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Abstract

One of the limiting factors of using support vector machines (SVMs) in large scale ap-
plications are their super-linear computational requirements in terms of the number of
training samples. To address this issue, several approaches that train SVMs on many small
chunks separately have been proposed in the literature. With the exception of random
chunks, which is also known as divide-and-conquer kernel ridge regression, however, these
approaches have only been empirically investigated. In this work we investigate a spa-
tially oriented method to generate the chunks. For the resulting localized SVM that uses
Gaussian kernels and the least squares loss we derive an oracle inequality, which in turn is
used to deduce learning rates that are essentially minimax optimal under some standard
smoothness assumptions on the regression function. In addition, we derive local learning
rates that are based on the local smoothness of the regression function. We further intro-
duce a data-dependent parameter selection method for our local SVM approach and show
that this method achieves the same almost optimal learning rates. Finally, we present a few
larger scale experiments for our localized SVM showing that it achieves essentially the same
test error as a global SVM for a fraction of the computational requirements. In addition,
it turns out that the computational requirements for the local SVMs are similar to those
of a vanilla random chunk approach, while the achieved test errors are significantly better.
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1. Introduction

Based on a training set D := ((x1, y1), . . . , (xn, yn)) of i.i.d. input/output observations
drawn from an unknown distribution P on X × Y , where X ⊂ Rd and Y ⊂ R, the goal of
non-parametric least squares regression is to find a function fD : X → R that is a good
estimate of the unknown conditional mean f∗(x) := E(Y |x), x ∈ X. For this classical
estimation problem various methods have been proposed and studied in the literature, see
e.g., (Simonoff, 1996) and the book (Györfi et al., 2002) for detailed accounts.

In this paper, we consider kernel-based regularized empirical risk minimizers, also known
as support vector machines (SVMs), which solve the regularized problem

fD,λ ∈ arg min
f∈H

λ ‖f‖2H +RL,D (f) . (1)
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Here, λ > 0 is a fixed real number and H is a reproducing kernel Hilbert space (RKHS)
over X with reproducing kernel k : X × X → R, see e.g., (Aronszajn, 1950; Berlinet and
Thomas-Agnan, 2004; Steinwart and Christmann, 2008). The function L : X × Y × R →
[0,∞) is a loss function, where in the following we either consider the least squares loss
LLS : Y × R → [0,∞) defined by (y, t) 7→ (y − t)2, or variants of it that may depend on
x ∈ X. Besides, RL,D (f) denotes the empirical risk of a function f : X → R, that is

RL,D (f) =
1

n

n∑
i=1

L (xi, yi, f (xi)) ,

where D is the empirical measure associated to the data D defined by D := 1
n

∑n
i=1 δ(xi,yi)

with Dirac measure δ(xi,yi) at (xi, yi). Recall that the empirical SVM solution fD,λ exists
and is unique (cf. Steinwart and Christmann, 2008, Theorem 5.5) whenever the loss L is
convex in its last argument, which is true for the least squares loss and its variants that will
be considered later on. Moreover, an SVM is L-risk consistent under a few assumptions on
the RKHS H and the regularization parameter λ, see (Steinwart and Christmann, 2008,
Section 6.4) for more details.

An essential theoretical task, which has attracted many considerations, is the inves-
tigation of learning rates for SVMs. For example, such rates for SVMs using the least
squares loss and generic kernels can be found in (Cucker and Smale, 2002; De Vito et al.,
2005; Smale and Zhou, 2007; Caponnetto and De Vito, 2007; Mendelson and Neeman, 2010;
Steinwart et al., 2009) and the references mentioned therein. At this point, we do not want
to take a closer look at these results, instead we relegate to (Eberts and Steinwart, 2013),
where a detailed discussion can be found. More important for our purposes is the fact that
Eberts and Steinwart (2011, 2013) establish (essentially) asymptotically optimal learning
rates for least squares SVMs (LS-SVMs) using Gaussian RBF kernels. More precisely, for
a domain X ⊂ B`d2

, Y := [−M,M ] with M > 0, a distribution P on X × Y such that PX
has a bounded Lebesgue density on X, and for f∗ contained in the Sobolev space Wα

2 (PX),
α ∈ N, or in the Besov-like space Bα

2,∞(PX), α ≥ 1, respectively, the LS-SVM using Gaus-

sian kernels learns for all ξ > 0 with rate n−
2α

2α+d
+ξ with a high probability. In other words,

it learns at least with a rate that is arbitrarily close to the optimal learning rate.
Although these rates are essentially asymptotically optimal, they depend on the order

of smoothness of the regression function on the entire input space X. That is, if the
regression function f∗ is on some area of X smoother than on another area, the learning
rate is determined by the part of X, where the regression function f∗ is least smooth. In
contrast to this, it would be desirable to achieve a learning rate on every region of X that
corresponds with the order of smoothness of f∗ on this region. Therefore, one of our goals
of this paper is to modify the standard SVM approach such that we achieve local learning
rates that are asymptotically optimal.

Our technique to achieve such local learning rates is a special data splitting approach,
which first creates a geometrically well-behaved partition of the input space X and then
finds a separate SVM on each of the resulting cells with the help of the training samples
that fall into these cells. Recall that various other local splitting approaches have already
been extensively investigated in the literature, but mostly to speed-up the training time,
see for instance, the early works (Bottou and Vapnik, 1992; Vapnik and Bottou, 1993).
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Here the basic idea of most other local approaches is to a) split the training data and just
consider a few examples near a testing sample, b) train on this small subset of the training
data, and c) use the solution for a prediction w.r.t. the test sample. Here, many up-to-
date investigations use SVMs to train on the local data set but, yet there are different
ways to split the whole training data set into smaller, local sets. For example, Chang
et al. (2010); Wu et al. (1999); Bennett and Blue (1998) use decision trees while in (Hable,
2013; Segata and Blanzieri, 2010, 2008; Blanzieri and Melgani, 2008; Blanzieri and Bryl,
2007a,b; Zhang et al., 2006) local subsets are built considering k nearest neighbors. The
latter approaches further vary, for example, Zhang et al. (2006); Blanzieri and Bryl (2007a);
Hable (2013) consider different metrics w.r.t. the input space whereas Segata and Blanzieri
(2008); Blanzieri and Melgani (2008); Blanzieri and Bryl (2007b) consider metrics w.r.t. the
feature space. Nonetheless, the basic idea of all these articles is that an SVM problem
based on k training samples is solved for each test sample. Another approach using k
nearest neighbors is investigated in (Segata and Blanzieri, 2010). Here, k-neighborhoods
consisting of training samples and collectively covering the training data set are constructed
and an SVM is calculated on each neighborhood. The prediction for a test sample is then
made according to the nearest training sample that is a center of a k-neighborhood. As for
the other nearest neighbor approaches, however, the results are mainly experimental. An
exception to this rule is (Hable, 2013), where universal consistency for localized versions of
SVMs, or more precisely, a large class of regularized kernel methods, is proven. Another
article presenting theoretical results for localized versions of learning methods is (Zakai and
Ritov, 2009). Here, the authors show that a consistent learning method behaves locally, i.e.,
the prediction is essentially influenced by close by samples. However, this result is based
on a localization technique considering only training samples contained in a neighborhood
with a fixed radius and center x when an estimate in x is sought. Probably closest to our
approach is the one examined in (Cheng et al., 2010) and (Cheng et al., 2007), where the
training data is split into clusters and then an SVM is trained on each cluster. However,
the presented results are again only of experimental character.

Unlike in the papers mentioned above, our main goal is to theoretically investigate local
SVMs based on local splitting. Namely, we establish both global and local learning rates
for our local splitting approach (VP-SVM) that do match the best existing and essentially
optimal rates for global SVMs derived by Eberts and Steinwart (2013). In addition, we
show that these rates can be obtained without knowing characteristics of P by a simple
and well-known hold-out technique. Furthermore, we empirically compare our VP-SVM
to another data splitting approach known as random chunking (RC-SVM) or divide-and-
conquer kernel ridge regression for which learning rates, at least for generic kernels, have
been recently established by Zhang et al. (2015); Lin et al. (2016). In these experiments
it turns out that for splittings that lead to comparable training times, our VP-SVM has a
significantly smaller test error than RC-SVMs.

Investigating other speed-up schemes for SVMs theoretically has been in the focus of
research in the last few years. For example, Zhang et al. (2015); Lin et al. (2016) estab-
lished optimal learning rates in expectation for RC-SVMs under the assumption that the
conditional mean f∗ is contained in the used RKHS, or in the image of a fractional integral
operator, respectively. Although these results are very interesting they are not very useful
for SVMs with Gaussian kernels, since for these kernels the imposed assumptions on f∗
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imply f∗ ∈ C∞, which is usually considered to be too restrictive. For a similar reason the
results by Rudi et al. (2015) for the popular Nyström method require too restrictive assump-
tions when applied to SVMs with Gaussian kernels. On a side note, we like to mention that
this difference between generic kernels on the one hand and Gaussian kernels on the other
hand already appears for the standard global SVMs. Indeed, in the generic case, one usually
addresses the approximation error by assuming the conditional mean to be contained in the
image of a fractional integral operator, which can in turn be identified as an interpolation
space of the real method, see (Steinwart and Scovel, 2012). For certain kernels, the classical
theory of interpolation spaces then identifies the considered interpolation spaces as Besov
spaces, so that the approximation error assumption has a clear intuitive meaning. On the
other hand, for Gaussian kernels with fixed width it has been shown by Smale and Zhou
(2003) that their interpolation spaces consist of C∞-functions, so that the generic theory
would again lead to a too restrictive approximation error assumption. To address this issue,
one considers widths that change with the sample size. However, to make this approach
successful, one requires both a manual estimation of the approximation error, see (Eberts
and Steinwart, 2011), and eigenvalue/entropy number bounds that do depend on the kernel
width. For these reasons, learning rates for SVMs with Gaussian kernels under realistic
assumptions are, in general, harder to obtain. Nonetheless, they are important, since in
practice, Gaussian kernels are by far the most often used kernels.

The rest of this paper is organized as follows: In Section 2 we describe our splitting
approach in detail. Section 3 then presents some theoretical results on RKHSs that enable
the analysis of our method. After that, Section 4 contains the main results, namely an oracle
inequality and learning rates for our localized SVM method. Moreover, a data-dependent
parameter selection method is studied that induces the same rates. Section 5 then presents
some experimental results w.r.t. the localized SVM technique. Finally, Section 6 collects
the proofs for the results of the earlier sections as well as some necessary and important
ancillary findings.

2. Description of the Localized SVM Approach

In this section, we introduce some general notations and assumptions. Based on the latter
we modify the standard SVM approach. Let us start with the probability measure P on
X×Y , where X ⊂ Rd is non-empty, Y := [−M,M ] for some M > 0, and PX is the marginal
distribution of X. Depending on the learning target one chooses a loss function L, i.e., a
function L : X × Y × R → [0,∞) that is measurable. Then, for a measurable function
f : X → R, the L-risk is defined by

RL,P(f) =

∫
X×Y

L(x, y, f(x)) dP(x, y)

and the optimal L-risk, called the Bayes risk with respect to P and L, is given by

R∗L,P := inf {RL,P (f) | f : X → R measurable} .

A measurable function f∗L,P : X → R with RL,P(f∗L,P) = R∗L,P is called a Bayes decision
function. For the commonly used losses such as the least squares loss treated in Section 4
the Bayes decision function f∗L,P is PX -almost surely [−M,M ]-valued, since Y = [−M,M ].
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In this case, it seems obvious to consider estimators with values in [−M,M ] on X. To this
end, we introduce the concept of clipping the decision function. Let Ût be the clipped value
of some t ∈ R at ±M defined by

Ût :=


−M if t < −M
t if t ∈ [−M,M ]

M if t > M .

Then, a loss is called clippable at M > 0 if, for all (x, y, t) ∈ X × Y × R, we have

L(x, y, Ût ) ≤ L(x, y, t) .

Obviously, the latter implies RL,P( Ûf ) ≤ RL,P(f) for all f : X → R. In other words,
restricting the decision function to the interval [−M,M ] containing our labels cannot worsen
the risk, in fact, clipping this function typically reduces the risk. Hence, we consider the
clipped version ÛfD of the decision function as well as the risk RL,P( ÛfD) instead of the risk
RL,P(fD) of the unclipped decision function. Note that this clipping idea does not change
the required solver since it is performed after the training phase.

To modify the standard SVM approach (1), we assume that (Aj)j=1,...,m is a partition
of X such that all its cells have non-empty interior, that is Åj 6= ∅ for every j ∈ {1, . . . ,m}.
Now, the basic idea of our approach is to consider for each cell of the partition an individual
SVM. To describe this approach in a mathematically rigorous way, we have to introduce
some more definitions and notations. Let us begin with the index set

Ij :=
{
i ∈ {1, . . . , n} : xi ∈ Aj

}
, j = 1, . . . ,m ,

indicating the samples of D contained in Aj , as well as the corresponding data set

Dj := {(xi, yi) ∈ D : i ∈ Ij} , j = 1, . . . ,m .

Moreover, for every j ∈ {1, . . . ,m}, we define a (local) loss Lj : X × Y × R→ [0,∞) by

Lj(x, y, t) := 1Aj (x)L(x, y, t) ,

where L : X×Y ×R→ [0,∞) is the loss that corresponds to our learning problem at hand.
We further assume that Hj is an RKHS over Aj with kernel kj : Aj ×Aj → R. Here, every
function f ∈ Hj is only defined on Aj even though a function fD : X → R is finally sought.

To this end, for f ∈ Hj , we define the zero-extension f̂ : X → R by

f̂(x) :=

{
f(x) , x ∈ Aj ,
0 , x /∈ Aj .

Then, the space Ĥj := {f̂ : f ∈ Hj} equipped with the norm

‖f̂‖Ĥj := ‖f‖Hj , f̂ ∈ Ĥj ,
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is an RKHS on X (cf. Lemma 2), which is isometrically isomorphic to Hj . With these
preparations we can now formulate our local SVM approach. To this end, for every j ∈
{1, . . . ,m}, we consider the local SVM optimization problem

fDj ,λj = arg min
f̂∈Ĥj

λj‖f̂‖2Ĥj +
1

n

n∑
i=1

Lj(xi, yi, f̂(xi)) , (2)

where λj > 0 for every j ∈ {1, . . . ,m}. Based on these empirical SVM solutions, we then
define the decision function fD,λ : X → R by

fD,λ(x) :=

m∑
j=1

fDj ,λj (x) =

m∑
j=1

1Aj (x)fDj ,λj (x) , (3)

where λ := (λ1, . . . , λm). Since all fDj ,λj in (2) are usual empirical SVM solutions the
common properties hold. Moreover, for arbitrary j ∈ {1, . . . ,m}, fDj ,λj (xi) = 0 if xi /∈ Aj
for all i ∈ {1, . . . , n}. Furthermore, note that the SVM optimization problem (2) equals the
SVM optimization problem (1) using Hj , Dj , and the regularization parameter λ̃j := n

|Ij |λj .

That is, fDj ,λj as in (2) and hDj ,λ̃j
:= arg minf∈Hj λ̃j‖f‖2Hj + RL,Dj (f) coincide on Aj .

Besides, it is easy to show that, whenever a Bayes decision function f∗L,P w.r.t. P and L
exists, it additionally is a Bayes decision function w.r.t. P and Lj .

Let us now briefly discuss the required computing time of our modified SVM. To this
end, recall that the costs for solving an usual SVM problem are O(nq) where q ∈ [2, 3]. For
the new approach we consider m working sets of size n1, . . . , nm where for simplicity we
assume ni ≈ n

m for all i ∈ {1, . . . ,m}. Then for each working set an usual SVM problem
has to be solved such that, altogether, the modified SVM induces a computational cost of
O
(
m
(
n
m

)q)
. Therefore, if m ≈ nβ for some β > 0, then our approach is computationally

cheaper than a traditional SVM. Note that our strategy using a partition of the input space
is a typical way to speed-up SVMs. Other techniques that possess similar properties are,
e.g., applied in the articles cited in the introduction. Besides, we refer to (Tsang et al.,
2007) and (Tsang et al., 2005) using enclosing ball problems to solve an SVM, to (Graf
et al., 2005) presenting an model of multiple filtering SVMs and to (Collobert et al., 2001)
investigating a mixture of SVMs based on several subsets of the training set.

To describe the above SVM approach (Aj)j=1,...,m only has to be some partition of X.
However, for the theoretical investigations concerning learning rates of our new approach,
we have to further specify the partition. To this end, we denote the closed unit ball of the
d-dimensional Euclidean space `d2 by B`d2

and we define balls B1, . . . , Bm with radius r > 0
and mutually distinct centers z1, . . . , zm ∈ B`d2 by

Bj := Br(zj) := {x ∈ Rd : ‖x− zj‖2 ≤ r} , j ∈ {1, . . . ,m} , (4)

where ‖ · ‖2 is the Euclidean norm in Rd. Moreover, we choose r and z1, . . . , zm such that

B`d2
⊂

m⋃
j=1

Bj ,
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i.e., such that the balls B1, . . . , Bm cover B`d2
and, simultaneously, any non-empty set X ⊂

B`d2
(cf. Figure 1). The following well-known lemma relates the radius of such a cover with

the number of centers.

Lemma 1 For all c > 0 and r ∈ (0, c], there exist balls (Br(zj))j=1,...,m with radius r and

centers z1, . . . , zm ∈ cB`d2 such that
⋃m
j=1Br(zj) covers cB`d2

and r ≤ 3cm−
1
d .

For simplicity of notation, we assume in the following that X ⊂ B`d2
. Thus, according to

Lemma 1, there exists a cover (Bj)j=1,...,m of X with

r ≤ 3m−
1
d . (5)

Let us finally specify the partition (Aj)j=1,...,m of X by the following assumption.

(A) Let r ∈ (0, 1] and (A′j)j=1,...,m̃ be a partition of B`d2
such that Å′j 6= ∅ as well as Å′j = A′j

for every j ∈ {1, . . . , m̃} and such that there exist balls Bj := Br(zj) ⊃ A′j with radius
r and mutually distinct centers z1, . . . , zm̃ ∈ B`d2 satisfying (5). In addition, assume

that X is a non-empty, closed subset of B`d2
satisfying X̊ = X. W.l.o.g. we assume

that, for some m ≤ m̃, A′j ∩ X̊ 6= ∅ for all j ∈ {1, . . . ,m} and A′j ∩ X̊ = ∅ for all

j ∈ {m+ 1, . . . , m̃}. Then we define A′′j := A′j ∩ X̊ for all j ∈ {1, . . . ,m} and assume

that (Aj)j=1,...,m is a partition of X satisfying A′′j ⊂ Aj ⊂ A′′j .

Note that the partition (Aj)j=1,...,m of X in Assumption (A) satisfies, for every j ∈
{1, . . . ,m}, Aj ⊂ Bj for Bj as in (A) and Åj 6= ∅, where the latter is shown in Lemma 8 in
the Appendix. Obviously, for the partition (Aj)j=1,...,m, r and m fulfill (5).

In Assumption (A) (A′j)j=1,...,m̃ is a partition of B`d2
from which we build a partition

(Aj)j=1,...,m of X ⊂ B`d2 . However, for the construction of our local SVM approach and the
proofs of the belonging learning rates, it will be negligible whether we first consider a par-
tition (A′j)j=1,...,m̃ of B`d2

or only a partition (Aj)j=1,...,m of X, since the cells A′m+1, . . . A
′
m̃,

which are removed, have zero mass w.r.t. the marginal distribution PX of X if PX(∂X) = 0.
In the remaining sections we will frequently refer to Assumption (A). Thus, let us

illustrate by the following example that (A) is indeed a natural assumption.

Example 1 For some r ∈ (0, 1], let us consider an r-net z1, . . . , zm of B`d2
, where z1, . . . , zm

are mutually distinct. Moreover, we assume that X ⊂ B`d2
satisfies X̊ = X. Based on the

r-net z1, . . . , zm, a Voronoi partition (Aj)j=1,...,m of X is defined by

Aj :=

{
x ∈ X : min arg min

k∈{1,...,m}
‖x− zk‖2 = j

}
, (6)

cf. Figure 2. That is, Aj contains all x ∈ X such that the center zj is the nearest center to
x, and in the case of ties the center with the smallest index is taken. Obviously, (Aj)j=1,...,m

is a partition of X with Åj 6= ∅ and Aj ⊂ Br(zj) for all j ∈ {1, . . . ,m}, and hence it satisfies
condition (A), if r and m fulfill (5).
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r zj

Bj X

Figure 1: Cover (Bj)j=1,...,m of X, where
B1, . . . , Bm are balls with radius r
and centers zj (j = 1, . . . ,m).

X

zj
Aj

Figure 2: Voronoi partition (Aj)j=1,...,m ofX
defined by (6), where Aj ⊂ Bj for
every j ∈ {1, . . . ,m}.

Motivated by Example 1, we call the learning method producing fD,λ given by (3) a
Voronoi partition support vector machine, in short VP-SVM. Despite this name, however,
we just take a partition (Aj)j=1,...,m satisfying (A) as basis here instead of requesting
(Aj)j=1,...,m to be a Voronoi partition.

Recall that our goal is to derive not only global but also local learning rates for this
VP-SVM approach. To this end, we additionally consider a T ⊂ X with PX(T ) > 0. Then
we examine the learning rate of the VP-SVM on this subset T of X. To formalize this, it is
necessary to introduce some basic notations related to T . Let us define the index set JT by

JT := {j ∈ {1, . . . ,m} : Aj ∩ T 6= ∅} (7)

specifying every set Aj that has at least one common point with T . Note that, for every
non-empty set T ⊂ X, the index set JT is also non-empty, i.e., |JT | ≥ 1. Besides, deriving
local rates on T requires us to investigate the excess risk of the VP-SVM with respect to
the distribution P and the loss LT : X × Y × R→ [0,∞) defined by

LT (x, y, t) := 1T (x)L(x, y, t) . (8)

However, to manage the analysis we additionally need the loss LJT : X × Y × R→ [0,∞)
given by

LJT (x, y, t) := 1⋃
j∈JT

Aj (x)L(x, y, t) , (9)

which may only be nonzero, if x is contained in some set Aj with j ∈ JT . Note that the
risks RLT ,P(f) and RLJT ,P(f) quantify the quality of some function f just on T and

AT :=
⋃
j∈JT

Aj ⊃ T ,

respectively. Hence, examining the excess risks

RLT ,P( ÛfD,λ)−R∗LT ,P ≤ RLJT ,P( ÛfD,λ)−R∗LJT ,P
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T

X

X(1) X(2) X(3)

Figure 3: The input space X with the corresponding partition (Aj)j=1,...,m and the subset T , where
the local learning rate should be examined.

leads to learning rates on AT and implicitly on T . Recapitulatory, let us declare a set of
notations that will be frequently used in the remainder of the paper.

(T) For T ⊂ X, we define an index set JT by (7), loss functions LT , LJT : X × Y × R→
[0,∞) by (8) and (9), and the set AT :=

⋃
j∈JT Aj .

3. Building Weighted Global Kernels

In this section, we first focus on RKHSs and direct sums of RKHSs. Then, we show that a
VP-SVM solution is also the solution of an usual SVM.

Let us begin with some basic notations. For q ∈ [1,∞] and a measure ν, we denote by
Lq(ν) the Lebesgue spaces of order q w.r.t. ν and for the Lebesgue measure µ on X ⊂ Rd
we write Lq(X) := Lq(µ). In addition, for a measurable space X, the set of all real-valued
measurable functions on X is given by L0(X) := {f : X → R | f measurable}. Moreover,
for a measure ν on X and measurable X̃ ⊂ X, we define the trace measure ν|X̃ of ν in X̃

by ν|X̃(A) = ν(A ∩ X̃) for every A ⊂ X.

Our first goal is to show that fD,λ in (3) is actually an ordinary SVM solution. To
this end, we consider an RKHS on some A ( X and extend it to an RKHS on X by the
following lemma, where we omit the obvious proof.

Lemma 2 Let A ⊂ X and HA be an RKHS on A with corresponding kernel kA. Denote
by f̂ the zero-extension of f ∈ HA to X defined by

f̂(x) :=

{
f(x) , for x ∈ A ,
0 , for x ∈ X\A .

Then, the space ĤA := {f̂ : f ∈ HA} equipped with the norm ‖f̂‖ĤA := ‖f‖HA is an RKHS
on X and its reproducing kernel is given by

k̂A(x, x′) :=

{
kA(x, x′) , if x, x′ ∈ A ,
0 , else.

(10)
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Based on this lemma, we are now able to construct an RKHS by a direct sum of RKHSs
ĤA and ĤB with A,B ⊂ X and A ∩ B = ∅. Here, we skip the proof once more, since the
assertion follows immediately using, for example, orthonormal bases of ĤA and ĤB.

Lemma 3 For A,B ⊂ X such that A ∩B = ∅ and A ∪B ⊂ X, let HA and HB be RKHSs
of the kernels kA and kB over A and B, respectively. Furthermore, let ĤA and ĤB be the
RKHSs of all functions of HA and HB extended to X in the sense of Lemma 2 and let k̂A
and k̂B given by (10) be the associated reproducing kernels. Then, ĤA ∩ ĤB = {0} and
hence the direct sum

H := ĤA ⊕ ĤB (11)

exists. For λA, λB > 0 and f ∈ H, let f̂A ∈ ĤA and f̂B ∈ ĤB be the unique functions such
that f = f̂A + f̂B. Then, we define the norm ‖ · ‖H by

‖f‖2H := λA‖f̂A‖2ĤA + λB‖f̂B‖2ĤB (12)

and H equipped with the norm ‖ · ‖H is again an RKHS for which

k(x, x′) := λ−1
A k̂A(x, x′) + λ−1

B k̂B(x, x′) , x, x′ ∈ X ,

is the reproducing kernel.

To relate Lemmas 2 and 3 with (3), we have to introduce some more notations. For
pairwise disjoint sets A1, . . . , Am ⊂ X, let Hj be an RKHS on Aj for every j ∈ {1, . . . ,m}.
Then, based on RKHSs Ĥ1, . . . , Ĥm on X defined by Lemma 2, a joined RKHS can be
designed analogously to Lemma 3. That is, for an arbitrary index set J ⊂ {1, . . . ,m} and
a vector λ = (λj)j∈J ∈ (0,∞)|J |, the direct sum

HJ :=
⊕
j∈J

Ĥj =

f =
∑
j∈J

fj : fj ∈ Ĥj for all j ∈ J

 (13)

is again an RKHS equipped with the norm

‖f‖2HJ =
∑
j∈J

λj‖fj‖2Ĥj . (14)

If J = {1, . . . ,m}, we simply write H := HJ . Note that H contains inter alia fD,λ given by
(3).

Let us briefly investigate the regularized empirical risk of fD,λ =
∑m

j=1 1AjfDj ,λj , where
fDj ,λj , j = 1, . . . ,m, are defined by (2). For an arbitrary f ∈ H, we have

‖fD,λ‖2H +RL,D( ÛfD,λ) =

m∑
j=1

(
λj
∥∥fDj ,λj

∥∥2

Ĥj
+RLj ,D( ÛfD,λ)

)
≤

m∑
j=1

(
λj
∥∥1Ajf∥∥2

Ĥj
+RLj ,D(f)

)

10
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= ‖f‖2H +RL,D(f) , (15)

where we used RL,D(f) =
∑m

j=1RLj ,D(f), which immediately follows by Lemma 9 given in
the appendix. That is, fD,λ is the decision function of an SVM using H and L as well as
the regularization parameter λ̃ = 1. In other words, the latter SVM equals the VP-SVM
given by (3). This will be a key insight used in our analysis.

Subsequently, we only consider RKHSs of Gaussian RBF kernels. For this purpose,
we summarize some assumptions for the Gaussian case of joined RKHSs in the following
assumption set.

(G) For pairwise disjoint subsets A1, . . . , Am of X, let Hj := Hγj (Aj), j ∈ {1, . . . ,m}, be
the RKHS of the Gaussian kernel kγj with width γj ∈ (0, r] over Aj . Consequently,

for λ := (λ1, . . . , λm) ∈ (0,∞)m, we define the joined RKHS H :=
⊕m

j=1 Ĥγj (Aj) and
equip it with the norm (14).

In the following we do not consider SVMs with a fixed kernel, thus, we use a more
detailed notation than (2) and (3) specifying the kernel width γj of the RKHS Hγj (Aj) at
hand. Namely, for all j ∈ {1, . . . ,m} and γ := (γ1, . . . , γm), we write

fDj ,λj ,γj = arg min
f∈Ĥγj (Aj)

λj‖f‖2Ĥγj (Aj)
+

1

n

n∑
i=1

Lj(xi, yi, f(xi)) ,

and

fD,λ,γ :=
m∑
j=1

fDj ,λj ,γj

instead of fDj ,λj and fD,λ in the remainder of this work.

4. Learning Rates for Least Squares VP-SVMs

In this section, the non-parametric least squares regression problem is considered using the
least squares loss L : Y × R → [0,∞) defined by L(y, t) := (y − t)2. It is well known that,
in this case, the Bayes decision function f∗L,P : Rd → R is given by f∗L,P(x) = EP(Y |x) for

PX -almost all x ∈ Rd. Moreover, this function is unique up to zero-sets. Besides, for the
least squares loss the equality

RL,P(f)−R∗L,P =
∥∥f − f∗L,P∥∥2

L2(PX)

can be shown by some simple, well-known transformations. In the first part of Subsection
4.1 we introduce some tools to describe smoothness properties of f∗L,P, which are then used
in the oracle inequalities and learning rates of the second part. In Subsection 4.2 we then
investigate a simple parameter selection strategy for which we will show that it is adaptive.

11
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4.1 Basic Oracle Inequalities for LS-VP-SVMs

To formulate oracle inequalities and derive rates for VP-SVMs using the least squares loss,
the target function f∗L,P is assumed to satisfy certain smoothness conditions. To this end, we
initially recall the modulus of smoothness, a device to measure the smoothness of functions,
see e.g., DeVore and Lorentz, 1993, p. 44; DeVore and Popov, 1988, p. 398; as well as Berens
and DeVore, 1978, p. 360. Denote by ‖ · ‖2 the Euclidean norm and let Ω ⊂ Rd be a subset
with non-empty interior, ν be an arbitrary measure on Ω, p ∈ (0,∞], and f : Ω → R be
contained in Lp (ν). Then, for s ∈ N, the s-th modulus of smoothness of f is defined by

ωs,Lp(ν) (f, t) = sup
‖h‖2≤t

‖4s
h (f, · )‖Lp(ν) , t ≥ 0 ,

where 4s
h (f, · ) denotes the s-th difference of f given by

4s
h (f, x) =

{∑s
j=0

(
s
j

)
(−1)s−j f (x+ jh) if x ∈ Ωs,h

0 if x /∈ Ωs,h

for h = (h1, . . . , hd) ∈ Rd and Ωs,h := {x ∈ Ω : x+ th ∈ Ω f.a. t ∈ [0, s]}. Based on the
modulus of smoothness, we introduce Besov-like spaces, i.e., function spaces that provide
a finer scale of smoothness than the commonly used Sobolev spaces and that will thus be
assumed to contain the target function later on. To this end, let α > 0, s := bαc + 1, and
ν be an arbitrary measure. Then, the Besov-like space Bα

2,∞ (ν) is defined by

Bα
2,∞ (ν) :=

{
f ∈ L2 (ν) : |f |Bα2,∞(ν) <∞

}
,

where the semi-norm | · |Bα2,∞(ν) is given by

|f |Bα2,∞(ν) := sup
t>0

(
t−αωs,L2(ν) (f, t)

)
and the norm by ‖f‖Bα2,∞(ν) := ‖f‖L2(ν) + |f |Bα2,∞(ν). Here, note that we defined Besov-

like spaces for arbitrary measures ν on Ω ⊂ Rd whereas in the literature Besov spaces are
usually defined for the Lebesgue measure. Nevertheless, our definition of Besov-like spaces
is well-defined. Moreover, for the proofs it is important to notice that, if Ω = Rd and ν is a
distribution on Ω with supp ν ( Ω, then Ωs,h still equals Rd, i.e., Ωs,h = Ω. Also note that
for the Lebesgue measure on Ω, where Ω = Rd or Ω is a bounded Lipschitz domain in Rd, our
definition of Besov-like spaces actually coincides, up to equivalent norms, to the definition
of the classical Besov spaces in the literature, see e.g., (Adams and Fournier, 2003, Section
7), (Triebel, 2006, Section 1), (Triebel, 1992, Section 1), and (Triebel, 2010, Sections 2 and
3), where this classical type of Besov spaces is also defined for 1 ≤ p, q ≤ ∞ and α > 0.
For more details on the equivalences of our definition of Besov-like spaces and the classical
definitions, we refer to (Eberts, 2015, Section 3.1). If ν is the Lebesgue measure on Ω, we
write Bα

2,∞ (Ω) := Bα
2,∞ (ν). Additionally, let us briefly consider a few embedding properties

for Besov-like spaces Bα
2,∞(ν) where the corresponding proofs can be found in (Eberts, 2015,

Section 3.1). To this end, let ν be a finite measure on Rd such that supp ν =: Ω ⊂ Rd has
non-empty interior and ν has a Lebesgue density g on Ω. If g is bounded away from 0

12
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on Ω, then Bα
2,∞(ν) ⊂ Bα

2,∞(Ω) for α > 0. Alternatively, for g ∈ L∞(Ω) and α > 0,

we have Bα
2,∞(Rd) ⊂ Bα

2,∞(ν) and
(
Bα

2,∞(Ω+δ) ∩ L∞(Rd)
)
⊂ Bα

2,∞(ν), where δ > 0 and

Ω+δ := {x ∈ Rd : ∃x′ ∈ Ω such that ‖x − x′‖2 ≤ δ}. For the sake of completeness, recall
from, e.g., (Adams and Fournier, 2003, Section 3) and (Triebel, 2010, Sections 2 and 3) the
scale of Sobolev spaces Wα

2 (ν) defined by

Wα
2 (ν) :=

{
f ∈ Lp (ν) : ∂(β)f ∈ L2 (ν) exists for all β ∈ Nd0 with |β| ≤ α

}
,

where α ∈ N0, ν is an arbitrary measure, and ∂(β) is the β-th weak derivative for a multi-
index β = (β1, . . . , βd) ∈ Nd0 with |β| =

∑d
i=1 βi. That is, Wα

2 (ν) is the space of all functions
in L2(ν) whose weak derivatives up to order α exist and are contained in L2(ν). Moreover,
the Sobolev space is equipped with the Sobolev norm

‖f‖pWα
2 (ν) :=

∑
|β|≤α

∥∥∥∂(β)f
∥∥∥2

L2(ν)
,

(cf. Adams and Fournier, 2003, p. 60). We write W 0
2 (ν) = L2(ν) and, for the Lebesgue

measure µ on Ω ⊂ Rd, we define Wα
2 (Ω) := Wα

2 (µ). It is well-known, see e.g., (Edmunds
and Triebel, 1996, p. 25 and p. 44), that the Sobolev spaces Wα

2 (Rd) fall into the scale
of Besov spaces, e.g., Wα

2 (Rd) ⊂ Bα
2,∞(Rd) for α ∈ N. Furthermore, note that functions

f : Ω → Rd can be extended to functions f̂ : Rd → R such that f̂ inherits the smoothness
properties of f , whenever Ω ⊂ Rd is a bounded Lipschitz domain. More precisely, in this
case Stein’s Extension Theorem (cf. Stein, 1970, p. 181) guarantees the existence of a linear
extension operator E mapping functions f : Ω → R to functions Ef : Rd → R such that
Ef|Ω = f and such that E continuously maps Wm

2 (Ω) into Wm
2 (Rd) for all integers m ≥ 0

and Bα
2,∞(Ω) into Bα

2,∞(Rd) for all α ≥ 0 simultaneously. For more details, we refer to Stein
(1970, p. 181), Triebel (2006, Section 1.11.5), and Adams and Fournier (2003, Chapter 5).
In this case, Eberts (2015, Corollary 3.4) shows, for a finite measure ν on Rd such that
supp ν =: Ω̃ ⊃ Ω and such that ν has a Lebesgue density g on Ω̃ with g ∈ L∞(Ω̃), that
f ∈ Bα

2,∞(Ω) implies Ef ∈ Bα
2,∞(ν).

Based on the least squares loss and RKHSs using Gaussian kernels over the partition
sets Aj , the subsequent theorem presents an oracle inequality for VP-SVMs.

Theorem 4 Let Y := [−M,M ] for M > 0, L : Y × R → [0,∞) be the least squares loss,
and P be a distribution on Rd×Y . We denote the marginal distribution of P onto Rd by PX ,
write X := supp PX , and assume PX(∂X) = 0. Furthermore, let (A) and (G) be satisfied.
In addition, for an arbitrary subset T ⊂ X, we assume (T) . Moreover, let f∗L,P : Rd → R be

a Bayes decision function such that f∗L,P ∈ L2(Rd)∩L∞(Rd) as well as f∗L,P ∈ Bα
2,∞(PX |AT )

for some α ≥ 1. Then, for all p ∈ (0, 1), n ≥ 1, τ ≥ 1, γ = (γ1, . . . , γm) ∈ (0, r]m, and
λ = (λ1, . . . , λm) > 0, the VP-SVM given by (3) using Ĥγ1(A1), . . . , Ĥγm(Am), and the loss
LJT satisfies

m∑
j=1

λj‖fDj ,λj ,γj‖
2
Ĥγj (Aj)

+RLJT ,P( ÛfD,λ,γ)−R∗LJT ,P

13
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≤ CM,α,p

∑
j∈JT

λjγ
−d
j +

(
maxj∈JT γj
minj∈JT γj

)d
max
j∈JT

γ2α
j +r2p

 m∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

p

n−1+τn−1


with probability Pn not less than 1− e−τ , where CM,α,p > 0 is a constant only depending on
M , α, p, d, ‖f∗L,P‖L2(Rd), ‖f∗L,P‖L∞(Rd), and ‖f∗L,P‖Bα2,∞(PX |AT ).

We like to emphasize that in the theorem above X := supp PX only serves as a nota-
tion. Indeed, the partition (A′j)j=1,...,m̃ of (A) can be found without knowing supp PX , and
whether we actually remove the cells that do not intersect the interior of supp PX is irrele-
vant since these cells will neither contain samples nor will they contribute to the overall risk
of our decision function ÛfD,λ,γ as we assumed PX(∂X) = 0. Despite from this, the proofs
anyway do not require that X exactly corresponds to the support of the distribution PX .
Instead we can as well assume supp PX ⊂ X ⊂ B`d2 . Moreover, note for the proofs that the

considered Besov-like space Bα
2,∞(PX |AT ) is defined w.r.t. Ω = Rd.

Theorem 4 only focuses on the least squares loss, however, a similar version can be
shown under more general assumptions for generic losses and RKHSs, where we refer the
interested reader to (Eberts, 2015, Theorem 4.4). Moreover, considering a trivial partition
consisting of only one set A1 the oracle inequalities for VP-SVMs are comparable to the
already known ones, see (Eberts, 2015, p. 81) for more details.

Using the oracle inequality of Theorem 4, we derive learning rates w.r.t. the loss LJT
for the learning method described by (2) and (3) in the following theorem.

Theorem 5 Let τ ≥ 1 be fixed and β ≥ 2α
d + 1. Under the assumptions of Theorem 4 and

with

rn = c1n
− 1
βd , (16)

λn,j = c2r
dn−1 , (17)

γn,j = c3n
− 1

2α+d , (18)

for every j ∈ {1, . . . ,mn}, we have, for all n ≥ 1 and ξ > 0,

RLJT ,P( ÛfD,λn,γn)−R∗LJT ,P ≤ C
(
n−

2α
2α+d

+ξ + τn−1
)

with probability Pn not less than 1 − e−τ , where λn := (λn,1, . . . , λn,mn) as well as γn :=
(γn,1, . . . , γn,mn) and C, c1, c2, c3 are positive constants with c3 ≤ c1.

In the latter theorem the condition β ≥ 2α
d + 1 is required to ensure γn,j ≤ rn, j =

1, . . . ,mn, which in turn is a prerequisite arising from Theorem 12 and the used entropy

estimate. Let us briefly examine the extreme case β = 2α
d +1. Using rn ≈ n−

1
βd and (5) leads

to covering numbers of the form mn ≈ n
d

2α+d and computational costs of O
(
mn

(
n
mn

)q)
=

O
(
n

2αq+d
2α+d

)
which is actually less than the computational cost of order nq, q ∈ [2, 3], of

an usual SVM. Note that for increasing β the computational costs of an VP-SVM are

increasing as well. However, for β > 2α
d + 1, rn ≈ n

− 1
βd , and mn ≈ n

1
β , a VP-SVM has

costs of O
(
n

1+(β−1)q
β

)
which still is less that O (nq).
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Let us finally take a closer look at the VP-SVM given by (3) and the considerations
related to (15), where fD,λ ∈ H =

⊕m
j=1 Ĥj solves the minimization problem

fD,λ = arg min
f1∈Ĥ1,...,fm∈Ĥm

m∑
j=1

λj ‖fj‖2Ĥj +RL,D
( m∑
j=1

fj

)
.

Choosing λ1 = . . . = λm, the VP-SVM problem can be understood as particular `2-multiple
kernel learning (MKL) problem using the RKHSs Ĥ1, . . . , Ĥm. Learning rates for MKL have
been treated, for example, in (Suzuki, 2011) and (Kloft and Blanchard, 2012). Assuming

f∗L,P ∈ H, the learning rate achieved in (Suzuki, 2011) is mn−
1

1+s for dense settings, where
s is the so-called spectral decay coefficient. In addition, Kloft and Blanchard (2012) obtain
essentially the same rates under these assumptions. Let us therefore briefly investigate the
above rate of (Suzuki, 2011). For RKHSs that are continuously embedded in a Sobolev

space Wα
2 (X), we have s = d

2α such that the learning rate reduces to mn−
2α

2α+d . Note that

this learning rate is m times the optimal learning rate n−
2α

2α+d , where the number m = mn

of kernels may increase with the sample size n. In particular, if mn → ∞ polynomially,
then the rates obtained in (Suzuki, 2011) become substantially worse than the optimal rate.
In contrast, due to the special choice of the RKHSs, this is not the case for our VP-SVM
problem, provided that mn does not grow faster than n1/β.

Note that the oracle inequalities and learning rates achieved in Theorems 4 and 5 require
f∗L,P ∈ Bα

2,∞(PX |
⋃
j∈JT

Aj ). However, for an increasing sample size n, the sets Aj shrink and

the index set JT , indicating every set Aj such that Aj ∩T 6= ∅ and T ⊂
⋃
j∈JT Aj , increases.

In particular, this also involves that the set
⋃
j∈JT Aj covering T changes in tandem with

n. Since this is very inconvenient and since it would be desirable to assume a certain level
of smoothness of the target function on a fixed region for all n ∈ N, we consider the set T
enlarged by an δ-tube. To this end, for δ > 0, we define T+δ by

T+δ :=
{
x ∈ X

∣∣∃t ∈ T : ‖x− t‖2 ≤ δ
}
,

which implies T ⊂ T+δ ⊂ X, cf. Figure 4. Note that, for every δ > 0, there exists an nδ ∈ N
such that, for every n ≥ nδ, the union of all partition sets Aj , having at least one common
point with T , is contained in T+δ, i.e.

∀δ > 0 ∃nδ ∈ N ∀n ≥ nδ :
⋃
j∈JT

Aj ⊂ T+δ , (19)

where JT := {j ∈ {1, . . . ,mn} : Aj ∩T 6= ∅}. Collectively, this implies T ⊂
⋃
j∈JT Aj ⊂ T

+δ

for all n ≥ nδ. Furthermore, since every set Aj is contained in a ball with radius rn = cn
− 1
βd

satisfying (5), the lowest sample size nδ in (19) can be determined by choosing the smallest
nδ ∈ N such that δ ≥ 2rnδ , that is

nδ =

⌈(
2c

δ

)βd⌉
.

This leads to the following corollary, which presents an oracle inequality and learning rates
assuming the smoothness level α of the target function on a fixed region.
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T

T+δ

X

Figure 4: An input space X with a Voronoi partition as well as a subset T ⊂ X enlarged by an
δ-tube to T+δ.

Corollary 6 Let Y := [−M,M ] for M > 0, L : Y × R → [0,∞) be the least squares loss,
and P be a distribution on Rd × Y . We denote the marginal distribution of P onto Rd
by PX , write X := supp PX , and assume PX(∂X) = 0. Furthermore, let (A) and (G)
be satisfied. In addition, for an arbitrary subset T ⊂ X, we assume (T) . Moreover, let
f∗L,P : Rd → R be a Bayes decision function with f∗L,P ∈ L2(Rd) ∩ L∞(Rd) as well as

f∗L,P ∈ Bα
2,∞(PX |T+δ)

for α ≥ 1 and some δ > 0. Then, for all p ∈ (0, 1), n ≥ nδ, τ ≥ 1, γ = (γ1, . . . , γm) ∈
(0, r]m, and λ = (λ1, . . . , λm) > 0, the VP-SVM given by (3) using Ĥγ1(A1), . . . , Ĥγm(Am),
and the loss LT satisfies

m∑
j=1

λj‖fDj ,λj ,γj‖
2
Ĥγj (Aj)

+RLT ,P( ÛfD,λ,γ)−R∗LT ,P

≤ CM,α,p

∑
j∈JT

λjγ
−d
j +

(
maxj∈JT γj
minj∈JT γj

)d
max
j∈JT

γ2α
j +r2p

 m∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

p

n−1+τn−1


with probability Pn not less than 1 − e−τ , where CM,α,p > 0 is the same constant as in
Theorem 4.

Additionally, let β ≥ 2α
d + 1 as well as, for every j ∈ {1, . . . ,mn}, rn, λn,j, and γn,j be

as in (16), (17), and (18), respectively, where c1, c2, c3 are user-specified positive constants

with c3 ≤ c1. Then, for all n ≥ nδ =
⌈(

2c1
δ

)βd⌉
and ξ > 0, we have

RLT ,P( ÛfD,λn,γn)−R∗LT ,P ≤ C
(
n−

2α
2α+d

+ξ + τn−1
)

with probability Pn not less than 1 − e−τ , where λn := (λn,1, . . . , λn,mn), γn := (γn,1, . . . ,
γn,mn), and C is a positive constant.
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Note that the assumption f∗L,P ∈ Bα
2,∞(PX |T+δ) made in Corollary 6 is satisfied if,

for example, PX has a bounded Lebesgue density on T+δ, f∗L,P ∈ L∞(T+δ), and either

f∗L,P ∈ Bα
2,∞(T+2δ) for α ≥ 1 or f∗L,P ∈ Wα

2 (T̃ ) ⊂ Bα
2,∞(T+2δ) for α ∈ N and a bounded

Lipschitz domain T̃ ⊂ Rd such that T+2δ ⊂ T̃ . Moreover, if this density of PX is even

bounded away from 0, it is well-known that the minmax rate is n−
2α

2α+d for α > d/2 and
target functions f∗L,P ∈ Wα

2 (T ) as well as for α > d and f∗L,P ∈ Bα
2,∞(T ). Modulo ξ, our

rate is therefore asymptotically optimal in a minmax sense on T .

Although the obtained learning rates are arbitrary close to the optimal rates, it is
needless to say that the results are not fully satisfying. Indeed, an ideal result would not
contain a gap of the form nξ, and a close to ideal result would at least replace the gap
nξ by a logarithmic factor. Unfortunately, even for global SVMs using Gaussian kernels,
such results seem to be currently out of reach, see (Eberts and Steinwart, 2013) for the
latter case. Let us briefly describe the technical obstacles. One key ingredient for both the
local and the global approach are estimates on the entropy numbers ei of the embeddings
id : Hγ → L2(PX) or id : Hγ → `∞(X), see Section 6 for a definition. Several such estimates
do exist. For example, Zhou (2002) and Kühn (2011) proved (optimal) super-polynomial
estimates but unfortunately their bounds have a unfavorable dependence on γ, which makes
it impossible to get arbitrarily close to the optimal rates, see e.g., (Xiang and Zhou, 2009)
for a similar situation in which this problem occurs. For this reason we followed the path
of (Eberts and Steinwart, 2013), in which we employ an entropy estimate of the form

ei
(
id : Hγ → L2(PX)

)
≤ cp,d γ−pi−

p
d , i ≥ 1, γ ∈ (0, 1] ,

where cp,d ≥ 1 is a constant only depending on p ∈ N and d. Note that this estimate is
clearly sub-optimal in i, but it has a significantly better behavior in γ compared to the
above mentioned results. Now, using this entropy estimate, Eberts and Steinwart (2013)
obtain an oracle inequality of the form

RL,P(fD,λ,γ)−R∗L,P ≤ Kp

(
λγ−d + γ2α +

c
d/p
p,d γ

−d

λ
d
2pn

+
τ

n

)
,

where the constant Kp is independent of γ, λ, τ , and n, and its dependence on p can be
tracked, cf. (Steinwart and Christmann, 2008, p. 267). Note that for the local approach
a structurally identical formula is derived implicitly in the proof of Theorem 4. Now, the
rates in this paper as well as in (Eberts and Steinwart, 2013) are obtained by optimizing
the right hand side with respect to both λ and γ for an arbitrarily large but fixed p. Since
the resulting rates become better the larger we pick p it is tempting to consider p = pn →
∞. Unfortunately, however, this only becomes feasible if we have an explicit expression
describing how cp,d may depend on p. For example, some preliminary considerations suggest
that we could already replace the gap nξ by a logarithmic factor if we had a rough bound
of the form cp,d ≤ cdp

cp. Unfortunately, we neither could derive such a bound for cp,d nor
could we find it in the literature. Even worse, we also asked several experts for bounding
entropy numbers of function space embeddings without any success. In addition, we are
unaware of any other technique that has the potential to fill the gap in either the global or
the local case, and therefore we leave this problem as an open question for future research.
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4.2 Data-Dependent Parameter Selection for VP-SVMs

In the previous theorems the choice of the regularization parameters λn,1, . . . ,
λn,mn and the kernel widths γn,1, . . . , γn,mn requires us to know the smoothness parameter
α. Unfortunately, in practice, we usually do know neither this value nor its existence. In this
subsection, we thus show that a training/validation approach similar to the one examined
in (Steinwart and Christmann, 2008, Chapters 6.5, 7.4, 8.2) and (Eberts and Steinwart,
2013) achieves the same rates adaptively, i.e., without knowing α. For this purpose, let
Λ := (Λn) and Γ := (Γn) be sequences of finite subsets Λn ⊂ (0, rdn] and Γn ⊂ (0, rn]. For a
data set D := ((x1, y1), . . . , (xn, yn)), we define

D1 := ((x1, y1), . . . , (xl, yl)) ,

D2 := ((xl+1, yl+1), . . . , (xn, yn)) ,

where l := bn2 c+ 1 and n ≥ 4. We further split these sets in data sets

D
(1)
j := {(xi, yi) ∈ D1 : xi ∈ Aj} , j ∈ {1, . . . ,mn} ,

D
(2)
j := {(xi, yi) ∈ D2 : xi ∈ Aj} , j ∈ {1, . . . ,mn} ,

and define lj := |D(1)
j | for all j ∈ {1, . . . ,mn} such that

∑mn
j=1 lj = l. For every j ∈

{1, . . . ,mn}, we basically use D
(1)
j as a training set, i.e., based on D1 in combination with

the loss function Lj := 1AjL we compute SVM decision functions

f
D

(1)
j ,λj ,γj

:= arg min
f∈Ĥγj (Aj)

λj‖f‖2Ĥγj (Aj)
+RLj ,D1(f) , (λj , γj) ∈ Λn × Γn .

Note that f
D

(1)
j ,λj ,γj

= 0 if D
(1)
j = ∅. Next, for each j, we use D2 in tandem with Lj (or

essentially D
(2)
j ) to determine a pair (λD2,j , γD2,j) ∈ Λn × Γn such that

RLj ,D2

( Ûf
D

(1)
j ,λD2,j

,γD2,j

)
= min

(λj ,γj)∈Λn×Γn
RLj ,D2

( Ûf
D

(1)
j ,λj ,γj

)
.

Finally, combining the decision functions f
D

(1)
j ,λD2,j

,γD2,j
for all j ∈ {1, . . . ,mn}, and defining

λD2 := (λD2,1, . . . , λD2,mn) and γD2
:= (γD2,1, . . . , γD2,mn), we obtain a function

fD1,λD2
,γD2

:=

mn∑
j=1

f
D

(1)
j ,λD2,j

,γD2,j
=

mn∑
j=1

1AjfD
(1)
j ,λD2,j

,γD2,j
,

and we call every learning method that produces these resulting decision functions
fD1,λD2

,γD2
a training validation Voronoi partition support vector machine (TV-VP-SVM)

w.r.t. Λ× Γ. Moreover, we have, for λ := (λ1, . . . , λmn) and γ := (γ1, . . . , γmn),

RL,D2

( ÛfD1,λD2
,γD2

)
=

mn∑
j=1

RLj ,D2

( Ûf
D

(1)
j ,λD2,j

,γD2,j

)
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=

mn∑
j=1

min
(λj ,γj)∈Λn×Γn

RLj ,D2

( Ûf
D

(1)
j ,λj ,γj

)

= min
(λ,γ)∈(Λn×Γn)mn

mn∑
j=1

RLj ,D2

( Ûf
D

(1)
j ,λj ,γj

)
= min

(λ,γ)∈(Λn×Γn)mn
RL,D2

( ÛfD1,λ,γ

)
,

where fD1,λ,γ :=
∑mn

j=1 fD
(1)
j ,λj ,γj

with (λj , γj) ∈ Λn × Γn for all j ∈ {1, . . . ,mn}. In

other words, the function ÛfD1,λD2
,γD2

really minimizes the empirical risk RL,D2 w.r.t. the

validation data set D2 and the loss L, where the minimum is taken over all functions ÛfD1,λ,γ

with (λ,γ) ∈ (Λn × Γn)mn .
Before we analyze the TV-VP-SVM algorithm, let us briefly discuss the computational

complexity of the hyper-parameter selection step. To this end, we first note that the pa-
rameter selection on, e.g., the j-th cell is completely independent of the parameter selection
on all other cells. Maybe the easiest way to visualize this is by thinking of having two cells
and candidates Λ = (λ1, . . . , λk), only. Naively, this would give the candidate set Λ × Λ
for the overall hyper-parameter selection procedure. However, inspecting the candidates on
the first cell, we see the same results for the candidates in Λ× {λ1} and in Λ× {λ2} since
any decision we make on the second cell does not influence our situation on the first cell.
Consequently, we only need to consider the candidates Λ× {λ1}, that is the candidates in
Λ, when performing parameter selection on the first cell, and analogously we only need to
consider the candidates {λ1} × Λ for the parameter selection on the second cell. Together
this gives 2|Λ| many candidates, instead of |Λ|2 many candidates of the naive approach.

Generalizing the reasoning above to m cells and Λ×Γ, we easily see that our parameter
selection strategy leads to the inspection of m × |Λ| × |Γ| many candidates. Moreover,
because of the independence of all cells, we could actually perform parameter selection on
the cells in parallel. Clearly such a parallel approach would be easy to implement and would
have minimal synchronization and communication overhead.

The following theorem presents learning rates for the above described TV-VP-SVM.

Theorem 7 Let rn := cn
− 1
βd with constants c > 0 and β > 1. Under the assumptions

of Theorem 4 we fix sequences Λ := (Λn) and Γ := (Γn) of finite subsets Λn ⊂ (0, rdn]
and Γn ⊂ (0, rn] such that Λn is an (rdnεn)-net of (0, rdn] and Γn is a δn-net of (0, rn] with

εn ≤ n−1 and δn ≤ n−
1

2+d . Furthermore, assume that the cardinalities |Λn| and |Γn| grow
polynomially in n. Then, for all ξ > 0, τ ≥ 1, and α < β−1

2 d, the TV-VP-SVM producing
the decision functions fD1,λD2

,γD2
satisfies

Pn
(
RLJT ,P( ÛfD1,λD2

,γD2
)−R∗LJT ,P ≤ c

(
n−

2α
2α+d

+ξ + τn−1
))
≥ 1− e−τ ,

where c > 0 is a constant independent of n and τ .

Once more, we can replace the assumption f∗L,P ∈ Bα
2,∞(PX |AT ) by f∗L,P ∈ Bα

2,∞(PX |T+δ)
for some δ > 0 and obtain the same learning rate as in Theorem 7 for all n ≥ nδ although
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T+δ is fixed for all n ∈ N. Here, recall that f∗L,P ∈ Bα
2,∞(PX |T+δ) whenever PX has a

bounded Lebesgue density on T+δ, f∗L,P ∈ L∞(T+δ), and either f∗L,P ∈ Bα
2,∞(T+2δ) for

α ≥ 1 or f∗L,P ∈ Wα
2 (T̃ ) ⊂ Bα

2,∞(T+2δ) for α ∈ N and a bounded Lipschitz domain T̃ ⊂ Rd

such that T+2δ ⊂ T̃ . Moreover, let us assume that T̃ ⊇ T+δ is a bounded Lipschitz
domain in Rd such that Stein’s extension operator E exists and that P is a distribution
on Rd × Y such that PX has a Lebesgue density g on T+δ with g ∈ L∞(T+δ). Then, the
assumptions f∗L,P ∈ Bα

2,∞(T̃ ) and f∗L,P ∈ L∞(T̃ ) yield Ef∗L,P ∈ Bα
2,∞(PX |T+δ) and Ef∗L,P ∈

L2(Rd)∩L∞(Rd), see (Eberts, 2015, Corollary 3.4 and Theorem 3.2) for more details. Thus,
applying R∗LJT ,P = RLJT ,P(Ef∗L,P) and choosing f0 :=

∑
j∈JT 1Aj · (Kj ∗ Ef∗L,P), we obtain

the same results as in Corollary 6 and Theorem 7 for n ≥ nδ. Obviously, the same is true,
if we assume f∗L,P ∈ Wα

2 (T̃ ) instead of f∗L,P ∈ Bα
2,∞(T̃ ). For all these cases, note that, if

PX has a Lebesgue density that is bounded away from 0 and ∞ and either f∗L,P ∈ Wα
2 (T )

for α > d/2 or f∗L,P ∈ Bα
2,∞(T ) for α > d, the achieved learning rate n−

2α
2α+d is again

asymptotically optimal modulo ξ on T in a minmax sense. Here, we only derived learning
rates when using the least squares loss. However, similar rates are shown by Eberts (2015,
Section 9) for quantile regression using the pinball loss.

To derive the above learning rates, we need the condition α < β−1
2 d. However, this

condition restricts the set of α-values where we obtain learning rates adaptively. To be
more precise, there is a trade-off between α and β. On the one hand, for small values of β
only a small number of possible values for α is covered. On the other hand, for larger values
of β the set of α-values where we achieve rates adaptively is increasing but the savings in
terms of computing time is decreasing.

Finally, we note that if we have a fixed computational budget in terms of RAM and/or
computing time, this trade-off can be approximately resolved in the following way. First,
we consider a couple of candidates for β, or the resulting number of cells m. Then, we
pick a suitably sized random subset of the entire training set and build Voronoi partitions
of this random subset for the different candidates. For each cell of these partitions we
then estimate the computational costs and finally we pick the largest candidate β for which
the resulting partition still satisfies our computational budget. This procedure has several
benefits: a) it is very cheap compared to the subsequent training and parameter selection
phase, b) the choice of β, or m, has a clear meaning for the user, c) it approximately leads
to widest adaptivity we can afford by our computational budget, and d) our experiments
in the next section show that there is no significant risk for the user by focusing on the
maximal computational resources.

5. Experimental Results

In this section we report a few experiments for VP-SVMs, which illustrate the influence of
the chosen radius and which compare them to standard global SVMs as well as to RC-SVMs
in terms of both training time and test error.

In the experiments we report here, we consider the classical covtype data set, which
contains 581.012 samples of dimension 54. More experimental results on additional data sets
can be found in (Eberts, 2015) and in the earlier arXiv version (Eberts and Steinwart, 2014)
of this paper. The code we used was an early version of Steinwart (2016), which provides
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Algorithm 1 Determine a Voronoi partition of the input data

Require: Input data set DX = {x1, . . . , xn} with sample size n ∈ N and some radius r > 0.
Ensure: Working sets indicating a Voronoi partition of DX .
1: Pick an arbitrary z ∈ DX

2: Cover1 ← z
3: m← 1
4: while maxx∈DX ‖x− Cover‖2 > r do
5: z ← arg maxx∈DX ‖x− Cover‖2
6: m← m+ 1
7: Coverm ← z
8: WorkingSetm ← ∅
9: end while

10: for i = 1 to n do
11: k ← arg minj∈{1,...,m} ‖xi − Coverj‖2
12: WorkingSetk ←WorkingSetk ∪ {xi}
13: end for
14: return WorkingSet1, . . . ,WorkingSetm

highly efficient SVM solvers for different loss functions based on the ideas developed by
(Steinwart et al., 2011). In particular, it is easy to repeat every experiment by the current
version of the code.

In order to prepare the data set for the experiments, we first merged the split raw data
sets so that we obtained one data set. In a next step, we scaled the data component-wise
such that all samples including labels lie in [−1, 1]d+1, where d is the dimension of the
input data. Finally, we generated random subsets that were afterwards randomly split
into a training and a test data set. In this manner, we obtained training sets consisting
of n = 1 000, 2 500, 5 000, 10 000, 25 000, 50 000, 100 000, 250 000, and 500 000 samples.
The test data sets associated to the various training sets consist of ntest = 50 000 random
samples, apart from the training sets with ntrain ≤ 5 000, for which we took ntest = 10 000
test samples. To minimize random effects, we repeated the experiment for each setting
several times. Since experiments using large data sets entail long run times, we reran every
experiment using a training set of size n ≥ 50 000 only three times while for training sets of
size n = 10 000, 25 000 we performed ten repetitions and for smaller training sets, namely
of size n = 1 000, 2 500, 5 000, even 100 runs.

To train the global SVM for sufficiently large data sets we used a professional compute
server equipped with four INTEL XEON E7-4830 (2.13 GHz) 8-core processor, 256 GB
RAM. In order to have comparable run times, we ran the experiments for the VP-SVMs
and RC-SVMs on this machine, too. In all experiments we used eight cores to pre-compute
the kernel matrix and to evaluate the final decision functions on the test set, but only one
core for the actual solver.

Let us quickly illustrate the routines of the VP- and the RC-SVM implemented around
the LS-solver. For the VP-SVM, we first split the training set by Algorithm 1 in several
working sets representing a Voronoi partition w.r.t. the user-specified radius. For this
purpose, Algorithm 1 initially determines a cover of the input data applying the farthest
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first traversal algorithm, see (Dasgupta, 2008) and (Gonzalez, 1985) for more details. Note
that this procedure induces working sets whose sizes may be considerably varying. In the
case of an RC-SVM the working sets form a random partition of the training samples,
where their sizes are basically equal and the number of working sets is predefined by the
user. Then, for the VP-SVM- as well as for the RC-SVM-algorithm the implemented LS-
solver is applied on every working set. For each working set, we randomly split the respective
training data set of size ntrain in five folds to apply 5-fold cross-validation in order to deal
with the hyper-parameters λ and γ taken from an 10 by 10 grid geometrically generated

in [0.001 · n−1
train, 0.1] × [0.5 · n−1/d

train , 10]. Finally, we obtain one decision function for each
working set. To further process these decision functions the VP-SVM-algorithms picks
exactly one decision function depending on the working set affiliation of the input value. On
the contrary, the RC-SVM-algorithm simply takes the average of all the decision functions.
Moreover, the computed decision functions are clipped at ±1. Altogether, note that the
usual LS-SVM-algorithm can be interpreted as special case of both the VP-SVM- and the
RC-SVM-algorithm using one working set.

The results, which are displayed in Figure 5, can be quickly summarized: Not surpris-
ingly, smaller radii for the VP-SVM lead to less crowded cells, which in turn reduces the
training time significantly. In addition, the VP-SVM is, unlike the global SVM, not af-
fected by the amount of available memory, so that runs with more than 100.000 samples,
which would require kernel matrix caching for the global SVM, are still very feasible for the
VP-SVM. Despite these advantages in terms of required computational resources, however,
the test errors of the VP-SVM are only a bit worse than those of the global SVM. More-
over, the test errors become slightly better with increasing radii, so that there is a clear
trade-off between computational resources and test accuracy as discussed in the previous
section. When comparing the RC-SVM with the global SVM, we see, not surprisingly,
the same computational advantages, but the test errors become significantly worse. As a
consequence, the VP-SVM clearly outperforms the RC-SVM in terms of test errors, when
both approaches have about the same training time. In this respect we also like to mention
that in terms of test time, the VP-SVM was significantly faster than the RC-SVM, simply
because for the VP-SVM each decision function evaluation only requires the support vector
of the corresponding cell, whereas the final decision function of the RC-SVM requires all
support vectors. See (Eberts and Steinwart, 2014) for details.

6. Proofs

This section is dedicated to prove the results of the previous sections.

We begin by recalling the definition of entropy and covering numbers. To this end, let
(T, d) be a metric space. Then, the i-th (dyadic) entropy number of T is

ei(T, d) := inf

{
ε > 0 : ∃s1, . . . , s2i−1 ∈ T such that T ⊂

2i−1⋃
j=1

B(sj , ε)

}
,

where Bd(s, ε) := {t ∈ T : d(t, s) ≤ ε} and inf ∅ :=∞. Moreover, if S : E → F is a bounded
linear operator between the normed spaces E and F , then its (dyadic) entropy numbers are
defined by ei(S : E → F ) := ei(SBE , ‖ · ‖F ), where BE denotes the closed unit ball of E.

22



Optimal Learning Rates for Localized SVMs

0
20

0
40

0
60

0

sample size

tr
ai

ni
ng

 ti
m

e 
[s

ec
]

1000 2500 5000 10000

RC−SVM using

nr of ws = 1
nr of ws = 5
nr of ws = 10
nr of ws = 50
nr of ws = 100

(a) Average training time of
the various RC-SVMs for
ntrain ≤ 10 000

0
20

00
0

40
00

0
60

00
0

80
00

0

sample size

tr
ai

ni
ng

 ti
m

e 
[s

ec
]

5000 25000 100000 500000

(b) Average training time of
the various RC-SVMs for
ntrain ≥ 5 000

0.
2

0.
4

0.
6

0.
8

sample size

te
st

 e
rr

or

1000 5000 25000 500000

(c) Average empirical risk of the
various RC-SVMs

0
20

40
60

80
10

0
12

0

sample size

tr
ai

ni
ng

 ti
m

e 
[s

ec
]

1000 2500 5000 10000

VP−SVM using

radius = 2
radius = 3
radius = 4
radius = 5

(d) Average training time of
the various VP-SVMs for
ntrain ≤ 10 000

0
50

00
15

00
0

25
00

0
35

00
0

sample size

tr
ai

ni
ng

 ti
m

e 
[s

ec
]

5000 25000 100000 500000

(e) Average training time of
the various VP-SVMs for
ntrain ≥ 5 000

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

sample size

te
st

 e
rr

or

1000 5000 25000 500000

(f) Average empirical risk of the
various VP-SVMs

0
20

40
60

80
10

0
12

0
14

0

sample size

tr
ai

ni
ng

 ti
m

e 
[s

ec
]

1000 2500 5000 10000

LS−SVM
VP−SVM (radius = 2)
RC−SVM (50 working sets)
RC−SVM (100 working sets)

(g) Average training time of
LS-, VP-, and RC-SVMs for
ntrain ≤ 10 000

0
50

00
10

00
0

15
00

0

sample size

tr
ai

ni
ng

 ti
m

e 
[s

ec
]

5000 25000 100000 500000

(h) Average training time of
LS-, VP-, and RC-SVMs for
ntrain ≥ 5 000

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

sample size

te
st

 e
rr

or

1000 5000 25000 500000

(i) Average empirical risk of LS-,
VP-, and RC-SVMs

Figure 5: Average training time and test error of LS-, VP-, and RC-SVMs for the real-world data
covtype depending on the training set size ntrain = 1 000, . . . , 500 000. Subfigures (a)–(c)
show the results for RC-SVMs using different numbers of working sets and Subfigures
(d)–(f) illustrate the results for VP-SVMs using various radii. At the bottom, Subfigures
(g)–(i) contain the average training times and the average test errors of the LS-SVM,
one VP-SVM and two RC-SVMs. Here, the VP-SVM is the one which trains fastest for
ntrain = 500 000 and the two RC-SVMs are those which achieve for ntrain = 500 000 roughly
the same training time as the chosen VP-SVM. Here, note that, for ntrain = 10 000, the
RC-SVM using one working set trains substantially slower than the LS-SVM, even though
this RC-SVM is basically an LS-SVM. As a reason for this phenomenon, we conjecture
that the used compute server was busy because of other influences.
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Similarly, the ε-covering number of T is defined by

N (T, d, ε) := inf

{
n ≥ 1 : ∃s1, . . . , sn ∈ T such that T ⊂

n⋃
i=1

Bd(si, ε)

}
,

and again, this definition can be applied to bounded linear operators S : E → F by
considering the set SBE . Moreover, every subset S ⊂ T for which for all t ∈ T there exists
an s ∈ S with d(s, t) ≤ ε is called an ε-net of T . Consequently, N (T, d, ε) is the size of the
smallest ε-net of T . Recall that entropy and covering numbers are in some sense inverse to
each other. To be more precise, for all constants a > 0 and q > 0, the implication

ei(T, d) ≤ ai−1/q , i ≥ 1 =⇒ lnN (T, d, ε) ≤ ln(4)
(a
ε

)q
, ∀ ε > 0 (20)

holds by (Steinwart and Christmann, 2008, Lemma 6.21). Additionally, (Steinwart and
Christmann, 2008, Exercise 6.8) yields the opposite implication, namely

lnN (T, d, ε) <
(a
ε

)q
, ε > 0 =⇒ ei(T, d) ≤ 31/qai−1/q , ∀ i ≥ 1 . (21)

With these preparations, we can now prove Lemma 1, which relates the radius r of a
cover Br(z1), . . . , Br(zm) of B`d2

⊃ X defined by (4) with the number m of centers z1, . . . , zm.

Proof [of Lemma 1] It is easy to show that N (cB`d2
, `d2, r) = N (B`d2

, `d2,
r
c ) holds for all

r, c > 0. Moreover, applying Proposition 1.1 of (Temlyakov, 2013) yields

r̃−d ≤ N (B`d2
, `d2, r̃) ≤

(
1 +

2

r̃

)d
, r̃ ∈ (0, 1].

Consequently, we can find a cover (Br(zj))j=1,...,m of X ⊂ cB`d2 with centers zj ∈ cB`d2 and
radius r ≤ c such that

(r
c

)−d
≤ m ≤

(
1 +

2c

r

)d
.

Since r ≤ c, we thus have r ≤ (r + 2c)m−
1
d ≤ 3cm−

1
d

Next, we consider a lemma that is part of our construction of the partition (Aj)j of X.

Lemma 8 Let (A′j)j=1,...,m be a partition of B`d2
such that Å′j 6= ∅ as well as Å′j = A′j for

every j ∈ {1, . . . ,m}. Let X be some closed subset of B`d2
such that X̊ 6= ∅ and X̊ = X.

Without loss of generality we further assume that there is an m0 ≤ m such that A′j ∩ X̊ 6= ∅
for all j ∈ {1, . . . ,m0} and A′j ∩ X̊ = ∅ for all j ∈ {m0 + 1, . . . ,m}. Then, we define

A′′j := A′j ∩ X̊ for all j ∈ {1, . . . ,m0}. Moreover, let (Aj)j=1,...,m0 be a partition of X with

A′′j ⊂ Aj ⊂ A′′j . Then, for every j ∈ {1, . . . ,m0}, we have Å′′j 6= ∅, and thus Åj 6= ∅.
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Proof Let us assume that there is an j ∈ {1, . . . ,m0} with Å′′j = ∅. By our assumption we

then know A′′j = A′j ∩ X̊ 6= ∅, i.e., there exists some x ∈ A′j ∩ X̊. Since

∅ = Å′′j = interior(A′j ∩ X̊) = Å′j ∩ interior X̊ = Å′j ∩ X̊ ,

where we used the notation interiorB := B̊, it immediately follows that x ∈ ∂A′j ⊂ A′j = Å′j .

Hence, there exists a sequence (xn)n ⊂ Å′j such that xn
n→∞−−−→ x. On the other hand,

x ∈ A′′j ⊂ X̊ together with the fact that X̊ is open, gives xn ∈ X̊ for all sufficiently large n.

For such an n, we obtain xn ∈ Å′j ∩ X̊ = Å′′j , which contradicts the assumed Å′′j = ∅. The

second assertion follows from Å′′j ⊂ Åj .

Next, let us consider a crucial property of the risk of functions contained in a joined
RKHS.

Lemma 9 Let P be a distribution on X × Y and L : X × Y × R → [0,∞) be a loss
function. For A,B ⊂ X such that A∪B = X and A∩B = ∅, define loss functions LA, LB :
X × Y × R → [0,∞) by LA(x, y, t) = 1A(x)L(x, y, t) and LB(x, y, t) = 1B(x)L(x, y, t),
respectively. Furthermore, let fA : X → R as well as fB : X → R be measurable functions
and f : X → R be defined by f(x) = 1A(x)fA(x) + 1B(x)fB(x) for all x ∈ X. Then, we
have

RL,P(f) = RLA,P(fA) +RLB ,P(fB) .

as well as

RL,P(f)−R∗L,P =
(
RLA,P(fA)−R∗LA,P

)
+
(
RLB ,P(fB)−R∗LB ,P

)
.

Proof Simple transformations using A ∪B = X and A ∩B = ∅ show

RL,P(f) =

∫
X×Y

L (x, y,1A(x)fA(x) + 1B(x)fB(x)) dP(x, y)

=

∫
X×Y

1A(x)L(x, y, fA(x)) + 1B(x)L(x, y, fB(x)) dP(x, y)

= RLA,P(fA) +RLB ,P(fB) .

The second assertion follows immediately.

6.1 Some General Estimates on Entropy Numbers

To derive an oracle inequality for VP-SVMs we will have to relate the entropy numbers
of Hj , j ∈ {1, . . . ,m}, to those of H. Our first result establishes such a relationship for
covering numbers, instead.
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Lemma 10 Let ν be a distribution on X and A,B ⊂ X with A∩B = ∅. Moreover, let HA

and HB be RKHSs on A and B that are embedded into L2(ν|A) and L2(ν|B), respectively.

Let the extended RKHSs ĤA and ĤB be defined as in Lemma 2 and denote their direct sum
by H as in (11), where the norm is given by (12) with λA, λB > 0. Then, for the ε-covering
number of H w.r.t. ‖ · ‖L2(ν), we have

N (BH , ‖ · ‖L2(ν), ε) ≤ N
(
λ
−1/2
A BĤA , ‖ · ‖L2(ν|A), εA

)
· N

(
λ
−1/2
B BĤB , ‖ · ‖L2(ν|B), εB

)
,

where εA, εB > 0 and ε :=
√
ε2
A + ε2

B.

Proof First of all, we assume that there exist a, b ∈ N and functions f̂1, . . . , f̂a ∈ λ
− 1

2
A BĤA

and ĥ1, . . . , ĥb ∈ λ
− 1

2
B BĤB such that {f̂1, . . . , f̂a} is an εA-cover of λ

− 1
2

A BĤA w.r.t. ‖ · ‖L2(ν|A),

{ĥ1, . . . , ĥb} is an εB-cover of λ
− 1

2
B BĤB w.r.t. ‖ · ‖L2(ν|B),

a = N (λ
− 1

2
A BĤA , ‖ · ‖L2(ν|A), εA) and b = N (λ

− 1
2

B BĤB , ‖ · ‖L2(ν|B), εB) .

That is, for every function ĝA ∈ λ
− 1

2
A BĤA , there exists an iA ∈ {1, . . . , a} such that∥∥∥ĝA − f̂iA∥∥∥

L2(ν|A)
≤ εA , (22)

and for every function ĝB ∈ λ
− 1

2
B BĤB , there exists an iB ∈ {1, . . . , b} such that∥∥∥ĝB − ĥiB∥∥∥

L2(ν|B)
≤ εB . (23)

Let us now consider an arbitrary function g ∈ BH . Then, there exists an ĝA ∈ λ
− 1

2
A BĤA

and an ĝB ∈ λ
− 1

2
B BĤB such that g = ĝA + ĝB. Together with (22) and (23), this implies∥∥∥g − (f̂iA + ĥiB

)∥∥∥2

L2(ν)
=
∥∥∥(ĝA − f̂iA)+

(
ĝB − ĥiB

)∥∥∥2

L2(ν)

=
∥∥∥ĝA − f̂iA∥∥∥2

L2(ν|A)
+
∥∥∥ĝB − ĥiB∥∥∥2

L2(ν|B)

≤ ε2
A + ε2

B

=: ε2 .

With this, we know that{
f̂iA + ĥiB : f̂iA ∈ {f̂1, . . . , f̂a} and ĥiB ∈ {ĥ1, . . . , ĥb}

}
is an ε-net of H w.r.t. ‖ · ‖L2(ν). Concerning the ε-covering number of H, this finally implies

N (BH , ‖ · ‖L2(ν), ε)≤a·b=N
(
λ
−1/2
A BĤA , ‖ · ‖L2(ν|A), εA

)
· N
(
λ
−1/2
B BĤB , ‖ · ‖L2(ν|B), εB

)
.
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Based on Lemma 10, the following theorem relates entropy numbers of HA and HB to
those of H.

Theorem 11 Let PX be a distribution on X and A1, . . . , Am ⊂ X be pairwise disjoint.
Moreover, for j ∈ {1, . . . ,m}, let Hj be a separable RKHS of a measurable kernel kj over
Aj such that ‖kj‖2L2(PX |Aj ) :=

∫
X kj(x, x)dPX |Aj (x) < ∞. Define RKHSs Ĥ1, . . . , Ĥm by

Lemma 2 and the joined RKHS H by (13) with the norm (14) and weights λ1, . . . , λm > 0.
In addition, assume that there exist constants p ∈ (0, 1) and aj > 0, j ∈ {1, . . . ,m}, such
that for every j ∈ {1, . . . ,m}

ei(id : Hj → L2(PX |Aj )) ≤ aj i
− 1

2p , i ≥ 1 . (24)

Then, we have

ei(id : H → L2(PX)) ≤ 2
√
m

3 ln(4)
m∑
j=1

λ−pj a2p
j

 1
2p

i
− 1

2p , i ≥ 1 ,

and, for the average entropy numbers,

EDX∼PnX
ei(id : H → L2(DX)) ≤ cp

√
m

 m∑
j=1

λ−pj a2p
j

 1
2p

i
− 1

2p , i, n ≥ 1 .

Proof First of all, note that the restriction operator I : BĤj → BHj with I f̂ = f is

an isometric isomorphism. Together with (Steinwart and Christmann, 2008, (A.36)) and
assumption (24), this yields

ei(λ
− 1

2
j BĤj , L2(PX |Aj )) = 2λ

− 1
2

j ei(BĤj , L2(PX |Aj ))

≤ 2λ
− 1

2
j ‖I : BĤj → BHj‖ei(BHj , L2(PX |Aj ))

≤ 2λ
− 1

2
j aji

− 1
2p .

Furthermore, we know by (20) that

lnN
(
λ
− 1

2
j BĤj , ‖ · ‖L2(PX |Aj ), ε

)
≤ ln(4)

(
2λ
− 1

2
j aj

)2p

ε−2p

holds for all ε > 0. With this and εj := ε√
m

for every j ∈ {1, . . . ,m}, Lemma 10 implies

lnN (BH , ‖ · ‖L2(PX), ε) ≤ ln

 m∏
j=1

N
(
λ
− 1

2
j BĤj , ‖ · ‖L2(PX |Aj ), εj

)
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=

m∑
j=1

lnN
(
λ
− 1

2
j BĤj , ‖ · ‖L2(PX |Aj ),

ε√
m

)

≤
m∑
j=1

ln(4)

(
2λ
− 1

2
j aj

)2p(√m
ε

)2p

=

2 ln(4)
1
2p
√
m

 m∑
j=1

λ−pj a2p
j

 1
2p


2p

ε−2p .

Using (21), the latter bound for the covering number of BH finally implies the following
entropy estimate

ei(id : H → L2(PX)) ≤ 3
1
2p

2 ln(4)
1
2p
√
m

 m∑
j=1

λ−pj a2p
j

 1
2p

 i
− 1

2p

≤ 2 (3 ln(4))
1
2p
√
m

 m∑
j=1

λ−pj a2p
j

 1
2p

i
− 1

2p .

The second assertion immediately follows by (Steinwart and Christmann, 2008, Corollary
7.31).

In the following subsections, we first focus on RKHSs using Gaussian RBF kernels and
examine the associated entropy numbers to specify (24). Subsequently, we additionally
consider the least squares loss to prove Theorem 4.

6.2 Entropy Estimates for Local Gaussian RKHSs

In this subsection, we derive an estimate in terms of assumption (24) for the RKHS Hγ(A)
over A of the Gaussian RBF kernel kγ on A ⊂ Rd given by

kγ(x, x′) := exp
(
−γ−2‖x− x′‖22

)
, x, x′ ∈ A ,

for some width γ > 0. More precisely, in the subsequent theorem we determine an upper
bound for the entropy numbers of the operator id : Hγ(A)→ L2(PX |A).

Theorem 12 Let X ⊂ Rd, PX be a distribution on X and A ⊂ X be such that Å 6= ∅
and such that there exists an Euclidean ball B ⊂ Rd with radius r > 0 containing A, i.e.,
A ⊂ B. Moreover, for 0 < γ ≤ r, let Hγ(A) be the RKHS of the Gaussian RBF kernel kγ
over A. Then, for all p ∈ (0, 1), there exists a constant cp > 0 such that

ei(id : Hγ(A)→ L2(PX |A)) ≤ cp
√

PX(A) r
d+2p
2p γ

− d+2p
2p i

− 1
2p , i ≥ 1 .
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Proof First of all, we consider the commutative diagram

Hγ(A)
id //

I−1
B ◦IA

��

L2(PX |A)

Hγ(B)
id

// `∞(B)

id

OO

where the extension operator IA : Hγ(A) → Hγ(Rd) and the restriction operator I−1
B :

Hγ(Rd)→ Hγ(B) given by (Steinwart and Christmann, 2008, Corollary 4.43) are isometric
isomorphisms, so that ‖I−1

B ◦ IA : Hγ(A) → Hγ(B)‖ = 1. Furthermore, for f ∈ `∞(B),
where `∞(B) is the space of all bounded functions on B, we have

‖f‖L2(PX |A) =

(∫
X
1A(x)|f(x)|2dPX(x)

)1
2

≤‖f‖∞
(∫

X
1A(x)dPX(x)

)1
2

=
√

PX(A) ‖f‖∞ ,

i.e., ‖id : `∞(B) → L2(PX |A)‖ ≤
√

PX(A). Together with (Steinwart and Christmann,
2008, (A.38) and (A.39)) as well as (Steinwart and Christmann, 2008, Theorem 6.27), we
obtain for all i ≥ 1

ei(id : Hγ(A)→ L2(PX |A))

≤ ‖I−1
B ◦ IA : Hγ(A)→ Hγ(B)‖ · ei(id : Hγ(B)→ `∞(B)) · ‖id : `∞(B)→ L2(PX |A)‖

≤
√

PX(A) cm,dr
mγ−mi−

m
d ,

where m ≥ 1 is an arbitrary integer and cm,d a positive constant. For p ∈ (0, 1), the choice

m =
⌈
d
2p

⌉
finally yields

ei(id : Hγ(A)→ L2(PX |A)) ≤
√

PX(A) cm,dr
mγ−mi−

m
d ≤ cp

√
PX(A) r

d+2p
2p γ

− d+2p
2p i

− 1
2p .

6.3 Proofs Related to the Least Squares VP-SVMs

In this subsection, we prove the results that are linked with the least squares loss, i.e., the
results of Section 4. Before we elaborate on the oracle inequality for VP-SVMs using the
least squares loss as well as RKHSs of Gaussian kernels, we have to examine the excess risk

RLJT ,P(f0)−R∗LJT ,P = ‖f0 − f∗L,P‖2L2(PX |AT ) . (25)

Let us begin by writing for fixed γj > 0

Kj : Rd → R , x 7→
s∑
`=1

(
s

`

)
(−1)1−`

(
2

`2γ2
j π

) d
2

exp

(
−2‖x‖22
`2γ2

j

)
, (26)

29



Meister and Steinwart

and choosing f0 :=
∑m

j=1 1Aj · (Kj ∗f∗L,P). Then, (25) can be estimated with the help of the
following theorem, which is together with its proof basically a modification of (Eberts and
Steinwart, 2013, Theorem 2.2). Indeed, the proofs proceed mainly identically. Note that
we use the notation

γmax := max{γ1, . . . , γm} and γmin := min{γ1, . . . , γm}

in the following theorem and the associated proof. For the sake of generality, we do not only
consider the Besov-like space Bα

2,∞(ν) in the following theorem but instead the Besov-like
spaces Bα

q,∞(ν) for arbitrary q ∈ [1,∞). These Besov-like spaces are defined analogously to
Bα

2,∞(ν), however, applying the modulus of smoothness for the Lq(ν)-norm instead of the
L2(ν)-norm. For an explicit definition of these spaces we refer to (Eberts, 2015, Section
3.1)

Theorem 13 Let us fix some q ∈ [1,∞). Assume that ν is a finite measure on Rd with
supp ν =: X ⊂ cB`d2

⊂ Rd for some c > 0. Let (A′j)j=1,...,m be a partition of cB`d2
. Then,

Aj := A′j ∩X for all j ∈ {1, . . . ,m} defines a partition (Aj)j=1,...,m of X. Furthermore, let

f : Rd → R be such that f ∈ Bα
q,∞(ν) for some α ≥ 1. For the functions Kj : Rd → R,

j ∈ {1, . . . ,m}, defined by (26), where s := bαc+ 1 and γ1, . . . , γm > 0, we then have

‖
m∑
j=1

1Aj · (Kj ∗ f)− f‖qLq(ν) ≤ Cα,q
(
γmax

γmin

)d
γqαmax ,

where Cα,q := ‖f‖qBαq,∞(ν)

(
d
2

) qα
2 π−

1
4 Γ
(
qα+ 1

2

) 1
2 .

Proof In the following, we write J := {1, . . . ,m}. To show

∥∥∥∑
j∈J

1Aj · (Kj ∗ f)− f
∥∥∥q
Lq(ν)

≤ ‖f‖qBαq,∞(ν)

(
d

2

) qα
2

π−
1
4 Γ

(
qα+

1

2

) 1
2
(
γmax

γmin

)d
γqαmax ,

we have to proceed in a similar way as in the proof of (Eberts and Steinwart, 2013, The-
orem 2.2). First of all, we use the translation invariance of the Lebesgue measure and
exp

(
−‖u‖22

)
= exp

(
−‖ − u‖22

)
(u ∈ Rd) to obtain, for x ∈ X and j ∈ J ,

Kj ∗ f (x) =

∫
Rd

s∑
`=1

(
s

`

)
(−1)1−` 1

`d

(
2

γ2
j π

) d
2

exp

(
−2‖x− t‖22

`2γ2
j

)
f (t) dt

=

∫
Rd

(
2

γ2
j π

) d
2

exp

(
−2‖h‖22

γ2
j

)(
s∑
`=1

(
s

`

)
(−1)1−` f (x+ `h)

)
dh .

With this we can derive, for q ≥ 1,∥∥∥∥∥∥
∑
j∈J

1Aj · (Kj ∗ f)− f

∥∥∥∥∥∥
q

Lq(ν)
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=

∫
Rd

∣∣∣∣∣∣
∑
j∈J

1Aj (x) (Kj ∗ f) (x)− f (x)

∣∣∣∣∣∣
q

dν (x)

≤
∫
Rd

∑
j∈J

1Aj (x) |Kj ∗ f (x)− f (x)|

q

dν (x)

=

∫
Rd

∑
j∈J

1Aj (x) |Kj ∗ f (x)− f (x)|q dν (x)

=
∑
j∈J

∫
Rd
1Aj (x) |Kj ∗ f (x)− f (x)|q dν (x)

=
∑
j∈J

∫
Rd
1Aj (x)

∣∣∣∣∣∣
∫
Rd

(
2

γ2
j π

)d
2

exp

(
−2‖h‖22

γ2
j

)(
s∑
`=0

(
s

`

)
(−1)2s+1−`f (x+ `h)

)
dh

∣∣∣∣∣∣
q

dν (x)

=
∑
j∈J

∫
Rd
1Aj (x)

∣∣∣∣∣∣
∫
Rd

(−1)s+1

(
2

γ2
j π

) d
2

exp

(
−2‖h‖22

γ2
j

)
4s
h (f, x) dh

∣∣∣∣∣∣
q

dν (x)

≤
∑
j∈J

∫
Rd
1Aj (x)

∫
Rd

(
2

γ2
j π

) d
2

exp

(
−2‖h‖22

γ2
j

)
|4s

h (f, x)| dh

q

dν (x) .

Then, Hölder’s inequality and
∫
Rd exp

(
−2γ−2

j ‖h‖22
)
dh =

(
γ2j π

2

)d/2
yield, for q > 1,

∥∥∥∥∥∥
∑
j∈J

1Aj · (Kj ∗ f)− f

∥∥∥∥∥∥
q

Lq(ν)

≤
∑
j∈J

∫
Rd
1Aj (x)


∫

Rd

(
2

γ2
j π

) d
2

exp

(
−2‖h‖22

γ2
j

)
dh


q−1
q

∫
Rd

(
2

γ2
j π

) d
2

exp

(
−2‖h‖22

γ2
j

)
|4s

h (f, x)|q dh


1
q


q

dν (x)

=
∑
j∈J

∫
Rd
1Aj (x)

∫
Rd

(
2

γ2
j π

) d
2

exp

(
−2‖h‖22

γ2
j

)
|4s

h (f, x)|q dh dν (x)

=
∑
j∈J

∫
Rd

(
2

γ2
j π

) d
2

exp

(
−2‖h‖22

γ2
j

)∫
Rd
1Aj (x) |4s

h (f, x)|q dν (x) dh

≤
∫
Rd

(
2

πγ2
min

) d
2

exp

(
−2‖h‖22
γ2

max

)∫
Rd

∑
j∈J

1Aj (x) |4s
h (f, x)|q d ν (x) dh
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=

∫
Rd

(
2

πγ2
min

) d
2

exp

(
−2‖h‖22
γ2

max

)
‖4s

h (f, ·)‖qLq(ν) dh

≤
∫
Rd

(
2

πγ2
min

) d
2

exp

(
−2‖h‖22
γ2

max

)
ωqs,Lq(ν) (f, ‖h‖2) dh .

Moreover, for q = 1, we have∥∥∥∥∥∥
∑
j∈J

1Aj · (Kj ∗ f)− f

∥∥∥∥∥∥
L1(ν)

≤
∑
j∈J

∫
Rd
1Aj (x)

∫
Rd

(
2

γ2
j π

) d
2

exp

(
−2‖h‖22

γ2
j

)
|4s

h (f, x)| dh dν (x)

≤
∫
Rd

(
2

πγ2
min

) d
2

exp

(
−2‖h‖22
γ2

max

)∫
Rd

∑
j∈J

1Aj (x) |4s
h (f, x)| d ν (x) dh

≤
∫
Rd

(
2

πγ2
min

) d
2

exp

(
−2‖h‖22
γ2

max

)
ωs,L1(ν) (f, ‖h‖2) dh .

Consequently, we can proceed in the same way for all q ≥ 1. To this end, note that the
assumption f ∈ Bα

q,∞(ν) implies ωs,Lq(ν) (f, t) ≤ ‖f‖Bαq,∞(ν) t
α for t > 0. The latter together

with Hölder’s inequality yields∥∥∥∥∥∥
∑
j∈J

1Aj · (Kj ∗ f)− f

∥∥∥∥∥∥
q

Lq(ν)

≤
∫
Rd

(
2

πγ2
min

) d
2

exp

(
−2‖h‖22
γ2

max

)
ωqs,Lq(ν) (f, ‖h‖2) dh

≤ ‖f‖qBαq,∞(ν)

(
2

πγ2
min

) d
2
∫
Rd
‖h‖qα2 exp

(
−2‖h‖22
γ2

max

)
dh

≤ ‖f‖qBαq,∞(ν)

(
2

πγ2
min

) d
2
(∫

Rd
exp

(
−2‖h‖22
γ2

max

)
dh

) 1
2
(∫

Rd
‖h‖2qα2 exp

(
−2‖h‖22
γ2

max

)
dh

) 1
2

= ‖f‖qBαq,∞(ν)

(
2γ2

max

πγ4
min

) d
4
(∫

Rd
‖h‖2qα2 exp

(
−2‖h‖22
γ2

max

)
dh

) 1
2

.

Using the embedding constant d
qα−1
2qα of `d2qα to `d2, we obtain

∫
Rd
‖h‖2qα2 exp

(
−

2 ‖h‖22
γ2

max

)
dh ≤ dqα−1

d∑
`=1

∫
Rd
h2qα
`

d∏
l=1

exp

(
−

2h2
l

γ2
max

)
d (h1, . . . , hd)

= dqα−1
d∑
`=1

(
γ2

maxπ

2

) d−1
2
∫
R
h2qα
` exp

(
−

2h2
`

γ2
max

)
dh`
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= 2dqα
(
γ2

maxπ

2

) d−1
2
∫ ∞

0
t2qα exp

(
− 2t2

γ2
max

)
dt .

for γ > 0. With the substitution t = (1
2γ

2
maxu)

1
2 , the functional equation Γ(t + 1) = tΓ(t)

of the Gamma function Γ, and Γ
(

1
2

)
=
√
π we further have∫ ∞

0
t2qα exp

(
− 2t2

γ2
max

)
dt =

1

2

γmax√
2

(
γ2

max

2

)qα ∫ ∞
0

u(qα+ 1
2)−1 exp (−u) du

=
1

2

γmax√
2

(
γ2

max

2

)qα
Γ

(
qα+

1

2

)
.

Altogether, we finally obtain∥∥∥∥∥∥
∑
j∈J

1Aj · (Kj ∗ f)− f

∥∥∥∥∥∥
q

Lq(ν)

≤ ‖f‖qBαq,∞(ν)

(
2γ2

max

πγ4
min

) d
4
(∫

Rd
‖h‖2qα2 exp

(
−2‖h‖22
γ2

max

)
dh

) 1
2

≤ ‖f‖qBαq,∞(ν)

(
2γ2

max

πγ4
min

) d
4

((
d

2

)qα(πd−1

2d

) 1
2

γ2qα+d
max Γ

(
qα+

1

2

)) 1
2

= ‖f‖qBαq,∞(ν)

(
d

2

) qα
2

π−
1
4 Γ

(
qα+

1

2

) 1
2
(
γmax

γmin

)d
γqαmax .

Based on Theorems 11, 12, and 13, we can now show Theorem 4, where we denote by
L ◦ f the function (x, y) 7→ L(x, y, f(x)).
Proof [of Theorem 4] First of all, since H1, . . . ,Hm are RKHSs of Gaussian kernels, the
joined RKHS H is seperable and its kernel is measurable. Moreover, since Theorem 12 pro-

vides ei(id : Hγj (Aj)→ L2(PX |Aj )) ≤ aji
− 1

2p for i ≥ 1 with aj = c̃p
√

PX(Aj) r
d+2p
2p γ

− d+2p
2p

j ,
Theorem 11 yields

EDX∼PnX
ei(id : H → L2(DX)) ≤ cp

√
m

 m∑
j=1

λ−pj a2p
j

 1
2p

i
− 1

2p , i, n ≥ 1 .

Note that, for the least squares loss, which can be clipped at M with Y = [−M,M ], the
supremum bound

L(x, y, t) ≤ B , ∀ (x, y) ∈ X × Y, t ∈ [−M,M ] (27)

holds for B = 4M2 and the variance bound

EP

(
L ◦ f − L ◦ f∗L,P

)2 ≤ V · (EP

(
L ◦ f − L ◦ f∗L,P

))ϑ
, ∀ f : X → [−M,M ] (28)
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for V = 16M2 and ϑ = 1 (cf. Steinwart and Christmann, 2008, Example 7.3). Actually,
(27) immediately yields the supremum bound for LJT , too. The same holds for the vari-

ance bound (28), which can be easily shown by the use of f̃(x) := 1⋃
j∈JT

Aj (x)f(x) +

1
X\
(⋃

j∈JT
Aj

)(x)f∗L,P(x) for all f : X → [−M,M ]. Using the constant B, we now have

(
max

{
cp
√
m

(
m∑
j=1

λ−pj a2p
j

) 1
2p

, B

})2p

=

(
max

{
cpc̃p
√
mr

d+2p
2p

(
m∑
j=1

(
λ−1
j γ

− d+2p
p

j PX(Aj)

)p) 1
2p

, B

})2p

≤

(
max

{
cpc̃pm

1
2p r

d+2p
2p

(
m∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

) 1
2

, B

})2p

≤

(
max

{
cpc̃p3

d
2p r

(
m∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

) 1
2

, B

})2p

≤ Cpr2p

(
m∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

)p
+B2p

=: a2p ,

where we used ‖ · ‖`mp ≤ m
1−p
p ‖ · ‖`m1 , mrd ≤ 3d by (5), and Cp := c2p

p c̃
2p
p 3d. Then, we can

apply (Steinwart and Christmann, 2008, Theorem 7.23) using the regularization parameter
λ̃ = 1. That is, for λ1, . . . , λm > 0, all fixed τ > 0, and for an f0 ∈ H and a constant
B0 ≥ B such that ‖LJ ◦ f0‖∞ ≤ B0, we obtain
m∑
j=1

λj‖fDj ,λj‖
2
Ĥj

+RLJ ,P( ÛfD,λ)−R∗LJ ,P

= ‖fD,λ‖2H +RLJ ,P( ÛfD,λ)−R∗LJ ,P

≤ 9
(
‖f0‖2H +RLJ ,P(f0)−R∗LJ ,P

)
+ C

(
a2pn−1

) 1
2−p−ϑ+ϑp + 3

(
72V τ

n

) 1
2−ϑ

+
15B0τ

n

≤ 9

 m∑
j=1

λj‖1Ajf0‖2Ĥj+RLJ ,P(f0)−R∗LJ ,P

+C
(
a2pn−1

) 1
2−p−ϑ+ϑp +3

(
72V τ

n

) 1
2−ϑ

+
15B0τ

n

(29)

with probability Pn not less than 1 − 3e−τ , where C > 0 is the constant of (Steinwart
and Christmann, 2008, Theorem 7.23) only depending on p, M , V , ϑ, and B. To continue
estimate (29), we have to choose a function f0 ∈ H. To this end, we define functions
Kj : Rd → R, j ∈ {1, . . . ,m}, by (26), where s := bαc + 1 and γj > 0. Then, we define f0

by convolving each Kj with the Bayes decision function f∗L,P, that is

f0(x) :=
∑
j∈JT

1Aj (x) · (Kj ∗ f∗L,P)(x) , x ∈ Rd .
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Now, to show that f0 is indeed a suitable function to bound the approximation error, we
first need to ensure that f0 is contained in H. In addition, we need to derive bounds for
both, the regularization term and the excess risk of f0. To this end, we apply (Eberts and
Steinwart, 2013, Theorem 2.3) and obtain, for every j ∈ JT ,(

Kj ∗ f∗L,P
)
|Aj
∈ Hγj (Aj)

with

‖1Ajf0‖Ĥγj (Aj)
=
∥∥1Aj (Kj ∗ f∗L,P)

∥∥
Ĥγj (Aj)

=
∥∥∥(Kj ∗ f∗L,P

)
|Aj

∥∥∥
Hγj (Aj)

≤ (γj
√
π)−

d
2 (2s − 1)‖f∗L,P‖L2(Rd) .

This implies

f0 =
∑
j∈JT

1Aj (Kj ∗ f∗L,P︸ ︷︷ ︸
∈Ĥγj (Aj)

) ∈ HJT .

Besides, note that 0 ∈ Ĥγj (Aj) for every j ∈ {1, . . . ,m} such that f0 can be written as
f0 =

∑m
j=1 fj , where

fj :=

{
1Aj (Kj ∗ f∗L,P) , j ∈ JT ,
0 , j /∈ JT .

Obviously, the latter implies f0 ∈ H. Furthermore, for AT :=
⋃
j∈JT Aj , (25) and Theorem

13 yield

RLJT ,P(f0)−R∗LJT ,P = ‖f0 − f∗L,P‖2L2(PX |AT )

= ‖
∑
j∈JT

1Aj (Kj ∗ f∗L,P)− f∗L,P‖2L2(PX |AT )

≤ Cα,2
(

maxj∈JT γj
minj∈JT γj

)d
max
j∈JT

γ2α
j ,

where Cα,2 is a constant only depending on α, d, and ‖f∗L,P‖Bα2,∞(PX |AT ). Next, we derive a

bound for ‖L ◦ f0‖∞ using (Eberts and Steinwart, 2013, Theorem 2.3) which provides, for
every x ∈ X, the supremum bound

|f0(x)|=

∣∣∣∣∣∣
∑
j∈JT

1Aj (x) · (Kj ∗ f∗L,P)(x)

∣∣∣∣∣∣ ≤
∑
j∈JT

1Aj (x)
∣∣Kj ∗ f∗L,P(x)

∣∣≤(2s − 1)
∥∥f∗L,P∥∥L∞(Rd)

.

The latter implies

‖LJT ◦ f0‖∞ = sup
(x,y)∈X×Y

|L(y, f0(x))|
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≤ sup
(x,y)∈X×Y

(
M2 + 2M |f0(x)|+ |f0(x)|2

)
≤ 4s max

{
M2, ‖f∗L,P‖2L∞(Rd)

}
,

i.e., B0 := 4s max{M2, ‖f∗L,P‖2L∞(Rd)
}. Applying (29) then yields

RLJT ,P( ÛfD,λ,γ)−R∗LJT ,P

≤
m∑
j=1

λj‖fDj ,λj ,γj‖
2
Ĥγj (Aj)

+RLJT ,P( ÛfD,λ,γ)−R∗LJT ,P

≤ 9

 m∑
j=1

λj‖1Ajf0‖2Ĥγj (Aj)
+RLJT ,P(f0)−R∗LJT ,P


+ C

(
a2pn−1

) 1
2−p−ϑ+ϑp + 3

(
72V τ

n

) 1
2−ϑ

+
15B0τ

n

≤ 9

∑
j∈JT

λj(γj
√
π)−d(2s − 1)2‖f∗L,P‖2L2(Rd) + Cα,2

(
maxj∈JT γj
minj∈JT γj

)d
max
j∈JT

γ2α
j


+ CCpr

2p

 m∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

p

n−1 + CB2pn−1 +
3456M2τ

n

+ 15 · 4s max{M2, ‖f∗L,P‖2L∞(Rd)}
τ

n

≤ 9(2s − 1)2π−
d
2 ‖f∗L,P‖2L2(Rd)

∑
j∈JT

λjγ
−d
j + 9Cα,2

(
maxj∈JT γj
minj∈JT γj

)d
max
j∈JT

γ2α
j

+ CCpr
2p

 m∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

p

n−1 + 16pCM4pn−1

+
(

3456M2 + 15 · 4s max{M2, ‖f∗L,P‖2L∞(Rd)}
) τ
n

with probability Pn not less than 1 − 3e−τ . Finally, for τ̂ ≥ 1, a variable transformation
implies

m∑
j=1

λj‖fDj ,λj ,γj‖
2
Ĥγj (Aj)

+RLJT ,P( ÛfD,λ,γ)−R∗LJT ,P

≤ CM,α,p

∑
j∈JT

λjγ
−d
j +

(
maxj∈JT γj
minj∈JT γj

)d
max
j∈JT

γ2α
j +r2p

 m∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

p

n−1+τ̂n−1


with probability Pn not less than 1− e−τ̂ , where the constant CM,α,p is defined by

CM,α,p := max

{
9(2s − 1)2π−

d
2 ‖f∗L,P‖2L2(Rd) , 9‖f∗L,P‖2Bα2,∞(PX |AT )

(
d

2

)α
π−

1
4 Γ

(
2α+

1

2

) 1
2

,
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3dCc2pp c̃
2p
p , 16pCM4p +

(
3456M2 + 15 · 4s max{M2, ‖f∗L,P‖2L∞(Rd)}

)
(1 + ln(3))

}
.

Next, using the just proven oracle inequality presented in Theorem 4, we show the
learning rates of Theorem 5 in only a few steps.

Proof [of Theorem 5] First of all, we define sequences λ̃n := c2n
−1 and γ̃n := c3n

− 1
2α+d to

simplify the presentation. Then, Theorem 4,
∑mn

j=1 PX(Aj) = 1, and |JT | ≤ mn ≤ 3dr−dn
together with λn,j = rdnλ̃n and γn,j = γ̃n for all j ∈ {1, . . . ,mn} yield

RLJT ,P( ÛfD,λn,γn)−R∗LJT ,P

≤ CM,α,p

∑
j∈JT

λn,jγ
−d
n,j+

(
maxj∈JT γn,j
minj∈JT γn,j

)d
max
j∈JT

γ2α
n,j+r

2p
n

mn∑
j=1

λ−1
n,jγ

− d+2p
p

n,j PX(Aj)

pn−1+
τ

n


= CM,α,p

|JT |rdnλ̃nγ̃−dn + γ̃2α
n + r(2−d)p

n λ̃−pn γ̃−(d+2p)
n

mn∑
j=1

PX(Aj)

p

n−1 + τn−1


≤ 3dCM,α,p

(
λ̃nγ̃

−d
n + γ̃2α

n + λ̃−pn γ̃−(d+2p)
n r(2−d)p

n n−1 + τn−1
)
.

Using the choices λ̃n = c2n
−1, γ̃n = c3n

− 1
2α+d , as well as rn = c1n

− 1
βd finally implies

RLJT ,P( ÛfD,λn,γn)−R∗LJT ,P

≤ 3dCM,α,p

(
λ̃nγ̃

−d
n + γ̃2α

n + λ̃−pn γ̃−(d+2p)
n r(2−d)p

n n−1 + τn−1
)

≤ ĈM,α,p

(
n−1n

d
2α+d + n−

2α
2α+d + npn

d+2p
2α+dn

− (2−d)p
βd n−1 + τn−1

)
= ĈM,α,p

(
n−

2α
2α+d + n−

2α
2α+d + n

− 2α
2α+d

+
(

1+ 2
2α+d

+ 1
β
− 2
βd

)
p

+ τn−1

)
≤ C

(
n−

2α
2α+d

+ξ + τn−1
)

with probability Pn not less than 1 − e−τ , where C > 0 is a constant and

ξ ≥
(

1 + 2
2α+d + 1

β −
2
βd

)
p > 0.

Proof [of Corollary 6] For simplicity of notation, we write λ, λj , γ, and γj instead of
λn, λn,j , γn, and γn,j . Since

⋃
j∈JT Aj ⊂ T+δ for all n ≥ nδ, the assumption f∗L,P ∈

Bα
2,∞(PX |T+δ) implies

f∗L,P ∈ Bα
2,∞(PX |

⋃
j∈JT

Aj ) .

With this, Theorems 4 and 5 immediately yield

RLT ,P( ÛfD,λ,γ)−R∗LT ,P
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≤
m∑
j=1

λj‖fDj ,λj ,γj‖
2
Ĥγj (Aj)

+RLT ,P( ÛfD,λ,γ)−R∗LT ,P

≤
m∑
j=1

λj‖fDj ,λj ,γj‖
2
Ĥγj (Aj)

+RLJT ,P( ÛfD,λ,γ)−R∗LJT ,P

≤ CM,α,p

∑
j∈JT

λjγ
−d
j +

(
maxj∈JT γj
minj∈JT γj

)d
max
j∈JT

γ2α
j + r2p

 m∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

p

n−1 +
τ

n


≤ C

(
n−

2α
2α+d

+ξ + τn−1
)

with probability Pn not less than 1−e−τ , where ξ ≥
(

1 + 2
2α+d + 1

β −
2
βd

)
p > 0. Moreover,

the constants CM,α,p > 0 and C > 0 coincide with those of Theorems 4 and 5.

It remains to prove Theorem 7. However, we previously have to consider the following
technical lemma.

Lemma 14 Let d ≥ 1 and rn := cn
− 1
βd with β > 1 and a constant c > 0. We fix finite

subsets Λn ⊂ (0, rdn] and Γn ⊂ (0, rn] such that Λn is an (rdnεn)-net of (0, rdn] and Γn is
an δn-net of (0, rn] with 0 < εn ≤ n−1, δn > 0, rdn ∈ Λn, and rn ∈ Γn. Moreover, let
J ⊂ {1, . . . ,mn} be an arbitrary non-empty index set and |J | ≤ mn ≤ 3dr−dn . Then, for all
0 < α < β−1

2 d, n ≥ 1, and all p ∈ (0, 1) with p ≤ βd−2α−d
2α+d+2 , we have

inf
(λj ,γj)

mn
j=1∈(Λn×Γn)mn

∑
j∈J

λjγ
−d
j +

(
maxj∈J γj
minj∈J γj

)d
max
j∈J

γ2α
j +r2p

n

mn∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

pn−1


≤ C

(
n−

2α
2α+d

+ξ + δ2α
n

)
,

where ξ :=
( 2α(2α+d+2)

(2α+d)((2α+d)(1+p)+2p) + max
{
d−2
βd , 0

})
p and C > 0 is a constant independent of

n, Λn, εn, Γn, and δn.

Proof Without loss of generality, we may assume that Λn and Γn are of the form Λn ={
λ(1), . . . , λ(u)

}
and Γn =

{
γ(1), . . . , γ(v)

}
with λ(u) = rdn and γ(v) = rn as well as λ(i−1) <

λ(i) and γ(`−1) < γ(`) for all i = 2, . . . , u and ` = 2, . . . , v. With λ(0) := 0 and γ(0) := 0 it is
easy to see that

λ(i) − λ(i−1) ≤ 2rdnεn and γ(`) − γ(`−1) ≤ 2δn (30)

hold for all i = 1, . . . , u and ` = 1, . . . , v. Furthermore, define λ∗ := n
− 2α+d

(2α+d)(1+p)+2p and

γ∗ := cn
− 1

(2α+d)(1+p)+2p . Then, there exist indices i ∈ {1, . . . , u} and ` ∈ {1, . . . , v} with
λ(i−1) ≤ rdnλ∗ ≤ λ(i) and γ(`−1) ≤ γ∗ ≤ γ(`). Together with (30), this yields

rdnλ
∗ ≤ λ(i) ≤ rdnλ∗ + 2rdnεn and γ∗ ≤ γ(`) ≤ γ∗ + 2δn . (31)
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Moreover, the definition of λ∗ implies εn ≤ λ∗ and the one of γ∗ implies γ∗ ≤ rn for
α < β−1

2 d and p ∈ (0, p∗], where p∗ := βd−2α−d
2α+d+2 . Additionally, it is easy to check that

λ∗ (γ∗)−d + (γ∗)2α + (λ∗)−p (γ∗)−(d+2p) r(2−d)p
n n−1 ≤ ĉn−

2α
(2α+d)(1+p)+2p

+max
{
d−2
βd

,0
}
p
, (32)

where ĉ is a positive constant. Using (31), the bound |J | ≤ mn ≤ 3dr−dn , and (32), we
obtain

inf
(λj ,γj)

mn
j=1∈(Λn×Γn)mn

∑
j∈J

λjγ
−d
j +

(
maxj∈J γj
minj∈J γj

)d
max
j∈J

γ2α
j +r2p

n

mn∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

pn−1


≤
∑
j∈J

λ(i)
(
γ(`)
)−d

+
(
γ(`)
)2α

+

mn∑
j=1

(
λ(i)
)−1 (

γ(`)
)− d+2p

p
PX(Aj)

p

r2p
n n
−1

≤ |J |λ(i)
(
γ(`)
)−d

+
(
γ(`)
)2α

+
(
λ(i)
)−p (

γ(`)
)−(d+2p)

r2p
n n
−1

≤ |J |
(
rdnλ
∗ + 2rdnεn

)
(γ∗)−d + (γ∗ + 2δn)2α +

(
rdnλ
∗
)−p

(γ∗)−(d+2p) r2p
n n
−1

≤ 3d · 3λ∗ (γ∗)−d + (γ∗ + 2δn)2α + (λ∗)−p (γ∗)−(d+2p) r(2−d)p
n n−1

≤ c̃
(
λ∗ (γ∗)−d + (γ∗)2α + (λ∗)−p (γ∗)−(d+2p) r(2−d)p

n n−1
)

+ c̃δ2α
n

≤ c̃ĉn−
2α

(2α+d)(1+p)+2p
+max

{
d−2
βd

,0
}
p

+ c̃δ2α
n

≤ C
(
n−

2α
2α+d

+ξ + δ2α
n

)
with ξ :=

( 2α(2α+d+2)
(2α+d)((2α+d)(1+p)+2p) + max

{
d−2
βd , 0

})
p and constants c̃ > 0 and C > 0 indepen-

dent of n, Λn, εn, Γn, and δn.

In the end, we show Theorem 7 using Theorem 4 as well as Lemma 14.

Proof [of Theorem 7] Let l be defined by l :=
⌊
n
2

⌋
+ 1, i.e., l ≥ n

2 . With this, Theorem 4
yields with probability Pl not less than 1− |Λn × Γn|mn e−τ that

RLJT ,P( ÛfD1,λ,γ)−R∗LJT ,P

≤ c1

2

∑
j∈JT

λjγ
−d
j +

(
maxj∈JT γj
minj∈JT γj

)d
max
j∈JT

γ2α
j + r2p

n

mn∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

p

l−1 + τ l−1


≤ c1

∑
j∈JT

λjγ
−d
j +

(
maxj∈JT γj
minj∈JT γj

)d
max
j∈JT

γ2α
j + r2p

n

mn∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

p

n−1 + τn−1


(33)

for all (λj , γj) ∈ Λn × Γn, j ∈ {1, . . . ,mn}, simultaneously, where c1 > 0 is a constant
independent of n, τ , λ, and γ. Furthermore, the oracle inequality of (Steinwart and
Christmann, 2008, Theorem 7.2) for empirical risk minimization, n − l ≥ n

2 − 1 ≥ n
4 ,
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and τn := τ + ln(1 + |Λn × Γn|mn) yield

RLJT ,P( ÛfD1,λD2
,γD2

)−R∗LJT ,P

< 6

(
inf

(λj ,γj)
mn
j=1∈(Λn×Γn)mn

RLJT ,P( ÛfD1,λ,γ)−R∗LJT ,P

)
+ 512M2 τn

n− l

< 6

(
inf

(λj ,γj)
mn
j=1∈(Λn×Γn)mn

RLJT ,P( ÛfD1,λ,γ)−R∗LJT ,P

)
+ 2048M2 τn

n
(34)

with probability Pn−l not less than 1−e−τ . With (33), (34), and Lemma 14 we can conclude

RLJT ,P( ÛfD1,λD2
,γD2

)−R∗LJT ,P

< 6

(
inf

(λj ,γj)
mn
j=1∈(Λn×Γn)mn

RLJT ,P( ÛfD1,λ,γ)−R∗LJT ,P

)
+ 2048M2 τn

n

≤ 6c1

 inf
(λj ,γj)

mn
j=1∈(Λn×Γn)mn

∑
j∈JT

λjγ
−d
j +

(
maxj∈JT γj
minj∈JT γj

)d
max
j∈JT

γ2α
j

+r2p
n

mn∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

p

n−1

+ τn−1

+ 2048M2 τn
n

≤ 6c1

(
C
(
n−

2α
2α+d

+ξ + δ2α
n

)
+ τn−1

)
+ 2048M2 τn

n

≤ 12c1Cn
− 2α

2α+d
+ξ +

(
6c1τ + 2048M2τn

)
n−1

with probability Pn not less than 1 − (1 + |Λn × Γn|mn) e−τ . Finally, a variable transfor-
mation yields

RLJT ,P( ÛfD1,λD2
,γD2

)−R∗LJT ,P

< 12c1Cn
− 2α

2α+d
+ξ +

(
6c1 (τ + ln (1 + |Λn × Γn|mn))

+ 2048M2 (τ + 2 ln (1 + |Λn × Γn|mn))
)
n−1

≤ 12c1Cn
− 2α

2α+d
+ξ + (6c1 + 2048M2) (τ + 2mn ln (1 + |Λn × Γn|))n−1

≤ 12c1Cn
− 2α

2α+d
+ξ + (6c1 + 2048M2)

(
τ + 2 · 3dr−dn ln (1 + |Λn × Γn|)

)
n−1

= 12c1Cn
− 2α

2α+d
+ξ + (6c1 + 2048M2)

(
τn−1 + 2 · 3dc−d ln (1 + |Λn × Γn|)n−

β−1
β

)
<
(

12c1C + 2 · 3dc−d(6c1 + 2048M2) ln (1 + |Λn × Γn|)
)
n−

2α
2α+d

+ξ + (6c1 + 2048M2)τn−1

with probability Pn not less than 1− e−τ , where we used

α <
β − 1

2
d ⇐⇒ n

−β−1
β < n−

2α
2α+d

in the last step.
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