
Journal of Machine Learning Research 17 (2016) 1-41 Submitted 4/14; Revised 7/15; Published 4/16

Quantifying Uncertainty in Random Forests via Confidence
Intervals and Hypothesis Tests

Lucas Mentch lkm54@cornell.edu

Giles Hooker giles.hooker@cornell.edu

Department of Statistical Science

Cornell University

Ithaca, NY 14850, USA

Editor: Bin Yu

Abstract

This work develops formal statistical inference procedures for predictions generated by su-
pervised learning ensembles. Ensemble methods based on bootstrapping, such as bagging
and random forests, have improved the predictive accuracy of individual trees, but fail to
provide a framework in which distributional results can be easily determined. Instead of
aggregating full bootstrap samples, we consider predicting by averaging over trees built
on subsamples of the training set and demonstrate that the resulting estimator takes the
form of a U-statistic. As such, predictions for individual feature vectors are asymptoti-
cally normal, allowing for confidence intervals to accompany predictions. In practice, a
subset of subsamples is used for computational speed; here our estimators take the form
of incomplete U-statistics and equivalent results are derived. We further demonstrate that
this setup provides a framework for testing the significance of features. Moreover, the in-
ternal estimation method we develop allows us to estimate the variance parameters and
perform these inference procedures at no additional computational cost. Simulations and
illustrations on a real data set are provided.

Keywords: trees, u-statistics, bagging, subbagging, random forests

1. Introduction

This paper develops tools for performing formal statistical inference for predictions gen-
erated by a broad class of methods developed under the algorithmic framework of data
analysis. In particular, we focus on ensemble methods—combinations of many individ-
ual, frequently tree-based, prediction functions—which have played an important role. We
present a variant of bagging and random forests, both initially introduced by Breiman
(1996, 2001b), in which base learners are built on randomly chosen subsamples of the train-
ing data and the final prediction is taken as the average over the individual outputs. We
demonstrate that this fits into the statistical framework of U-statistics, which were shown
to have minimum variance by Halmos (1946) and later demonstrated to be asymptotically
normal by Hoeffding (1948). This allows us to demonstrate that under weak regularity
conditions, predictions generated by these subsample ensemble methods are asymptotically
normal. We also provide a method to consistently estimate the variance in the limiting
distribution without increasing the computational cost so that we may produce confidence
intervals and formally test feature significance in practice. Though not the focus of this
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paper, it is worth noting that this subbagging procedure—suggested by Andonova et al.
(2002) for use in model selection—was shown by Zaman and Hirose (2009) to outperform
traditional bagging in many situations.

We consider a general supervised learning framework in which an outcome Y ∈ R is
predicted as a function of d features X = (X1, ..., Xd) by the function E[Y |X] = F (X).
We also allow binary classification so long as the model predicts the probability of success,
as opposed to a majority vote, so that the prediction remains real valued. Additionally, we
assume a training set {(X1, Y1), ..., (Xn, Yn)} consisting of n independent examples from
the process that is used to produce the prediction function F̂ . Throughout the remainder
of this paper, we implicitly assume that the dimension of the feature space d remains fixed,
though nothing in the theory provided prohibits a growing number of features so long as
our other explicit conditions on the statistical behavior of trees are met.

Statistical inference proceeds by asking the counterfactual question, “What would our
results look like if we regenerated these data.” That is, if a new training set was generated
and we reproduced F̂ , how different might we expect the predictions to be? To illustrate,
consider the hypothesis that the feature X1 does not contribute to the outcome at any point
in the feature space:

H0 : ∃ F1 s.t. F (x1, ..., xd) = F1(x2, ..., xd) ∀ (x1, ..., xd) ∈ X

A formal statistical test begins by calculating a test statistic t0 = t((X1, Y1), . . . , (Xn, Yn))
and asks, “If our data was generated according to H0 and we generated a new training set
and recalculated t, what is the probability that this new statistic would be larger than
t0?” That is, we are interested in estimating P (t > t0|H0). In most fields, a probability of
less than 0.05 is considered sufficient evidence to reject the assumption that the data was
generated according to H0. Of course, a 0.05 chance can be obtained by many methods
(tossing a biassed coin, for example) so we also seek a statistic t such that when H0 is false,
we are likely to reject. This probability of correctly rejecting H0 is known as the power of
the test, with more powerful tests clearly being more useful.

Here we propose to conduct the above test by comparing predictions generated by F̂
and F̂1. Before doing so however, we consider the simpler hypothesis involving the value of
a prediction:

H ′0 : F (x1, . . . , xp) = f0.

Though often of less scientific importance, hypotheses of this form allow us to generate
confidence intervals for predictions. These intervals are defined to be those values of f0 for
which we do not have enough evidence to reject H ′0. In practice, we choose f0 to be the
prediction F̂ (x1, ..., xp) generated by the ensemble method in order to provide a formalized
notion of plausible values of the prediction, which is, of course, of genuine interest. Our
results begin here because the statistical machinery we develop will provide a distribution
for the values of the prediction. This allows us to address H ′0, after which we can combine
these tests to address hypotheses like H0.

Although this form of statistical analysis is ubiquitous in scientific literature, it is worth-
while contrasting this form of analysis with an alternative based on probably approximately
correct (PAC) theory, as developed by Vapnik and Chervonenkis (1971) and Valiant (1984).
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PAC theory provides a uniform bound on the difference between the true error and observed
training error of a particular estimator, also referred to as a hypothesis. In this framework,
err(F ) is some error of the function F which is estimated by êrr(F ) based on the data. A
bound is then found for P (supF∈F |êrr(F )−err(F )| > ε) where F is some class of functions
that includes F̂ . Since this bound is uniform over F , it applies to F̂ and we might think of
comparing êrr(F̂ ) with êrr(F̂1) using such bounds. While appealing, these bounds provide
the accuracy of our estimate of err(F̂ ) but do not account for how the true err(F̂ ) might
change when F̂ is reproduced with new training data. The uniformity of these bounds could
be used to account for the uncertainty in F̂ if it is chosen to minimize êrr(F ) over F , but
this is not always the case, for example, when using tree-based methods. We also expect the
same uniformity to make PAC bounds conservative, thereby resulting in tests with lower
power than those we develop.

Our analysis relies on the structure of subsample-based ensemble methods, specifically
making use of classic U -statistic theory. These estimators have a long history (see, for
example, original work by Kendall (1938) or Wilcoxon (1945), or Lee (1990) which has a
modern overview), frequently focussed on rank-based non-parametric tests, and have been
shown to have an asymptotically normal sampling distribution by Hoeffding (1948). Our
application to subsample ensembles requires the extension of these results to some new cases
as well as methods to estimate the asymptotic variance, both of which we provide.

U-statistics have traditionally been employed in the context of statistical parameter es-
timation. From this classical statistical perspective, we treat ensemble-tree methods like
bagging and random forests as estimators and thus the limiting distributions and inference
procedures we develop are with respect to the expected prediction generated by the ensem-
ble. That is, given a particular prediction point x∗, our limiting normal distributions are
centered at the expected ensemble-based prediction at x∗ and not necessarily F (x∗). Such
forms of distributional analysis are common in other nonparametric regression settings—see
Eubank (1999) Section 4.8, for example. More details on appropriate interpretations of the
results are provided throughout the paper, in particular in Section 4.1.

In order to claim that the inference procedures proposed here are asymptotically valid
for F (x∗), the ensemble must consistently predict F (x∗) at a rate of

√
n or faster. Though

this is the case for many classical estimators, establishing fast uniform rates of convergence
for tree-based ensembles has proven extremely difficult. Breiman et al. (1984) discuss con-
sistency of general partition-type models in the final chapter of their seminal book in the
context of both classification and regression. Biau et al. (2008) restrict their attention to
classification, but prove consistency of certain idealized bagging and random forest estima-
tors, provided the individual trees are consistent. This paper also discusses a more general
version of bagging, where the samples used to construct individual base learners may be
proper subsamples of the training set taken with replacement as opposed to full bootstrap
samples, so as to include the subbagging approach. Biau (2012) further examines the con-
sistency of random forests and investigates their behavior in the presence of a sparse feature
space. Recently, Denil et al. (2013) proved consistency for a mathematically tractable vari-
ant of random forests and in some cases, achieved empirical performance on par with the
original random forest procedure suggested by Breiman. Zhu et al. (2015) prove consistency
for their Reinforcement Learning Trees, where embedded random forests are used to decide
splitting variables, and achieve significant improvements in empirical MSE for some data
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sets. However, no rates of convergence have been developed that could be applied to analyze
the ensemble methods we consider here.

Beyond these consistency efforts, mathematical analyses of ensemble learners has been
somewhat limited. Sexton and Laake (2009) propose estimating the standard error of bagged
trees and random forests using jackknife and bootstrap estimators. Recently, Wager et al.
(2014) proposed applying the jackknife and infinitesimal jackknife procedures introduced
by Efron (2014) for estimating standard errors in random forest predictions. Chipman et al.
(2010) have received significant attention for developing BART, a Bayesian “sum-of-trees”
statistical model for the underlying regression function that allows for pointwise posterior
inference throughout the feature space as well as estimates for individual feature effects.
Recently, Bleich et al. (2014) extended the BART approach by suggesting a permutation-
based approach for determining feature relevance and by introducing a procedure to allow
variable importance information to be reflected in the prior.

The layout of this paper is as follows: we demonstrate in Section 2 that ensemble meth-
ods based on subsampling can be viewed as U-statistics. In Section 3 we provide consistent
estimators of the limiting variance parameters so that inference may be carried out in prac-
tice. Inference procedures, including a test of significance for features, are discussed in
Section 4. Simulations illustrating the limiting distributions and inference procedures are
provided in Section 5 and the inference procedures are applied to a real data set provided
by Cornell University’s Lab of Ornithology in Section 6.

2. Ensemble Methods as U-statistics

We begin by introducing the subbagging and subsampled random forest procedures that
result in estimators in the form of U-statistics. In both cases, we provide an algorithm to
make the procedure explicit.

2.1 Subbagging

We begin with a brief introduction to U-statistics; see Lee (1990) for a more thorough

treatment. Let Z1, ..., Zn
iid∼ FZ,θ where θ is the parameter of interest and suppose that

there exists an unbiased estimator h of θ that is a function of k ≤ n arguments. Then we
can write

θ = Eh(Z1, ..., Zk)

and without loss of generality, we may further assume that h is permutation symmetric in
its arguments since any given h may be replaced by an equivalent permutation symmetric
version. The minimum variance unbiased estimator for θ is given by

Un =
1(
n
k

)∑
(i)

h(Zi1 , ..., Zik) (1)

where the sum is taken over all
(
n
k

)
subsamples of size k and is referred to as a U-statistic

with kernel h of rank k. When both the kernel and rank remain fixed, Hoeffding (1948)

showed that these statistics are asymptotically normal with limiting variance k2

n ζ1,k where
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ζ1,k = cov(h(Z1, ..., Zk), h(Z1, Z
′
2, ..., Z

′
k)) (2)

and Z
′
2, ..., Z

′
k
iid∼ FZ,θ. The 1 in the subscript comes from the fact that there is 1 example

in common between the two subsamples. In general, ζc,k denotes a covariance in the form
of (2) with c examples in common.

Given infinite computing power and a consistent estimate of ζ1,k, Hoeffding’s original
result is enough to produce a subbagging procedure with asymptotically normal predictions.

Suppose that as our training set, we observe Z1 = (X1, Y1), ..., Zn = (Xn, Yn)
iid∼ FX,Y

where X = (X1, ..., Xd) is a vector of features and Y ∈ R is the response. Fix k ≤ n and let
(Xi1 , Yi1), ..., (Xik , Yik) be a subsample of the training set. Given a feature vector x∗ ∈ X
where we are interested in making a prediction, we can write the prediction at x∗ generated
by a tree that was built using the subsample (Xi1 , Yi1), ..., (Xik , Yik) as a function Tx∗ from
(X ×R)× · · · × (X ×R) to R. Taking all

(
n
k

)
subsamples, building a tree and predicting at

x∗ with each, we can write our final subbagged prediction at x∗ as

bn(x∗) =
1(
n
k

)∑
(i)

Tx∗((Xi1 , Yi1), ..., (Xik , Yik)). (3)

by averaging the
(
n
k

)
tree-based predictions. Treating each ordered pair as one of k inputs

into the function Tx∗ , the estimator in (3) is in the form of a U-statistic since tree-based
estimators produce the same predictions independent of the order of the training data. Thus,
provided the distribution of predictions at x∗ has a finite second moment and ζ1,k > 0, the
distribution of subbagged predictions at x∗ is asymptotically normal. Note that in this
context, ζ1,k is the covariance between predictions at x∗ generated by trees trained on data
sets with 1 sample in common.

Of course, building
(
n
k

)
trees is compuationally infeasible for even moderately sized

training sets and an obvious substantial improvement in computationally efficiency can be
achieved by building and averaging over only mn <

(
n
k

)
trees. In this case, the estimator

in (3), appropriately scaled, is called an incomplete U-statistic. When the mn subsamples
are selected uniformly at random with replacement from the

(
n
k

)
possibilities, the resulting

incomplete U-statistic remains asymptotically normal; see Janson (1984) or Lee (1990) page
200 for details.

Though more computationally efficient, there remains a major shortcomming with this
approach: the number of samples used to build each tree, k, remains fixed as n→∞. We
would instead like k to grow with n so that trees can be grown to a greater depth, thereby
presumably producing more accurate predictions. Incorporating this, our estimator becomes

bn,kn,mn(x∗) =
1

mn

∑
(i)

Tx∗,kn((Xi1 , Yi1), ..., (Xikn
, Yikn )). (4)

Statistics of this form were discussed by Frees (1989) and called Infinite Order U-
statistics (IOUS) in the complete case, when mn =

(
n
kn

)
, and resampled statistics in the

incomplete case. Specifically, Frees considers the situation where, given an i.i.d sample
Z1, Z2, ... and kernel hkn , limn→∞ hkn(Zi1 , ..., Zikn ) = h(Z1, Z2, ...) and θ = Eh(Z1, Z2, ...)
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and goes on to develop sufficient conditions for consistency and asymptotic normality when-
ever mn grows faster than n. In contrast, the theorem below introduces a central limit the-
orem for estimators of the same form as in (4) but with respect to their individual means
Ebn,kn,mn(x∗) and covers all possible growth rates of mn with respect to n. In this context,
only minimal regularity conditions are required for asymptotic normality. We begin with
an assumption on the distribution of estimates for the general U-statistic case.

Condition 1: Let Z1, Z2, ...
iid∼ FZ with θkn = Ehkn(Z1, ..., Zkn) and define h1,kn(z) =

Ehkn(z, Z2, ..., Zkn)− θkn. Then for all δ > 0,

lim
n→∞

1

ζ1,kn

∫
|h1,kn (Z1)|≥δ

√
nζ1,kn

h21,kn(Z1)dP = 0.

This condition serves to control the tail behavior of the predictions and allows us to satisfy
the Lindeberg condition needed to obtain part (i) of Theorem 1 below.

Theorem 1 Let Z1, Z2, ...
iid∼ FZ and let Un,kn,mn be an incomplete, infinite order U-

statistic with kernel hkn that satisfies Condition 1. Let θkn = Ehkn(Z1, ..., Zkn) such that
Eh2kn(Z1, ..., Zkn) ≤ C < ∞ for all n and some constant C, and let lim n

mn
= α. Then as

long as lim kn√
n

= 0 and lim ζ1,kn 6= 0,

(i) if α = 0, then
√
n(Un,kn,mn−θkn )√

k2nζ1,kn

d→ N (0, 1).

(ii) if 0 < α <∞, then
√
mn(Un,kn,mn−θkn )√
k2n
α
ζ1,kn+ζkn,kn

d→ N (0, 1).

(iii) if α =∞, then
√
mn(Un,kn,mn−θkn )√

ζkn,kn

d→ N (0, 1).

Condition 1, though necessary for the general U-statistic setting, is a bit obscure. How-
ever, in our regression context, when the regression function is bounded and the errors
have exponential tails, a more intuitive Lipschitz-type condition given in Proposition 1 is
sufficient. Though stronger than necessary, this alternative condition allows us to satisfy
the Lindeberg condition and is reasonable to expect of any supervised learning method.

Proposition 1: For a bounded regression function F , if there exists a constant c such
that for all kn ≥ 1,∣∣h((X1, Y1), ..., (Xkn , Ykn), (Xkn+1, Ykn+1))− h((X1, Y1), ..., (Xkn ,Ykn), (Xkn+1, Y

∗
kn+1))

∣∣
≤ c
∣∣Ykn+1 − Y ∗kn+1

∣∣
where Ykn+1 = F (Xkn+1) + εkn+1, Y ∗kn+1 = F (Xkn+1) + ε∗kn+1, and where εkn+1 and ε∗kn+1

are i.i.d. with exponential tails, then Condition 1 is satisfied.

6



Quantifying Uncertainty in Random Forests

A number of important aspects of these results are worth pointing out. First, note from
Theorem 1 that the trees are built with subsamples that are approximately square root of
the size of the full training set. This condition is not necessary for the proof, but ensures
that the variance of the U-statistic in part (i) converges to 0 as is typically the case in central
limit theorems. By maintaining this relatively small subsample size, we can build many more
trees and maintain a procedure that is computationally equivalent to traditional bagging
based on full bootstrap samples. Also note that no particular assumptions are placed on
the dimension d of the feature space; the number of features may grow with n so long as
the stated conditions remain satisfied.

The final condition of Theorem 1, that lim ζ1,kn 6= 0, though not explicitly controllable,
should be easily satisfied in many cases. As an example, suppose that the terminal node size
is bounded by T so that trees built with larger training sets are grown to greater depths.
Then if the form of the response is Y = F (X) + ε where ε has variance σ2, ζ1,kn will be
bounded below by σ2/T . Finally, note that the assumption of exponential tails on the
distribution of regression errors in Proposition 1 is stronger than necessary. Indeed, so long
as kn = o(

√
n), we need only insist that nP

(∣∣ε∣∣ > √n)→ 0.

The proofs of Theorem and Proposition 1 are provided in Appendix A. The subbagging
algorithm that produces asymptotically normal predictions at each point in the feature
space is provided in Algorithm 1.

Algorithm 1 Subbagging

Load training set
Select size of subsamples kn and number of subsamples mn

for i in 1 to mn do
Take subsample of size kn from training set
Build tree using subsample
Use tree to predict at x∗

end for
Average the mn predictions to get final estimate bn,kn,mn(x∗)

Note that this procedure is precisely the original bagging algorithm suggested by Breiman,
but with proper subsamples used to build trees instead of full bootstrap samples. In Section
3, we provide consistent estimators for the limiting variance parameters in Theorem 1 so
that we may carry out inference in practice.

We would also like to acknowledge similar work currently in progress by Wager (2014).
Wager builds upon the potential nearest neighbor framework introduced by Lin and Jeon
(2006) and seeks to provide a limiting distribution for the case where many trees are used
in the ensemble, roughly corresponding to our result (i) in Theorems 1 and 2. The author
considers only an idealized class of trees based on the assumptions in Meinshausen (2006) as
well as additional honesty and regularity conditions that allow kn to grow at a faster rate,
and demonstrates that when many Monte Carlo samples are employed, the infinitesimal
jackknife estimator of variance is consistent and predictions are asymptotically normal.
This estimator has roughly the same computational complexity as those we propose in
Section 3 and should scale well subject to some additional bookkeeping. In contrast, the
theory we provide here takes into account all possible rates of Monte Carlo sampling via the
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three cases discussed in Theorems 1 and 2 and we provide a consistent means for estimating
each corresponding variance.

2.2 Random Forests

The distributional results described above for subbagging do not insist on a particular tree
building method. So long as the trees generate predictions that satisfy minimal regularity
conditions, the experimenter is free to use whichever building method is preferred. The sub-
bagging procedure does, however, require that each tree in the ensemble is built according
to the same method.

This insistence on a uniform, non-randomized building method is in contrast with ran-
dom forests. The original random forests procedure suggested by Breiman (2001b) dictates
that at each node in each tree, the split may occur on only a randomly selected subset of
features. Thus, we may think of each tree in a random forest as having an additional ran-
domization parameter ω that determines the eligible features that may potentially be split
at each node. In a general U-statistic context, we can write this random kernel U-statistic
as

Uω;n,kn,mn =
1

mn

∑
(i)

h
(ωi)
kn

(Zi1 , ..., Zikn ) (5)

so that we can write a random forest estimator as

rn,kn,mn(x∗) =
1

mn

∑
(i)

T
(ωi)
x∗,kn

((Xi1 , Yi1), ..., (Xikn
, Yikn )).

Due to this additional randomness, random forests and random kernel U-statistics in
general do not fit within the framework developed in the previous section so we develop

new theory for this expanded class. Suppose ω1, ..., ωmn
iid∼ Fω and that these randomiza-

tion parameters are selected independently of the original sample Z1, ..., Zn. Consider the
statistic

U∗ω;n,kn,mn = Eω

 1

mn

∑
(i)

h
(ωi)
kn

(Zi1 , ..., Zikn )


so that U∗ω;n,kn,mn = EωUω;n,kn,mn . Taking the expectation with respect to ω, the kernel
becomes fixed and hence U∗ω;n,kn,mn conforms to the non-random kernel U-statistic theory.
Thus, U∗ω;n,kn,mn is asymptotically normal in both the complete and incomplete cases, as well
as in the complete and incomplete infinite order cases, by Theorem 1. Given this asymp-
totic normality of U∗ω;n,kn,mn , in order to retain asymptotic normality of the corresponding
random kernel version, we need only show that

√
n(U∗ω;n,kn,mn − Uω;n,kn,mn)

P→ 0.

We make use of this idea in the proof of the following theorem, which is provided in Appendix
A.
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Theorem 2 Let Uω;n,kn,mn be a random kernel U-statistic of the form defined in equation
(5) such that U∗ω;n,kn,mn satisfies Condition 1 and suppose that Eh2kn(Z1, ..., Zkn) < ∞ for

all n, lim kn√
n

= 0, and lim n
mn

= α. Then, letting β index the subsamples, so long as

lim ζ1,kn 6= 0 and

lim
n→∞

E
(
h
(ω)
kn

(Zβ1 , ..., Zβkn )− Eωh
(ω)
kn

(Zβ1 , ..., Zβkn )
)2
6=∞,

Uω;n,kn,mn is asymptotically normal and the limiting distributions are the same as those
provided in Theorem 1.

Note that the variance parameters ζ1,kn and ζkn,kn in the context of random kernel
U-statistics are still defined as the covariance between estimates generated by the (now
random) kernels. Thus, in the specific context of random forests, these variance parameters
correspond to the covariance between predictions generated by trees, but each tree is built
according to its own randomization parameter ω and this covariance is taken over ω as well.
The final condition of Theorem 2 that

lim
n→∞

E
(
h
(ω)
kn

(Zβ1 , ..., Zβkn )− Eωh
(ω)
kn

(Zβ1 , ..., Zβkn )
)2
6=∞,

simply ensures that the randomization parameter ω does not continually pull predictions
from the same subsample further apart as n → ∞. This condition is satisfied, for exam-
ple, if the response Y is bounded and should also be easily satisfied for any reasonable
implementation of random forests.

The subsampled random forest algorithm that produces asymptotically normal predic-
tions is provided in Algorithm 2. As with subbagging, this subsampled random forest
algorithm is exactly a random forest with subsamples used to build trees instead of full
bootstrap samples.

Algorithm 2 Subsampled Random Forest

Load training set
Select size of subsamples kn and number of subsamples mn

for i in 1 to mn do
Select subsample of size kn from training set
Build tree based on randomization parameter ωi
Use this tree to predict at x∗

end for
Average the mn predictions to obtain final estimate rn,kn,mn(x∗)

Another random-forest-type estimator based on a crossed design that results in an infi-
nite order generalized U-statistic is provided in Appendix B. However, the above formulation
most resembles Breiman’s original procedure and is more computationally feasible than the
method mentioned in Appendix B, so we consider only this random kernel version of random
forests in the simulations and other work that follows.
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3. Estimating the Variance

The limiting distributions provided in Theorem 1 depend on the unknown mean parameter
θkn = EUn,kn,mn as well as the unknown variance parameters ζ1,kn and ζkn,kn . In order for
us to be able to use these distributions for statistical inference in practice, we must establish
consistent estimators of these parameters. It is obvious that we can use the sample mean—
i.e. the prediction from our ensemble—as a consistent estimate of θkn , but determining an
appropriate variance estimate is less straightforward.

In equation (2) of the previous section, we defined ζc,kn as the covariance between
two instances of the kernel with c shared arguments, so the sample covariance between
predictions may serve as a consistent estimator for both ζ1,kn and ζkn,kn . However, in
practice we find that this often results in estimates close to 0, which may then lead to an
overall negative variance estimate.

It is not difficult to show - see Lee (1990) page 11 for details - that an equivalent
expression for ζc,kn is given by

ζc,kn = var
(
E
(
hkn(Z1, ..., Zkn) | Z1 = z1, ..., Zc = zc

))
.

To estimate ζc,kn for our tree-based ensembles, we begin by selecting c observations z̃1, ..., z̃c,
which we refer to as initial fixed points, from the training set. We then select several
subsamples of size kn from the training set, each of which must include z̃1, ..., z̃c, build a
tree with each subsample, and record the mean of the predictions at x∗. Let nMC (MC for
“Monte Carlo”) denote the number of subsamples drawn so that this average is taken over
nMC predictions. We then repeat the process for nz̃ initial sets of fixed points and take our
final estimate of ζc,kn as the variance over the nz̃ final averages, yielding the estimator

ζ̂c,kn = var

(
1

nMC

nMC∑
i=1

Tx∗,kn(Sz̃(1),i) , ...,
1

nMC

nMC∑
i=1

Tx∗,kn(Sz̃(nz̃),i)

)
where z̃(j) denotes the jth set of initial fixed points and Sz̃(j),i denotes the ith subsample that

includes z̃(j) (which is used here as shorthand for the argument to the tree function Tx∗,kn).
Now, since we assume that the orginal data in the training set is i.i.d., the random variables

1
nMC

∑nMC
i=1 Tx∗,kn(Sz̃(1),i) are also i.i.d. and since the sample variance is a U-statistic, ζ̂c,kn

is a consistent estimator. The algorithm for calculating ζ̂1,kn is provided in Algorithm 3.
Note that when c = kn, each of the subsamples is identical so we need only use nMC = 1
which simplifies the estimation procedure for ζkn,kn . The procedure for calculating ζ̂kn,kn is
provided in Algorithm 4.

Choosing the values of nz̃ and nMC will depend on the situation. The number of
iterations required to accurately estimate the variance depends on a number of factors,
including the tree building method and true underlying regression function. Of course,
ideally these estimation parameters should be chosen as large as is computationally feasible.
In our simulations, we find that in most cases, only a relatively small number of initial fixed
point sets are needed, but many more Monte Carlo samples are often necessary for accurate
estimation. In most cases, we used an nMC of at least 500. Recall that because our trees
are built with small subsamples, we can build correspondingly more trees at the same
computational cost.
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Algorithm 3 ζ1,kn Estimation Procedure

for i in 1 to nz̃ do
Select initial fixed point z̃(i)

for j in 1 to nMC do
Select subsample Sz̃(i),j of size kn from training set that includes z̃(i)

Build tree using subsample Sz̃(i),j

Use tree to predict at x∗

end for
Record average of the nMC predictions

end for
Compute the variance of the nz̃ averages

Algorithm 4 ζkn,kn Estimation Procedure

for i in 1 to nz̃ do
Select subsample of size kn from training set
Build tree using subsample this subsample
Use tree to predict at x∗

end for
Compute the variance of the nz̃ predictions

3.1 Internal vs. External Estimation

The algorithms for producing the subbagged or subsampled random forest predictions as
well as the above algorithms for estimating the variance parameters are all that is needed
to perform statistical inference. We can begin with Algorithm 1 or 2 to generate the
predictions, followed by Algorithms 3 and 4 to estimate the variance parameters ζ1,kn and
ζkn,kn . This procedure of running these 3 algorithms seperately is what we will refer to as
the external variance estimation method, since the the variance parameters are estimated
outside of the orginal ensemble. By contrast, we could instead generate the predictions and
estimate the variance parameters in one procedure by taking the mean and variance of the
predictions generated by the trees used to estimate ζ1,kn . Algorithm 5 outlines the steps in
this internal variance estimation method.

This internal variance estimation method is more computationally efficient and has the
added benefit of producing variance estimates by simply changing the way in which the
subsamples are selected. This means that we are able to obtain all parameter estimates
we need to conduct inference at no greater computational cost than building the original
ensemble. Although Theorems 1 and 2 dictate that the subsamples used in the ensemble be
selected uniformly at random, we find that the additional correlation introduced by selecting
the subsamples in this way and using the same subsamples to estimate all parameters does
not affect the limiting distribution.
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Algorithm 5 Internal Variance Estimation Method

for i in 1 to nz̃ do
Select initial fixed point z̃(i)

for j in 1 to nMC do
Select subsample Sz̃(i),j of size kn from training set that includes z̃(i)

Build tree using subsample Sz̃(i),j

Use tree to predict at x∗ and record prediction
end for
Record average of the nMC predictions

end for
Compute the variance of the nz̃ averages to estimate ζ1,kn
Compute the variance of all predictions to estimate ζkn,kn
Compute the mean of all predictions to estimate θkn

4. Inference Procedures

In this section, we describe the inference procedures that may be carried out after performing
the estimation procedures.

4.1 Confidence Intervals

In Section 2, we showed that predictions from subbagging and subsampled random forests
are asymptotically normal and in Section 3 we provided consistent estimators for the pa-
rameters in the limiting normal distributions. Thus, given a training set, we can estimate
the approximate distribution of predictions at any given feature vector of interest x∗. To
produce a confidence interval for predictions at x∗, we need only estimate the variance
parameters and take quantiles from the appropriate limiting distribution. Formally, our
confidence interval is [LB,UB] where the lower and upper bounds, LB and UB, are the
α/2 and 1− α/2 quantiles respectively of the normal distribution with mean θ̂kn and vari-

ance k2n
α̂ ζ̂1,kn + ζ̂kn,kn where ζ̂1,kn and ζ̂kn,kn are the variance estimates and α̂ = n/mn. This

limiting distribution is that given in result (ii) of Theorem 1 which is the distribution we
recommend using in practice.

As mentioned in the introduction, these confidence intervals can also be used to address
hypotheses of the form

H0 : θkn = c

H1 : θkn 6= c.

Formally, we can define the test statistic

t =
θ̂kn − c
sd(θ̂kn)

and reject H0 if |t| is greater than the the 1 − α
2 quantile of the standard normal. This

corresponds to a test with type 1 error rate α so that P [reject H0 | H0 true] = P [ |t| >

12
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1 − α
2 | θkn = c] = α. However, this testing procedure is equivalent to simply checking

whether c is within the calculated confidence interval: if c is in the confidence interval, then
we fail to reject this hypothesis that the true mean prediction is equal to c, otherwise we
reject.

Finally, recall that these confidence intervals are for the expected prediction θkn and not
necessarily for the true value of the underlying regression function θ = F (x∗). If the tree

building method employed is consistent so that θkn
P→ θ, then as the sample size increases,

the tree should be (on average) producing more accurate predictions, but in order to claim
that our confidence intervals are asymptotically valid for θ, we need for this convergence to
occur at rate of

√
n or faster. However, in general, the rate of convergence will depend on

not only the tree-building method and true underlying regression function, but also on the
location of the prediction point within the feature space.

Note that Theorems 1 and 2 apply not only to tree-based ensembles, but to any estimator
that can be written in the form of an infinite order U-statistic, as in equation (4). Some of
these ensembles may be straightforward to analyze, but for others, such as random forest
predictions near the edge of the feature space, it may be difficult to establish a universal rate
of consistency. However, even when

√
n-consistency cannot be guaranteed, these intervals

still provide valuable information not currently available with existing tools. In these cases,
the confidence interval provides a reasonable range of values for where the prediction might
fall if the ensemble was recomputed using a new training set; areas of the feature space where
confidence intervals are relatively large indicate regions where the ensemble is particularly
unstable.

Compare this, for example, to the standard approach of withholding some (usually
small) portion of the training set and comparing predictions made at these hold-out points
to the corresponding known responses. Such an approach provides some information as
to the accuracy of the learner at specific locations throughout the feature space, but says
nothing about the stability of these predictions. Thus, instead of relying only on measures
of overall goodness-of-fit such as MSE or SSE, these intervals allow users to investigate
prediction variability at particular points or regions and in this sense, can be seen as a
measure of how much the accuracy of predictions at that point is due to chance.

4.2 Tests of Significance

The limiting distributions developed in Theorems 1 and 2 also allow us a way to test the
significance of features. In many situations, data are recorded for a large number of features
but a sparse true regression structure is suspected. Suppose that the training set consists
of d features, X1, ..., Xd and consider a reduced set X(R) ⊂ {X1, ..., Xd}. Let xTEST =
{x1, ...,xN} be a set of feature vectors where we are interested in making predictions.
Also, let g denote the function that maps feature vectors to their corresponding true mean
prediction and let g(R) denote the same type of function that maps from the reduced feature
space. That is, for a particular prediction point of interest x∗, g(x∗) is the true mean
prediction θkn generated by trees built using the full feature space, and g(R)(x∗) is the

true mean prediction θ
(R)
kn

generated by trees that are only permitted to utilize features
in the reduced set. Then, for each test point xi ∈ xTEST, we would like to know whether
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g(xi) = g(R)(xi) so that we can determine the predictive influence of features not in X(R).
More formally, we would like to test the hypothesis

H0 : g(xi) = g(R)(xi) ∀ xi ∈ xTEST (6)

H1 : g(xi) 6= g(R)(xi) for some xi ∈ xTEST.

Rejecting this null hypothesis means that a feature not in the reduced feature space X(R)

makes a significant contribution to the prediction at at least one of the test points.
To perform this test with a training set of size n, we take mn subsamples, each of size

kn, and build a tree with each subsample. Denote these subsamples S1, ..., Smn and for a
given feature vector xi, let ĝ(xi) denote the average over the predictions at xi generated
from the mn trees. Then, using the same subsamples S1, ..., Smn , again build a tree with
each, but using only those features in X(R), and let ĝ(R)(xi) be the average prediction at
xi generated by these trees. Finally, define the difference function

D̂(xi) = ĝ(xi)− ĝ(R)(xi)

as the difference between the two ensemble predictions. Note that we can write

D̂(xi) = ĝ(xi)− ĝ(R)(xi)

=
1

mn

∑
(j)

Txi,kn(Sj)−
1

mn

∑
(j)

T
(R)
xi,kn

(Sj)

=
1

mn

∑
(j)

(
Txi,kn(Sj)− T (R)

xi,kn
(Sj)

)
so that this difference function is a U-statistic. Thus, if we have only a single test point of
interest, D̂ is asymptotically normal, so D̂2 is asymptotically χ2

1 and we can use D̂2 as a
test statistic.

However, it is more often the case that we have several test points of interest. In this
case, define D̂ to be the vector of observed differences in the predictions

D̂ =
(
D̂(x1), ..., D̂(xN )

)
so that, provided a joint distribution exists with respect to Lebesgue measure, D̂ has a
multivariate normal distribution with mean vector

µ =
(
g(x1)− g(R)(x1), ..., g(xN )− g(R)(xN )

)T
which we estimate with

µ̂ = D̂T

as well as a covariance matrix Σ. This covariance matrix has parameters Σ1,kn and Σkn,kn ,
the multivariate analogues of ζ1,kn and ζkn,kn . Consistent estimators for these multivariate
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parameters can be obtained by simply replacing the variance calculation in Algorithms
3 and 4 with a covariance. For clarity, the procedure for obtaining Σ̂1,kn is provided in
Algorithm 6 in Appendix C.

Finally, combining these predictions to form a consistent estimator Σ̂ we have that

µ̂T Σ̂−1µ̂ ∼ χ2
N

under H0. Thus, in order to test the hypothesis in (6), we compare the test statistic µ̂T Σ̂−1µ̂
to the 1 − α quantile of the χ2

N distribution to produce a test with type 1 error rate α. If
our test statistic is larger than this critical value, we reject the null hypothesis.

4.3 Further Testing Procedures

This setup, though straightforward, may not always definitively decide the significance of
features. In some cases, even randomly generated features that are unrelated to the response
can be reported significant. Depending on the building method, tree-based algorithms may
take advantage of additional randomness in features even when the particular values of those
features do not directly contribute to the response. For this reason, we also recommend
repeating the testing procedure by comparing predictions generated using the full data set
to predictions generated by a data set with randomly generated values—commonly obtained
by permuting the values in the training set—for the features not in the reduced feature set
to test hypostheses of the form

H0 : g(xi) = g(RAND)(xi) ∀ xi ∈ xTEST

H1 : g(xi) 6= g(RAND)(xi) for some xi ∈ xTEST.

The testing procedure remains exactly the same except that to calculate the second
set of trees, we simply substitute the reduced training set for a training set with the same
number of features, but with randomized values taking the place of the original values for
the additional features. Rejecting this null hypothesis allows us to conclude that not only
do the additional features not in the reduced training set make a significant contribution
to the predictions, but that the contribution is significantly more than could be obtained
simply by adding additional randomness.

There are also two additional tests that may be performed. First, we can test whether
predictions generated by a training set with randomized values for the additional features
are significantly different from predictions generated by the reduced feature set. If a sig-
nificant difference is found, then the trees in the ensemble are making use of the additional
randomness or possibly an accidental structure in the randomized features. As a final check,
we can compare predictions generated by two training sets, each with randomized values
for the features not in the reduced set. In the unlikely event that a significant difference
is found between these predictions, it is again likely due to an accidental structure in the
randomized values. Both of these tests can be performed in exactly the same fashion by
substituting the appropriate training sets.
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Figure 1: Histograms of subbagged predictions at x1 = 10 in the SLR case (top row) and
at x1 = · · · = x5 = 0.5 in the MARS case (bottom row). The total sample size,
number of subsamples, and size of each subsample are denoted by n,m, and k,
respectively in the plot titles.

5. Simulations

We present here a small simulation study in order to illustrate the limiting distributions
derived in Section 2 and also to demonstrate the inference procedures proposed in the
previous section. We consider two different underlying regression functions:

1. g(x1) = 2x1; X = [0, 20]

2. g(x) = 10 sin(πx1x2) + 20(x3 − 0.05)2 + 10x4 + 5x5; X = [0, 1]5

The first function corresponds to simple linear regression (SLR) and was chosen for sim-
plicity and ease of visualization. The second was initially considered by Friedman (1991)
in development of the Multivariate Adaptive Regression Spline (MARS) procedure and was
recently investigated by Biau (2012). In each case, features were selected uniformly at ran-

dom from the feature spaces and responses were sampled from g(x)+ε, where ε
iid∼ N (0, 10),

to form the training sets.

5.1 Limiting Distributions

We begin by illustrating the distributions of subbagged predictions. In the SLR case,
predictions were made at x1 = 10 and in the MARS case, predictions were made at x1 =
· · · = x5 = 0.5. The histograms of subbagged predictions are shown in Figure 1. Each
histogram is comprised of 250 simulations.

For each histogram, the size of the training set n, number of subsamples m, and size of
each subsample k, is provided in the title. Each tree in the ensembles was built using the
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Figure 2: Histograms of subbagged predictions with larger subsample size k and full boot-
strap samples. Predictions are made at x1 = · · · = x5 = 0.5.

rpart function in R, with the additional restriction that at least 3 observations per node
were needed in order for the algorithm to consider splitting on that node. Overlaying each
histogram is the density obtained by estimating the parameters in the limiting distribution.
In each case, we take the limiting distribution to be that given in result (ii) of Theorem 1;
namely that the predictions are normally distributed with mean Ebn,k,m(x∗) and variance
1
α
k2

m ζ1,k + 1
mζk,k.

The mean Ebn,k,m(x∗) = θk was estimated as the empirical mean across the 250 sub-
bagged predictions. To estimate ζk,k, 5000 new subsamples of size k were selected and with

each subsample, a tree was built and used to predict at x1 = 10 and ζ̂k,k was taken as
the empirical variance between these predictions. To estimate ζ1,k, we follow the procedure
in Algorithm 3 with nz̃ = 50 and nMC = 1000 in the SLR cases and with nz̃ = 250 and
nMC = 1000 in the MARS cases. Note that since we are only interested in verifying the
distributions of predictions, the variance parameters are estimated only once for each case
and not for each ensemble.

It is worth noting that the same variance estimation procedure with nz̃ = 250 and
nMC = 250 lead to an overestimate of the variance, so we reiterate that using a large nMC

seems to provide better results, even when nz̃ is relatively small. In each case, we use n
m

as a plug-in estimate for α = lim n
m . We also repeated this procedure and generated the

distribution of predictions according to the internal variance estimation method described
in Algorithm 5. Details and histograms are provided in Appendix D. These distributions
appear to be the same as when the subsamples are selected uniformly at random, as in the
external variance estimation method.

Note that the distributional results in Theorem 1 require lim k√
n

= 0, so in practice,

the subsample size k should be small relative to n. In the above simulations, we choose k
slightly larger than

√
n and the distributions appear normally distributed with the correct

limiting distribution. However, though this restriction on the growth rate of the subsample
size is sufficient for asymptotic normality, it is perhaps not necessary. In our simulations,
we found that ensembles built with larger k are still approximately normal, but begin to
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Figure 3: Confidence Intervals for subbagged predictions.

look increasingly further from normal as k increases. The histograms in Figure 2 show the
distribution of subbagged predictions in the MARS case with n = m = 1000 and k = 200
and also with n = m = k = 1000 so that we are using full bootstrap samples to build the
ensembles in the latter case. The parameters in the limiting distribution are estimated in
exactly the same manner as with the smaller k for the case where k = 200. In the bootstrap
case, we cannot follow our subbagging procedure exactly since the bootstrap samples used
to build each tree in the ensemble must be taken with replacement, so we do not attempt
to estimate the variance. These distributions look less normal and we begin to overestimate
the variance in the case where k = 200.

5.2 Confidence Intervals

We move now to building confidence intervals for predictions and examine their coverage
probabilities. We begin with the SLR case, with n = 200, m = 200, and k = 30 and as
above, predict at x1 = 10. To build the confidence intervals, we generate 250 data sets
and with each data set, we produce a subbagged ensemble, estimate the parameters in the
limiting distribution, and take the 0.025 and 0.975 quantiles from the estimated limiting
normal distribution to form an approximate 95% confidence interval. The mean of this
limiting normal θk was estimated as the mean of the predictions generated by the ensemble.
The variance parameter ζk,k was estimated by drawing 500 new subsamples, not necessarily
used in the ensemble, and calculating the variance between predictions generated by the
resulting 500 trees and ζ1,k was estimated externally using nz̃ = 50 and nMC = 250.

In order to assess the coverage probability of our confidence intervals, we first need to
estimate the true mean prediction θk at x1 = 10 that would be generated by this subbagging
ensemble. To estimate this true mean, we built 1000 subbagged ensembles and took the
mean prediction generated by these ensembles, which we found to be 20.02 - very close to
the true underlying value of 20. In this case, we found a coverage probability of 0.912,
which means that 228 of our 250 confidence intervals contained our estimate of the true
mean prediction. These confidence intervals are shown in Figure 3. The horizontal line in
the plot is at 20.02 and represents our estimate of the true expected prediction.

This same procedure was repeated for the SLR case with n = m = 1000 and k = 60, the
MARS case with n = m = 500 and k = 50, and the MARS case with n = m = 1000 and
k = 75. In each case, we produced 250 confidence intervals and the coverage probabilities
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are shown in Table 1. The parameters in the limiting distributions were estimated externally
in exactly the same fashion, using nz̃ = 50 and nMC = 250 to estimate ζ1,k. These slightly
higher coverage probabilities mean that we are overestimating the variance, which is likely
due to smaller values of the estimation parameters nz̃ and nMC being used to estimate ζ1,k.

Underlying
Function

n k θk
Coverage Probability

External Variance Est. Internal Variance Est.
SLR 200 30 19.94 0.912 0.912
SLR 1000 60 19.99 0.956 0.936
MARS 500 50 17.43 0.980 0.984
MARS 1000 75 17.56 0.996 0.996

Table 1: Coverage probabilities

We also repeated this procedure for generating confidence intervals using the internal
variance estimation method. The resulting coverage probabilities are remarkably similar to
the external variance estimation method and are shown in Table 1. These ensembles were
built using nz̃ = 50 and nMC = 250.

5.3 Hypothesis Testing

We now explore the hypothesis testing procedure for assessing feature significance. We focus
on the MARS case, where our training set now consists of 6 features X1, ..., X6, but the
response Y depends only on the first 5. The values of the additional feature X6 are sampled
uniformly at random from the interval [0, 1] and independently of the first 5 features.

We begin by looking at the distribution of test statistics when the test set consists 41
equally spaced points between 0 and 1. That is, the first test point is x1 = · · · = x6 = 0,
the second is x1 = · · · = x6 = 0.025, and so on so that the last test point is x1 = · · · =
x6 = 1. For this test, we are interested in looking at the difference between trees built using
all features and those built using only the first 5 so that in the notation in Section 4.2,
X(R) = {X1, ..., X5}. We ran 250 simulations with n = 1000, m = 1000, and k = 75 using
a test set consisting of all 41 test points, the 20 central-most points, and the 5 central-most
points. The parameter Σ1,k was estimated externally using nz̃ = 100 and nMC = 5000 and
Σk,k was estimated by taking the covariance of the difference in predictions generated by
5000 trees. These covariance parameters are estimated only once instead of within each
ensemble since we are only interested in the distribution of test statistics. Histograms of
the resulting test statistics along with an overlay of the estimated χ2 densities are shown
in the top row of Figure 4.

We repeated this procedure, this time with a test set consisting of points in the center
of the hypercube so we are not predicting close to any edge of the feature space. The value
of each feature in the test set was selected uniformly at random from [0.25, 0.75]. A total
of 41 such test points were generated, and histograms of the 250 resulting test statistics
were produced in the cases where we use 5 of these test points, 20 test points, and all 41
test points. These histograms and estimated χ2 densities are shown in the bottom row of
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Figure 4: Histograms of simulated test statistics with estimated χ2 overlay. The top row of
histograms involve test points equally spaced between 0 and 1 and the bottom row
corresponds to points randomly selected from the interior of the feature space.

Figure 4. Note that the bottom row appears to be a better fit and thus there appears to be
some bias occuring when test points are selected near the edges of the feature space.

To check the alpha level of the test—the probability of incorrectly rejecting the null
hypothesis—we simulated 250 new training sets and used the test set consisting of 41
randomly selected central points. For each training set, we built full and reduced subbagged
estimates, allowed and not allowed to utilize X6 respectively, estimated the parameters,
and performed the hypothesis test. For each ensemble, the variance parameter Σ1,k was
estimated externally using nz̃ = 50 and nMC = 1000 and Σk,k was estimated externally on
an independently generated set of trees.

In this setup, none of the 250 simulations resulted in rejecting the null hypothesis,
so our empirical alpha level was 0. A histogram of the resulting test statistics is shown
on the left of Figure 5; the critical value, the 0.95 quantile of the χ2

41, is 56.942. Thus,
as with the confidence intervals, we are being conservative. Recall that our confidence
interval simulations with n = 1000, m = 1000, and k = 75 predicting at x = (0.5, ..., 0.5)
captured our true value 99.6% of the time, so this estimate of 0, though conservative, is not
necessarily unexpected. We also repeated this procedure using an internal variance estimate
with nz̃ = 50 and nMC = 1000 and found an alpha level of 0.14. The histogram of test
statistics resulting from the internal variance estimation method is shown on the right in
Figure 5. Here we see that the correlation introduced by not taking an i.i.d. selection of
subsamples to build the ensemble may be slightly inflating the test statistics.

5.4 Random Forests

Thus far, our simulations have dealt only with subbagged ensembles, but recall that Theo-
rem 2 established the asymptotic normality for predictions generated by random forests as
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Figure 5: Histograms of simulated test statistics
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Figure 6: Histograms of random forest predictions at x1 = · · · = x5 = 0.5 with estimated
normal density overlaid.

well. The histograms in Figure 6 show the distribution of predictions generated by subsam-
pled random forests at x1 = · · · = x5 = 0.5 when the true underlying function is the MARS
function. These trees were grown using the randomForest function in R with the ntree

argument set to 1. At each node in each tree, 3 of the 5 features X1, ..., X5 were selected at
random as candidates for splits and we insisted on at least 2 observations in each terminal
node. The histograms show the empirical distribution of 250 subsampled random forest
predictions and the overlaid density is the limiting normal N (Ern,k,m(x∗), 1α

k2

m ζ1,k + 1
mζk,k)

with the variance parameters estimated externally. Our estimate of the mean of this dis-
tribution was taken as the empirical mean of the 250 predictions. Our estimate of ζk,k was
taken as the empirical variance of predictions across 5000 new trees and the estimate for
ζ1,k was calculated with nz̃ = 250 and nMC = 2000.

6. Real Data

We now apply our inference methods to a real data set provided by the Lab of Ornithology
at Cornell University. The data is part of the ongoing eBird citizen science project described
in Sullivan et al. (2009). This project is hosted by Cornell’s Lab of Ornithology and relies
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Figure 7: Monthly counts of Indigo Bunting observations.

on citizens, referred to as birders, to submit reports of bird observations. Location, bird
species observed and not observed, effort level, and number of birds of each species observed
are just a few of the variables participants are asked to provide. In addition to the data
contained in these reports, landcover characteristics as reported in the 2006 United States
National Land Cover Database are also available so that information about the local terrain
may be used to help predict species abundance.

For our analysis, we restrict our attention to observations (and non-observations) of the
Indigo Bunting species. For the first part of our analysis, we further restrict our attention
to observations made during the year 2010. A little more than 400,000 reports of either
presence or absence of Indigo Buntings were recorded during 2010 and the data set consists
of 23 features. Like many species, the abundance of Indigo Buntings is known to fluctuate
throughout the year, so we have two primary goals: (1) to produce confidence intervals for
monthly abundance and (2) to show that the feature ‘month’ is significant for predicting
abundance.

A presence/absence plot of Indigo Buntings by month is shown in Figure 7. A few
features of this plot are worth pointing out. Most obviously, there are many more absence
observations each month than presence observations. This makes sense because each time a
birder submits a report, they note when Indigo Buntings are not present. Next, we see that
this species is only observed during the warmer months, so month seems highly significant
for predicting abundance. Finally, we see that all months have a large number of reports,
so we need not worry about underreporting issues throughout the year.

First we produce the confidence intervals. The goal is to get an idea of the monthly
abundance, which we can think of as ‘probability of observation’, so our test points will
be 12 vectors, one for each month. For the values of the other features, we will use the
average of the values recorded for that feature, or, in the case of categorical features, use the
most popular category. Some features, such as elevation, have missing values which are not
included in calculating the averages. We also removed the day feature from the training set,
since day of the year is able to capture any effect of month. Since the training set consists
of approximately 400,000 observations, we use a subsample size k = 650, slightly more than

22



Quantifying Uncertainty in Random Forests

- - -
-

-

-

-

-

-

-

- -- - -

-

-

-

-

-

-

-

- -

External Variance Estimate
Internal Variance Estimate

- - -
-

-

-

-

-

-

-

- -- - -

-

-

-

-

-

-

-

- -

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

0.
02

0.
04

0.
06

0.
08

0.
1

0.
12

0.
14

A
bu
nd
an
ce

Figure 8: Monthly confidence intervals for Indigo Bunting abundance.

the square root of the training set size. We build a total of m = 5000 trees and take the
variance of these predictions at each point to be our estimates of ζk,k. We use an external
estimate with nz̃ = 250 and nMC = 5000 to estimate ζ1,k. For each tree built, we require
a minimum of 20 observations to consider splitting an internal node. We also repeat this
procedure using an internal estimate of variance with nz̃ = 250 and nMC = 5000.

The confidence intervals are shown in Figure 8. Note that the pattern seen in Figure
7 is mirrored in the confidence interval plot: the confidence intervals are higher during
months where more positive observations are recorded. It is also interesting to note that
the width of the confidence intervals is larger during months of higher abundance. Observe
in Figure 7 that even for months with many positive observations reported, many more
negative observations are also reported. Thus, for these months there are likely a number
of trees in the ensemble with nearly all positive or negative observations so we expect a
higher variance in predictions. For months when very few positive observations are made,
nearly all observations in the terminal node will be abscence observations, thus resulting in
a very small variance and much narrower confidence intervals. Based on a visual inspection
of the confidence intervals, there appears to be a clear significant difference in abundance
between certain months, but we need to account for correlations in our predictions so we
also conduct hypothesis tests.

We conduct these formal tests for the significance of month, following the procedure
in Section 4.2. To perform this test, we randomly selected 20 points from the training
set as the test set and calculated the test statistic based on an internal variance estimate
with nz̃ = 250 and nMC = 5000. We calculated a test statistic of 4233.10 and a critical
value, the 0.95 quantile of the χ2

20, of only 31.41 which yields a p-value of approximately
0, so it seems that month is highly significant for predicting abundance. However, when
we generated random values for month and repeated the testing procedure, we calculated a
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test statistic of 58.02 which, though significantly smaller than the test statistic calculated
on the original training set, is still significant. To ensure that the randomized months we
selected did not add any accidental structure, we compared predictions generated using this
training set to those generated by another training set, also with randomized months. Here
we find a test statistic of only 2.36 and thus there is no significant difference between these
predictions, so the trees are simply taking advantage of additional randomness. Finally,
we test for a difference in predictions generated by the original training set and those
generated by the training set with random values of month. In this case, we calculated
a test statistic of 2336.14 which is highly significant so we can conclude that month is
significant for predicting abundance and the contribution to the prediction is significantly
more than would be expected by simply adding a random feature to the model.

This significant effect of month comes as no surprise as Indigo Buntings are known to
be a migratory species. However, many scientists also believe that migrations may change
from year to year and thus year may also be significant for predicting abundance. For this
test, we used the full training data set consisting of approximately 1 million observations
from 2004 to 2010 and as a test set, randomly selected 20 observations from the training set.
Given this larger training set, we increased our subsample size to k = 1000 and our Monte
Carlo sample size to nMC = 8000 and again performed the tests using the internel variance
estimation method. In the first setup where we test predictions from the full training set
against predictions generated from the training set without year, we find a test statistic
of 94.43 which means that year is significant for making predictions as it is larger than
the critical value of 31.41. However, as was the case in testing the significance of month,
we find that a randomly generated year feature is also significant with a test statistic of
52.51. Following in the same manner as above, we compare predictions from two training
sets, each with a randomized year feature, and we find no significant difference in these
predictions with a test statistic of only 4.70. Finally, we test for a difference in predictions
between the full training set and a data set with random year and find that there is a
significant difference in these predictions with a test statistic of 109.72. Thus, as was the
case with month, we can conclude that year is significant for predicting abundance and
the contribution to the prediction is significantly more than would be expected by simply
adding a random feature to the model.

7. Discussion

This work demonstrates that formal statistical inference procedures are possible within the
context of supervised ensemble learning, even when individual base learners are difficult
to analyze mathematically. Demonstrating that ensembles built with subsamples can be
viewed as U-statistics allows us to calculate limiting distributions for predictions and consis-
tent estimation procedures for the parameters allow us to compute confidence intervals for
predictions and formally test the significance of features. Moreover, using the internal vari-
ance estimation procedure, we are able to do so at no additional computational cost. In his
controversial paper, Breiman (2001a) contrasted traditional statistical data analysis models
that emphasize interpretation with the modern algorithmic approach of machine learning
where the primary goal is prediction and among the differences invoked was the statisti-
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cian’s concern for formalized inference. Our hope is that this work be seen as something of
a bridge between Breiman’s two cultures.

The distributions and procedures we discuss apply to a very general class of supervised
learning algorithms. We focus on bagging and random forests with tree-based base learners
due to their popularity, but any supervised ensemble method that satisfies the conditions
in Theorems 1 and 2 will generate predictions that have these limiting distributions and
the inference procedures can be carried out in the same way. By the same reasoning, our
procedures also make no restrictions on the tree-building method.

There are also some small modifications that can be made to our procedure which would
still allow for an asymptotically normal limiting distribution. First, we assumed that our
subsamples were selected with replacement so that in theory, the same subsample could be
selected multiple times. This choice was based primarily on the fact that ensuring the exact
subsample was not taken twice would typically require extra computational work. However,
even for relatively small data sets, the probability of selecting the same subsample more
than once is very small, and not surprisingly, the limiting distributions remain identical
when the subsamples are taken without replacement. Furthermore, we also did not allow
repeat observations within subsamples, which made the resulting estimator a U-statistic.
Had we selected the subsamples themselves with replacement, our estimator would be a V-
statistic—a closely related class of estimators introduced by von Mises (1947)—and similar
theory could be developed. It is also worth pointing out that in practice, we always selected
the same number of subsamples mn and subsample size kn for each prediction point x∗ but
in theory, these could be chosen differently for each point of interest and the same can be
said of the estimation parameters nz̃ and nMC . However, choosing different values of these
parameters for different prediction points involves significantly more bookkeeping and we
advise against it in practice.

Our approach also raises some issues. Perhaps most obviously, the parameter in our
inference procedures is the expected prediction generated by trees built in the prescribed
fashion, as opposed to the true value of the underlying regression function, F (x∗). Though
some tree-building methods have been shown to be consistent, the bias introduced may not
be negligible so we have to be careful about interpreting our results. It may be possible to
employ a residual bootstrap to try and correct for bias and we plan to explore this in future
work. Another open question that we hope to address in future work is how to select the
test points when testing feature significance. In the eBird application, we randomly selected
points from the training set, but it would be beneficial to investigate optimal strategies for
selecting both the number and location of test points. Finally, the distributional results we
provide could potentially allow us to test more complex hypotheses about the structure of
the underlying regression function, for example, the interaction between covariates.
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Appendix A.

We present here the proofs of the theorems provided in Section 2. We begin with a lemma
from Lee (1990).

Lemma 3 (Lee 1990, Lemma A, page 201) Let a1, a2, ... be a sequence of constants such that
limn→∞

1
n

∑n
i=1 ai = 0 and limn→∞

1
n

∑n
i=1 a

2
i = σ2 and let the random variables M1, ...,Mn

have a multinomial distribution, multinomial(mn; 1
mn
, ..., 1

mn
). Then as mn, n → ∞, the

limiting distribution of

m−1/2n

n∑
i=1

ai(Mi −mn/n)

is N (0, σ2).

Additionally, it will be useful to have the limiting distribution of complete infinite order
U-statistics, which we provide in the lemma below.

Lemma 4 Let Z1, Z2, ...
iid∼ FZ and let Un,kn be a complete, infinite order U-statistic with

kernel hkn satisfying Condition 1 and θkn = Ehkn(Z1, ..., Zkn) such that Eh2kn(Z1, ..., Zkn) ≤
C <∞ for all n and some constant C and lim kn√

n
= 0. Then

√
n(Un,kn − θkn)√

k2nζ1,kn

d→ N (0, 1).

The proof of Lemma 3 is provided in Lee (1990) page 201. The proof of Lemma 4 follows in
exactly the same fashion as the proof of result (i) in Theorem 1 below. We take advantage
of these lemmas in the following proofs.

Theorem 1 Let Z1, Z2, ...
iid∼ FZ and let Un,kn,mn be an incomplete, infinite order U-

statistic with kernel hkn that satisfies Condition 1. Let θkn = Ehkn(Z1, ..., Zkn) such that
Eh2kn(Z1, ..., Zkn) ≤ C < ∞ for all n and some constant C, and let lim n

mn
= α. Then as

long as lim kn√
n

= 0 and lim ζ1,kn 6= 0,

(i) if α = 0, then
√
n(Un,kn,mn−θkn )√

k2nζ1,kn

d→ N (0, 1).

(ii) if 0 < α <∞, then
√
mn(Un,kn,mn−θkn )√
k2n
α
ζ1,kn+ζkn,kn

d→ N (0, 1).

(iii) if α =∞, then
√
mn(Un,kn,mn−θkn )√

ζkn,kn

d→ N (0, 1).
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Proof:

(i) Suppose first that α = 0. In the interest of clarity, we follow the Hájek projection
method discussed in Van der Vaart (2000) chapters 11 and 12. Define the Hájek projection
of Un,kn,mn − θkn as

Ûn,kn,mn =
n∑
i=1

E(Un,kn,mn − θkn | Zi)− (n− 1)E(Un,kn,mn − θkn)

=

n∑
i=1

E(Un,kn,mn − θkn | Zi)

so that for each term in the sum, we have

E(Un,kn,mn − θkn | Zi) = E

 1

mn

∑
β

hkn(Zβ1 , ..., Zβkn )− θkn
∣∣∣∣ Zi


=

1

mn

∑
β

E
(
hkn(Zβ1 , ..., Zβkn )− θkn

∣∣ Zi) (7)

where, in keeping with the notation in Van der Vaart (2000), we let β index the subsamples.
Define h1,kn(x) = Ehkn(x, Z2, ..., Zkn) − θkn and let W be the number of subsamples that
contain i. Since we assume that the subsamples are selected uniformly at random with
replacement,

W ∼ Binom

(
mn,

(
n−1
kn−1

)(
n
k

) )
so we can rewrite (7) as

1

mn

∑
β

E
(
E(hkn(Zβ1 , ..., Zβkn )− θkn |Zi)

∣∣W)
=

1

mn
E(Wh1,kn(Zi))

=
1

mn

(
mn

((
n−1
kn−1

)(
n
k

) )
h1,kn(Zi)

)

=
kn
n
h1,kn(Zi)

so that taking the sum yields

Ûn,kn,mn =
kn
n

n∑
i=1

h1,kn(Zi).
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Now we establish the asymptotic normality of Ûn,kn,mn . Define the triangular array

kn1h1,kn1 (Z1), . . . , kn1h1,kn1 (Zn1)

kn1+1h1,kn1+1(Z1), . . . . . . , kn1+1h1,kn1+1(Zn1+1)

. .

. .

. .

kn1+jh1,kn1+j (Z1), . . . . . . . . . . . . . . . . . . , kn1+jh1,kn1+j (Zn1+j)

so that for each variable in the array, we have

E(knh1,kn(Zi)) = kn(θkn − θkn) = 0

and

var(knh1,kn(Zi)) = k2nvar(h1,kn(Zi)) = k2nζ1,kn

and thus the row-wise sum of the variances is

s2n =

n∑
i=1

var(knh1,kn(Zi)) = nk2nζ1,kn .

For δ > 0, the Lindeberg condition is given by

lim
n→∞

n∑
i=1

1

nk2nζ1,kn

∫
|knh1,kn (Zi)|≥δkn

√
nζ1,kn

k2nh
2
1,kn(Zi)dP

= lim
n→∞

n∑
i=1

1

nζ1,kn

∫
|h1,kn (Zi)|≥δ

√
nζ1,kn

h21,kn(Zi)dP

≤ lim
n→∞

max
1≤i≤n

1

ζ1,kn

∫
|h1,kn (Zi)|≥δ

√
nζ1,kn

h21,kn(Zi)dP

= lim
n→∞

1

ζ1,kn

∫
|h1,kn (Z1)|≥δ

√
nζ1,kn

h21,kn(Z1)dP (8)

= 0

by Condition 1, and thus the Lindeberg condition is satisfied. Thus, by the Lindeberg-Feller
central limit theorem, ∑

j knh1,kn(Zj)

sn

d→ N (0, 1)

or, rewriting,

√
nÛn,kn,mn√
k2nζ1,kn

d→ N (0, 1).
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Now, we need to compare the limiting variance ratio of Un,kn,mn and its Hájek projection

Ûn,kn,mn . For incomplete U-statistics of fixed rank, Blom (1976) showed that the variance
of the incomplete U-statistic Um consisting of m subsamples selected uniformly at random
with replacement is given by

ζk
mn

+

(
1− 1

mn

)
var(U)

where U is the complete U-statistic analogue. Extending this result to our situation where
k and m may both depend on n, we have

var(Un,kn,mn) =
ζkn,kn
mn

+

(
1− 1

mn

)
var(Un,kn)

where the variance of the complete U-statistic Un,kn is given by

kn∑
c=1

kn!2

c!(kn − c)!2
(n− kn)(n− kn − 1) · · · (n− 2kn + c+ 1)

n(n− 1) · · · (n− kn + 1)
ζc,kn .

The details of this calculation are described in Van der Vaart (2000) page 163. Thus, looking
at the limit of the variance ratio, we have

lim
n→∞

(
var(Un,kn,mn)

var(Ûn,kn,mn)

)
= lim

n→∞

 ζkn,kn
mn

+
(

1− 1
mn

)
var(Un,kn)

k2n
n ζ1,kn


= lim

n→∞

(
n ζkn,kn

mn k2n ζ1,kn

)
+ lim
n→∞

(
1− 1

mn

)
lim
n→∞

(
n var(Un,kn)

k2n ζ1,kn

)
= 0 + lim

n→∞

(
n var(Un,kn)

k2n ζ1,kn

)

= lim
n→∞

∑kn
c=1

kn!2

c!(kn−c)!2
(n−kn)(n−kn−1)···(n−2kn+c+1)

(n−1)···(n−kn+1) ζc,kn

k2nζ1,kn


= lim

n→∞

 kn!2

(kn−1)!2
(n−kn)(n−kn−1)···(n−2kn+2)

(n−1)···(n−kn+1) ζ1,kn

k2nζ1,kn


= lim

n→∞

(
(n− kn)(n− kn − 1) · · · (n− 2kn + 2)

(n− 1) · · · (n− kn + 1)

)
= 1.

Note that in the second line, lim
(

n ζkn,kn
mn k2n ζ1,kn

)
= 0 since n

mn
→ 0, ζ1,kn 9 0 by assumption,

and ζkn,kn 9 ∞ since Eh2kn(Z1, ..., Zkn) is bounded. Finally, by Slutsky’s Theorem and
Theorem 11.2 in Van der Vaart (2000), we have

√
n(Un,kn,mn − θkn)√

k2nζ1,kn
=

√
n(Un,kn,mn − θkn − Ûn,kn,mn + Ûn,kn,mn)√

k2nζ1,kn
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=

√
n(Un,kn,mn − θkn − Ûn,kn,mn)√

k2nζ1,kn
+

√
nÛn,kn,mn√
k2nζ1,kn

where
√
n(Un,kn,mn − θkn − Ûn,kn,mn)/

√
k2nζ1,kn

P→ 0 and

√
nÛn,kn,mn√
k2nζ1,kn

d→ N (0, 1)

so that

√
n(Un,kn,mn − θkn)√

k2nζ1,kn

d→ N (0, 1)

as desired. �

(ii) & (iii) Now suppose α > 0. We follow the proof technique in Lee (1990) page 200
which is based on the work of Janson (1984). Let S(n,kn) = {Si : i = 1, ...,

(
n
kn

)
} denote

the set of all possible subsamples of size kn. In the following work, we use the notation
(n, kn) in place of

(
n
kn

)
in subscripts and summation notation. Consider the random vector

Mn,kn = (MS1 , ...,MS(n,kn)
), where the ith element denotes the number of times the ith

subsample appears in Un,kn,mn . Since the subsamples are selected uniformly at random with
replacement, Mn,kn ∼ multinomial(mn; 1

( nkn)
, ..., 1

( nkn)
). Let φn,kn,mn be the characteristic

function of
√
mn(Un,kn,mn − θkn) and let φ denote the limiting characteristic function of√

n(Un,kn − θkn) where Un,kn is the corresponding complete U-statistic. Additionally, let

φ
(M)
n,kn,mn

be the characteristic function of the random variable

m−1/2n

(n,k)∑
i=1

(
MSi −

mn(
n
kn

))(hkn(Si)− θkn
)∣∣∣Z1, ..., Zn.

Then we have

φn,kn,mn(t) = E (exp [it
√
mn(Un,kn,mn − θkn)])

= E

exp
itm−1/2n

(n,kn)∑
i=1

MSi(hkn(Si)− θkn)


= E

E

exp
itm−1/2n

(n,kn)∑
i=1

MSi(hkn(Si)− θkn)

∣∣∣∣∣∣Z1, ..., Zn


= E

(
E

(
exp

[
itm−1/2n

(
(n,kn)∑
i=1

(
MSi +

mn(
n
kn

) − mn(
n
kn

))

×
(
hkn(Si)− θkn

))] ∣∣∣∣∣ Z1, ..., Zn

))
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= E

(
E

(
exp

[
itm−1/2n

(n,kn)∑
i=1

mn(
n
kn

)(hkn(Si)− θkn)

]

× exp

[
itm−1/2n

(n,k)∑
i=1

(
MSi −

mn(
n
kn

)) (hkn(Si)− θkn)

]∣∣∣∣Z1, ..., Zn

))

= E

(
exp

[
itm−1/2n

(n,kn)∑
i=1

mn(
n
kn

)(hkn(Si)− θkn)

]

× E

(
exp

[
itm−1/2n

(n,kn)∑
i=1

(
MSi −

mn(
n
kn

)) (hkn(Si)− θkn)

]∣∣∣∣Z1, ..., Zn

))

= E

(
exp

[
it
√
mnUn,kn

]
φ
(M)
n,kn,mn

(t)

)

and now, taking limits, we have

lim
n→∞

φn,kn,mn(t) = lim
n→∞

E

(
exp

[
it
√
mnUn,kn

]
φ
(M)
n,kn,mn

(t)

)

= E

(
lim
n→∞

exp

[
it
√
mnUn,kn

]
lim
n→∞

φ
(M)
n,kn,mn

(t)

)

so that by the preceeding lemmas,

lim
n→∞

φn,kn,mn(t) = lim
n→∞

E

(
exp

[
it
√
mnUn,kn

])
exp

[
− t2ζkn,kn/2

]

= lim
n→∞

E

(
exp

[
it
(√mn√

n

)√
nUn,kn

])
exp

[
− t2ζkn,kn/2

]

= φ(α−1/2t)exp

[
− t2ζkn,kn/2

]

= exp

[
− (tα−1/2)2k2nζ1,kn/2

]
exp

[
− t2ζkn,kn/2

]

= exp

[
− t2

(k2n
α
ζ1,kn + ζkn,kn

)
/2

]
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which is the characteristic function of a Normal distribution with mean 0 and variance
k2n
α ζ1,kn + ζkn,kn . Note that when α =∞, the first term in the variance is 0, so the limiting

variance reduces to ζkn,kn , as desired.

Proposition 1: For a bounded regression function F , if there exists a constant c such
that for all kn ≥ 1,∣∣h((X1, Y1), ..., (Xkn , Ykn), (Xkn+1, Ykn+1))− h((X1, Y1), ..., (Xkn ,Ykn), (Xkn+1, Y

∗
kn+1))

∣∣
≤ c
∣∣Ykn+1 − Y ∗kn+1

∣∣
where Ykn+1 = F (Xkn+1) + εkn+1, Y ∗kn+1 = F (Xkn+1) + ε∗kn+1, and where εkn+1 and ε∗kn+1

are i.i.d. with exponential tails, then Condition 1 is satisfied.

Proof. First consider the particular Y ∗j = F (Xj). Since F is bounded, we can define

sup
Xj∈X

∣∣F (Xj)
∣∣ ≤M <∞

and since tree-based predictions cannot fall outside the range of responses in the training
set,

∣∣h((X1, Y
∗
1 ), ..., (Xkn , Y

∗
kn

)
)∣∣ ≤ M for all possible X1, ...,Xkn . Furthermore, by the

Lipschitz condition,

∣∣h((X1, Y
∗
1 ), ..., (Xkn , Y

∗
kn)
)
− h
(
(X1, Y

∗
1 ), (X2, Y2), ..., (Xkn , Ykn)

)∣∣ ≤ c kn∑
j=2

∣∣εj∣∣
and thus, applying Jensen’s Inequality, we have

sup
X1∈X

∣∣h1,kn((X1, Y
∗
1 )
)∣∣

= sup
X1∈X

∣∣∣∣∣
∫
h
(
(X1, Y

∗
1 ), (X2, Y2), ..., (Xkn , Ykn)

)
− h
(
(X1, Y

∗
1 ), ..., (Xkn , Y

∗
kn)
)

+ h
(
(X1, Y

∗
1 ), ..., (Xkn , Y

∗
kn)
)
dP − θkn

∣∣∣∣∣
≤ sup

X1∈X ,...,Xkn∈X

∫ ∣∣∣h((X1, Y
∗
1 ), (X2, Y2), ..., (Xkn , Ykn)

)
− h
(
(X1, Y

∗
1 ), ..., (Xkn , Y

∗
kn)
)∣∣∣dP

+ sup
X1∈X

h
(
(X1, Y

∗
1 ), ..., (Xkn , Y

∗
kn)
)
− θkn

≤ cknE
∣∣ε1∣∣+M − θkn .

Now, define the set of interest in the Lindeberg condition as An so that we may write
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An =

{∣∣∣h1,kn((X1, Y1)
)∣∣∣ ≥ δ√nζ1,kn}

=

{∣∣∣h1,kn((X1, Y1)
)
− h1,kn

(
(X1, Y

∗
1 )
)

+ h1,kn
(
(X1, Y

∗
1 )
)∣∣∣ ≥ δ√nζ1,kn}

⊆
{∣∣∣h1,kn((X1, Y1)

)
− h1,kn

(
(X1, Y

∗
1 )
)∣∣∣ ≥ δ√nζ1,kn +

∣∣∣h1,kn((X1, Y
∗
1 )
)∣∣∣}

⊆
{∣∣ε1∣∣ ≥ 1

c

(
δ
√
nζ1,kn +M − θkn

)
+ knE

∣∣ε1∣∣}
=: A∗n

Finally, continuing from equation (8) of Theorem 1,

lim
n→∞

1

ζ1,kn

∫
An

h21,kn
(
(X1, Y1)

)
dP

= lim
n→∞

1

ζ1,kn

∫
An

(
h1,kn

(
(X1, Y1)

)
− h1,kn

(
(X1, Y

∗
1 ) + h1,kn

(
(X1, Y

∗
1 )
)2
dP

≤ lim
n→∞

2

ζ1,kn

∫
An

(
h1,kn

(
(X1, Y1)

)
− h1,kn

(
(X1, Y

∗
1 )
)2
dP

+ lim
n→∞

2

ζ1,kn

∫
An

h21,kn
(
(X1, Y

∗
1 )dP

≤ lim
n→∞

2

ζ1,kn

∫
A∗n

c2ε21dP + lim
n→∞

2

ζ1,kn
P (A∗n)

(
cknE

∣∣ε1∣∣+M − θkn
)2

= lim
n→∞

2

ζ1,kn
P

[∣∣ε1∣∣ ≥ 1

c

(√
nζ1,kn +M − θkn

)
+ kE

∣∣ε1∣∣]
×
(
cknE

∣∣ε1∣∣+M − θkn
)2

= 0

as desired, so long as nP
(∣∣ε1∣∣ > √n) → 0, which is the case with exponential tails, and

kn = o(
√
n).

Theorem 2 Let Uω;n,kn,mn be a random kernel U-statistic of the form defined in equation
(5) such that U∗ω;n,kn,mn satisfies Condition 1 and suppose that Eh2kn(Z1, ..., Zkn) < ∞ for

all n, lim kn√
n

= 0, and lim n
mn

= α. Then, letting β index the subsamples, so long as

lim ζ1,kn 6= 0 and

lim
n→∞

E
(
h
(ω)
kn

(Zβ1 , ..., Zβkn )− Eωh
(ω)
kn

(Zβ1 , ..., Zβkn )
)2
6=∞,

Uω;n,kn,mn is asymptotically normal and the limiting distributions are the same as those
provided in Theorem 1.
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Proof. We begin with the case where α = 0 and we make use of this result in the proof of
the case where α > 0. As in Section 2.2, define U∗ω;n,kn,mn = EωUω;n,kn,mn . We have

E(Uω;n,kn,mn − U∗ω;n,kn,mn)2

= E

 1

mn

∑
β

h
(ω)
kn

(Zβ1 , ..., Zβkn )− Eω

 1

mn

∑
β

h
(ω)
kn

(Zβ1 , ..., Zβkn )

2
= E

 1

m2
n

∑
β

h
(ω)
kn

(Zβ1 , ..., Zβkn )− Eω

∑
β

h
(ω)
kn

(Zβ1 , ..., Zβkn )

2
= E

1

m2
n

∑
β

h
(ω)
kn

(Zβ1 , ..., Zβkn )−

∑
β

Eωh
(ω)
kn

(Zβ1 , ..., Zβkn )

2

= E

 1

m2
n

∑
β

(
h
(ω)
kn

(Zβ1 , ..., Zβkn )− Eωh
(ω)
kn

(Zβ1 , ..., Zβkn )
)2

+ E

[
1

m2
n

∑
βi 6=βj

(
h
(ω)
kn

(Zβi1 , ..., Zβikn
)− Eωh

(ω)
kn

(Zβi1 , ..., Zβikn
)
)

×
(
h
(ω)
kn

(Zβj1 , ..., Zβjkn
)− Eωh

(ω)
kn

(Zβj1 , ..., Zβjkn
)
)]

We focus now on the second term, involving the cross terms with different subsamples and
randomization parameters. Splitting apart the expectation and moving the expectation
with respect to ω inside, we can write the second term as

E

[
1

m2
n

∑
βi 6=βj

(
h
(ω)
kn

(Zβi1 , ..., Zβikn
)− Eωh

(ω)
kn

(Zβi1 , ..., Zβikn
)
)

×
(
h
(ω)
kn

(Zβj1 , ..., Zβjkn
)− Eωh

(ω)
kn

(Zβj1 , ..., Zβjkn
)
)]

= EX

[
1

m2
n

∑
βi 6=βj

Eω
(
h
(ω)
kn

(Zβi1 , ..., Zβikn
)− Eωh

(ω)
kn

(Zβi1 , ..., Zβikn
)
)

× Eω
(
h
(ω)
kn

(Zβj1 , ..., Zβjkn
)− Eωh

(ω)
kn

(Zβj1 , ..., Zβjkn
)
)]

= EX

[
1

m2
n

∑
βi 6=βj

(
Eωh

(ω)
kn

(Zβi1 , ..., Zβikn
)− Eωh

(ω)
kn

(Zβi1 , ..., Zβikn
)
)
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×
(
Eωh

(ω)
kn

(Zβj1 , ..., Zβjkn
)− Eωh

(ω)
kn

(Zβj1 , ..., Zβjkn
)
)]

= EX

[
1

m2
n

∑
βi 6=βj

0× 0

]
= 0

and thus we need only investigate the first term. We have

E

 1

m2
n

∑
β

(
h
(ω)
kn

(Zβ1 , ..., Zβkn )− Eωh
(ω)
kn

(Zβ1 , ..., Zβkn )
)2

=
1

m2
n

∑
β

E
(
h
(ω)
kn

(Zβ1 , ..., Zβkn )− Eωh
(ω)
kn

(Zβ1 , ..., Zβkn )
)2

=
1

m2
n

mnE
(
h
(ω)
kn

(Zβ1 , ..., Zβkn )− Eωh
(ω)
kn

(Zβ1 , ..., Zβkn )
)2

=
1

mn
E
(
h
(ω)
kn

(Zβ1 , ..., Zβkn )− Eωh
(ω)
kn

(Zβ1 , ..., Zβkn )
)2
.

Putting all of this together, we have

lim
n→∞

E

√n
(
Uω;n,kn,mn − U∗ω;n,kn,mn

)
√
k2nζ1,kn

2

= lim
n→∞

n

mn

1

k2nζ1,kn
E
(
h
(ω)
kn

(Zβ1 , ..., Zβkn )− Eωh
(ω)
kn

(Zβ1 , ..., Zβkn )
)2

= 0

so long as k2nζ1,kn 9 0 and limn→∞ E
(
h
(ω)
kn

(Zβ1 , ..., Zβkn )− Eωh
(ω)
kn

(Zβ1 , ..., Zβkn )
)2
6= ∞,

as desired. �

Now we handle the case where α > 0. First note that when kn = 1 for all n, this reduces
to simply averaging over an i.i.d. sample and thus asymptotic normality can be obtained
via the classic central limit theorem so assume that eventually kn > 1. The remaining
steps in this proof are nearly identical to the proof of results (ii) and (iii) of Theorem
1. Again, let S(n,kn) = {Si : i = 1, ...,

(
n
kn

)
} denote the set of all possible subsamples

of size kn and let Mn,kn = (MS1 , ...,MS(n,kn)
) denote the random vector that counts the

number of times each subsample appears so that Mn,kn ∼ multinomial(mn; 1

( nkn)
, ..., 1

( nkn)
)

since we assume the subsamples are selected uniformly at random with replacement. Define
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θ∗kn = EU∗ω;n,kn,mn , let φn,kn,mn be the characteristic function of
√
mn(Uω;n,kn,mn − θ∗kn),

and let φ denote the limiting characteristic function of
√
n(U∗ω;n,kn,mn − θ

∗
kn

). Finally, let

φ
(M)
n,kn,mn

be the characteristic function of the random variable

m−1/2n

(n,k)∑
i=1

(
MSi −

mn(
n
kn

))(h(ωi)kn
(Si)− θ∗kn

)∣∣∣Z1, ..., Zn, ω.

Then we have

φn,kn,mn(t) = E
(
exp

[
it
√
mn(Uω;n,kn,mn − θ∗kn)

])
= E

exp
itm−1/2n

(n,kn)∑
i=1

MSi(h
(ωi)
kn

(Si)− θ∗kn)


= E

E

exp
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(n,kn)∑
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MSi(h
(ωi)
kn

(Si)− θ∗kn)

∣∣∣∣∣∣Z1, ..., Zn, ω


= E

(
E

(
exp

[
itm−1/2n

(
(n,kn)∑
i=1

(
MSi +

mn(
n
kn

) − mn(
n
kn

))

×
(
h
(ωi)
kn

(Si)− θ∗kn
))] ∣∣∣∣∣ Z1, ..., Zn, ω

))

= E

(
E

(
exp

[
itm−1/2n

(n,kn)∑
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mn(
n
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(ωi)
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(Si)− θ∗kn)

]

× exp

[
itm−1/2n

(n,k)∑
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(
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mn(
n
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)) (h
(ωi)
kn

(Si)− θ∗kn)

]∣∣∣∣Z1, ..., Zn, ω

))

= E

(
exp

[
itm−1/2n

(n,kn)∑
i=1

mn(
n
kn

)(h
(ωi)
kn

(Si)− θ∗kn)

]

× E

(
exp

[
itm−1/2n

(n,kn)∑
i=1

(
MSi −

mn(
n
kn

)) (h
(ωi)
kn

(Si)− θ∗kn)

]∣∣∣∣Z1, ..., Zn, ω

))

= E

(
exp

[
itm−1/2n

(
(n,kn)∑
i=1

mn(
n
kn

)(h(ωi)kn
(Si)− Eωh

(ωi)
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(Si)

+ Eωh
(ωi)
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(Si)− θ∗kn

))]
φ
(M)
n,kn,mn

(t)

)

= E

(
exp

[
it
√
mn

(
1(
n
kn

) (n,kn)∑
i=1

(
h
(ωi)
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(Si)− Eωh
(ωi)
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)
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+
1(
n
kn

) (n,kn)∑
i=1

(
Eωh

(ωi)
kn

(Si)− θ∗kn

))]
φ
(M)
n,kn,mn

(t)

)
.

Now, note that since we are in the case where α > 0, mn = O(n) � (n, kn) and thus, by
the previous result in the case where α = 0, the first term converges to 0 and we have

lim
n→∞

φn,kn,mn(t) = E

(
lim
n→∞

exp

[
it
√
mn

1(
n
kn

) (n,kn)∑
i=1

(
Eωh

(ωi)
kn

(Si)− θ∗kn

)]
lim
n→∞

φ
(M)
n,kn,mn

(t)

)

= E

(
lim
n→∞

exp

[
it
√
mn U

∗
ω;n,kn,mn

]
lim
n→∞

φ
(M)
n,kn,mn

(t)

)

so that by exactly the same arguments as in the proof of Theorem 1

lim
n→∞

φn,kn,mn(t) = exp

[
− t2

(k2n
α
ζ∗1,kn + ζ∗kn,kn

)
/2

]
which is the characteristic function of a Normal distribution with mean 0 and variance
k2n
α ζ
∗
1,kn

+ ζ∗kn,kn . Further, when α =∞, the variance reduces to ζ∗kn,kn , as desired.

Appendix B.

Crossed Design Random Forests

Typically, each tree in a random forest is built according to an independently selected
randomization parameter ω. Alternatively, for each ω, we could choose to build an entire
set of trees, one for each of the mn subsamples, so that if Ωn randomization parameters are
used, a total of Ωn×mn trees are built. We could then write the prediction at x∗ generated
by this alternative random forest estimator as

1

Ωn

1

mn

∑
(i)

∑
(j)

Tx∗,kn((Xi1 , Yi1), ..., (Xikn
, Yikn ); ωj) (9)

where here, we explicitly treat ω as an input to the function. Statistics of the form in
(9) are referred to as two-sample or generalized U-statistics and similar results regarding
asymptotic normality have been established for fixed-rank kernels; see Lee (1990) or Van der
Vaart (2000) for details.

We mention this as a possible alternative only because the resulting estimator takes the
well established form of a generalized U-statistic. Readers familiar with U-statistics may
be more comfortable with this approach than with the random kernel approach that more
closely resembles the type of random forests used in practice. However, since this formu-
lation strays from Breiman’s original procedure and is far more computationally intensive,
we consider only the random kernel version described in Section 2.2.
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Appendix C.

The algorithm for estimating Σ1,kn as needed for the hypothesis testing procedure is given
below.

Algorithm 6 Σ1,kn Estimation Procedure

for i in 1 to nz̃ do
Select initial fixed point z̃(i)

for j in 1 to nMC do
Select subsample Sz̃(i),j of size kn from training set that includes z̃(i)

Build full tree using subsample Sz̃(i),j

Build reduced tree using subsample Sz̃(i),j utilizing only reduced feature space
Use both full tree and reduced tree to predict at each test point
Record difference in predictions

end for
Record average of the nMC differences in predictions

end for
Compute the covariance of the nz̃ averages

Appendix D.

Distribution of Subbagged Predictions using an Internal Variance Estimate

Here we examine the distribution of predictions when the ensemble is built according to the
internal variance estimation method described in Algorithm 5. Since we are only interested
in the distribution of predictions, we omit the steps in Algorithm 5 for estimating the
variance parameters and use the same estimates as in the external case above. For both
the SLR case with n = 1000, k = 60 and the MARS case with n = 1000, k = 75, we use
nz̃ = 50 and nMC = 250 to produce a total of m = 12500 predictions in each ensemble.
A total of 250 ensembles were built and the resulting histograms with estimated normal
densities overlaid are shown in Figure 9 below. We see that these distributions appear to
be the same as when the subsamples are selected uniformly at random, as in the external
variance estimation method.
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Figure 9: Histograms of subbagged predictions with using an internal estimate of variance.
Predictions are made at x1 = 10 in the SLR case and at x1 = · · · = x5 = 0.5 in
the MARS case.
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