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Abstract

Stable random variables are motivated by the central limit theorem for densities with
(potentially) unbounded variance and can be thought of as natural generalizations of the
Gaussian distribution to skewed and heavy-tailed phenomenon. In this paper, we intro-
duce α-stable graphical (α-SG) models, a class of multivariate stable densities that can
also be represented as Bayesian networks whose edges encode linear dependencies between
random variables. One major hurdle to the extensive use of stable distributions is the lack
of a closed-form analytical expression for their densities. This makes penalized maximum-
likelihood based learning computationally demanding. We establish theoretically that the
Bayesian information criterion (BIC) can asymptotically be reduced to the computation-
ally more tractable minimum dispersion criterion (MDC) and develop StabLe, a structure
learning algorithm based on MDC. We use simulated datasets for five benchmark network
topologies to empirically demonstrate how StabLe improves upon ordinary least squares
(OLS) regression. We also apply StabLe to microarray gene expression data for lymphoblas-
toid cells from 727 individuals belonging to eight global population groups. We establish
that StabLe improves test set performance relative to OLS via ten-fold cross-validation.
Finally, we develop SGEX, a method for quantifying differential expression of genes between
different population groups.

Keywords: Bayesian networks, stable distributions, linear regression, structure learning,
gene expression, differential expression

1. Introduction

Stable distributions have found applications in modeling several real-life phenomena (Berger
and Mandelbrot, 1963; Mandelbrot, 1963; Nikias and Shao, 1995; Gallardo et al., 2000;
Achim et al., 2001) and have robust theoretical justification in the form of the generalized
central limit theorem (Feller, 1968; Nikias and Shao, 1995; Nolan, 2013). Several special
instances of multivariate generalization of stable distributions have also been described in
literature (Samorodnitsky and Taqqu, 1994; Nolan and Rajput, 1995). Multivariate stable
densities have previously been applied to modeling wavelet coefficients with bivariate α-
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stable distributions (Achim and Kuruoglu, 2005), inferring parameters for linear models of
network flows (Bickson and Guestrin, 2011) and stock market fluctuations (Bonato, 2012).

In this paper, we describe α-stable graphical (α-SG) models, a new class of multivariate
stable densities that can be represented as directed acyclic graphs (DAG) with arbitrary
network topologies. We prove that these multivariate densities also correspond to lin-
ear regression-based Bayesian networks and establish a model selection criterion that is
asymptotically equivalent to the Bayesian information criterion (BIC). Using simulated
data for five benchmark network topologies, we empirically show how α-SG models improve
structure and parameter learning performance for linear regression networks with additive
heavy-tailed noise.

One motivation for the present work comes from potential applications to computa-
tional biology, especially in genomics, where Bayesian network models of gene expression
profiles are a popular tool (Friedman et al., 2000; Ben-Dor et al., 2000; Friedman, 2004). A
common approach to network models of gene expression involves learning linear regression-
based Gaussian graphical models. However, the distribution of experimental microarray
intensities shows a clear skew and may not necessarily be best described by a Gaussian
density (Section 3.2). Another aspect of microarray intensities is that they represent the
average mRNA concentration in a population of cells. Assuming the number of mRNA
transcripts within each cell to be independent and identically distributed, the generalized
central limit theorem suggests that the observed shape should asymptotically (for large
population size) approach a stable density (Feller, 1968; Nikias and Shao, 1995; Nolan,
2013). Univariate stable distributions have previously been used to model gene expression
data (Salas-Gonzalez et al., 2009a,b) and it is therefore natural to consider multivariate
α-stable densities as models for mRNA expression for larger sets of genes. In Section 3.2 we
provide empirical evidence to support this reasoning. We further develop α-stable graphical
(α-SG) models for quantifying differential expression of genes from microarray data belong-
ing to phase III of the HapMap project (International HapMap 3 Consortium and others,
2010; Montgomery et al., 2010; Stranger et al., 2012).

The rest of the paper is structured as follows : Section 2.1 describes the basic notation
and background concepts for Bayesian networks and stable densities. Section 2.2 introduces
α-SG models and establishes that these models are Bayesian networks that also represent
multivariate stable distributions with discrete spectral measures. Section 2.3 establishes
the equivalence of the popular but (in this case) computationally challenging Bayesian in-
formation criterion (BIC) for structure learning and the computationally more tractable
minimum dispersion criterion (MDC), for all α-SG models that represent symmetric den-
sities. Furthermore, we establish how data samples from any α-SG model can be combined
to generate samples from a partner symmetric α-SG model with identical network topology
and regression coefficients. Using these theoretical results we design StabLe, an efficient
algorithm that combines ordering-based search (OBS) (Teyssier and Koller, 2005) for struc-
ture learning with the iteratively re-weighted least squares (IRLS) algorithm (Byrd and
Payne, 1979) for learning the regression parameters via least lp norm estimation. Finally, in
Section 3 we implement the structure and parameter learning algorithm on simulated and
expression microarray data sets.
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2. Methods

In this section we develop the theory and algorithms for learning α-SG models from data.
First, we discuss some well-established results for Bayesian networks and α-stable densities.

2.1 Background

We begin with an introduction to Bayesian network models (Pearl, 1988) for the joint
probability distribution of a finite set of random variables X = {X1, . . . XN}. A Bayesian
network B(G,Θ) is specified by a directed acyclic graph (DAG) G, whose vertices represent
random variables in X and a set of parameters Θ = {θi|Xi ∈ X}, that determine the
conditional probability distribution p(Xi|Pa(Xi), θi) for each variable Xi ∈ X given the
state of its parents Pa(Xi) ⊆ X \{Xi} in G (Koller and Friedman, 2009). We will overload
the symbolsXj and Pa(Xj) to represent both sets of random variables and their realizations.
The directed acyclic graph G implies a factorization of the joint probability density into
terms representing each variable Xi and its parents Pa(Xi) (called a family) such that :

PB(X ) =

|X |∏
i=1

p(Xi|Pa(Xi), θi) (1)

The dependence of p(Xi|Pa(Xi), θi) on θi is usually specified by an appropriately chosen
family of parametrized probability densities for the random variables, such as Gaussian or
log-Normal. In this paper, we will use multivariate stable densities to model the random
variables in X . The primary motivation for modeling continuous random variables using
stable distributions comes from the generalization of the central limit theorem to distribu-
tions with unbounded variance (Feller, 1968; Nikias and Shao, 1995). Stable distributions
are parametrized to allow varying degrees of impulsiveness and skewness. The generalized
central limit theorem requires that the sums of stable random variables are stable and more
generally in the limit of large N , all sums of N independent, identically distributed random
variables approach a stable density. A formal definition for stable random variables can be
provided in terms of the characteristic function (Fourier transform of the density function)

Definition 1 A stable random variable X ∼ Sα(β, γ, µ), is defined for each α ∈ (0, 2],
β ∈ [−1, 1], γ ∈ (0,∞) and µ ∈ (−∞,∞). The probability density f(X|α, β, γ, µ) is
implicitly specified by a characteristic function φ(q|α, β, γ, µ) :

φ(q|α, β, γ, µ) ≡ E[exp(ıqX)]

=

∫ ∞
−∞

f(X|α, β, γ, µ) exp(ıqX)dX

= exp
(
ıµq − γ|q|α[1− ıβ sign(q)r(q, α)]

)
where, r(q, α) =

{
tan απ

2 α 6= 1
− 2
π log |q| α = 1

The parameters α, β, γ and µ will be called the characteristic exponent, skew, dispersion
and location respectively. Unfortunately, the density f(X|α, β, γ, µ) does not have a closed-
form analytical expression except for the three well-known stable distributions (Figure 1
and Table 1).

3



Misra and Kuruoglu

Distribution Sα(β, γ, µ) f(X|α, β, γ, µ) Support

Lévy(γ, µ) S0.5(1, γ, µ) γ√
2π

1
(x−µ)3/2

exp
(
− γ2

2(x−µ)

)
µ < x <∞

Cauchy(γ, µ) S1.0(0, γ, µ) 1
π

γ
γ2+(x−µ)2

−∞ < x <∞
Normal(µ, σ) S2.0(0, γ = σ2

2 , µ) 1
2
√
πγ exp

(
− (x−µ)2

4γ

)
−∞ < x <∞

Table 1: Closed-form analytical expressions for Lévy, Cauchy and Normal densities and the
corresponding α-stable parameters.

Except for the Gaussian case, the asymptotic (large x) behavior of univariate α-stable
densities shows Pareto or power law tails (Lévy, 1925). The following lemma formalizes
this observation (Samorodnitsky and Taqqu, 1994; Nolan, 2013)

Lemma 1 If X ∼ Sα(β, γ, 0) with 0 < α < 2, then as x→∞

Pr(X > x) ∼ (1 + β)γCαx
−α

Cα = (2

∫ ∞
0

x−α sinxdx)−1 =
1

π
Γ(α) sin(

απ

2
)
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Figure 1: The three instances of analytically known univariate α-stable densities Sα(β, γ, µ).
Lévy(γ, µ) ∼ S0.5(1, γ, µ) (solid blue curves), Cauchy(γ, µ) ∼ S1.0(0, γ, µ) (dashed

green curves) and Normal(µ, σ) ∼ S2.0(0, σ
2

2 , µ) (dot-dashed red curves).

It is straight forward to use the characterization of stable random variables in Defini-
tion 1 to verify the following well-known properties (Samorodnitsky and Taqqu, 1994),
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Property 1 If X1 ∼ Sα(β1, γ1, µ1) and X2 ∼ Sα(β2, γ2, µ2) are independent stable random
variables, then Y = X1 +X2 ∼ Sα(β, γ, µ), with

β =
β1γ1 + β2γ2

γ1 + γ2
, γ = (γ1 + γ2) , µ = µ1 + µ2

Property 2 If X ∼ Sα(β, γ, µ) and c, d ∈ R, then

cX + d ∼

 Sα

(
sign(c)β, |c|αγ, cµ+ d

)
, α 6= 1

Sα

(
sign(c)β, |c|γ, c(µ− 2γβ ln |c|

π ) + d
)
, α = 1

A word on the notation used throughout this paper. We will use the symbol ‖Y ‖p =
(
∑

λ |Yλ|p)1/p to represent the lp norm of a vector. The lp norm of a vector representing
N realizations of a random variable Z is related to the pth moment E(|Z|p) = ‖Z‖pp/N .
For heavy-tailed α-stable densities, one convenient method for parameter estimation is via
fractional lower order moments (FLOM) for p < α (Hardin Jr, 1984; Nikias and Shao, 1995).
Later, we will discuss FLOM-based parameter learning in greater detail (Section 2.4.1).

2.2 α-Stable Graphical Models

We can now introduce Bayesian network models reconstructed from stable densities that
have compact representations for the characteristic function. Univariate α-stable densi-
ties can be generalized to represent multivariate stable distributions that are defined as
follows (Samorodnitsky and Taqqu, 1994),

Definition 2 A d-dimensional multivariate stable distribution over X = {X1, . . . Xd} is
defined by an α ∈ (0, 2], µ ∈ Rd an a spectral measure Λ over the d-dimensional unit sphere
Sd, such that the characteristic function

Φ(q|α, µ,Λ) ≡ E[exp(ıqTX )]

= exp
(
−
∫
Sd

ψ(sT q|α)Λ(ds) + ıµT q
)

where, ψ(u|α) = |u|α(1− ı sign(u)r(u, α))

Definition 3 An α-stable graphical (α-SG) model B(G,Θ) is a probability distribution over
X such that

1. Zj ≡ Xj −
∑

Xk∈Pa(Xj)

wjkXk ∼ Sα(βj , γj , µj)

2. Zj is independent of Zk , if j 6= k, ∀Xj ∈ X

where Pa(Xj) ⊆ X \ {Xj} are the parent nodes of Xj in the directed acyclic graph G and
Θ describes the distribution parameters

wjk ∈ R, Wj = {wjk|Xk ∈ Pa(Xj)},
θj = {α, βj , γj , µj} ∪Wj , Θ = {θi|Xi ∈ X}.

A symmetric α-stable graphical (Sα-SG) model is a α-SG model with β = 0.
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It is straightforward to see that B(G,Θ) is indeed a Bayesian network. Note also that the
fact that Zj are stable follows directly from Property 1.

Lemma 2 B(G,Θ) in Definition 3 represents a Bayesian network

Proof Let d = |X |. First note that every directed acyclic graph can be used to infer an
ordering (not necessarily unique) on the variables in X such that all parents of each variable
have a lower order than the variable itself. Suppose we index each variable with its order
in an ordering compatible with the DAG, such that Xi has order i. The proof rests on the
fact that the transformation matrix from {Zi} to {Xi} for such a graph is lower triangular,
with each diagonal entry equal to 1. Since the determinant of a triangular matrix equals
the product of its diagonal entries, the Jacobian for the transformation (or the determinant

of the transformation matrix), | ∂(Z1,...Zd)
∂(X1,...Xd) | = 1. Furthermore, since the noise variables Zj ’s

are independent of each other

PB(Z1, . . . Zd) =

d∏
j=1

f(Zj |α, βj , γj , µj)

also, p(Xj |Pa(Xj), θj) = f(Zj |α, βj , γj , µj)

=⇒ PB(X ) = PB(Z1, . . . Zd)|
∂(Z1, . . . Zd)

∂(X1, . . . Xd)
|

=⇒ PB(X ) =

d∏
j=1

p(Xj |Pa(Xj), θj)|
∂(Z1, . . . Zd)

∂(X1, . . . Xd)
|

=⇒ PB(X ) =

d∏
j=1

p(Xj |Pa(Xj), θj)

Hence, B(G,Θ) is a Bayesian network.

Before establishing the fact that an α-SG model is a multivariate stable density in the sense
of Definition 2, we prove the following result (proof is provided in Appendix A) :

Lemma 3 Every d-dimensional distribution with a characteristic function of the form

Φ(q|α, µ̃,Λ) =

d∏
k=1

φ(cTk q|α, βk, γk, µk) where, ck, q ∈ Rd

represents a multivariate stable distribution with a discrete spectral measure Λ.

We are now in a position to establish that α-SG models imply a multivariate stable
density with a spectral measure concentrated on a finite number of points over the unit
sphere.

Lemma 4 Every α-SG model represents a multivariate stable distribution with a discrete
spectral measure of the form in Lemma 3.
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Proof We will prove the lemma by induction. First, observe that every Bayesian network
can be used to assign an ordering (not unique) such that Pa(Xj) ⊆ {X1 . . . Xj − 1}. As
before, we will use such an ordering to index each random variable in X , such that X|X |
has no descendants. The base case of the lemma, where |X | = 1 is clearly true. Assume
that the lemma is true for all Bayesian networks with |X | = m− 1. Then for any Bayesian
network B with |X | = m random variables

ΦB(q) ≡ E[exp(ıqTX )]

=

∫ |X |∏
j=1

dXjf(Zj |α, βj , γj , µj) exp(ıqjXj)

=

∫ [m−1∏
j=1

dXjf(Zj |α, βj , γj , µj) exp(ıqjXj)
] ∫

dXmf(Zm|α, βm, γm, µm) exp(ıqmXm)

=

∫ [m−1∏
j=1

dXjf(Zj |α, βj , γj , µj) exp(ıq̃jXj)
] ∫

dZmf(Zm|α, βm, γm, µm) exp(ıqmZm)

= ΦB̃(q̃)φ(qm|α, βm, γm, µm)

where B̃ is the Bayes net on X̃ = X \ {Xm},
and q̃j = qj + wmjqm|Pa(Xm) ∩ {Xj}| ∀ Xj ∈ X̃

Since by assumption,

ΦB̃(q̃) =
m−1∏
k=1

φ(sTk q̃|α, βk, γk, µk)

=⇒ ΦB(q) = φB̃(q̃)φ(qm|α, βm, γm, µm)

=
m∏
k=1

φ(s̃Tk q|α, βk, γk, µk), where :

s̃Tk q =

{ ∑m−1
j=1 sk,j(qj + wmjqm|Pa(Xm) ∩ {Xj}|) k < m

qm k = m

Therefore, ΦB(q) represents a m-dimensional multivariate stable distribution with a dis-
crete spectral measure (Lemma 3). Therefore, by induction, every α-SG model represents
a multivariate stable distribution with a discrete spectral measure of the form in Lemma 3.

2.3 Learning α-SG Models

A popular method for structure learning in Bayesian network models is based on the
Bayesian information criterion (BIC) which is also equivalent to the minimum descrip-
tion length (MDL) principle (Schwarz, 1978; Heckerman et al., 2000).
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Definition 4 Given a data set D = {D1, . . . , DN}, the Bayesian Information Score SBIC(B|D)
for a Bayesian network B(G,Θ) is defined as,

SBIC(B|D) =
∑
Dj∈D

log
[
PB(Dj)

]
−
∑
Xi∈X

|Pa(Xi)|
2

logN

The Bayesian information criterion (BIC) selects the Bayesian network that maximizes this
score over the space of all directed acyclic graphs G and parameters Θ.

The major stumbling block in using stable densities is due to the fact that there is no
known closed-form analytical expression for them (apart from special cases representing
Gaussian, Cauchy and Levy distributions). This makes BIC based inference computation-
ally demanding due to the marginal likelihood term PB[Dλ]. One main contribution of this
paper is an efficient method of learning the network structure and parameters for α-SG
models. The next lemma establishes a new result that is useful in efficiently solving the
learning problem.

Lemma 5 Given a data set DY = {Y1, . . . , YN} generated from a stable random variable
Y ∼ Sα(β, γ, µ)

N∑
j=1

log
[
f(Yj |α, β, γ, µ)

]
= −N

(
log γ + h(Y |α, β)

)
where, lim

N→∞
h(Y |α, β) = −

∫
dY f(Y |α, β, 1, 0) log f(Y |α, β, 1, 0)

= H
[
Sα(β, 1, 0)

]
where, H[.] is the entropy of the corresponding random variable.

Proof Since Y includes samples from a stable distribution, Y ∼ Sα(β, γ, µ) by definition,
performing a change of variable to

Y → Ỹ =
Y

γ1/α
− µ̃ (2)

where, µ̃ =

{
µ

γ1/α
α 6= 1

µ
γ + 2β ln γ

π α = 1

we get, the standard form density Ỹ ∼ Sα(β, 1, 0) using Property 2. Furthermore, samples
from the transformed data set Ỹ = {Ỹ1, . . . , ỸN} are also distributed according to the
following standard density :

f(Y |α, β, γ, µ) = f(Ỹ |α, β, 1, 0)
dỸ

dY
= f(Ỹ |α, β, 1, 0)

1

γ1/α
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This implies that if we know the parameters α, β, γ and µ for the density generating DY

log
[
f(Y |α, β, γ, µ)

]
=

N∑
j=1

log f(Yj |α, β, γ, µ)

=

N∑
j=1

{
− log γ

α
+ log f(Ỹj |α, β, 1, 0)

}
= −N

( log γ

α
+ h(Y |α, β)

)
where, h(Y |α, β) is defined by

h(Y |α, β) ≡ − 1

N

N∑
j=1

log f(Ỹj |α, β, 1, 0) (3)

Here Ỹj and Yj are related via Equation 2 for all 1 ≤ j ≤ N . Note that since the transformed
variables Ỹj are samples from f(Ỹ |α, β, 1, 0), we have the following asymptotic result for
large N

lim
N→∞

h(Y, α, β) = − lim
N→∞

1

N

N∑
j=1

log f(Ỹj |α, β, 1, 0)

= −
∫ ∞
−∞

f(Ỹ |α, β, 1, 0) log f(Ỹ |α, β, 1, 0)dY

= H
[
Sα(β, 1, 0)

]
where, H[.] is the entropy of the corresponding random variable.

As things stand, the entropy H[.] of stable random variables in the standard form is just
as difficult to compute as the original log-likelihood and the previous lemma has just trans-
formed one intractable quantity into another. However, there is an important class of models
where we can ignore the entropy term during structure learning; this class of multivariate
distributions have a special property that every linear combination of random variables is
distributed as a stable distribution Sα(β, ., .) with the same α and β. One scenario when
this is true is when the noise term is symmetric i.e. βi = 0 ∀ Xi ∈ X . This special case is
important since we later show (Lemma 8) that every α-SG model can be easily transformed
into a partner symmetric α-SG model with identical network topology and regression co-
efficients. For all practical purposes, learning the structure of symmetric α-SG models is
effectively the same as learning structure of arbitrary α-SG models.

Lemma 6 Given a symmetric α-stable graphical model for variables in X ,

Z ≡ wTX =
∑
Xj∈X

wjXj ∼ S
(
α, β(w) = 0, γ(w), µ(w)

)
, ∀w ∈ R|X |

if, βi = 0, ∀Xi ∈ X

9



Misra and Kuruoglu

Proof The dispersion γ(w) and skewness β(w) for the projection wTX of any d-dimensional
stable random density are given by (Samorodnitsky and Taqqu, 1994)

γ(w) =

∫
Sd

|wT s|αΛ(ds)

β(w) = γ(w)−1

∫
Sd

sign(wT s)|wT s|αΛ(ds)

Since, X represents a symmetric α-stable graphical model, Lemma 4 and Lemma 3 imply
(substituting the characteristic function in the expression for β(w) with the expansion in
Lemma 3 :

β(w) =
d∑

k=1

|wT ck|α2 γk
2γ(w)

∫
Sd

{
δ(s− ck

|ck|2
) + δ(s+

ck
|ck|2

)
}
|wT s|αsign(wT s)ds

= 0

For a recent reference on multiple regression with stable errors, see also Nolan (2013b).

We are now in a position to present the main contribution of this paper : an alter-
native criterion for model selection that is both computationally efficient and comes with
robust theoretical guarantees (Lemma 7). The criterion is called minimum dispersion cri-
terion (MDC) and is a penalized version of a technique previously used in signal processing
literature for designing filters for heavy-tailed noise (Stuck, 1978).

Definition 5 Given a data set D = {D1, . . . , DN}, the penalized dispersion score SMDC(B|D)
for a Bayesian network B(G,Θ) is defined as,

SMDC(B|D) = −
∑
Xi∈X

{
N

log γi
α

+
|Pa(Xi)|

2
logN

}
The minimum dispersion criterion (MDC) selects the Bayesian network that maximizes this
score over the space of all directed acyclic graphs G and parameters Θ.

Lemma 7 Given a data set D = {D1, . . . , DN} generated by a symmetric α-stable graphical
model, B∗(G∗,Θ∗), the minimum dispersion criterion is asymptotically equivalent to the
Bayesian information criterion over the search space of all symmetric α-stable graphical
models

Proof First consider the contribution to BIC score from each family (ie., each random
variable and its parents) separately. Let Zj = Xj −

∑
Xk∈Pa(Xj)

wjkXk be any arbitrary

set of regression coefficients for a candidate network B(G,Θ). Note that the coefficients
Wj = {wjk|Xk ∈ Pa(Xj)} need not be the true regression coefficients W ∗j and B need not
be the true network B∗. We will use the notation Zi,λ for the realization of Zi in sample
Dλ ∈ D. Since D includes samples from a symmetric α-stable graphical model, Lemma 6
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implies Zj ∼ Sα(β = 0, γj , µj). Therefore, using Lemma 5

Fam(Xj , Pa(Xj)|D) ≡
N∑
λ=1

log
[
f(Zj,λ|α, β = 0, γj , µj)

]
− |Pa(Xj)|

2
logN

= −N
( log γj

α
+ h(Z̃j |α, β = 0)

)
− |Pa(Xj)|

2
logN

where, as in Equation 3, Zj and Z̃j are related by the transformation in Equation 2 and
Fam(Xj , Pa(Xj)|D) represents the contribution to BIC score from each family (ie., each
random variable and its parents).

=⇒ SBIC(B|D)

N
=

∑
Xj∈X

Fam(Xj , Pa(Xj)|D)

N

= −
∑
Xj∈X

( log γj
α

+ h(Zj |α, β = 0) +
|Pa(Xj)|

2N
logN

)
=⇒ lim

N→∞

SBIC(B|D)

N
= lim

N→∞

SMDC(B|D)

N
− |X |H[Sα(β = 0, 1, 0)

]
Since, |X |H[Sα(β = 0, 1, 0)] is independent of the candidate network structure and regres-
sion parameters {Wj |Xj ∈ X}, we get the result that for any pair of networks B and
B′

=⇒ lim
N→∞

1

N

(
SBIC(B|D)− SBIC(B′|D)

)
= lim

N→∞

1

N

(
SMDC(B|D)− SMDC(B′|D)

)
Therefore, asymptotically, BIC is equivalent to MDC when data is generated by a sym-
metric α-SG graphical model.

We now show how samples from any stable graphical model can be combined to yield
samples from a partner symmetric stable graphical model with identical parameters and
network topology. This transformation was earlier used by Kuruoglu (2001) in order to
estimate parameters from skewed univariate stable densities. We should point out that the
procedure described above has the drawback that symmetrized data set has half the sample
size.

Lemma 8 Every α-SG model can be associated with a symmetric α-SG model with identical
skeleton (graph structure) and regression parameters.

Proof Given a data set D = {D1, . . . DN} representing any α-SG model B(G,Θ), consider

a resampled data set D̂ = {D̂1, . . . D̂NS} with variable realizations

X̂i,λ = Xi,2λ −Xi,2λ−1 , ∀λ ∈ {1, . . . NS = bN/2c}

These ’bootstrapped’ data samples D̂λ = {X̂i,λ|Xi ∈ X} represent independent realizations

of random variables X̂ ≡ {X̂i|Xi ∈ X}. Similarly, we may use the regression parameters W
to define resampled noise variables :

Ẑj ≡ X̂j −
∑

X̂k∈Pa(Xj)

wjkX̂k

We now make two observations :

11
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1. If Zj = Xj −
∑

Xk∈Pa(Xj)
wjkXk ∼ Sα(βj , γj , µj), then using Property 1

Ẑj ≡ X̂j −
∑

X̂k∈Pa(Xj)

wjkX̂k ∼ Sα(β = 0, 2γj , 0)

2. The transformed noise variables Ẑj are independent of each other.

But these conditions define an α-SG model (Definition 3). Therefore, by Lemma 2, the
resampled data is distributed according to a Bayesian network B̂(G, Θ̂) such that

Ẑj ≡ X̂j −
∑

X̂k∈Pa(Xj)

wjkX̂k

P
B̂

(X̂ ) =

|X |∏
j=1

f(Ẑj |α, 0, 2γj , 0)

θ̂j = {α, β = 0, 2γj , 0} ∪Wj , Θ̂ = {θ̂j |Xj ∈ X}

The expression for MDC in Definition 5 does not involve the stable pdf and hence one
may wonder how the variables of the distribution could be estimated. The answer is given
by the following property of stable distributions Kuruoglu (2001).

Lemma 9 If Z ∼ Sα(0, γ, 0), then

E(|Z|p) = C(p, α)γp/α ∀ − 1 < p < α

where,

C(p, α) =
Γ(1− p

α)

Γ(1− p) cos(pπ2 )
.

2.4 The StabLe Algorithm

In this section we describe StabLe, an algorithm for learning the structure and parameters
of α-SG models (Algorithm 1). The first step of StabLe is to center and symmetrize the
entire data matrix DI in terms of the variables X̂ , as described in Lemma 8. This is followed
by estimating the global parameter α using the method of log statistics (Kuruoglu, 2001).
Finally, structure learning is performed by a modified version of the ordering-based search
(OBS) algorithm (Section 2.4.2). The details of parameter estimation and structure learning
algorithms are discussed next.

2.4.1 Parameter Learning

First, we describe the algorithms StabLe uses to estimate the characteristic exponent α
from the data matrix D, as well as the parameters Γ = {γj |Xj ∈ X} and Wj = {wjk|Xk ∈
Pa(Xj)} for any given directed acyclic graph G.

12
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Algorithm 1 StabLe

Input: Input data matrix DI , number of random restarts Nreps
Output: α-SG model B(G,Θ) over X
D ← Symmetrized(DI) // Symmetrize the data as per Lemma 8

Estimate α from D // Use log-statistics, Equation 4

Initialize B(G,Θ) = ∅
for i =1 to Nreps do

Initialize a random ordering σ
Bσ(G,Θ) = OBS(D,α, σ) // Ordering-based search, Algorithm 4

if SMDC(Bσ|D) > SMDC(B|D) then
B = Bσ

end if
end for

Estimating the global parameter α : Log statistics can be used to estimate the char-
acteristic exponent α from the centered and symmetrized variables in X̂ (Kuruoglu, 2001).

Algorithm: Since every linear combination of variables in X̂ has the same α, if we define

X̂ =

|X̂ |∑
i=1

X̂i , then

α =
(L2

ψ1
− 1

2

)−1/2
(4)

L2 ≡ E
[(

log |X̂| − E[log |X̂|]
)2]

ψ1 ≡ d2

dy2
Γ(y)

∣∣∣∣
y=1

=
π2

6

Estimating the dispersion γj, and regression parameters Wj = {wjk|Xk ∈ Pa(Xj)}
If γj(Wj) is the dispersion parameter for the distribution of Zj = Xj −

∑
Xk∈Pa(Xj)

wjkXk,
then the minimum dispersion criterion selects regression parameters

W ∗j = arg min
1

α
log γj(Wj)

Minimum dispersion regression coefficients are estimated using a connection between the
lp-norm of a stable random variable and the dispersion parameter γ (Zolotarev, 1957; Ku-
ruoglu, 2001) given above in Lemma 9.

This lemma tells us that within a constant term logC(p, α), minimizing 1
α log γj is

identical to minimizing the lp-norm ‖Zj‖p ≡ (
∑N

λ=1 |Zj,λ|p)1/p for −1 < p < α.

W ∗j = arg min log
(
‖Zj‖p

)
≡ arg min log

(
(

N∑
λ=1

|Zj,λ|p)1/p
)

13
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Algorithm 2 IRLS // Find the least lp norm regression coefficients

Input: N dimensional vector for realizations of the child node Y , N ×M matrix X of
realizations of the parent set Pa(Y ), tolerance ε and p ∈ (0, 2]
Output: M dimensional vector of regression co-efficients W ∗ = arg minW ‖Y −XW‖p
Initialize W with OLS co-efficients W = (XTX)−1(XTY )
repeat

Initialize buffer for current regression coefficients β = W
Initialize a diagonal N ×N matrix Ω from β for weighted least squares regression

Ωij = δij(Yi − (XW )i)
p−2 ∀i, j ∈ {1, . . . N}

Update regression coefficients vector W = (XTΩX)−1(XTΩY )
until ‖β−W‖2 < ε // Change in regression coefficients is within tolerance

Algorithm: Minimization of the lp norm is performed by the iteratively least squares
(IRLS) algorithm (Byrd and Payne, 1979). Briefly, the IRLS algorithm repeatedly solves
an instance of the weighted least squares problem to achieve successive estimates for the
least lp norm coefficients (Algorithm 2). IRLS is attractive since rigorous convergence
guarantees can be given (Daubechies et al., 2010) and the method is easy to implement
since several software packages are available for the weighted least squares problem. Even
though the IRLS objective is no longer convex for p < 1.0, Daubechies et al. (2010) show that
under certain sparsity conditions, the algorithm can recover the true solution. Simulations
described in Section 3.1 tend to support this observation.

For experiments described in this manuscript, StabLe used two values of p for lp-norm
estimation. For learning regression coefficients during structure learning, IRLS was imple-
mented with p = α/1.01, since lower values tended to give noisier estimates (possibly due to
numerical errors). However, we also found that estimating the term logC(p, α) is prone to
numerical errors for small values of |α− p|. Therefore, we ignore this constant term during
structure learning since it is common to all candidate structures. StabLe estimates the dis-
persion parameters γj after structure learning, by computing the lp-norm for p sufficiently
smaller than α (e.g. α/10 ≤ p ≤ α/2 and applying Lemma 9.

2.4.2 Structure Learning

Searching the space of all network structures can be performed through any of the popu-
lar hill-climbing algorithms. In this paper we used the ordering-based search (OBS) algo-
rithm (Teyssier and Koller, 2005) to search for a local optimum in the space of all directed
acyclic graphs. The algorithm starts with an initial ordering σ and then learns a DAG
consistent with σ ( i.e., all parents of each node must have a lower order). This part of
structure learning is performed via a subroutine K2Search (Algorithm 3), which is a mod-
ified version of the hill-climbing based K2Search algorithm Cooper and Herskovits (1992).
K2Search starts with an empty parent set for each node Xi ∈ X and greedily adds edges
until the MDC based score FS(Xi, Pa(Xi)|D,α) = −N

α log γi− |Pa(Xi)|
2 logN reaches a local

maximum. The main difference from Gaussian graphical models (Heckerman et al., 2000;
Schmidt et al., 2007) is that K2Search scores each family based on least lp norm instead
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Algorithm 3 K2Search

Input: Symmetrized data matrix D, fixed ordering σ and shape parameter α
Output: α- SG model B(G,Θ) given the ordering σ
Initialize B(G,Θ) = ∅
for i = 2 to |X | do
// Find the optimal parent set Pa(σi) by greedily

// adding edges starting from Pa(σi) = ∅
repeat

Initialize noChange = true
Initialize best = FS(σi, Pa(σi)|D,α)
AddPa = ∅ // Search for a potential parent

for Xj ∈ {σ1 . . . σi−1} \ Pa(σi) do
Estimate regression weights Wσi for parent set Pa(σi) ∪Xj using IRLS
if FS(σi, Pa(σi) ∪Xj |D,α) > best then
best = FS(σi, Pa(σi)∪Xj |D,α) // Update best score and

AddPa = Xj // possible new parent

noChange = false
end if

end for
Pa(σi) = Pa(σi)∪AddPa // Add the new parent

until noChange is true // Repeat until local optimum

end for

Algorithm 4 OBS // Find the optimal α-SG model using OBS

Input: Symmetrized data matrix D, shape parameter α, initial ordering σ
Output: α-SG model B(G,Θ) over X
Initialize SG model B=K2Search(D, σ, α)
for i = 1 to |X | − 1 do

Initialize Tiσ = Twiddle(i, σ) // New ordering Tiσ by swapping σi & σi+1

B̃= K2Search(D, Tiσ, α) // Compute the optimum B̃ given Tiσ
DS(i) = SMDC(B̃|D)− SMDC(B|D) // Set Delta score for the twiddle

end for
repeat

Initialize noChange = true
Find a = arg maxDS(i) // Find the best twiddle Taσ
B̃= K2Search(D, Taσ, α) // Compute the optimum given Taσ
if SMDC(B̃|D) > SMDC(B|D) then
σ = Taσ, B = B̃ // Accept the swap and update σ,B
DS(a− 1) (if a > 1) // Update delta scores for neighbors a− 1
DS(a+ 1) (if a < |X | − 1) // and a+ 1, if valid

noChange = false
end if

until noChange is true // Repeat until local optimum
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of ordinary least squares (OLS). Once K2Search has learned the locally optimum DAG for
a given ordering σ, OBS explores other ordering by performing elementary operations (or
‘twiddles’) that swap the order of successive variables and recomputes the K2Search scores.
This process is continued until a local optimum. StabLe also performs a fixed number of
random restarts to explore more of the search space. In all experiments reported here we
used 10 random restarts. Pseudo code for the methods is described in Algorithms 4 and 3.

3. Empirical Validation

In this section we describe two sets of numerical experiments to assess the performance
of StabLe. The first set is based on synthetic data representing five benchmark network
topologies (Section 3.1). These experiments test the accuracy and robustness of MDC
based learning on simulated data sets where the ground truth (structure and parameters)
is known.

For the second set of experiments, we apply StabLe to a gene expression data set
(Section 3.2) from Phase III of the HapMap project (International HapMap 3 Consortium
and others, 2010). These samples represent microarray measurements of mRNA expres-
sion within lymphoblastoid cells from 727 individuals belonging to eight global population
groups (Montgomery et al., 2010; Stranger et al., 2012).

For structure learning, we chose ordinary least squares (OLS) based BIC penalized log-
likelihood SOLS(B|D) for comparison.

SOLS(B|D) = −
∑
Xi∈X

{
log ‖Zi − Z̄i‖2 +

|Pa(Xi)|
2

logN
}

(5)

OLS is commonly used for learning Gaussian graphical models and should be identical to
StabLe for α = 2.0 (for that case SOLS and SMDC are the same up to a network and
parameter independent term). This comparison allowed us to assess the effect of heavy-
tailed noise (α < 2.0) on learning performance.

3.1 Synthetic Data

We performed numerical experiments based on simulated data sets for five network topolo-
gies from the Bayesian network repository 1. These were (number of nodes, edges within
brackets) : ALARM (37, 46), BARLEY (48, 84), CHILD (20, 25), INSURANCE (27, 52) and MILDEW

(35, 46). Adjacency matrix for each network was downloaded from the supplement to
Tsamardinos et al. (2006)2. Each node Xi ∈ X was assigned an additive α-stable noise
variable Zi with same parameters Sα(β, γ, 0) and each edge was assigned a regression coef-
ficient that was sampled from [−ρ

2 ,+
ρ
2 ] uniformly at random. The Sα(β, γ, 0) noise variable

was simulated using the method of Chambers et al. (1976). For each set of experiments,
we simulated 100 datasets, each with 2000 samples from an α-SG model with randomly
chosen regression weights, but fixed network topology and α-stable noise parameters. The

1. A description for each network is available at http://www.cs.huji.ac.il/site/labs/compbio/Repository/
.

2. Supplement can be accessed at http://www.dsl-lab.org/supplements/mmhc paper/mmhc index.html.
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Figure 2: The ALARM network - Inferred structure. Comparative performance of MDC based
StabLe algorithm (solid blue curves) versus an identical algorithm based on OLS
score (dashed red curves). Vertical axes show true positives in A and false posi-
tives in B, for directed edges present in the input network. Horizontal axes show
respective confidence (percentage of simulated data sets with the feature)

goal was to assess StabLe in terms of its performance at structure learning and estimation
of stable noise parameters for a variety of regression coefficients.

We performed five sets of experiments for each network, corresponding to different values
of α = 0.8, 1.1, 1.4, 1.7, 2.0. For each set of experiments, we chose ρ = 1.0, β = 0.9 and
γ = 1.0. We chose such a high skew (β = 0.9) in the input data to test our algorithm on its
ability to symmetrize and correctly learn (possibly) difficult problem instances. Instead of
β however, we report a related parameter θ = arctan(β tanαπ2 ) which can be inferred more
robustly in practice since it avoids the singularity near α = 2 (Kuruoglu, 2001). We used
the zeroth order signed moments based method for estimating θ (Kuruoglu, 2001).

θi =
απ

2N

N∑
λ=1

sign(Xi,λ), ∀ Xi ∈ X (6)
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Figure 3: The ALARM network - Estimated regression parameters.

We report two set of results for each network : structure learning and parameter esti-
mation. For convenience, we describe the results for the ALARM network first (results for
other data sets are provided in Appendix B).

3.1.1 Inferred Structure

Figure 2 shows the comparative performance of MDC and OLS based approaches. Each
curve shows the number of inferred directed edges. Figure 2A, B show the number of true
positives and true negatives at a given confidence level (percentage of simulated data sets
where the directed edge was learnt). Solid (blue) curves show the performance of MDC and
dashed (red) curves show OLS based method. The results are along expected lines with
the difference between the two getting larger as α is varied away from 2.0. One clear trend
is that while the sensitivity to true positive detection degrades for OLS (Type II errors)
as α decreases, the MDC based method remain robust to changes in α. Both methods
are however quite reliable at not inferring incorrect edges (false positives or Type I errors).
Similar behavior is observed for other data sets as well (Appendix B).

3.1.2 Estimated Parameters

Figure 3 shows the comparative performance of MDC and OLS scores in estimating regres-
sion coefficients. Figure 3A shows the bias in mean estimates (in absolute magnitude) and
Figure 3B, the standard deviation around the mean in estimated coefficients and are aver-
aged over all true positives and all simulated data sets. Note that each of the 100 simulated
data set had regression coefficients sampled independently from [−1/2, 1/2]. OLS had a
much higher standard deviation and bias at low α. As with structure learning, this pattern
was consistently observed for other network topologies as well (Appendix B).
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Figure 4: The ALARM network - Estimated noise parameters.

We also assessed the ability of StabLe to infer α-stable noise parameters accurately and
robustly. However, we could not show a comparative performance since OLS scores assume
Gaussian noise. Figure 4 shows the box plot and basic statistics for the estimates for α, θ
and log γ from the symmetrized data set (node specific parameters θ and log γ are reported
as averages).

α , θ ≡ 1
|X |
∑

i arctan(βi tanαπ2 ) , log γ =
1

|X |
∑
i

log γi

Both α and θ estimates have low bias and standard deviation for each of the five data
sets. But, log γ estimates show a clear tendency to overestimate the dispersion in noise
at very low α. This is however a difficult parameter domain for most existing methods
for parameter estimation, even for univariate α stable densities (Kuruoglu, 2001). As with
other inferences, the performance of StabLe is again robust to changes in network topol-
ogy (Appendix B).
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ID Ethnicity Location # Samples # Genes/Probes

CEU Caucasians Utah, USA 109 21800
CHB Han Chinese Beijing, China 80 21800
GIH Gujarati Indians Houston, USA 82 21800
JPT Japanese Tokyo, Japan 82 21800
LWK Luhya Webuye, Kenya 83 21800
MEX Mexican Los Angeles, USA 45 21800
MKK Maasai Kinyawa, Kenya 138 21800
YRI Yoruba Ibadan, Nigeria 108 21800

Table 2: The HapMap III population groups and selected microarray probes as reported
by Stranger et al. (2012).

3.2 Gene Expression Microarray Data

In this section, we describe two sets of analyses for gene expression microarray data from
phase III of the HapMap project3. Our approach models the set of gene expression profiles
as a multivariate stable distribution that can be represented by an α-SG model. The
first set of experiments aimed at comparing the prediction accuracy of MDC with OLS-
based structure learning via ten-fold cross-validation (Section 3.2.2). The results of these
experiments establish the utility of heavy-tailed models for gene expression profiles.

Next, we apply α-SG models to the problem of quantifying differential expression (DE)
of a gene between samples belonging to different conditions. This is a common task in
gene expression-based analyses in contemporary genomics. However, popular methods for
detecting differentially expressed genes usually assume the expression profile for each gene
to be independent of others. Based on this assumption, DE quantification is performed by
testing the null hypothesis that the log-expression of each gene is identical across the ob-
served conditions and using the corresponding p-value as a measure of DE. In Section 3.2.3,
we develop SGEX, a new technique for quantifying differential expression of each gene that
is based on α-SG models. We apply SGEX to quantify the DE for a gene in each popu-
lation group within the HapMap data. Contrary to most existing methods, SGEX takes
into account both the heavy-tailed behavior of gene expression densities, as well as linear
dependencies between mRNA expression of different genes.

3.2.1 Data Normalization

We downloaded pre-processed data for 727 individuals from eight global population groups
as reported in Stranger et al. (2012). Details about the eight population groups are provided
in Table 2. For each individual, the input data represented log-intensities for 21800 microar-
ray probes4 that were quantile and median normalized, as described in the original paper
(Stranger et al., 2012). These microarray intensities provide a measure for mRNA concen-

3. Data sets can be downloaded from the Array Express database http://www.ebi.ac.uk/arrayexpress/

using Series Accession Numbers E-MTAB-198 and E-MTAB-264.
4. Each selected probe mapped to a unique, autosomal Ensembl gene. Ensembl gene IDs are available at

http://www.ensembl.org.
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tration within a sample of lymphoblastoid cells from each individual. Before performing
structure learning, we further processed each probe intensity as follows :

1. The log-intensity l(i) for each probe i was median-centered to obtain transformed log-
intensities ml(i), ie., the number of samples with positive log-intensity was half (or
0.5 less than) the total (= 363 = b727/2c). This is a standard technique for learning
Gaussian graphical models from gene expression data and does not affect the network
structure.

2. The median-centered log-intensities were used to assign a rank R(i) to each probe
i, in decreasing order of variance. Even for α-stable distributions, variance of log
transformed data is finite (Kuruoglu, 2001). This is also a standard technique for
restricting computing time by selecting a subset of genes with most variation.

3. The median-centered log-intensities {ml(i)|R(i) ≤ 21800} were exponentiated to I =
{2ml(i)|R(i) ≤ 21800}.

4. The exponentiated-median-centered log-intensities Ik = {2ml(i)|R(i) ≤ k ≤ 21800}
for the top k ranked probes were provided as input to StabLe (for cross-validation)
and SGEX (for DE quantification, as described in Section 3.2.3). In the experiments
reported here k = 100.

We estimated α over 1000 resampled bootstrap replicates of the data. This was meant
as a diagnostic to assess the heavy-tailed nature of the intensities. As shown in Figure 5A,
the data suggests a clear departure from a Gaussian profile.

3.2.2 Cross-validation Analysis

We performed a ten-fold cross-validation for the top 100 ranked probes from the HapMap
data. Since we wanted to compare MDC with OLS-based learning, we report goodness of
fit of the graphical model B on the test set T = {T1, . . . TN} in terms of log fractional lower
order moments :

LFLOM(T |B, p) =
∑
Xi∈X

[1

p
logE(|Zi|p)

]
=
∑
Xi∈X

[1

p
logE(|Xi −

∑
Xj∈Pa(Xi)

wijXj |p)
]

where, wij represents the regression co-efficient for the edge (Xj , Xi). Clearly, if most of
the variation in Xi can be explained by the parent set Pa(Xi), the corresponding LFLOM
will be small. For p = 2, LFLOM is identical to the negative log-likelihood for Gaussian
graphical models5. However, the second order moment diverges for α < 2 (Lemma 9).
Therefore, LFLOM provide a more robust estimate for evaluating the model on test set
for heavy-tailed noise (α < 2).

Figure 5B shows the average (over the ten-folds) of LFLOM for MDC (blue) and OLS-
based (red) models. In each case, the curves show the difference in LFLOM between
optimal (MDC or OLS) network and an empty network (NULL). This allows us to also
assess the deterioration in test set performance by treating each gene as an independent

5. Note that the noise term Zi has zero mean, since the data is centro-symmetrized before cross-validation.
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Figure 5: Test set performance and differential expression quantification with SGEX. A
shows a box plot of estimated α over 1000 bootstrap replicates. B shows com-
parative Test set performance for MDC and OLS based networks relative to an
empty network (no edges). C shows a heat map of ∆LD that quantifies differen-
tial expression of a gene. The color for each column is normalized by scaling and
centering.

random variable (a common assumption in DE quantification). Although the data set
contains only 727 samples, we see a clear improvement in test set performance of α-SG
models (MDC curve) relative to Gaussian graphical models (OLS curve).

3.2.3 Quantifying Differential Expression With SGEX

Finally, we discuss SGEX, a new technique for quantifying differential expression using α-
SG models. SGEX is based on cross-validation for assessing DE of a gene across different
conditions. For the HapMap data, we chose each of the eight population groups in turn
as the test set and learnt the optimal α-SG model for the rest of the samples. We then
estimated ∆LD(i, η), the change in negative log-likelihood per sample between the test set
set η and the training set as a measure of DE for each probe i

∆LD(i, η) =
1

p

[
logEη(|Zi|p)− logEη̄(|Zi|p)

]
, p ∈ (−1, α)

Here, Eη(.) is the expectation value for population η (test set) and Eη̄(.) for the rest (training
set). Note that Lemma 9 guarantees that RHS of the previous equation is indeed indepen-
dent of p. For the calculation reported here p = α/1.01, just as it was during structure
learning. Thus, ∆LD(i, η) measures the average increase (or decrease) in log-dispersion for
the noise variable Zi corresponding to probe i within population η. This density is repre-
sented as a heat map in Figure 5C. We should point out that a higher (or lower) dispersion
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for the noise variable associated with a gene in the test set does not necessarily imply
over (or under) expression of a gene in the test set population. The change in dispersion
could also be due to a change in network topology or regression coefficients for the test set
population.

4. Discussion

In this paper we have introduced and developed the theory for efficiently learning α-SG
models from data. In particular, one of the main contributions of this paper is to show
how the BIC can be asymptotically reduced to the MDC for α-SG models. This result
makes it feasible to efficiently learn the structure of these models, since the log-likelihood
term does not have a closed form expression in general. We have also empirically validated
the resultant algorithm StabLe on both simulated and microarray data. In both cases,
the presence of heavy-tailed noise has a clear effect on learning performance of OLS based
methods. Based on these results, we recommend a bootstrapped estimation of α as an
effective and computationally efficient diagnostic to assess the applicability of OLS based
Gaussian graphical models.

We have also described SGEX, a new technique for quantifying differential expression
from microarray data. α-SG models may also have wider applicability to other aspects of
computational biology, especially to data from next-generation sequencing technologies. In
addition to mRNA expression measurements (RNA-seq experiments), α-SG models may
prove helpful for other experiments, such as protein-DNA binding (ChIP-seq experiments)
and DNA accessibility measurements (DNase-seq and FAIRE-seq experiments).

Finally, we should mention that there are several potential applications of α-SG models
beyond computational biology. In particular, image processing provides several problem in-
stances where there is a need to relate different regions of the image. For example, functional
magnetic resonance imaging (fMRI) experiments generate a series of images highlighting
activity sites in the brain in response to stimuli. Bayesian networks are an effective way of
modeling statistical relations between different areas of the brain and the stimuli (Li et al.,
2011). Stable distributions may provide a better model for such applications. Another
image processing application with potentials for α-SG models is remote sensing images of
the earth (Mustafa et al., 2012) where image histograms demonstrate clearly skewed and
heavy tailed characteristics (Kuruoglu and Zerubia, 2004). Traffic modeling (Castillo et al.,
2012) and financial data analysis (Bonato, 2012) are also promising application areas.

5. Software Availability

Source code for StabLe and data sets used here are available at
https://sourceforge.net/projects/sgmodels/. SGEX is available upon request from
the first author.
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Appendix A

In this section we provide the proof for Lemma 3
Lemma 3 Every d-dimensional distribution with a characteristic function of the form

Φ(q|α, µ̃,Λ) =
d∏

k=1

φ(cTk q|α, βk, γk, µk) where, ck, q ∈ Rd

represents a multivariate stable distribution with a discrete spectral measure Λ.
Proof Assume the following ansatz for the spectral measure Λ,

Λk =
‖ck‖α2 γk

2

(
(1 + βk)δ(s−

ck
‖ck‖2

) + (1− βk)δ(s+
ck
‖ck‖2

)
)

Λ(ds) =
∑
k

Λkds

and location vector µ̃,

ηk(ck|α, βk, γk, µk) =

{
µk α 6= 1

µk − 2βkγk
π log ‖ck‖2 α = 1

µ̃ =

d∑
k=1

ηk(ck|α, βk, γk, µk)ck ∈ Rd

Upon substitution into the parametrization in Definition 2 we get∫
Sd

ψ(sT q|α)Λkds =
‖ck‖α2 γk

2

(
(1 + βk)ψ(

cTk q

‖ck‖2
|α) + (1− βk)ψ(−

cTk q

‖ck‖2
|α)
)

=
‖ck‖α2 γk

2

|cTk q|α

‖ck‖α2

(
(1 + βk)(1− ısign(cTk q)r(

cTk q

‖ck‖2
, α))

+ (1− βk)(1 + ısign(cTk q)r(
cTk q

‖ck‖2
, α))

)
=⇒

∫
Sd

ψ(sT q|α)Λk.ds = γk|cTk q|α
(

1− ıβksign(cTk q)r(
cTk q

‖ck‖2
, α)
)

= γk|cTk q|α
(

1− ıβksign(cTk q)r(c
T
k q, α)

)
− ıβkγk|cTk q|αsign(cTk q)

(
r(

cTk q

‖ck‖2
, α)− r(cTk q, α)

)

Since, r(
cTk q

‖ck‖2
, α)− r(cTk q, α) =

{
0 α 6= 1

2
π log ‖ck‖2 α = 1

ıβkγk|cTk q|αsign(cTk q)
(
r(

cTk q

‖ck‖2
, α)− r(cTk q, α)

)
=

{
0 α 6= 1

ıcTk q
(

2βkγk
π log ‖ck‖2

)
α = 1

=

{
ıcTk q(µk − µk) α 6= 1

ıcTk q
(
µk − µk + 2βkγk

π log ‖ck‖2
)

α = 1

= ıcTk q
(
µk − ηk(ck|α, βk, γk, µk)

)
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=⇒
∫
Sd

ψ(sT q|α)Λk.ds = − log φ(cTk q|α, βk, γk, µk) + ıηk(ck|α, βk, γk, µk)cTk q

=⇒ log
(

Φ(q|α, µ̃,Λ)
)

= −
∫
Sd

ψ(sT q|α)Λ(ds) + ıµ̃q

= −
d∑

k=1

∫
Sd

ψ(sT q|α)Λk.ds+ ı
d∑

k=1

ηk(ck|α, βk, γk, µk)cTk q

=⇒ log
(

Φ(q|α, µ̃,Λ)
)

=
d∑

k=1

log φ(cTk q|α, βk, γk, µk)

=⇒ Φ(q|α, µ̃,Λ) =
d∏

k=1

φ(cTk q|α, βk, γk, µk)
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Appendix B

The BARLEY network
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Figure 6: The BARLEY network - Inferred structure
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Figure 7: The BARLEY network - Estimated regression parameters.
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Figure 8: The BARLEY network - Estimated noise parameters
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The CHILD network
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Figure 9: The CHILD network - Inferred structure
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Figure 10: The CHILD network - Estimated regression parameters.
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Figure 11: The CHILD network - Estimated noise parameters
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The INSURANCE network
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Figure 12: The INSURANCE network - Inferred structure
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Figure 13: The INSURANCE network - Estimated regression parameters.
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Figure 14: The INSURANCE network - Estimated noise parameters
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The MILDEW network
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Figure 15: The MILDEW network - Inferred structure
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Figure 16: The MILDEW network - Estimated regression parameters.
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Figure 17: The MILDEW network - Estimated noise parameters
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