11
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When c∗ > 1, we apply (7) in Theorem 2 to c∗ and obtain λ ≤ Ω(c∗)
(c∗)2 ≤ Ω(1)c∗

(c∗)2 ≤ Ω(1)
c∗

and thereby c∗ ≤ Ω(1)
λ . Combing the above two cases, we know that (23) is valid with

CΩ,2 = max{(C∗Ω)1/(2−q),Ω(1)}. This proves the lemma.

Theorem 15 Assume (9) with r > 0, and that Ω has a concave exponent q ∈ [0, 1] with
(8) valid. If 0 < δ ≤ 1 and for some 1 ≤ p ≤ m, the regularization parameter γ satisfies

γ ≥


C1

(
log 4m

δ

)1+2r
(

max
{
λp
λ1
, 1√

m

})r+1
, if 0 < r ≤ 1

2 ,

C1

(
log 4m

δ

)1+2r
max

{(
λp
λ1

)r+ 1
2
, 1√

m

}(
max

{
λp
λ1
, 1√

m

}) 1
2
, if r > 1

2 ,
(24)

then with confidence 1− δ we have

czi = 0, ∀i = p+ 1, . . . ,m

and

‖fz − fρ‖K ≤ CΩ,2
√
p

{(
2γ

λp

) 1
2−q

+
2γ

λp

}
+ ‖gρ‖Kλrp + C3

√
p log 4m

δ√
m

λmin{−1/2,r−1}
p

+C4λ
min{r−1,0}
p

 ∞∑
i=p+1

λ
2 max{r,1}
i

1/2

, (25)

where C1 ≥ 1, C3 and C4 are constants independent of γ, p, δ, or m.

The detailed proof of Theorem 15 will be given in Appendix A where the constants C1,
C3 and C4 will be specified explicitly. Here we outline the ideas of the proof by referring
to three lemmas, Lemmas 18, 19 and 20 to be given in Appendix A, for estimating three
quantities |λxi − λi|,

√
λxi |Sz

i − 〈fρ, φxi 〉K | and
√
λxi |〈fρ, φxi 〉K |.

Step 1. To achieve the desired sparsity, we apply (22) in Lemma 14 and know that for
verifying condition (20) in Theorem 13, it is sufficient to show that for i ≥ p+ 1,

|Sz
i | <

CΩ,1

2

min{
√
λxi /γ, 1}

λxi /γ

or equivalently, √
λxi |S

z
i | <

CΩ,1

2
min

{√
γ, γ/

√
λxi

}
. (26)

Step 2. Our desired bound (26) is verified by estimating

λxi ≤ |λxi − λi|+ λi

by Lemma 18 and the decay of {λi}, and estimating√
λxi |S

z
i | ≤

√
λxi |S

z
i − 〈fρ, φxi 〉K |+

√
λxi | 〈fρ, φ

x
i 〉K |

12
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by Lemma 19 and Lemma 20.
Step 3. To prove the error bound (25), we expand the error function fz−fρ with respect

to the orthonormal basis {φxi } of HK and express the norm as

‖fz − fρ‖2K =
∑
i∈N

(
〈fz − fρ, φxi 〉K

)2
=
∑
i∈N

(
czi − 〈fρ, φxi 〉K

)2
.

Split
czi − 〈fρ, φxi 〉K = {czi − Sz

i }+
{
Sz
i − 〈fρ, φxi 〉K

}
.

While the term |czi − Sz
i | can be bounded by Ω̃

(
λxi
γ

)
according to Theorem 13, the other

term will be expressed as

|Sz
i − 〈fρ, φxi 〉K | =

√
λxi |Sz

i − 〈fρ, φxi 〉K |√
λxi

.

Step 4. We can control the denominator of the above expression by introducing a set
with large λxi as S := {i ∈ {1, . . . , p}, λxi > λp/2}, and then bound the expression by Lemma
19. This together with our previous estimate Guo and Zhou (2012) for the terms involving
i ∈ N \ S finally yields the desired error bound.

Let us demonstrate how to apply our general analysis in Theorem 15 by two special cases
where the eigenvalues of the integral operator LK decay polynomially and exponentially.

Corollary 16 Assume (9) with r > 0, and that Ω has a concave exponent q ∈ [0, 1] with
(8) valid. Suppose that for some positive constants D1, D2, α1 ≥ α2, the eigenvalues {λi}
of LK decay polynomially as

D1i
−α1 ≤ λi ≤ D2i

−α2 , ∀i ∈ N (27)

with 2α2 max {r, 1} > 1. Let 0 < δ < 1. If we choose

γ = C1(D2/λ1)r+1

(
log

4m

δ

)1+2r

m−min{ 1+r
2
, 1+r
1+2r

}, (28)

then with confidence 1− δ we have

czi = 0 ∀ m
1

α2 max{2,1+2r} + 1 ≤ i ≤ m (29)

and

‖fz − fρ‖K ≤ C2

(
log

4m

δ

)1+2r

m−θrate ,

where θrate = min{θ1, θ2} with

θ1 =

{
2(r+1)α2−2α1−2+q

4(2−q)α2
, if 0 < r ≤ 1/2,

2(2r+2)α2−4α1−2(2−q)
4(2r+1)(2−q)α2

, if r > 1/2,

θ2 =
2α2r − 1− 2(α1 − α2) max

{
1− r, 1

2

}
2α2 max{2, 1 + 2r}

,

and C1 and C2 are constants independent of m or δ (given explicitly in the proof).

13
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Proof Denote µ = max {2, 1 + 2r}. Take p = dm
1
α2µ e, the smallest integer greater than or

equal to m
1
α2µ . Then we have

m
1
α2µ ≤ p ≤ 2m

1
α2µ

and by (27),

λp ≤ D2p
−α2 ≤ D2m

− α2
α2µ = D2m

− 1
µ .

It follows that
λp
λ1
≤ D2

λ1
m
− 1
µ ≤ D2

λ1

1√
m

for 0 < r ≤ 1
2 and for r > 1

2 , there holds (λp/λ1)r+
1
2 ≤

(D2/λ1)r+
1
2 1√

m
. Note that (27) implies λ1 ≤ D2. Then (24) is satisfied if we choose γ by

(28). Hence the conclusion of Theorem 15 holds true. In particular, the statement (29)
about the sparsity follows from the choice of p. What is left is to bound the right-hand side
of (25) by estimating the four terms separately.

The first term of (25) can be estimated by bounding 2γ
λp

from the choice of γ and the
lower bound of λp as

2γ

λp
≤ 2C1

D1
(D2/λ1)r+1

(
log

4m

δ

)1+2r

m−min{ 1+r
2
, 1+r
1+2r

}
(

2m
1
α2µ

)α1

.

Observe that

min

{
1 + r

2
,

1 + r

1 + 2r

}
− α1

α2µ
=

{
1+r

2 −
α1
2α2

= (r+1)α2−α1

2α2
, if 0 < r ≤ 1/2,

1+r
1+2r −

α1
(2r+1)α2

= 2(2r+2)α2−4α1

4(2r+1)α2
, if r > 1/2.

Therefore,

CΩ,2
√
p

{(
2γ

λp

) 1
2−q

+
2γ

λp

}
≤ CΩ,2

√
22α1+2C1

D1
(D2/λ1)r+1

(
log

4m

δ

)1+2r

m−θ1 ,

where

θ1 =

{
(r+1)α2−α1

2(2−q)α2
− 1

4α2
= 2(r+1)α2−2α1−2+q

4(2−q)α2
, if 0 < r ≤ 1/2,

2(2r+2)α2−4α1−2(2−q)
4(2r+1)(2−q)α2

, if r > 1/2.

The second term of (25) can be estimated by the choice of γ and the upper bound of λp
as

‖gρ‖Kλrp ≤ ‖gρ‖KDr
2p
−α2r ≤ ‖gρ‖KDr

2m
− 2α2r

2α2µ ≤ ‖gρ‖KDr
2m
−θ2 ,

where θ2 is the power index defined in the statement of the theorem.
The third term of (25) can be estimated by the choice of p and the lower bound of λp as

C3

√
p log 4m

δ√
m

λmin{−1/2,r−1}
p

≤ C3D
min{−1/2,r−1}
1 p

1
2
−α1 min{−1/2,r−1}

(
log

4m

δ

)
m−1/2

≤ C3

√
2
(
2−α1D1

)min{−1/2,r−1}
(

log
4m

δ

)
m
− 1

2
+ 1
α2µ

( 1
2
−α1 min{− 1

2
,r−1}).

14



Sparsity of Empirical Feature-Based Regularization Schemes

From the identity µ−2r = max {2, 2r + 1}−2r = 2 max {1− r, 1/2}, we see that the power
index of m equals

−1

2
+

1

α2µ

(
1

2
+ α1 max

{
1

2
, 1− r

})
= − 1

2α2µ
(2α2r − 1 + α2(µ− 2r)− 2α1 max {1/2, 1− r})

= − 1

2α2µ
(2rα2 − 1− 2(α1 − α2) max {1/2, 1− r})

which is exactly −θ2.

Turn to the last term of (25). By the restriction 2α2 max {r, 1} > 1, we can bound the
series as

∞∑
i=p+1

λ
2 max{r,1}
i ≤

∞∑
i=p+1

D
2 max{r,1}
2 i−2α2 max{r,1}

≤ D
2 max{r,1}
2

∫ ∞
p

x−2α2 max{r,1} dx =
D

2 max{r,1}
2 p1−2α2 max{r,1}

2α2 max {r, 1} − 1
.

This combining with the choice of p and the lower bound of λp yields

C4λ
min{r−1,0}
p

 ∞∑
i=p+1

λ
2 max{r,1}
i

1/2

≤ C4D
min{r−1,0}
1 D

max{r,1}
2√

2α2 max {r, 1} − 1
m

1
2α2µ

(1−2α2 max{r,1}−2α1 min{r−1,0})
.

But

1

2α2µ
(1− 2α2 max {r, 1} − 2α1 min {r − 1, 0})

= − 1

2α2µ
(2rα2 − 1− 2(α1 − α2) max {0, 1− r}) ≤ −θ2.

So we can combine this bound with the above estimates for the first three terms of (25) and
verify the learning rate stated in the theorem by taking

C2 = CΩ,2

√
22α1+2C1

D1
(D2/λ1)r+1 + ‖gρ‖KDr

2

+C3

√
2
(
2−α1D1

)min{−1/2,r−1}
+
C4D

min{r−1,0}
1 D

max{r,1}
2√

2α2 max {r, 1} − 1
.

The proof of Corollary 16 is complete.
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Corollary 17 Assume (9) with r > 0, and that Ω has a concave exponent q ∈ [0, 1] with
(8) valid. Suppose that for some positive constants D1, D2, β1 ≥ β2, the eigenvalues {λi}
of LK decay exponentially as

D1β
−i
1 ≤ λi ≤ D2β

−i
2 , ∀i ∈ N. (30)

Let 0 < δ < 1. If we choose γ as (28), then with confidence 1− δ we have

czi = 0, ∀ log(m+ 1)

max {2, 1 + 2r} log β2
+ 1 ≤ i ≤ m (31)

and

‖fz − fρ‖K ≤ C2

(
log

4m

δ

)2r+1

m−θrate ,

where

θrate =
1

(2− q) max{2, 1 + 2r}
min

{
1 + r − log β1

log β2
,

(2− q)r − (2− q) log (β1/β2)

log β2
max

{
1− r, 1

2

}}
and C2 is a constant independent of m or δ (specified in the proof).

Proof Take µ = max {2, 1 + 2r} and p = d log(m+1)
µ log β2

e. Then

log(m+ 1)

µ log β2
≤ p < 1 +

log(m+ 1)

µ log β2
,

which implies m1/µ ≤ βp2 ≤ β
p
1 ≤ β1(2m)

log β1
µ log β2 . Hence

λp
λ1
≤ D2

λ1
β−p2 ≤ D2

λ1

1√
m

for 0 < r ≤ 1
2

and for r > 1
2 , there holds (λp/λ1)r+

1
2 ≤ (D2/λ1)r+

1
2 1√

m
. Then (24) is satisfied and the

conclusion of Theorem 15 holds true. The statement (31) about the sparsity follows from
the choice of p, and the next step is to estimate the four summing terms of the error bound
(25).

For the first term, we notice

2γ

λp
≤ 2C1

D1
(D2/λ1)r+1

(
log

4m

δ

)1+2r

m−min{ 1+r
2
, 1+r
1+2r

}β1(2m)
log β1
µ log β2 .

So the first term can be bounded as

CΩ,2
√
p

{(
2γ

λp

) 1
2−q

+
2γ

λp

}
≤ CΩ,2C5

√
log(2m)

(
log

4m

δ

)1+2r

m
− 1

2−q min{ 1+r
2
, 1+r
1+2r

}+ log β1
(2−q)µ log β2 ,

where C5 is the constant given by

C5 = 2

√
1

log 2
+

1

µ log β2
max

{
2C1

D1
(D2/λ1)r+1β12

log β1
µ log β2 , 1

}
.
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The second term of (25) is easy to handle:

‖gρ‖Kλrp ≤ ‖gρ‖KDr
2β
−pr
2 ≤ ‖gρ‖KDr

2m
−r/µ.

The third term of (25) can be estimated by the choice of p and the lower bound of λp as

C3

√
p log 4m

δ√
m

λmin{−1/2,r−1}
p ≤ C6

√
log(2m)

(
log

4m

δ

)
m
− 1

2
+

log β1
µ log β2

max{1/2,1−r}
,

where

C6 = C3

√
1

log 2
+

1

µ log β2
D

min{−1/2,r−1}
1

(
β12

log β1
µ log β2

)max{1/2,1−r}
.

Observe that max {1/2, 1− r}+ r = µ/2. The power index of m equals

−1

2
+

log β1

µ log β2
max {1/2, 1− r} = − r

µ
+
r log β2 − µ

2 log β2 + µ
2 log β1 − r log β1

µ log β2

= − r
µ

+
log β1

β2

µ log β2
max {1/2, 1− r} .

Finally, we bound the series in the last term of (25) and find

C4λ
min{r−1,0}
p

 ∞∑
i=p+1

λ
2 max{r,1}
i

1/2

≤ C4(β1/D1)max{1−r,0}(2m)
log β1
µ log β2

max{1−r,0}
D

max{r,1}
2

 ∞∑
i=p+1

β
−2imax{r,1}
2

1/2

≤ C4

(
β1

D1

)max{1−r,0}
(2m)

log β1
µ log β2

max{1−r,0}
D

max{r,1}
2

β
−pmax{r,1}
2√
β

2 max{r,1}
2 − 1

≤ C4

(
β1

D1

)max{1−r,0} D
max{r,1}
2√

β
2 max{r,1}
2 − 1

(2m)
max{1−r,0}(log β1)

µ log β2 m
−max{r,1}

µ .

Note that the power index of m is

max {1− r, 0} log β1

µ log β2
− max {r, 1}

µ
=

max {1− r, 0} log(β1/β2)− r log β2

µ log β2
.

Then the desired learning rate is verified by observing min{1+r
2 , 1+r

1+2r}µ = 1 + r and taking

C2 = CΩ,2C5 + ‖gρ‖KDr
2 + C6 + C4

(
β1

D1
2

log β1
µ log β2

)max{1−r,0} D
max{r,1}
2√

β
2 max{r,1}
2 − 1

.

The proof of Corollary 17 is complete.
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5. Simulations

In this section we give some simulations for both artificial and real data. We demonstrate
that with either the `q-regularizer or the SCAD penalty, RKPCA is comparable with the
regularized least squares in learning error, and achieves satisfactory sparsity.

5.1 Simulation on artificial data

We start with a simulation on artificial data. For simplicity we take X = [0, 1]. Let ρ be a
Borel probability measure on X×Y to be specified later and z = {(xi, yi)}mi=1 be a sample of
size m divisible by 5. We divide z evenly into five disjoint subsets z = ∪5

j=1zj , and do 5-fold

cross-validation to select the parameter γ∗ from a geometric sequence {10−10, · · · , 10−2} of
length 60, to minimize the root-mean-square error (RMSE). Here, with a fixed γ the RMSE
score is defined by

ERMSE,z(γ) =

 5∑
j=1

∑
(x,y)∈z\zj

(
f
zj
γ (x)− y

)21/2

. (32)

Then RKPCA is trained with γ∗ on z and outputs fz. Sparsity is evaluated by the per-
centage of the non-zero coefficients in (2). The prediction performance is evaluated with
the oracle RMSE defined by

ERMSE,fρ(f
z) =

(∫ 1

0
(fz(x)− fρ(x))2 dx

)1/2

, (33)

where the integral is computed with 1000 equispaced points.
First, we simulate with the Gaussian kernel

KG = exp

(
−(x− y)2

0.62

)
.

We use the regression model fρ(x) = e−(x−1/3)2/0.72
. Let ρX be the uniform distribution on

[0, 1], and ρ(·|x) be the uniform distribution on [fρ(x) − 0.1, fρ(x) + 0.1]. The simulation
is summarized in Table 1. We find that the behavior of the SCAD penalty is comparable
on this data set with the penalty Ω(|c|) = |c|, and despite of very strong sparsity, RKPCA
achieves comparable precision with that of RLS.

Next, we simulate with the Sobolev kernel

KS(x, y) = e−|x−y|.

The regression function is set as fρ(x) = |2x − 1|τ . The marginal and conditional proba-
bilities ρX and ρ(·|x) are defined as above. We use τ = 1, 1.5, 2.5, and 4.5. Note that in
addition to ERMSE,fρ , the RKHS norm is now also easy to compute as another measurement.
In fact, one has for f, g ∈ HKS

,

2 〈f, g〉KS
= f(0)g(0) + f(1)g(1) +

∫ 1

0
f(t)g(t) dt+

∫ 1

0
f ′(t)g′(t) dt.

The simulation is summarized in Table 2, from which we have the following observations:
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sample RKPCA
RLS

size q = 1 q = 2/3 q = 1/3 SCAD

100
3.5(2.0)% 3.2(1.7)% 3.2(1.9)% 3.3(1.5)% 100(0)%

0.013(0.006) 0.012(0.005) 0.012(0.007) 0.011(0.005) 0.012(0.005)

300
1.4(1.2)% 1.2(1.4)% 1.1(0.7)% 1.1(0.5)% 100(0)%

0.007(0.004) 0.007(0.006) 0.007(0.003) 0.006(0.002) 0.007(0.003)

1000
0.4(0.4)% 0.4(0.3)% 0.3(0.2)% 0.4(0.2)% 100(0)%

0.004(0.002) 0.004(0.002) 0.004(0.002) 0.004(0.001) 0.004(0.002)

Table 1: A simulation with Gaussian kernel. Here SCAD and q = 1, 2/3, and 1/3 stand for
RKPCA with penalty SCAD (as defined in Example 2, and we set b = 2.5) and Ω(|c|) =
|c|q respectively. The scores of RLS are also listed for comparison. In each cell, the
top percentage gives the proportion of the non-zero coefficients, and the bottom score is
ERMSE,fρ as defined in (33). Each simulation is repeated 100 times. We present the mean
scores in the table, and give the sample standard deviation in parentheses.

(a) The sparsity and learning error of RKPCA with the SCAD penalty is again comparable
on this data set to that with the penalty Ω(|c|) = |c|. This shows that the expression of
the SCAD penalty near the origin (the same as that for Ω(|c|) = |c|) and the concave
exponent q play a crucial role in its performance.

(b) Compared with RLS, RKPCA achieves very strong sparsity while its approximation
ability with Ω(|c|) = |c| in terms of the RKHS metric is consistently better. This
might be caused by the orthogonality of the empirical features in the RKHS. The
learning ability in terms of the root-mean-square error defined by (33) is comparable.

5.2 Simulation on MHC-peptide binding data

We apply RKPCA to the quantitative Immune Epitope Database (IEDB) benchmark data
of human leukocyte antigen (HLA)–peptide binding affinities, introduced in (Nielsen et al.,
2008). Nielsen and Lund (2009) developed an artificial neural network-based algorithm
called NN-align, which gave on this data set the state-of-the-art prediction in 2009. Later,
Shen et al. (2012) designed a string kernel denoted in their paper by K̂3, and applied it
with the regularized least squares (RLS), which produced better prediction than NN-align
on the same data set. We use this K̂3 in RKPCA, and show that RKPCA achieves some
sparsity in addition to the precision comparable with that in (Shen et al., 2012).

Here are more details of our simulation. The quantitative IEDB benchmark data set
in (Nielsen et al., 2008) as mentioned above, consists of 14 groups, each containing the
affinities of a set of peptides to a specific HLA allele. We use the 14 groups separately. Now
fix an allele a and denote X = Pa the set of peptides given in the data set. For p ∈ Pa,
the affinity yp ∈ [0, 1] ⊂ Y = R is a real number (see Nielsen and Lund (2009); Shen et al.

(2012)). We divide Pa into 5 disjoint subsets Pa = ∪5
j=1P

j
a, following exactly the division

in (Nielsen and Lund, 2009) and (Shen et al., 2012), for a 5-fold cross-validation. In the jth
cross-validation round (j = 1, · · · , 5), we take Pj

a as testing data and Pa\Pj
a as training

data. Within the training data, another 5-fold cross-validation is employed to select the
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parameter γ∗j in (3), from a geometric sequence {10−8, · · · , 10−2} of length 60 to minimize

the RMSE score defined in (32). Then RKPCA is trained on Pa\Pj
a with γ∗j to predict

the affinities on Pj
a. After all the five rounds, each peptide p ∈Pa has a predicted affinity

ỹp obtained during the jth round where Pj
a 3 p. Note that ỹp may not always fall in [0, 1],

and might be projected back onto [0, 1] to increase precision. However we do not adopt the
projection, for being consistent and comparable with (Shen et al., 2012) where they did not
either. Since there is no oracle information, we use

ERMSE,a =

 1

#Pa

∑
p∈Pa

(ỹp − yp)2

1/2

(34)

as the RMSE score. A lower RMSE score indicates a better performance.
The area under the receiver operating characteristic (ROC) curve (AUC), defined as

EAUC,a =
#
{

(p, p′) : p ∈Pa,B, p
′ ∈Pa,N , ỹp > ỹp′

}
(#Pa,B) (#Pa,N )

∈ [0, 1], (35)

is another performance index. Here Pa,B = {p ∈Pa : yp > 0.426} and Pa,N = Pa\Pa,B

are the sets of binding peptides and non-binding ones respectively, with the threshold 0.426
used in (Nielsen and Lund, 2009). A higher AUC score indicates a better performance.
The above scores (34) and (35) are used in (Shen et al., 2012). See also (Nielsen and Lund,
2009) for details.

We test the RKPCA with Ω(c) = |c|q, where q is set to be 1, 2/3, and 1/3 in three
separated tests, and with the SCAD penalty. For defining K̂3, the Hadamard power index
is fixed to be 0.11387 for simplicity, as suggested in (Shen et al., 2012).

The simulation is summarized in Table 3, from which we have the following observations:

(a) In terms of AUC on this real data set, RLS (Shen et al., 2012) has better performance
than NN-align (Nielsen and Lund, 2009). The improvement is 0.55% on average, with
better AUC scores for 9 out of 14 test groups while the score difference is always
at the second significant figure. RKPCA with Ω(c) = |c| has even slightly better
performance, giving an improvement of 0.11% on average, and better AUC scores for
8 out of 14 test groups with the score difference always at the third significant figure
only. Improvements in (Shen et al., 2012) and in our simulation seem to be small, but
we regard the results to be valuable because this data set has been well investigated
in the immunological literature and any improvement is difficult. In particular, the
dissimilarity metric BLOSUM62-2 among the 20 basic amino-acids, based on which
the string kernel K̂3 is constructed in (Shen et al., 2012), was obtained in a very
tight form after long-term effort and a vast biological literature (see, e.g., Henikoff
and Henikoff (1992)).

(b) Sparsity and error bounds in terms of both AUC and root-mean-square error for the
simulation with the SCAD penalty is almost the same on this real data set as that
with Ω(|c|) = |c|, verifying again the role of the concave exponent q = 1.
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sample
τ

RKPCA
RLS

size q = 1 q = 2/3 q = 1/3 SCAD

100

1.0
14.2(7.5)% 9.7(4.4)% 8.1(3.7)% 16.0(8.0)% 100(0)%

0.026(0.007) 0.026(0.006) 0.029(0.006) 0.025(0.005) 0.025(0.005)
0.685(0.318) 0.761(0.401) 1.033(0.772) 0.738(0.378) 0.801(0.185)

1.5
16.9(8.7)% 11.2(6.9)% 9.2(6.4)% 17.7(8.4)% 100(0)%

0.026(0.007) 0.027(0.005) 0.030(0.006) 0.026(0.006) 0.027(0.008)
0.780(0.384) 0.885(0.653) 1.006(0.966) 0.805(0.378) 0.908(0.228)

2.5
22.5(10.3)% 14.2(6.7)% 13.1(11.7)% 20.4(8.8)% 100(0)%
0.028(0.007) 0.031(0.008) 0.033(0.007) 0.029(0.007) 0.029(0.006)
1.086(0.545) 1.217(0.678) 1.601(1.653) 1.124(1.235) 1.195(0.380)

4.5
26.6(10.6)% 17.8(8.1)% 17.8(11.6)% 26.2(9.8)% 100(0)%
0.033(0.007) 0.036(0.010) 0.039(0.010) 0.036(0.011) 0.035(0.010)
1.483(0.515) 1.758(0.814) 2.488(1.979) 1.623(0.882) 1.685(0.385)

300

1.0
5.4(1.6)% 3.8(1.3)% 3.0(1.6)% 6.1(2.8)% 100(0)%

0.015(0.003) 0.016(0.003) 0.018(0.003) 0.016(0.002) 0.016(0.002)
0.503(0.073) 0.604(0.264) 0.865(1.084) 0.568(0.207) 0.652(0.104)

1.5
6.4(2.3)% 4.1(1.4)% 3.2(1.2)% 6.0(2.1)% 100(0)%

0.016(0.003) 0.017(0.003) 0.019(0.004) 0.016(0.003) 0.016(0.003)
0.589(0.164) 0.666(0.242) 0.824(0.687) 0.578(0.148) 0.708(0.117)

2.5
7.7(2.5)% 5.2(1.9)% 4.0(1.2)% 7.3(2.2)% 100(0)%

0.018(0.004) 0.019(0.003) 0.021(0.003) 0.018(0.003) 0.018(0.002)
0.802(0.166) 0.946(0.463) 1.044(0.683) 0.759(0.139) 0.966(0.152)

4.5
10.2(2.7)% 6.9(2.0)% 5.2(1.2)% 9.8(3.1)% 100(0)%

0.020(0.004) 0.022(0.003) 0.024(0.003) 0.020(0.004) 0.021(0.003)
1.142(0.218) 1.372(0.475) 1.495(0.768) 1.164(0.537) 1.382(0.223)

1000

1.0
2.0(0.6)% 1.4(0.5)% 1.0(0.3)% 2.0(0.5)% 100(0)%

0.009(0.001) 0.010(0.001) 0.011(0.002) 0.009(0.001) 0.010(0.001)
0.434(0.085) 0.484(0.180) 0.533(0.368) 0.421(0.039) 0.570(0.114)

1.5
2.3(0.7)% 1.5(0.4)% 1.2(0.3)% 2.4(0.6)% 100(0)%

0.010(0.001) 0.010(0.002) 0.011(0.002) 0.010(0.001) 0.010(0.001)
0.467(0.068) 0.516(0.122) 0.583(0.325) 0.477(0.066) 0.612(0.103)

2.5
2.8(0.6)% 1.8(0.4)% 1.4(0.3)% 3.0(0.7)% 100(0)%

0.011(0.001) 0.012(0.001) 0.013(0.002) 0.011(0.001) 0.011(0.001)
0.642(0.090) 0.711(0.207) 0.846(0.533) 0.647(0.085) 0.781(0.085)

4.5
3.8(0.9)% 2.4(0.4)% 1.9(0.4)% 3.7(0.8)% 100(0)%

0.012(0.002) 0.013(0.001) 0.015(0.002) 0.012(0.002) 0.013(0.001)
0.950(0.155) 0.998(0.184) 1.254(0.912) 0.931(0.108) 1.163(0.119)

Table 2: A simulation with Sobolev kernel. Here SCAD and q = 1, 2/3, and 1/3 stand for RKPCA
with penalty SCAD (as defined in Example 2, and we set b = 2.5) and Ω(|c|) = |c|q
respectively. The scores of RLS are also listed for comparison. In each cell, the top
percentage gives the proportion of the non-zero coefficients, the middle score is ERMSE,fρ

as defined in (33), and the bottom score gives the RKHS distance of fz to fρ. Each
simulation is repeated 100 times. We present the mean scores in the table, and give the
sample standard deviation in parentheses.
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Allele a #Pa NN-align RLS
RKPCA

q = 1 q = 2/3 q = 1/3 SCAD
– – 74.65% 59.30% 60.81% 74.66%

DRB1*0101 5166 – 0.18660 0.18690 0.18746 0.18830 0.18694
0.836 0.85707 0.85651 0.85512 0.85306 0.85637

– – 88.04% 71.84% 56.47% 86.00%
DRB1*0301 1020 – 0.18497 0.18476 0.18495 0.18551 0.18483

0.816 0.82813 0.82995 0.82950 0.82714 0.83008
– – 72.39% 60.16% 61.40% 73.36%

DRB1*0401 1024 – 0.24055 0.24089 0.24202 0.24277 0.24152
0.771 0.78431 0.78023 0.77697 0.77505 0.77839

– – 70.55% 57.84% 57.88% 71.12%
DRB1*0404 663 – 0.20702 0.20797 0.20918 0.20878 0.20796

0.818 0.81425 0.81695 0.81134 0.80801 0.81701
– – 81.47% 69.56% 63.06% 78.85%

DRB1*0405 630 – 0.20069 0.20037 0.20017 0.20076 0.20048
0.781 0.79296 0.79837 0.79929 0.79791 0.79799

– – 98.65% 91.76% 86.96% 98.65%
DRB1*0701 853 – 0.21944 0.21826 0.21840 0.21849 0.21826

0.841 0.83440 0.83883 0.83918 0.83916 0.83883
– – 96.85% 93.75% 87.98% 96.90%

DRB1*0802 420 – 0.19666 0.19555 0.19557 0.19572 0.19557
0.832 0.83538 0.83968 0.83938 0.83749 0.83968

– – 73.11% 53.35% 50.94% 74.15%
DRB1*0901 530 – 0.25398 0.25563 0.25653 0.25784 0.25593

0.616 0.66591 0.66293 0.66273 0.66163 0.66177
– – 94.61% 83.82% 80.21% 94.61%

DRB1*1101 950 – 0.20776 0.20799 0.20802 0.20780 0.20799
0.823 0.83703 0.83679 0.83680 0.83706 0.83678

– – 84.99% 72.64% 62.25% 81.28%
DRB1*1302 498 – 0.22569 0.22518 0.22540 0.22578 0.22496

0.831 0.80410 0.80479 0.80439 0.80303 0.80533
– – 75.80% 64.94% 74.79% 77.89%

DRB1*1501 934 – 0.23268 0.23318 0.23401 0.23419 0.23313
0.758 0.76436 0.76258 0.76086 0.76058 0.76219

– – 92.94% 89.57% 87.52% 92.49%
DRB3*0101 549 – 0.15945 0.15932 0.15916 0.15911 0.15934

0.844 0.80228 0.80504 0.80546 0.80622 0.80509
– – 96.75% 81.28% 76.18% 96.75%

DRB4*0101 446 – 0.20809 0.20765 0.20838 0.20834 0.20765
0.811 0.81057 0.81096 0.80791 0.80713 0.81098

– – 100.00% 99.95% 98.76% 100.00%
DRB5*0101 924 – 0.23038 0.23045 0.23045 0.23046 0.23045

0.797 0.80568 0.80549 0.80550 0.80557 0.80549
– – 85.77% 74.98% 71.80% 85.48%

Average – 0.21100 0.21101 0.21141 0.21170 0.21107
0.7982 0.80260 0.80351 0.80246 0.80136 0.80328

Table 3: Comparison of sparsity and error. Each cell consists of the average of proportions of the
non-zero coefficients in the five rounds of test (the top percentage), RMSE defined by (34)
(the middle number), and AUC defined by (35) (the bottom number). We cite the scores
of NN-align from (Nielsen and Lund, 2009) and that of RLS from (Shen et al., 2012).
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Appendix A. Proof of Theorem 15

In this appendix, we prove our general result on sparsity and error bounds stated in Theorem
15.

The following three lemmas are needed for proving Theorem 15. The first one is cited
from (Zwald and Blanchard, 2006). See also (Koltchinskii and Giné, 2000; Guo and Zhou,
2012).

Lemma 18 (a) We have

∞∑
i=1

(λi − λxi )2 ≤ ‖LK − Lx
K‖2HS . (36)

(b) For any 0 < δ < 1, with confidence 1− δ we have

‖LK − Lx
K‖HS ≤

4κ2 log 2
δ√

m
. (37)

The second lemma needed for proving Theorem 15 improves our previous estimate

‖{λxi |Sz
i − 〈fρ, φxi 〉K |}‖`2 ≤

8Mκ log 2
δ√

m
given in (Guo and Zhou, 2012) for the case of `1-

penalty. The significant improvement we make here is to reduce the power of λxi from 1 to
1
2 . Hence a different method for the proof is needed.

Lemma 19 Let fρ ∈ HK . For 0 < δ < 1, with confident 1− δ we have

√
λxi
∣∣Sz
i − 〈fρ, φxi 〉K

∣∣ ≤ 2
√

2M√
m

√
log

2m

δ
, ∀ i ∈ N. (38)

Proof When λxi = 0, (38) is obvious. When i ≥ m+ 1, λxi = 0 since the rank of Lx
K is not

greater than m. For any fixed λxi > 0, denote

ηj =
yj − fρ(xj)√

m
, aj =

φxi (xj)√
mλxi

.

Then by the definition of Sz
i ,
√
λxi
(
Sz
i − 〈fρ, φxi 〉K

)
=
∑m

j=1 ηjaj . Also,
∑m

j=1 a
2
j = 1.

Since |y| ≤ M almost surely, we have |ajηj | ≤ 2M |aj |/
√
m almost surely. By Hoeffding’s

inequality, we have for any ε > 0,

P


∣∣∣∣∣∣
m∑
j=1

ajηj

∣∣∣∣∣∣ ≥ ε
 ≤ 2 exp

(
−mε

2

8M2

)
.
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Taking the union of the above at most m events, we know that

P
{

max
i=1,...,m

∣∣∣√λxi (Sz
i − 〈fρ, φxi 〉K

)∣∣∣ ≥ ε} ≤ 2m exp

(
−mε

2

8M2

)
.

One completes the proof by taking ε > 0 to be the positive solution to the equation
2m exp(−mε2

8M2 ) = δ.

Lemma 20 Let I ⊂ N be a finite index set. If fρ = LrKgρ for some gρ ∈ HK , then when
0 < r < 1/2,(∑

i∈I
(
√
λxi 〈fρ, φ

x
i 〉K)2

)1/2

≤ 2r‖gρ‖K(#I)(1−2r)/4‖LK − Lx
K‖

(1+2r)/2
HS

+2r‖gρ‖K

(∑
i∈I

(λxi )1+2r

)1/2

, (39)

and when r ≥ 1/2,(∑
i∈I

(
√
λxi 〈fρ, φ

x
i 〉K)2

)1/2

≤
√

2λ
r− 1

2
1 ‖gρ‖K‖LK − Lx

K‖HS

+2r‖gρ‖K

(∑
i∈I

(λxi )1+2r

)1/2

. (40)

Proof Let gρ =
∑∞

j=1 djφj with {dj} ∈ `2. Then ‖{dj}‖`2 = ‖gρ‖K and fρ =
∑∞

j=1 λ
r
jdjφj .

For i ∈ I, since whenever λxi = 0,
√
λxi 〈fρ, φxi 〉K = 0, without loss of generality we assume

λxi > 0. Then we expand
√
λxi 〈fρ, φxi 〉K as

√
λxi 〈fρ, φ

x
i 〉K =

 ∑
j:λj≥2λxi

+
∑

j:λj<2λxi

√λxi λrjdj 〈φj , φxi 〉K . (41)

The second sum in (41) is easy to handle:∣∣∣∣∣∣
∑

j:λj<2λxi

√
λxi λ

r
jdj 〈φj , φxi 〉K

∣∣∣∣∣∣ ≤ 2r(λxi )(1+2r)/2‖{dj}‖`2

 ∞∑
j=1

〈φj , φxi 〉
2
K

1/2

= 2r‖gρ‖K(λxi )(1+2r)/2. (42)

When r ≥ 1/2 and λj ≥ 2λxi , since
√
λxi λj ≤

λj√
2
≤
√

2(λj − λxi ), the first sum in (41)

can be bounded as∣∣∣∣∣∣
∑

j:λj≥2λxi

√
λxi λ

r
jdj 〈φj , φxi 〉K

∣∣∣∣∣∣ ≤
∑

j:λj≥2λxi

λ
r− 1

2
j

√
2
∣∣(λj − λxi ) 〈φj , φxi 〉K dj

∣∣
≤
√

2λ
r− 1

2
1 ‖gρ‖K

 ∞∑
j=1

(λj − λxi )2 〈φj , φxi 〉
2
K

1/2

. (43)
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When 0 < r < 1/2 and λj ≥ 2λxi , we observe that

√
λxi λ

r
j

|λj − λxi |
r+ 1

2

≤
λ
r+ 1

2
j /

√
2

(λj/2)r+
1
2

= 2r.

So in this case the first sum in (41) can also be bounded as∣∣∣∣∣∣
∑

j:λj≥2λxi

√
λxi λ

r
jdj 〈φj , φxi 〉K

∣∣∣∣∣∣ ≤
∑

j:λj≥2λxi

2r|λj − λxi |r+
1
2

∣∣dj 〈φj , φxi 〉K∣∣

≤ 2r

∑
j

d2
j

1/2∑
j

∣∣(λj − λxi ) 〈φj , φxi 〉K
∣∣(r+ 1

2
) 2

r+ 1
2


r+ 1

2
2
∑

j

∣∣〈φj , φxi 〉K∣∣( 1
2
−r) 2

1
2−r


1
2−r

2

= 2r‖gρ‖K

 ∞∑
j=1

(λj − λxi )2 〈φj , φxi 〉
2
K

(1+2r)/4

. (44)

By (41), (42), and the triangle inequality,

(∑
i∈I
|
√
λxi 〈fρ, φ

x
i 〉K |

2

)1/2

≤

∑
i∈I

 ∑
j:λj≥2λxi

√
λxi λ

r
jdj 〈φj , φxi 〉K

21/2

+2r‖gρ‖K

(∑
i∈I

(λxi )1+2r

)1/2

. (45)

We denote the first term of the right-hand side of (45) as Υ. The definition of the Hilbert-
Schmidt norm tells us that

‖LK − Lx
K‖2HS =

∑
‖(LK − Lx

K)φxi ‖2K =
∞∑

i,j=1

(λj − λxi )2 〈φxi , φj〉
2
K . (46)

So when r ≥ 1/2, (43) and (46) give

Υ ≤
√

2λ
r− 1

2
1 ‖gρ‖K

∑
i∈I

∞∑
j=1

(λj − λxi )2 〈φj , φxi 〉
2
K

1/2

≤
√

2λ
r− 1

2
1 ‖gρ‖K‖LK − Lx

K‖HS,

which proves (40). When 0 < r < 1/2, by (44), (46) and Hölder’s inequality, we have

Υ ≤ 2r‖gρ‖K

∑
i∈I

 ∞∑
j=1

(λj − λxi )2 〈φj , φxi 〉
2
K

(1+2r)/2


1/2
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≤ 2r‖gρ‖K

∑
i∈I

∞∑
j=1

(λj − λxi )2 〈φj , φxi 〉
2
K

(1+2r)/4(∑
i∈I

1
2

1−2r

)(1−2r)/4

≤ 2r‖gρ‖K‖LK − Lx
K‖

(1+2r)/2
HS (#I)(1−2r)/4,

which verifies (39). The proof of the lemma is complete.

We are now in a position to prove Theorem 15.

Proof of Theorem 15. By Lemmas 18 and 19, we know that for any 0 < δ < 1
2 there exists

a subset Zδ of Zm of measure at least 1 − 2δ such that both (37) and (38) hold for each
z ∈ Zδ.

Let z ∈ Zδ.
To prove czi = 0 for i = p + 1, . . . ,m, we show that condition (50) for γ, to be defined

below which is the same as condition (24) in the statement of the theorem after scaling δ
to δ/2, implies (26) and thereby (20) in Theorem 13, according to (22) in Lemma 14. To
this end, we estimate

√
λxi |Sz

i | and
√
λxi |Sz

i | ·
√
λxi .

We first apply Lemma 20 to the set I = {i} ⊂ {p + 1, . . . ,m} and Lemma 18 and see
that in either case of 0 < r < 1/2 and r ≥ 1/2, there holds√
λxi | 〈fρ, φ

x
i 〉K | ≤

(
2r +

√
2λ

max{r− 1
2
,0}

1

)
‖gρ‖K‖LK − Lx

K‖
min{ 1+2r

2
,1}

HS + 2r‖gρ‖K (λxi )
1+2r

2

≤ C ′1

(
λ

(1+2r)/2
i +

(
log

2

δ

)(1+2r)/2

m−min{1/2,(1+2r)/4}

)
,

where

C ′1 =

(
2r +

√
2λ

max{r− 1
2
,0}

1

)
(2κ)min{1+2r,2}‖gρ‖K + 22r+ 1

2 ‖gρ‖K(2κ+ 1)1+2r.

This together with (38) in Lemma 19 gives√
λxi |S

z
i | ≤

√
λxi |S

z
i − 〈fρ, φxi 〉K |+

√
λxi | 〈fρ, φ

x
i 〉K |

≤ C ′1λ
r+ 1

2
i +

(
2
√

2M + C ′1

)(
log

2m

δ

)(1+2r)/2

m−min{1/2,(1+2r)/4}

≤
(

2
√

2M + 2C ′1

)(
log

2m

δ

)(1+2r)/2

max

{(
max

{
λp,

1√
m

})r+ 1
2

,
1√
m

}
. (47)

It follows that the first inequality
√
λxi |Sz

i | <
CΩ,1

2

√
γ of (26) is valid if γ satisfies

γ >

(
4
√

2M + 4C ′1
CΩ,1

)2(
log

2m

δ

)1+2r

max

{(
max

{
λp,

1√
m

})2r+1

,
1

m

}
. (48)

Then we estimate λxi by Lemma 18 as

√
λxi ≤

√
λi +

√
|λi − λxi | ≤ (2κ+ 1)

√
log

2

δ

(
max

{
λp,

1√
m

}) 1
2

.
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Combining this with (47), we know that the second inequality
√
λxi |Sz

i | ·
√
λxi <

CΩ,1

2 γ of
(26) is valid if γ satisfies

γ >
4
√

2M + 4C ′1
CΩ,1

(2κ+ 1)

(
log

2m

δ

)1+r

max

{(
max

{
λp,

1√
m

})r+1

,

1√
m

(
max

{
λp,

1√
m

}) 1
2
}
. (49)

Now we can choose the constant C1 from (48) and (49) by

C1 = max


(

4
√

2M + 4C ′1
CΩ,1

)2

(1 + λ1)2r+1,
4
√

2M + 4C ′1
CΩ,1

(2κ+ 1) (1 + λ1)2r+1, 1

 .

With this choice, we know that for γ satisfying

γ ≥


C1

(
log 2m

δ

)1+2r
(

max
{
λp
λ1
, 1√

m

})r+1
, if 0 < r ≤ 1

2 ,

C1

(
log 2m

δ

)1+2r
max

{(
λp
λ1

)r+ 1
2
, 1√

m

}(
max

{
λp
λ1
, 1√

m

}) 1
2
, if r > 1

2 ,
(50)

both (48) and (49) are valid, which implies (26). Then by (22) in Lemma 14, we see that
condition (20) in Theorem 13 is valid and hence czi = 0 for i = p+ 1, . . . ,m.

Now we turn to the desired error bound. Assume (50) for γ. Define an index set S by
S = {i ∈ {1, · · · , p} : λxi > λp/2}.

When i ∈ {1, · · · , p} but λxi ≤ λp/2, we check the process in proving (47) and see from
the restriction λxi ≤ λp/2 that condition (50) for γ ensures (26). Then by (22) in Lemma
14, we see that condition (20) is valid for i. Hence czi = 0 for i ∈ N\S. So we can expand
‖fρ − fz‖K with respect to the orthonormal basis {φxi } of HK as

‖fρ − fz‖2K =
∑
i∈N\S

(
〈fρ, φxi 〉K

)2
+
∑
i∈S

(
czi − 〈fρ, φxi 〉K

)2
. (51)

For any i ∈ S, we have λxi > λp/2 > 0 and

|czi − 〈fρ, φxi 〉K | ≤ |c
z
i − Sz

i |+
√
λxi |Sz

i − 〈fρ, φxi 〉K |√
λp/2

.

Applying Theorem 13 (b), Lemma 14 and Lemma 19 gives

|czi − 〈fρ, φxi 〉K | ≤ CΩ,2 max

{(
2γ

λp

) 1
2−q

,
2γ

λp

}
+

2
√

2M√
mλp/2

√
log

2m

δ
.

It follows that√∑
i∈S

(
czi − 〈fρ, φxi 〉K

)2 ≤ CΩ,2
√
p

{(
2γ

λp

) 1
2−q

+
2γ

λp

}
+

4
√
pM√
mλp

√
log

2m

δ
.
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To estimate the first sum in (51) we cite an estimate from Guo and Zhou (2012) for the

quantity
(∑

i∈N\S(〈fρ, φxi 〉K)2
)1/2

which is independent of the regularizing function Ω and

know that it can be bounded by

‖gρ‖Kλrp+1 + 2max{r,1}‖gρ‖Kλmin{r−1,0}
p

(
∞∑

i=p+1

λ
max{2r,2}
i )

1
2 + cr,λ1‖LK − Lx

K‖HS

 ,

where cr,λ1 is the constant given by

cr,λ1 =

{
21+rλr−1

1 , if r ≥ 1,
2, if r < 1.

Therefore

‖fz − fρ‖K ≤ CΩ,2
√
p

{(
2γ

λp

) 1
2−q

+
2γ

λp

}
+ ‖gρ‖Kλrp+1 +

2
√
pM√
mλp

√
log

2m

δ

+2max{r,1}‖gρ‖Kλmin{r−1,0}
p


 ∞∑
i=p+1

λ
max{2r,2}
i

1/2

+
4cr,λ1κ

2 log 2
δ√

m


≤ CΩ,2

√
p

{(
2γ

λp

) 1
2−q

+
2γ

λp

}
+ ‖gρ‖Kλrp+1 + C3

√
p log 2m

δ√
m

λ
min{− 1

2
,r−1}

p

+C4λ
min{r−1,0}
p

 ∞∑
i=p+1

λ
max{2r,2}
i

1/2

,

where

C3 = 2Mλ
max{ 1

2
−r,0}

1 + 2max{r,1}+2‖gρ‖Kcr,λ1κ
2λ

max{r− 1
2
,0}

1

and C4 = 2max{r,1}‖gρ‖K . After scaling δ to δ/2, the proof of Theorem 15 is completed.

Appendix B. Minimax Lower Bounds

In this appendix, we derive a general minimax lower bound which includes Theorem 8 as a
special case. First we define two sets of Borel probability measures.

Definition 21 Let P(α1, α2, r,M,R,D1, D2) be the set of all Borel probability measures ρ
on X × Y satisfying the following three conditions:

1. |y| ≤M almost surely,

2. fρ = LrK(gρ) for some gρ ∈ HK with ‖gρ‖K ≤ R,

3. D1i
−α1 ≤ λi ≤ D2i

−α2 for each i.
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Let P(β1, β2, r,M,R,D1, D2) be the same as P(α1, α2, r,M,R,D1, D2) except that the last
condition is replaced by D1β

−i
1 ≤ λi ≤ D2β

−i
2 for each i.

For simplicity, we abbreviate these two sets as P(α1, α2, r) and P(β1, β2, r), respectively.
Now we state the general minimax lower bound for the error in the HK-metric following
the idea of (Caponnetto and De Vito, 2007). Our proof is mainly based on Lemma 2.9,
Theorem 2.5 and the approach from (Tsybakov, 2009).

Theorem 22 Assume R > 0 and M ≥ 4κ2r+1R. Let fz ∈ HK be the output of an arbitrary
learning algorithm based on the sample z = {(xi, yi)}mi=1. Then for every 0 < δ < 1

8 , there
exist positive constants τ1, τ2, independent of δ or m, such that

lim
m→∞

inf
fz

sup
ρ∈P(α1,α2,r)

Pz∼ρm
{
‖fz − fρ‖K ≥ τ1δ

α1r
α2(2r+1)+1m

− α1r
α2(2r+1)+1

}
≥ 1− 2δ (52)

and

lim
m→∞

inf
fz

sup
ρ∈P(β1,β2,r)

Pz∼ρm
{
‖fz − fρ‖K ≥ τ2δ

1
2m−

1
2

√
logm

}
≥ 1− 2δ. (53)

Proof First, we associate a probability measure ρf ∈ P(α1, α2, r) to a pair (µ, f) where µ
is a Borel measure on Y such that the eigenvalues of the associated integral operator LK
satisfy D1i

−α1 ≤ λi ≤ D2i
−α2 , and f = LrKg for some g ∈ HK with ‖g‖K ≤ R. Define a

probability measure ρf by

dρf (x, y) =

[
B + f(x)

2B
dδB(y) +

B − f(x)

2B
dδ−B(y)

]
dµ(x),

where B = 4κ2r+1R and dδξ denotes the Dirac delta with unit mass at ξ. By the reproducing
property, ‖f‖∞ ≤ κ‖LrKg‖K ≤ κ2r+1R = B

4 . It follows that ρf is a probability measure on
X × Y with µ being the marginal distribution and f the regression function. Moreover,
M ≥ 4κ2r+1R ensures |y| ≤M almost surely. Hence ρf ∈ P(α1, α2, r).

Then we construct a finite sequence f0, ..., fN in the set {LrKg : g ∈ HK , ‖g‖K ≤ R}
based on the Varshamov-Gilbert bound (Lemma 2.9 in (Tsybakov, 2009)) which asserts
that for any integer γ ≥ 8, there exists a set Θ = {w0, w1, ..., wN} ⊂ {0, 1}γ such that

1. w0 = (0, ..., 0).

2. For any i 6= j, H(wi, wj) > γ/8, where H(·, ·) is the Hamming distance.

3. N ≥ 2γ/8.

For 0 < δ < 1
8 , let γ be the smallest integer greater than or equal to cδm

1
α2(2r+1)+1 with

a constant cδ > 0 to be specified later. For wi = (wγ+1
i , ..., w2γ

i ) ∈ Θ with i ∈ {0, . . . , N},
define fi = LrKgi with

gi =

2γ∑
k=γ+1

wki Rγ
− 1

2φk.
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Note that gi ∈ HK and

‖gi‖2K =

∥∥∥∥∥∥
2γ∑

k=γ+1

wki Rγ
− 1

2φk

∥∥∥∥∥∥
2

K

=

2γ∑
k=γ+1

(wki )2γ−1R2‖φk‖2K ≤ R2.

Hence {f0, ..., fN} ⊂ {LrKg : g ∈ HK , ‖g‖K ≤ R}, which implies {ρf0 , ..., ρfN } ⊂ P(α1, α2, r).
Now we adopt Theorem 2.5 in (Tsybakov, 2009) to establish our desired lower bound.
Observe that for 0 ≤ i < j ≤ N , the Kullback-Leibler distance DKL(ρfi‖ρfj ) between

ρfi and ρfj satisfies

DKL(ρfi‖ρfj )

=

∫
X

{
B + fi(x)

2B
ln

(
1 +

fi(x)− fj(x)

B + fj(x)

)
+
B − fi(x)

2B
ln

(
1− fi(x)− fj(x)

B − fj(x)

)}
dµ(x)

≤ fi(x)− fj(x)

2B

{
B + fi(x)

B + fj(x)
− B − fi(x)

B − fj(x)

}
≤ 16

15B2
λ2r+1
γ R2γ−1

2γ∑
k=γ+1

(wki − wkj )2 ≤ D2r+1
2

15κ4r+2
γ−α2(2r+1),

which implies

1

N

N∑
i=1

DKL((ρfi)
m‖(ρf0)m) ≤ D2r+1

2

15κ4r+2
mγ−α2(2r+1) ≤ D2r+1

2

15κ4r+2
c
−α2(2r+1)
δ m

1
α2(2r+1)+1

≤ D2r+1
2

15κ4r+2c
1+α2(2r+1)
δ

γ = δ log 2γ/8 ≤ δ logN

by taking

cδ =

(
8D2r+1

2

15κ4r+2 log 2

)1/(α2(2r+1)+1)

δ−1/(α2(2r+1)+1).

On the other hand, for any 0 ≤ i < j ≤ N .

‖fi − fj‖2K = ‖LrK(gi − gj)‖2K

=

2γ∑
k=γ+1

R2γ−1λ2r
k (wki − wkj )2

≥ R2γ−1λ2r
2γ

2γ∑
k=γ+1

(wki − wkj )2

= R2γ−1λ2r
2γH(wi, wj)

≥
R2λ2r

2γ

8

≥ 2−(2α1r+3)R2D2r
1 γ
−2α1r

≥ 2τ2
1 δ

2α1r
α2(2r+1)+1m

− 2α1r
α2(2r+1)+1
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for some constant τ1 > 0.
Therefore, as shown in (Tsybakov, 2009) we have

inf
fz

sup
ρ∈P(α1,α2,r)

Pz∼ρm
{
‖fz − fρ‖K ≥ τ1δ

α1r
α2(2r+1)+1m

− α1r
α2(2r+1)+1

}
≥

√
N√

N + 1

(
1− 2δ −

√
2δ

logN

)
.

This completes the proof for the statement about P(α1, α2, r). The proof for the statement
about P (β1, β2, r) is similar. The proof of the theorem is complete.

Appendix C. Proof of Proposition 10

(a). Let 0 ≤ ξ1 < ξ2 < ξ3 < ξ4. For i = 2 or 3, one has

Ω(ξi) ≥
(ξi+1 − ξi)Ω(ξi−1)

ξi+1 − ξi−1
+

(ξi − ξi−1)Ω(ξi+1)

ξi+1 − ξi−1
. (54)

Let i = 2 in (54) to give

(ξ2 − ξ1)Ω(ξ3) ≤ (ξ3 − ξ1)Ω(ξ2)− (ξ3 − ξ2)Ω(ξ1)

= ξ3[Ω(ξ2)− Ω(ξ1)]− ξ1Ω(ξ2) + ξ2Ω(ξ1). (55)

If Ω(ξ2) < Ω(ξ1), let ξ3 →∞ to give Ω(ξ3)→ −∞, which contradicts Ω([0,∞)) ⊂ [0,∞). So
Ω is nondecreasing. Similarly we have (ξ3−ξ1)Ω(ξ2) ≥ (ξ3−ξ1+ξ1−ξ2)Ω(ξ1)+(ξ2−ξ1)Ω(ξ3),
so

Ω(ξ2)− Ω(ξ1)

ξ2 − ξ1
≥ Ω(ξ3)− Ω(ξ1)

ξ3 − ξ1
≥ 0. (56)

If Ω(ξ2) = 0, since Ω is nondecreasing, Ω(ξ1) = 0 for all 0 ≤ ξ1 < ξ2, and (56) gives
Ω(ξ3) = 0 for all ξ3 > ξ2, so we have Ω = 0, a contradiction. Therefore Ω(c) > 0 for c > 0.

From (56), the function [Ω(c) − Ω(ξ1)]/(c − ξ1) of c is nonincreasing when c > ξ1, so
the right-hand derivative Ω′+ is well-defined on [0,∞), taking values in [0,∞]. We get from
(55) that

∞ >
Ω(ξ2)− Ω(ξ1)

ξ2 − ξ1
≥ Ω(ξ3)− Ω(ξ2)

ξ3 − ξ2
. (57)

Let ξ3 → ξ+
2 to give Ω′+(ξ2) < ∞. Therefore Ω′+(c) is finite for c ∈ (0,∞). Let i = 3. We

have the analogue of (57),

Ω(ξ3)− Ω(ξ2)

ξ3 − ξ2
≥ Ω(ξ4)− Ω(ξ3)

ξ4 − ξ3
, (58)

which, together with (57), gives that as ξ2 → ξ+
1 and ξ4 → ξ+

3 , Ω′+(ξ1) ≥ Ω′+(ξ3). This

proves that Ω′+ is nonincreasing on [0,∞). If Ω′+(0) = 0, since 0 ≤ Ω(c)−Ω(0)
c−0 is nonincreasing
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for c > 0 as we proved before, we have Ω(c) = 0 for all c > 0, a contradiction again. So
Ω′+(0) ∈ (0,∞].

(b). Let ξ1 = 0 and ξ3 = 1, then (55) gives Ω(ξ2) ≥ ξ2Ω(1), so for all c ∈ (0, 1],
Ω(c) ≥ cΩ(1). In (55) let ξ1 = 0 and ξ2 = 1 to give Ω(ξ3) ≤ ξ3Ω(1), so for any c ∈ [1,∞),
Ω(c) ≤ Ω(1)c.

The properties stated in (c) and (d) follow immediately from the concavity of the func-
tion Ω.

(e). Write the function Ω(c)
c2

as Ω(c)
c ·

1
c . We see from (d) that this function is strictly

decreasing on (0,∞). By (a), we obtain the limit limc→0+
Ω(c)
c2
≥ limc→0+

Ω(1)c
c2

= +∞. By

(b), limc→∞
Ω(c)
c2
≤ limc→∞

Ω(1)c
c2

= 0. The proof of Proposition 10 is complete.
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