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Abstract

The transcription of handwritten text on images is one task in machine learning and one
solution to solve it is using multi-dimensional recurrent neural networks (MDRNN) with
connectionist temporal classification (CTC). The RNNs can contain special units, the long
short-term memory (LSTM) cells. They are able to learn long term dependencies but they
get unstable when the dimension is chosen greater than one. We defined some useful and
necessary properties for the one-dimensional LSTM cell and extend them in the multi-
dimensional case. Thereby we introduce several new cells with better stability. We present
a method to design cells using the theory of linear shift invariant systems. The new cells are
compared to the LSTM cell on the IFN/ENIT and Rimes database, where we can improve
the recognition rate compared to the LSTM cell. So each application where the LSTM cells
in MDRNNs are used could be improved by substituting them by the new developed cells.

1. Introduction

Since the last decade, artificial neural networks (NN) became state-of-the-art in many fields
of machine learning, for example they can be applied to pattern recognition. Typical NN
are feedforward NN (FFNN) or recurrent NN (RNN), whereas the latter contain recurrent
connections. When nearby inputs depend on each other, providing these inputs as additional
information to the NN can improve its recognition result. FFNNs obtain these dependen-
cies by making this nearby inputs accessible. If RNNs are used, the recurrent connections
can be used to learn if the surrounding input is relevant, but these connections result in
a vanishing dependency over time. In S. Hochreiter, J. Schmidhuber (1997) the authors
develop the long short-term memory (LSTM) which is able to have a long term dependency.
This LSTM is extended in A. Graves, S. Fernandez andJ. Schmidhuber (2007) to the multi-
dimensional (MD) case and is used in a hierarchical multi-dimensional RNN (MDRNN)
which performed best in three competitions at the International Conference on Document
Analysis and Recognition (ICDAR) in 2009 without any feature extraction and knowledge
of the recognized language model.
In this paper we analyse these MD LSTM regarding the ability to provide long term depen-
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dencies in MDRNNs and show that it can easily have an unwanted growing dependency for
higher dimensions. We define a more general description of an LSTM—a cell—and change
the LSTM architecture which leads to new MD cell types, which also can provide long term
dependencies. In two experiments we show that substituting the LSTM in MDRNNs by
these cells works well. Due to this we assume that substituting the LSTM cell by the best
performing cell, the LeakyLP cell, will improve the performance of an MDRNN also in other
scenarios. Furthermore the new cell types could also be used for the one-dimensional (1D)
case, so using them in a bidirectional RNN with LSTMs (BLSTM) could lead to better
recognition rates.
In Section 2 we introduce the reader to the development of the LSTM cells (S. Hochreiter, J.
Schmidhuber, 1997) and its extension (F. A. Gers, J. Schmidhuber andF. Cummins, 1999).
Based on that in Section 3 we define two properties that probably lead to the good perfor-
mance of the 1D LSTM cells. Both together guarantee that the cell can have a long term
dependency. A third property ensures that gradient cannot explode over time. In Section
4 we show that the MD version of the LSTM is still able to provide long term dependency
whereas the gradient can explode easily for dimension greater than 1. In Section 5 we change
the architecture of the MD LSTM cell and reduce it to the 1D LSTM cell so that the cell
fulfills the two properties for any dimension. Nevertheless the internal cell state can linearly
grow over time. This problem is solved in Section 6 using a trainable convex combination
of the input and the previous internal cell states. The new cell type can provide long term
dependencies and does not suffer from exploding gradients. Motivated by the last sections
we introduce a more general way to define MD cells in Section 7. Using the theory of linear
shift-invariant systems and their frequency analysis we are able to get a new interpretation
of the cells and we create 5 new cell types. To test the performance of the cells in Section 8
we take two data sets from the ICDAR 2009 competitions, where the MDRNNs with LSTM
cell won. On these data sets we compare the recognition results of the MDRNNs when we
substitute the LSTM cells by the new developed cells. On both data sets, the IFN/ENIT
data set and the RIMES data set we can improve the recognition rate using the new devel-
oped cells.

2. Previous Work

In this section we briefly want to introduce a recurrent neural network (RNN) and the
development of the LSTM cell. In previous literature there are various notation to describe
the update equations of RNNs an LSTMs. To unify the notations we will refer to their
notation using “,” (F. A. Gers, J. Schmidhuber andF. Cummins, 1999; S. Hochreiter, J.
Schmidhuber, 1997; A. Graves andJ. Schmidhuber, 2008). Therefore we concentrate on a
simple hierarchical RNN with one input layer with the set of neurons I, one recurrent hidden
layer with the set of neurons H and one output layer with the set of neurons O. For each
time step t ∈ N the layers are updated asynchronously in the order I,H,O. In one specific
layer all neurons can be updated synchronously. In the hidden layer for one neuron c ∈ H
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yH(t− 1)

yI(t)

∑
netγ(t) fγ yγ(t)γ

yH(t− 1)

yI(t)
yγ(t) :=

Figure 1: Schematic diagram of a unit: The unit γ ∈ H is a simple neuron with the network’s
feed forward input yI(t) =

(
yi(t)

)
i∈I and recurrent input yH(t − 1) =

(
yh(t −

1)
)
h∈H and an output activation yγ(t). Right: A unit has an input activation

netγ(t), which is a linear combination of the source activations yI(t),yH(t − 1).
The output activation yγ(t) is computed by applying the activation function fγ
to the input activation. Left: The short notation of a unit.

at time t ∈ N we calculate the neuron’s input activation netc by(
ac(t) ,

)
netc(t) =

∑
i∈I

wc,iyi(t) +
∑
h∈H

wc,hyh(t− 1). (1)

with weights w[target neuron],[source neuron]. A bias in (1) can be added by extending the set
I := I∪{bias} with ybias(t) = 1∀t ∈ N and hence we will not write the bias in the equations,
but we use them in our RNNs in Section 8. The neuron’s output activation is calculated by(

yc(t), bc(t) ,
)

yc(t) = fc (netc(t))

with a differentiable sigmoid activation function fc. To make (1) suitable for t ≤ 0 we
define ∀h ∈ H,∀t ∈ Z \ N : yh(t) = 0. This simple neuron with a linear function of
activations as input and one activation function we call unit (compare to Figure 1). In (1)
the activation of the unit is dependent on the current activations of the layer below and
the previous activations of the units from the same layer. When there are no recurrent
connections (∀c, h ∈ H : wc,h = 0), the layer is called feed-forward layer, otherwise recurrent
layer.

2.1 The Long Short-Term Memory

A standard LSTM cell c has one input with an input activation ycin(t) a set of gates, one
internal state sc and one output(-activation) yc (, yc). The gates are also units and their
task is to learn whether a signal should pass the gate or not. They almost always have the
logistic activation function flog(x) := 1

1+exp(−x) (, f1(x)). The input of the standard LSTM
cell is calculated from a unit with an odd activation function with a slope of 1 at x = 0.
We use fc(x) = tanh (x) in this paper, another solution could be fc(x) = 2 tanh

(
x
2

)
(see S.

Hochreiter, J. Schmidhuber, 1997). The standard LSTM has two gates: The input gate (IG
or ι) and the output gate (OG or ω). These both gates are calculated like a unit, so that

netι(t) =
∑
i∈I

wι,iyi(t) +
∑
h∈H

wι,hyh(t− 1)(
yinc(t), bι(t) ,

)
yι(t) = flog (netι(t))
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and

netω(t) =
∑
i∈I

wω,iyi(t) +
∑
h∈H

wω,hyh(t− 1)(
youtc(t), bω(t) ,

)
yω(t) = flog (netω(t)) .

The input of an LSTM is defined like in (1) by(
netc(t) ,

)
netcin(t) =

∑
i∈I

wc,iyi(t) +
∑
h∈H

wc,hyh(t− 1),(
g (netc(t)) , f2 (netc(t)) ,

)
ycin(t) = fc (netcin(t)) .

The internal state sc(t) is calculated by

sc(t) = ycin(t) · yι(t) + sc(t− 1), (2)

the output activation yc(t) of the LSTM is calculated from(
yc(t), bc(t) ,

)
yc(t) = hc (sc(t)) · yω(t) (3)

with hc (x) := tanh(x) (, f3(x)). The LSTM can be interpreted as a kind of memory mod-
ule where the internal state stores the information. For a given input ycin(t) ∈ (−1, 1) the
IG “decides” if the new input is relevant for the internal state. If so, the input is added to
the internal state. The information of the input is now saved in the activation of the internal
state. The OG determines whether or not the internal activation should be displayed to the
rest of the network. So the information, stored in the LSTM is just “readable” when the OG
is active. To sum up, an open IG can be seen as a “write”-operation into the memory and
an open OG as a “read”-operation of the memory.

Another way to understand the LSTM is to take a look at the gradient propagated
through it. To analyse the LSTM properly, we have to ignore gradients comming from
recurrent weights. We define the truncated gradient similar to S. Hochreiter, J. Schmidhuber
(1997) and F. A. Gers, J. Schmidhuber andF. Cummins (1999).

Definition 1 (truncated gradient) Let γ ∈ {cin, ι, ω} be any input or gate unit and yc(t−
1) any previous output activation. The truncated gradient differs from the exact gradient
only by setting recurrent weighted gradient propagation ∂netγ(t)

∂yc(t−1) to zero. We write

∂netγ(t)

∂yc(t− 1)

(
= wγ,c

)
=
tr

0.

Now, let E be an arbitrary error which is used to train the RNN and ∂E(t)
∂yc(t)

the resulting
derivative at the output of the LSTM. The OG can eliminate the gradient coming from the
output, because

∂yc(t)

∂sc(t)
= h′c (sc(t))︸ ︷︷ ︸

∈(0,1]

· yω(t)︸ ︷︷ ︸
∈(0,1)

,
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so the OG decides when the gradient should go into the internal state. Especially for
|sc(t)| � 1 we get

∂yc(t)

∂sc(t)
≈ yω(t).

The key idea of the LSTMs is that an error that occurs at the internal state neither explode
nor vanish over time. Therefore, we take a look at the partial derivative ∂sc(t)

∂sc(t−1) , which
is also known as error carousel (for more details see S. Hochreiter, J. Schmidhuber, 1997).
Using the truncated gradient of Definition 1 for this derivative, we get

∂sc(t)

∂sc(t− 1)
=ycin(t) · ∂yι(t)

∂sc(t− 1)
+ yι(t) ·

∂ycin(t)

∂sc(t− 1)
+ 1

=ycin(t) · ∂yι(t)

∂yc(t− 1)

∂yc(t− 1)

∂sc(t− 1)
+ yι(t) ·

∂ycin(t)

∂yc(t− 1)

∂yc(t− 1)

∂sc(t− 1)
+ 1

=ycin(t) · ∂yι(t)

∂netι(t)

∂netι(t)

∂yc(t− 1)︸ ︷︷ ︸
=
tr

0

∂yc(t− 1)

∂sc(t− 1)

+ yι(t) ·
∂ycin(t)

∂netcin(t)

∂netcin(t)

∂yc(t− 1)︸ ︷︷ ︸
=
tr

0

∂yc(t− 1)

∂sc(t− 1)
+ 1

⇒ ∂sc(t)

∂sc(t− 1)
=
tr

1. (4)

So, once having a gradient at the internal state we can use the chain rule and get ∀τ ∈ N :
∂sc(t)

∂sc(t−τ) =
tr

1. This is called constant error carousel.
Like the OG can eliminate the gradient coming from the LSTM output, the IG can do
the same with the gradient coming from the internal state, that means it decides when the
gradient should be injected to the source activations. This can be seen by taking a look at
the partial derivative

∂sc(t)

∂netcin(t)
=

∂sc(t)

∂ycin(t)

∂ycin(t)

∂netcin(t)
= yι(t)f

′
c (netcin(t)) .

If there is a small input |netcin(t)| � 1, we get f ′c (netcin(t)) ≈ 1 and can estimate

∂sc(t)

∂netcin(t)
≈ yι(t).

All in all, this LSTM is able to store information and learn long-term dependencies, but it
has one drawback which will be discussed in 2.2.

2.2 Learning to Forget

For long time series the internal state is unbounded (compare with F. A. Gers, J. Schmid-
huber andF. Cummins, 1999, 2.1). Assuming a positive or negative input and a non zero
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activation of the IG, the absolute activation of the internal state grows over time. Using the
weight-space symmetries in a network with at least one hidden layer (Bishop, 2006, 5.1.1)
we assume without loss of generality ycin(t) ≥ 0, so sc(t)

t→∞−−−→ ∞. Hence, the activation
function hc saturates and (3) can be simplified to

yc(t) = hc (sc(t))︸ ︷︷ ︸
→1

yω(t) ≈ yω(t).

Thus, for great activations of sc(t) the whole LSTM works like a unit with a logistic activation
function. A similar problem can be observed for the gradient. The gradient coming from
the output is multiplied by the activation of the OG and the derivative of hc. For great
values of sc(t) we get h′c (sc(t))→ 0 and we can estimate the partial derivative

∂yc(t)

∂sc(t)
= h′c ((sc(t)) · yω(t) ≈ 0,

which can be interpreted that the OG is not able to propagate back the gradient into the
LSTM. Some solutions to solve the linear growing state problem are introduced in F. A.
Gers, J. Schmidhuber andF. Cummins (1999). They tried to stabilize the LSTM with a
“state decay” by multiplying the internal state in each time step with a value ∈ (0, 1), which
did not improve the performance. Another solution was to add an additional gate, the forget
gate (FG or φ). The last state sc(t − 1) is multiplied by the activation of the FG before it
is added to the current state sc(t). So we can substitute (2) by

sc(t) = ycin(t) · yι(t) + sc(t− 1) · yφ(t),

so that the truncated gradient in (4) is changed to

∂sc(t)

∂sc(t− 1)
= ycin(t) · ∂yι(t)

∂sc(t− 1)
+ yι(t) ·

∂ycin(t)

∂sc(t− 1)
+ yφ(t)

=
tr
yφ(t)

and for longer time series we get ∀τ ∈ N

∂sc(t)

∂sc(t− τ)
=
tr

τ−1∏
t′=0

yφ(t− t′).

Now, the Extended LSTM is able to learn to forget its previous state. However, an Extended
LSTM is still able to work like an standard LSTM without FG by having an activation
yφ(t) ≈ 1. In this paper we denote the Extended LSTM as LSTM
Another point of view was introduce in Bengio et al. (1994): To learn long-term dependencies
a system must have an architecture to that an input can be saved over long time and does
not suffer from the “vanishing gradient” problem. On the other hand the system should avoid
an “exploding gradient”, which means that a small disturbance has a growing influence over
time. In this paper we do not want to solve the problem of vanishing and exploding gradient
for a whole system, we want to solve this problem only for one single cell. But we think
that it is an necessary condition to provide long time dependencies of a system.

6



Cells in MDRNNs

yΓ(t)

Γ

c γ1

yI(t) yH(t− 1)

· · · γ|Γ|

yI(t) yH(t− 1)

cin

yI(t)

yH(t− 1)

gint (·) gout (·)

memory
sc(t−1),...,sc(t−k)

ycin(t) sc(t) yc(t)

Figure 2: Schematic diagram of a cell: The function gint calculates the internal state sc(t)
from the previous internal states sc(t− 1), . . . , sc(t− k) and the cell input ycin(t)
using the gate activations yΓ(t). The function gout calculates the output yc(t) of
the cell from the actual and previous internal states sc(t), . . . , sc(t − k), the cell
input ycin(t) also using the gate activations yΓ(t).

7



Gundram Leifert et al.

3. Cells and Their Properties

In this section we want to introduce a general cell and figure out properties for these cells
which probably lead to the good performance observed by LSTM cells.

Definition 2 (Cell, cf. Fig. 2) A cell, c, of order k consists of

• one designated input unit, cin, with sigmoid activation function fc (typically fc = tanh
unless specified otherwise);

• a set Γ (not containing cin) of units called gates γ1, γ2, . . . with sigmoid activation
functions fγi , i = 1, . . . (typically logistic fγi = flog unless specified otherwise);

• an arbitrary function, gint, and a cell activation function, gout, mapping into [−1, 1].

Each unit of Γ ∪ {cin} receives the same set of input activations. The cell update in time
step t ∈ N is performed in three subsequent phases:

1. Following the classical update scheme of neurons (see Section 2), all units in Γ∪{cin}
calculate synchronously their activations, which will be denoted by yyyΓ(t) :=

(
yγ(t)

)
γ∈Γ

and ycin(t). Furthermore, we call ycin(t) the input activation of the cell.

2. Then, the cell computes it’s so-called internal state

sc(t) := gint (yyyΓ(t), ycin(t), sc(t− 1), . . . , sc(t− k)) .

3. Finally, the cell computes it’s so-called output activation

yc(t) := gout (yyyΓ(t), ycin(t), sc(t), sc(t− 1), . . . , sc(t− k)) .

In this paper we concentrate on first order cells (k = 1). Now, we use Definition 2 to
re-introduce the (Extended) LSTM cell.

Remark 3 (LSTM cell) An LSTM cell is a cell of order 1 where hc = tanh and

• Γ = {ι, φ, ω}

• sc(t) := gint (yyyΓ(t), ycin(t), sc(t− 1)) := ycin(t)yι(t) + sc(t− 1)yφ(t)

• yc(t) := gout (yyyΓ(t), sc(t)) := hc (sc(t)) yω(t)

Properties of cells. Developing the 1D LSTM cells, the main idea is to save exactly one
piece of information over a long time series and to propagate the gradient back over this long
time, so that the system can learn precise storage of this piece of information. In instance a
given input ycin (which represent the information) at time tin should be stored into the cell
state sc until the information is required at time tout.
To be able to prove the following properties, we will assume the truncated gradient defined
in Definition 1. Nevertheless we will use the full gradient in our Experiments, because it
turned out that it works much better. The next two properties of a cell ensure the ability
to work as such a memory.
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Γ

c

cin

yI(t)

yH(t− 1)

ι

yI(t) yH(t− 1)

φ

yI(t) yH(t− 1)

ω

yI(t) yH(t− 1)

× + sc(t) × yc(t)

memory
sc(t−1)

×

Figure 3: Schematic diagram of a one-dimensional LSTM cell: The input (cin) is multiplied
by the IG (ι). The previous state sc(t − 1) is gated by the FG (φ) and added
to the activation coming from the IG and input. The output of the cell is the
squashed internal state (squashed by hc (x) = tanh(x)) and gated by the OG (ω).
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The first property should ensure that an input ycin at time tin can be memorized (the cell
input is open) in the internal activation sc until tout (the cell memorizes) and has a negligibly
influence on the internal activation for t > tout (the cell forgets). In addition, the cell is able
to prevent influence of other inputs at time steps t 6= tin (the cell input is closed).

Definition 4 (Not vanishing gradient (NVG)) A cell c allows an NVG :⇔
For arbitrary tin, tout ∈ N, tin ≤ tout, ∀δ > 0 there exist gate activations yyyΓ(t) such that for
any t1, t2 ∈ N

∂sc (t2)

∂ycin (t1)
∈
tr

{
[1− δ, 1] for t1 = tin and tin ≤ t2 ≤ tout

[0, δ] otherwise (5)

holds.

The next definition guaranties that at any time t ∈ N the gate activations can (the cell
output is open) or not (the cell output is closed) distribute the piece of information saved
in sc to the network. This is an important property because the piece of information can
be memorized in the cell without presenting it to the network. Note that the decision is
just dependent on gate activations at time t and there are no constraints to previous gate
activations. In Definition 2 we require yc(t) ∈ [−1, 1] whereas sc(t) ∈ R. So we cannot have
arbitrarily small intervals of the derivative as in (5), but we can ensure two distinct intervals
for open and closed cell output. When we take Definition 4 and 5 together, a cell is able
to save an input over long term series, can decide at each time step whether or not it is
presented to the network and can forget the saved input.

Definition 5 (Controllable output dependency (COD)) A cell c of order k allows an
COD :⇔
There exist δ1, δ2 ∈ (0, 1), δ2 < δ1 so that for any time t ∈ N there exists a gate vector yyyΓ(t)
leading to open output dependency

∂yc (t)

∂sc (t)
∈ [δ1, 1] (6)

and there exists another gate vector yyyΓ(t) leading to a closed output dependency

∂yc (t)

∂sc (t)
∈ [0, δ2] . (7)

The third property is a kind of stability criterion. An unwanted case is that a small change
(caused by any noisy signal) at time step tin has a growing influence at later time steps.
This is equivalent to an exploding gradient over time. Controlling the gradient of the whole
system and avoiding him not to explode is a hard problem. But we can at least avoid the
exploding gradient in one cell. This should be prohibited for any gate activations.

Definition 6 (Not exploding gradient (NEG)) A cell c has an NEG :⇔
For any time steps tin, t ∈ N, tin < t and any gate activations yyyΓ(t) the truncated gradient
in bounded by

∂sc (t)

∂sc (tin)
∈
tr

[0, 1] .
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We think that a cell fulfilling these three properties can work as stable memory. To be able
to prove these properties for the LSTM cell we have to considerate the gate activations.
In general, the activation function of the gates does not have to be the logistic activation
function flog, whereas for this paper we set ∀γ ∈ Γ : fγ := flog. So the activation of gates
can never be exactly 0 or 1, because of a finite input activation netγ(t) to the gate activation
function. But a gate can have an activation yγ(t) ∈ [1− ε, 1) if it is opened or yγ(t) ∈ (0, ε]
if it is closed, because for a realistic large input activation netγ(t) ≥ 7 (low input activation
netγ(t) < −7) we get an activation within the interval yγ(t) ∈ [1 − ε, 1) (yγ(t) ∈ (0, ε])
with ε < 1

1000 . Handling with these activation intervals we can prove the definitions for the
LSTM cell. Now we can prove whether or not the LSTM cell has these properties.

Theorem 7 (Properties of the LSTM cell) The 1D LSTM cell allows NVG and has an
NEG, but does not allow COD.

Proof see A.1 in appendix.

4. Expanding to More Dimensions

In A. Graves, S. Fernandez andJ. Schmidhuber (2007) the 1D LSTM cell is extended to an
arbitrary number of dimensions; this is solved by using one FG for each dimension. In many
publications using the MD LSTM cell in MDRNNs outperform state-of-the-art recognition
systems (for example see A. Graves andJ. Schmidhuber, 2008).
But by expanding the cell to the MD case, the absolute value of the internal state |sc| can
grow faster than linear over time. When

∣∣spppc ∣∣ → ∞ and there are peephole connections
(for peephole connection details see F. A. Gers, N. Schraudolph andJ. Schmidhuber, 2002),
the cells have an output activation of ypppc ∈ {−1, 0, 1}: The internal state multiplied by the
peephole weight overlays the other activation-weight-products and this leads to an activation
of the OG yp

pp
ω ∈ {0, 1} and a squashed internal state hc

(
sp
pp
c

)
∈ {−1, 1}. So the output of the

cell is ypppωhc
(
sp
pp
c

)
= yp

pp
c ∈ {−1, 0, 1}. But also without peephole connections the internal state

can grow, which leads to hc
(
sp
pp
c

)
∈ {−1, 1} and the cell works like a conventional unit with

a logistic activation function yc(t) ≈ ±yω(t).
Our goal is to transfer the Definitions 4, 5 and 6 defined in Section 3 into the MD case and
we will see that the MD LSTM cell has an exploding gradient. In the next sections we will
provide alternative cell types, that fulfill two or all of these definitions.
In the 1D case it is clear, that there is just one way to come from date t1 to date t2, when
t1 < t2, by incrementing t1 as long as t2 is reached. For the MD case the number of paths
depends on the number of dimensions and the distance between these two dates. An MD
path is defined as follows.

Definition 8 (MD path) Let ppp,qqq ∈ ND be two dates. A ppp-qqq-path π of length k ≥ 0 is a
sequence

π := {ppp = ppp0, ppp1, . . . , pppk = qqq}

with ∀i ∈ {1, . . . , k}∃!d ∈ {1, . . . , D} : (pppi)
−
d = pppi−1. Further, let πi := pppi.

11
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We can define the distance vector

−→pppqqq := qqq − ppp =

 qqq1 − ppp1
...

qqqD − pppD

 =


−→pppqqq1
...
−→pppqqqD


between the dates ppp and qqq. When −→pppqqq has at least one negative component, there exists no
ppp-qqq-path. Otherwise there exist exactly

#{−→pppqqq} :=

 ∑D
i=1
−→pppqqqi

−→pppqqq1, . . . ,
−→pppqqqD

 =

(∑D
i=1
−→pppqqqi
)

!∏D
i=1
−→pppqqqi!

ppp-qqq-paths (compare with the multinomial coefficient). We write ppp < qqq when #{−→pppqqq} ≥ 1 and
ppp ≤ qqq when ppp = qqq ∨ ppp < qqq. Now we can extend the definitions of the 1D case to the MD
case, whereas we concentrate on the MD cells of order 1.

Definition 9 (MD cell) An MD cell, c, of order 1 and dimension D consists of the same
parts as a 1D cell of order 1. The cell update in date ppp ∈ ND is performed in three subsequent
phases:

1. Following the classical update scheme of neurons (see Section 2), all units in Γ ∪
{cin} synchronously calculate their activations, which will be denoted by yyypppΓ =

(
yp
pp
γ

)
γ∈Γ

.
Furthermore, we call ypppcin the input activation of the cell.

2. Then, the cell computes it’s so-called internal state

spppc := gint

(
yyyp
pp
Γ, y

ppp
cin , s

ppp−1
c , . . . , s

ppp−D
c

)
.

3. Finally, the cell computes it’s so-called output activation

ypppc := gout

(
yyyp
pp
Γ, y

ppp
cin , s

ppp
c , s

ppp−1
c , . . . , s

ppp−D
c

)
.

Using this, we can reintroduce the LSTM cell as well as Definition 4, 5 and 6 for the MD
case:

Definition 10 (MD LSTM cell) An MD LSTM cell is a cell of dimension D and order
1 where hc = tanh and

• Γ = {ι, (φ, 1) , . . . , (φ,D) , ω}

• spppc = gint

(
yyyp
pp
Γ, y

ppp
cin , s

ppp−1
c , . . . , s

ppp−D
c

)
= yp

pp
ι y
ppp
cin +

D∑
d=1

s
ppp−d
c yp

pp
φ,d

• ypppc = gout
(
yyyp
pp
Γ, s

ppp
c

)
= hc

(
sp
pp
c

)
yp
pp
ω
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Definition 11 (MD Not vanishing gradient (NVG)) An MD cell c allows an NVG
:⇔
For arbitrary pppin, pppout ∈ ND, pppin ≤ pppout,∀δ > 0 there exist ∀ppp ∈ ND gate activations yyypppΓ such
that for any ppp1, ppp2 ∈ ND

∂s
ppp2
c

∂y
ppp1
cin

∈
tr

{
[1− δ, 1] for ppp1 = pppin and pppin ≤ ppp2 ≤ pppout

[0, δ] otherwise (8)

holds.

Definition 12 (MD Controllable output dependency (COD)) An MD cell c allows
an COD :⇔
There exist δ1, δ2 ∈ (0, 1), δ2 < δ1 so that for any time t ∈ N there exists a gate vector yyypppΓ
leading to open output dependency

∂yp
pp
c

∂sp
pp
c
∈ [δ1, 1] (9)

and there exists another gate vector yyypppΓ leading to a closed output dependency

∂yp
pp
c

∂sp
pp
c
∈ [0, δ2] . (10)

Definition 13 (MD Not exploding gradient (NEG)) An MD cell c has an NEG :⇔
For any time steps pppin, ppp ∈ ND, pppin < ppp and any gate activations yyypppΓ the truncated gradient
in bounded by

∂sp
pp
c

∂s
pppin
c
∈
tr

[0, 1]

We can now consider these definitions for the MD LSTM cell.

Theorem 14 (NVG of MD LSTM cells) An MD LSTM cell allows an NVG.

Proof see A.2 in appendix

For arbitrary activations of FGs the partial derivative ∂sp
pp
c

∂s
pppin
c

can grow over time:

Theorem 15 (NEG of MD LSTM cells) An MD LSTM cell can have an exploding gra-
dient, when D ≥ 2.

Proof see A.3 in appendix.

The MD LSTM cell does not allow the COD, because the 1D case is a special case of the
MD case.
Our idea for the next section is to change the MD LSTM layout, so that it has an NEG.

13
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5. Reducing the MD LSTM Cell to One Dimension

In the last section, we showed that the MD LSTM cell can have an exploding gradient.
We tried different ways to solve this problem. For example we divided the activation of
the FG by the number of dimensions. Then the gradient cannot explode over time, but
the gradient vanishes along some paths rapidly. Another approach was to give the cells the
opportunity to learn to stabilize itself, when the internal state starts diverging. Therefore
we add an additional peephole connection between the square value of the previous internal

states
(
s
ppp−d
c

)2

and the FGs so that the cell is able to learn that it has to close the FG for

large internal states. This also does not make a significant difference. Also forcing the cell
to learn to stabilize itself by adding an error

Lossstate = ε ‖spppc‖p

with p = {1, 2, 3, 4} and different learning rates ε does not work. So we tried to change the
layout of the MD LSTM cell.

5.1 MD LSTM Stable Cell

In Section 3 we realized that 1D LSTM cells work good and the gradient does not explode,
but in the MD case it does. Our idea is to combine the previous states sppp

−
d
c at date ppp to one

previous state sppp
−
c and take the 1D form of the LSTM cell. For this reason we call this cell

LSTM Stable cell.
Therefore, a function

sppp
−
c = f

(
s
ppp−1
c , . . . , s

ppp−D
c

)
is needed, so that the following two benefits of the 1D LSTM cell remain:

1. The MD LSTM Stable cell has an NEG

2. The MD LSTM Stable cell allows NVG.

The convex combination

sppp
−
c = f

(
s
ppp−1
c , . . . , s

ppp−D
c

)
=

D∑
d=1

λp
pp
ds
ppp−d
c ,∀d = 1, . . . , D : λp

pp
d ≥ 0,

D∑
d=1

λp
pp
d = 1 (11)

of all states satisfies these both points (see Theorems 17 and 18). To calculate these D
coefficients we want to use the activation of D gates and we call them lambda gates (LG or
λ).

Definition 16 (MD LSTM Stable cell) An MD LSTM Stable cell is a cell of dimension
D and order 1 where hc = tanh and

• Γ = {ι, (λ, 1) , . . . , (λ,D) , φ, ω}

14
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• sppp
−
c = gconv

(
yyyp
pp
Γ, s

ppp−1
c , . . . , s

ppp−D
c

)
=

D∑
d=1

s
ppp−d
c

yp
pp
λ,d

D∑
d′=1

yp
pp

λ,d′

• spppc = gint

(
yyyp
pp
Γ, y

ppp
cin , s

ppp−
c

)
= yp

pp
ι y
ppp
cin + sp

pp−
c yp

pp
φ

• ypppc = gout
(
yyyp
pp
Γ, s

ppp
c

)
= yp

pp
ωhc

(
sp
pp
c

)
Using these equations we can test the cell for its properties. The MD LSTM Stable cell
does not have the COD, because the 1D LSTM cell also does not have this property. For
the other propertiese we get:

Theorem 17 (LTD of MD LSTM Stable cells) An MD LSTM Stable cell allows NVG.

Proof See A.4 in appendix.

Theorem 18 (NEG of MD LSTM Stable cells) An MD LSTM Stable cell has an NEG.

Proof See A.5 in appendix.

Reducing the number of gates by one. When D ≥ 2 an MD LSTM Stable cell has
one more gate than a classical MD LSTM (for D = 1 the both cells are equivalent). But it
is possible to reduce the number of LGs by one. One solution is to choose one dimension
d′ ∈ {1, . . . , D} which does not get an LG. Its activation is calculated by

yp
pp
λ,d′ =

∏
d∈{1,...,D}\{d′}

(
1− ypppλ,d

)
.

In the special case of D = 2 we can choose d′ = 2 and we get
∑2

d′=1 yλ,d′ = yλ,1+(1− yλ,1) =
1 and the update equation of the internal state can be simplified to

spppc = gint

(
ypppι , y

ppp
λ,1, y

ppp
φ, s

ppp−1
c , s

ppp−2
c

)
= ypppι y

ppp
cin + yp

pp
λ,1s

ppp−1
c +

(
1− ypppλ,1

)
s
ppp−2
c .

6. Bounding the Internal State

In the last sections we discussed the growing of the EC over time and we found a solution to
have a NGEC for higher dimensions. Nevertheless it is possible that the internal state grows
linearly over time. When we take a look at Definition 10, we see that the partial derivative
for ppp = pppout depends on h′c

(
sp
pp
c

)
. So having the inequality

∂yp
pp
c

∂sp
pp
c
≤ h′c (spppc) with h′c (spppc)

|spppc |→∞−−−−−→ 0
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the cell allows NVG defined in Definition 11, but actually we have ∂y
pppout
c

∂y
pppin
cin

|spppoutc |→∞
−−−−−−−→ 0 for

arbitrary gate activations. Again, ideas like state decay, additional peephole connections or
additional loss functions like mentioned in Section 4 either do not work or destroy the NVG
of the LSTM and LSTM Stable cell. So, our solution is to change the architecture of the
MD LSTM Stable cell, so that it fulfills has an NEG and allows NVG and COD. The key
idea is to bound the internal state, so that for all inputs

∣∣ypppcin∣∣ ≤ 1, ppp ∈ ND the internal
state is bounded by

∣∣spppc ∣∣ ≤ 1.
Note that this is comparable with the well-known Bounded-Input-Bounded-Output-Stability
(BIBO-Stability). To create an MD cell that has an NEG, allows NVG and has a bounded
internal state, we take the MD LSTM Stable cell proposed in the last section and change
its layout. Therefore we calculate the activation of the IG as function of the FG, so that
we achieve

∣∣spppc ∣∣ ≤ 1 by choosing ypppι := 1 − ypppφ. So the activation of the FG controls how
much leaks from the previous states. The activation of the FG can also be interpreted as
switch, if the internal activation, the new activation or a convex combination of these both
activations should be stored in the cell. So the sc can be seen as time-dependent exponential
moving average of ycin .

Definition 19 (MD Leaky cell) An MD Leaky cell is a cell of dimension D and order 1
where hc = tanh and

• Γ = {(λ, 1) , . . . , (λ,D) , φ, ω}

• sppp
−
c = gconv

(
yyyp
pp
Γ, s

ppp−1
c , . . . , s

ppp−D
c

)
=

D∑
d=1

s
ppp−d
c

yp
pp
λ,d

D∑
d′=1

yp
pp

λ,d′

• spppc = gint

(
yyyp
pp
Γ, y

ppp
cin , s

ppp−
c

)
=
(

1− ypppφ
)
yp
pp
cin + sp

pp−
c yp

pp
φ

• ypppc = gout
(
yyyp
pp
Γ, s

ppp
c

)
= yp

pp
ωhc

(
sp
pp
c

)
Now we can prove that the resulting cell has all benefits.

Theorem 20 The MD Leaky cell has an NEG and allows NVG and COD.

Proof See A.6 in appendix.

The MD Leaky cell can have one gate less than the MD LSTM cell and the MD LSTM
Stable cell and because of this, the update path requires less computations.

7. General Derivation of Leaky Cells

So far we proposed cells for the MD case, which are able to provide long term memory. But
especially in MDRNNs with more than one MD layer it is hard to measure if and how much
long term dependencies are used and even if it is useful. Another way to interpret the cell
is to consider them as kind of MD feature extractor like “feature maps” in Convolutional
Neural Networks (Bengio and LeCun, 1995). Then the aim is to construct an MD cell which
is able to generate useful features. Having a hierarchical Neural Network like in Bengio and
LeCun (1995) and A. Graves andJ. Schmidhuber (2008) over the hierarchies the number of
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features increases with a simultaneously decreasing feature resolution. Features in a layer
with low resolution can be seen as low frequency features in comparison to features in a layer
with high resolution. So it would be useful to construct a cell as feature extractor which
produces a low frequency output in comparison to its input. In appendix B we take a closer
look at the theory of linear shift invariant (LSI)-systems and their frequency analysis and
analyse a first order LSI-system regarding its free selectable parameters using the F- and
Z-transform. There, we derive the MD LeakyLP cell (see Definition 21) and 5 additional
first order MD cells, which we do not test in Section 8.

Definition 21 (MD LeakyLP cell) An MD LeakyLP cell is a cell of dimension D and
order 1 where hc = tanh and

• Γ = {(λ, 1) , . . . , (λ,D) , φ, ω0, ω1}

• sppp
−
c = gconv

(
yyyp
pp
Γ, s

ppp−1
c , . . . , s

ppp−D
c

)
=

D∑
d=1

s
ppp−d
c

yp
pp
λ,d

D∑
d′=1

yp
pp

λ,d′

• spppc = gint

(
yyyp
pp
Γ, y

ppp
cin , s

ppp−
c

)
=
(

1− ypppφ
)
yp
pp
cin + sp

pp−
c yp

pp
φ

• ypppc = gout

(
yyyp
pp
Γ, s

ppp
c , s

ppp−
c

)
= hc

(
sp
pp
cy
ppp
ω0 + sp

pp−
c yp

pp
ω1

)
Setting the second OG (ypppω1) to zero, the LeakyLP cell corresponds to the Leaky cell, hence
it fulfills all three properties, but has one more gate, which is as much gates as the LSTM
cell.

8. Experiments

RNNs with 1D LSTM cells are well studied. In some experiments the activations of the gates
and the internal state are observed and one can see that the cell can really learn, when to
“forget” information and when the internal state should be accessible for the network (see F.
A. Gers, N. Schraudolph andJ. Schmidhuber, 2002). However, we did not find experiments
like these for the MD case and we do not want to transfer these experiments into the MD
case. Instead we compare the different cell types with each other in two scenarios where the
MD RNNs with LSTM cells perform very well. In both benchmarks the task is to transcribe
a handwritten text on an image, so we have a 2D RNN. In this case we compare the cells
on the IFN/ENIT (Pechwitz, M. and Maddouri, S. and Märgner, V. and Ellouze, N. and
Amiri, H. and others, 2002) and the Rimes database (Augustin, E. and Brodin, J.-M and
Carré, M. and Geoffrois, E. and Grosicki, E. and Prêteux, F., 2006). Both tasks are solved
with the MD RNN layout described in A. Graves andJ. Schmidhuber (2008) and shown in
Figure 4. All networks are trained with Backpropagation through time (BPTT) . To
compare the different cell types in RNNs with each other we take 10 RNNs with different
weight initializations of each cell type and calculate the minimum, the maximum and the
median of the best label error rate (LER) on a validation set of these 10 RNNs. In all tables
we present these three LERs to compare the cell types.
We think it is more important to have stable cells in the lower MD layers because of two
reasons: First, when we have just a few cells in a layer, the saturation of one cell has a
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INPUT LAYER

2D LAYER 1

0D LAYER 2

2D LAYER 2

0D LAYER 3

2D LAYER 3

OUTPUT LAYER

Subsample 1

Subsample 2

Subsample 3

Figure 4: Architecture of the hierarchical MDRNN used for the experiments: It is equivalent
to A. Graves andJ. Schmidhuber (2008, Figure 2). A 2D layer contains 22 distinct
layers (for each combination of scanning direction left/right and up/down one
layer). To reduce the number of weights between two 2D layers, a 0D layer
is inserted, which contains units with tanh as activation function. They have
dimension 0 because they have no recurrent connections. These layers can be seen
as feed-forward or convolutional layer. Each 2D layer (or its allocated 0D layer)
reduces its size in in x and y dimension using a two-dimensional subsampling.
Simultaneously the number of feature maps (z-dimension) increases to have no
bottleneck between input and output layer.

greater effect on the performance of the network. Second, in lower layers there are longer
time series so having an unstable cell in such a layer, it has time to saturate. So our first
experiment compares the recognition results when we substitute the LSTM cells in the lowest
layer (which is “2D layer 1” in Figure 4) by the newly developed cells.
In the second experiment we compare the LSTM cell and the LeakyLP cell also in the higher
MD layers (“2D layer 2 and 3 in Figure 4), to evaluate if the LeakyLP cell work better also
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Label-Error-Rate in Percent
Celltype min max median
LSTM 8,58% 14,73% 10,58%
Stable 8,78% 11,75% 9,55%
Leaky 8,87% 10,47% 9,10%

LeakyLP 8,24% 9,40% 8,93%

Table 1: Different cell types in the lowest MD layer

in long time series.
In Bengio (2012, 3.1.1) it is mentioned, that an important hyper parameter for a training
is the learning rate, so another experiment is to train all networks with stochastic gradient
decent with different learning rates δ ∈

{
1 · 10−3, 5 · 10−4, 2 · 10−4, 1 · 10−4

}
and compare

the best LER according a fixed learning rate.

8.1 The IFN/ENIT Database

This database contains handwritten names of towns and villages of Tunisia. The set is
divided into 7 (a-f,s) sets, where 5 (a-e) are available for training and validation (for details
see Pechwitz, M. and Maddouri, S. and Märgner, V. and Ellouze, N. and Amiri, H. and
others, 2002). With all information we got from A. Graves, we were able to get comparable
results to A. Graves andJ. Schmidhuber (2008). Therefor we divide the sets a-e into 30000
training samples and 2493 validation samples. All network are trained 100 epochs with a
fixed learning rate δ = 1 · 10−4. The LER is calculated on the validation set.

8.1.1 Different Cells in the Lowest MD Layer

In our first experiment we substitute the LSTM cell in the lowest MD layer. We take some of
the cells described in this paper. In Table 1 the results are shown. The first row is the same
RNN layout used in A. Graves andJ. Schmidhuber (2008). We can see, that the LeakyLP
cell performs the best. Nevertheless the worst RNN with LeakyLP cells in the lowest MD
layer performs worth than the best RNN with LSTM cells. So we cannot say, that LeakyLP
is always better. But it can be observed that the variance of the RNN performance is
very high with LSTM cells in the lowest MD layer. Our interpretation is that LSTM cells
have a comparable performance like the LeakyLP cells in the lowest layer, when they do
not saturate. Note, that the Leaky cell has one gate less, so they are faster and have less
trainable weights.

8.1.2 Different Cells in Other MD Layers

Now we want to compare the best new developed cell—the LeakyLP cell—with the LSTM
cell in the other MD layers. So we also substitute the LSTM cell in the upper MD layers. We
enumerate the 2D layers like shown in Figure 4. In Table 2 we can see that substituting the
LSTM cells only in the lowest or in the both lowest layer perform slightly better. The best
results can be achieved when we use LeakyLP cells in 2D layer 1 and LSTM cells in 2D layer
3. Using LSTM in the middle layer seems to work slightly better than using the LeakyLP
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Celltype in 2D layer Label-Error-Rate in Percent
1 2 3 min max median

LSTM LSTM LSTM 8,58% 14,73% 10,58%
LeakyLP LSTM LSTM 8,24% 9,40% 8,93%
LeakyLP LeakyLP LSTM 8,35% 11,27% 8,91%
LeakyLP LeakyLP LeakyLP 8,92% 11,69% 9,74%

Table 2: Different cells in other layers

Label-Error-Rate in Percent
Celltype BP-delta min max median
LSTM 1 · 10−4 8,58% 14,73% 10,58%
LSTM 2 · 10−4 9,15% 16,86% 10,51%
LSTM 5 · 10−4 9,03% 21,77% 11,44%
LSTM 1 · 10−3 10,21% 30,20% 11,44%

LeakyLP 1 · 10−4 8,92% 11,69% 9,74%
LeakyLP 2 · 10−4 8,38% 9,09% 8,81%
LeakyLP 5 · 10−4 8,25% 8,95% 8,78%
LeakyLP 1 · 10−3 8,29% 9,20% 8,88%
LeakyLP 2 · 10−3 8,95% 12,81% 9,55%

Table 3: Performance of cells regarding learning-rate

cells instead. This fits to our intuition mentioned before that the LSTM cells perform better
when they do not have a too long time series and when there are enough cells in one layer
which do not saturate.

8.1.3 Performance of Cells Regarding Learning-Rate

When we take a look at the update equations and the proofs of the NEG it can be assumed,
that the gradient going through the cells is lower for LeakyLP cells in contrast to LSTM
cells. So we think the learning rate have to be larger for LeakyLP cells. In Table 3 we
compare the networks with either only LSTM or LeakyLP cells. There we can see that the
learning rate have to be much higher for the LeakyLP cells. In addition, the RNNs with
LeakyLP cells are more robust to the choice of the learning rate.

8.2 The Rimes Database

One task of the Rimes database is the handwritten word recognition (for more details see E.
Grosicki, M. Carré, J.-M. Brodin andE. Geoffrois, 2008; E. Grosicki andH. El-Abed, 2011).
It contains 59292 images of french single words. It is divided into distinct subsets; a training
set of 44196 samples, a validation set of 7542 samples and a test set of 7464 samples. We
train the MD RNNs by using the training set for training and calculate the LER over the
validation set, so the network is trained on 44196 training samples each epoch. The network
used in this section differs only in the subsampling rate between two layers from the network
used in A. Graves andJ. Schmidhuber (2008). When there is a subsampling between layers,
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Label-Error-Rate in Percent
Celltype min max median
LSTM 14,96% 17,63% 16,50%
Stable 14,45% 16,02% 15,11%
Leaky 14,77% 16,39% 15,85%

LeakyLP 14,63% 15,78% 15,30%

Table 4: Different cell types in the lowest MD layer

Celltype in 2D layer Label-Error-Rate in Percent
1 2 3 min max median

LSTM LSTM LSTM 14,96% 17,63% 16,50%
LeakyLP LSTM LSTM 14,63% 15,78% 15,30%
LeakyLP LeakyLP LSTM 14,21% 15,57% 14,92%
LeakyLP LeakyLP LeakyLP 14,94% 16,18% 15,52%

Table 5: Different cells in other layers

the factors are 3 × 2 instead of 4 × 3 or 4 × 2. The rest of the experiment is the same like
described in Section 8.1.

8.2.1 Different Cells in the Lowest MD Layer

In Table 4 we can see that substituting the LSTM in the lowest layer by one of the three
cells improves the performance of the network, even the Leaky cell with one gate less.

8.2.2 Different Cells in Other MD Layers

We want to see the effect of the substitution of the LSTM cell by the LeakyLP cell in the
upper MD layers. In Table 5 we can see that using LeakyLP cells in both lowest layers
perform very well. So we also take this setup to try different learning rates.

Performance of Cells Regarding Learning-Rate. Using different learning rates we
can see that the RNN with LeakyLP cells in the both lowest layers and the LSTM cells in
the top layer can significantly improve the performance . Even the maximal LER of this
RNN works better than the best network with LSTM cells in each layer.

9. Conclusion

In this paper we took a look at the one-dimensional LSTM cell and discussed the benefits
of this cell. We found two properties, that probably make these cells so powerful in the
one dimensional case. Expanding these properties to the multi dimensional case, we saw
that the LSTM does not fulfill one of these properties any more. We solved this problem
by changing the architecture of the cell. In addition we presented a more general idea how
to create one dimensional or multi dimensional cells. We compare some newly developed
cells with the LSTM cell on two data sets and we can improve the performance using the
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Label-Error-Rate in Percent
Celltype BP-delta min max median
LSTM 1 · 10−4 14,96% 17,63% 16,50%
LSTM 2 · 10−4 14,41% 16,88% 15,61%
LSTM 5 · 10−4 15,05% 16,27% 15,47%

LeakyLP 1 · 10−4 14,94% 16,18% 15,52%
LeakyLP 5 · 10−4 12,68% 13,95% 13,57%

LeakyLP in 2D layer 1 & 2 2 · 10−4 13,26% 14,04% 13,65%
LeakyLP in 2D layer 1 & 2 5 · 10−4 12,08% 13,42% 12,87%

Table 6: Performance of cells regarding learning-rate

new cell types. Due to this we think that substituting the multi-dimensional LSTM cells by
the multi-dimensional LeakyLP cell could improve the performance of many system working
with a multi-dimensional space.

Appendix A. Proofs

A.1 Proof of 7

Proof Let c be a 1D LSTM cell. To get the derivative ∂sc(t2)
∂sc(t1) according the truncated

gradient between two time steps t1, t2 ∈ N we have to take a look at gint.

∂sc (t2)

∂sc (t1)
=
∂gint (yyyΓ(t2), ycin(t2), sc(t2 − 1))

∂sc (t1)
(12)

=
∂ (ycin(t2)yι(t2))

∂sc (t1)︸ ︷︷ ︸
=
tr

0

+
∂sc(t2 − 1)

∂sc (t1)
yφ(t2) + sc(t2 − 1)

∂yφ(t2)

∂sc (t1)︸ ︷︷ ︸
=
tr

0

=
tr

∂sc(t2 − 1)

∂sc (t1)
yφ(t2)

=
tr

t2∏
t=t1+1

yφ(t) (13)

In addition, ∀t ∈ N we have

∂sc (t)

∂ycin (t)
= yι(t) and

∂yc (t)

∂sc (t)
= h′c (sc(t)) yω(t). (14)

We will prove the properties successively.
NEG: For the LSTM cell the FG fφ = flog ensures yφ(t) ∈ (0, 1), so using these bounds in
(13) with

∂sc (t)

∂sc (tin)
=
tr

t∏
t′=tin+1

yφ(t′) ∈ (0, 1)
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the LSTM cell has an NEG.
NVG: Therefore, we choose

yι (t) ∈
{

[1− ε, 1) if t = tin
(0, ε] otherwise ,

yφ (t) ∈
{

[1− ε, 1) if tin < t ≤ tout
(0, ε] otherwise ,

with a later chosen ε > 0. Let t1, t2 ∈ N, t1 ≤ t2 be two arbitrary dates, where we want to
calculate the gradient ∂sc(t2)

∂ycin (t1) . First, we want to show that the LSTM cell allows NVG for
t1 = tin and tin ≤ t2 ≤ tout:
We have yι(t1) ∈ [1 − ε, 1) and ∀t = tin + 1, . . . , tout : yφ(t) ∈ [1 − ε, 1). Then, we can
estimate the derivative from (12) and (14) by

∂sc (t2)

∂ycin (t1)
=
∂sc (t2)

∂sc (t1)

∂sc (t1)

∂ycin (t1)
=
tr
yι (t1)

t2∏
t=t1+1

yφ (t)

∈
tr

[
(1− ε)

t2∏
t=t1+1

(1− ε) , 1

)
⊆

[
(1− ε)tout−tin+1 , 1

)
.

To fulfill the equation for NVG we choose ε depending on δ such that

1− δ ≤ (1− ε)tout−tin+1

⇔ ε ≤ 1− (1− δ)
1

tout−tin+1

holds. Second, we have to show, that the derivative is in [0, δ], when t1 = tin and tin ≤ t2 ≤
tout is not fulfilled.
In the case of t1 6= tin when ε ≤ δ we can use the NEG which leads to

∂sc (t2)

∂ycin (t1)
=
∂sc (t2)

∂sc (t1)︸ ︷︷ ︸
∈
tr

[0,1]

∂sc (t1)

∂ycin (t1)︸ ︷︷ ︸
∈(0,ε]

⊆ [0, ε] ⊆ [0, δ].

When t1 = tin we have two cases: t2 < tin or t2 > tout. For the case t2 < tin the derivative
is zero (⊂ [0, δ]), because the cell is causal. For t2 > tout we can split the derivative at tout
and get

∂sc (t2)

∂ycin (t1)
=
tr
yι(t1)

tout∏
t=t1+1

yφ(t)︸ ︷︷ ︸
∈(0,1)

t2∏
t=tout+1

yφ(t)︸ ︷︷ ︸
∈(0,ε]

∈
tr

(
0, εt2−tout

]
⊂ [0, ε] ⊆ [0, δ].

For ε ≤ min
{
δ, 1− (1− δ)

1
tout−tin+1

}
the LSTM cell allows NVG.

COD: To prove that the LSTM cell has no COD, we show that there are gate activations
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such that in Definition 5 we get δ2 > δ1. Therefore, we assume that all gate activations are
arbitrary (yγ(t) ∈ (0, 1)), closed (yγ(t) ∈ (0, ε]) or opened (yγ(t) ∈ [1 − ε, 1)) with a later
chosen ε > 0. We take a look at the right side of (14). For sc(t) = 0 we get h′c (sc(t)) = 1.
In Definition 5 we have to satisfy ∃yyyΓ(t) : ∂yc(t)

∂sc(t)
∈ [0, δ2] an choose the OG yω(t) ∈ (0, ε]

with

ε ≤ δ2. (15)

But then for t′ = 1, . . . , t− 1 we can choose the IG and FG open with the same ε so that

yφ(t′), yι(t
′) ∈ [1− ε, 1) .

When for all time steps t′ = 1, . . . , t there is a positive input ycin(t′) ∈ [c, 1), c ∈ (0, 1) ⊂ R
and an internal state sc(t′ − 1) < c (1−ε)

ε , the internal state is growing over time, because

sc(t
′) = ycin(t′)yι(t

′) + sc(t
′ − 1)yφ(t′)

≥ c(1− ε) + sc(t
′ − 1)(1− ε)

≥ sc(t′ − 1) + c(1− ε)− sc(t′ − 1)ε

> sc(t
′ − 1) + c(1− ε)− c(1− ε)

ε
ε

> sc(t
′ − 1).

For large sc(t) ≥ c (1−ε)
ε � 1 we can estimate

tanh(sc(t))︸ ︷︷ ︸
≈exp(−2sc(t))

≤ exp (−sc(t)) ≤ exp

(
−c(1− ε)

ε

)
.

This yields in (14) to the bound∣∣∣∣∂yc (t)

∂sc (t)

∣∣∣∣ =
∣∣h′c (sc(t)) yω(t)

∣∣ (16)

≤ exp

(
−c(1− ε)

ε

)
(17)

so in Definition 5 we get

δ1 ≤ exp

(
−c(1− ε)

ε

)
. (18)

But when we combine (15), (18) and the restriction in Definition 5, we have

ε ≤ δ2 < δ1 ≤ exp

(
−c(1− ε)

ε

)
,

but there exist ε, c, such that the inequality is not fulfilled, which is a contradiction.
Summarized, the 1D LSTM cell allows an NVG and has an NEG, but does not allow COD.
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A.2 Proof of 14

Proof Let c be an MD LSTM cell of dimension D, ppp,ppp1, ppp2, pppin, pppout ∈ ND, pppin ≤ pppout
arbitrary dates and hc = tanh the sigmoid function. Besides ε > 0 is a later chosen value.
In the first step we want to show that there are activations of the forget gates, so that

∂sp
pp
c

∂s
pppin
c
∈
tr

{ [
(1− ε)‖ppp−pppin‖1 , 1

]
for pppin ≤ ppp ≤ pppout

[0, Dε] otherwise
(19)

is fulfilled. The prove is done using induction over k = ‖ppp − pppin‖1 with ppp ≥ pppin. The base
k = 0 is clear. Let be k ≥ 1. We define

Pppp :=
{
d ∈ {1, . . . , D} | ppp−d ≥ pppin

}
the set of dimensions d, in which are pppin-ppp

−
d -paths. Note, that this set cannot be empty,

because ppp > pppin for k ≥ 1. When we have a dimension d ∈ Pppp then
∥∥ppp−d − pppin∥∥1

= k− 1 and
we assume

∂s
ppp−d
c

∂s
pppin
c
∈
tr

[
(1− ε)‖ppp

−
d −pppin‖1 , 1

]
=
[
(1− ε)k−1 , 1

]
. (20)

Then we choose the activations of the FG to be

yp
pp
φ,d ∈

{ [
1−ε
|Pppp| ,

1
|Pppp|

)
for d ∈ Pppp and pppin < ppp ≤ pppout

[0, ε] otherwise
. (21)

Then we can estimate the derivative for pppin ≤ ppp ≤ pppout using (20) and (21) to

∂sp
pp
c

∂s
pppin
c

=
tr

∑
d∈Pppp

∂s
ppp−d
c

∂s
pppin
c
yp
pp
φ,d ∈

∑
d∈Pppp

∂s
ppp−d
c

∂s
pppin
c

1− ε
|Pppp|

,
∑
d∈Pppp

∂s
ppp−d
c

∂s
pppin
c

1

|Pppp|


⇒ ∂sp

pp
c

∂s
pppin
c
∈
tr

[
|Pppp| (1− ε)k−1 1− ε

|Pppp|
, |Pppp|

1

|Pppp|

)
⇔ ∂sp

pp
c

∂s
pppin
c
∈
tr

[
(1− ε)‖ppp−pppin‖1 , 1

)
, (22)

so (19) is fulfilled for pppin ≤ ppp ≤ pppout.
If we have ppp < pppin in (19), the derivative is 0, because we have a causal system.
For ppp > pppout in (19), we choose ε ≤ 1

D ≤
1
|Pppp| in (21) to ensure ∀ppp ∈ ND:

∣∣∣ ∂spppc
∂s
pppin
c

∣∣∣ ≤ 1 (see
(22)) and we get

∂sp
pp
c

∂s
pppin
c

=
tr

∑
d=1,...,D

∂s
ppp−d
c

∂s
pppin
c
yp
pp
φ,d ∈

0, Dε max
d=1,...,D

∂s
ppp−d
c

∂s
pppin
c

 ⊆ (0, Dε] , (23)

and (19) is fulfilled.
In the second step let ppp1 ≤ ppp2 be the date, for which we want to calculate the truncated
gradient ∂s

ppp2
c

∂y
ppp1
cin

. We choose the IG activation as

ypppι ∈
{

[1− ε, 1) if ppp = pppin
(0, ε] otherwise (24)
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and we get ∂sp
pp
c

∂yp
pp
cin

= yp
pp
ι . Using (22), (23) and (24), we can estimate the partial derivative by

∂s
ppp2
c

∂y
ppp1
cin

=
∂s

ppp2
c

∂s
ppp1
c

∂s
ppp1
c

∂y
ppp1
cin

⇒ ∂s
ppp2
c

∂s
ppp1
c
∈
tr

{ [
(1− ε)(1− ε)‖ppp2−pppin‖1 , 1

]
for ppp1 = pppin and pppin ≤ ppp2 ≤ pppout

[0, Dε] otherwise
.

and setting

ε := min

{
δ

D
, 1− (1− δ)

1

‖pppin−pppout‖1+1

}
the conditions of Definition 11 are fulfilled.

A.3 Proof of 15

Proof Let c be an MD cell of dimension D with the internal state sc and pppin, pppk ∈ ND, pppin ≤
pppk two dates. Let pppk be a date k steps further in each dimension than a fixed date pppin. So
the distance between them is ‖pppin − pppk‖1 = Dk. Let Π be the set of all pppin-pppk-paths, then
there exist |Π| = #{−−−→pppinpppk} paths (see Definition 8). We assume

yp
pp
φ,d ∈ [ε, 1− ε]

with ε ∈ (0, 0.5) and we can estimate the partial derivative, using the truncated gradient,
with

∂s
pppk
c

∂s
pppin
c

=
tr

∑
π∈Π

k∏
i=1

yπiφ,d

∈
tr

[
εk#{−−−→pppinpppk}, (1− ε)

k #{−−−→pppinpppk}
]
.

For D = 1 we get |Π| = 1 and the cell has a NGEC. When D ≥ 2 we can count the number
of paths using the Stirling’s approximation and we can estimate the number of paths with

#{−−−→pppinpppk} =

(
D∑
i=1

(−−−→pppinpppk
)
i

)
!

D∏
i=1

(−−−→pppinpppk
)
i
!

=
(Dk)!

(k!)D
k�1−−−→

√
2πDk

(
Dk
e

)Dk(√
2πk

(
k
e

)k)D =

√
DDDk

√
2πk

D−1
.

When we combine it with the FG activations we can estimate the derivative for great k with
the Stirling’s approximation and get

∂s
pppk
c

∂s
pppin
c
∈
tr

[
εDk#{−−−→pppinpppk}, (1− ε)

Dk #{−−−→pppinpppk}
]

(25)

k�1⇒ ∈
tr

[ √
D

√
2πk

D−1
(Dε)Dk ,

√
D

√
2πk

D−1
(D (1− ε))Dk

]
.
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The upper bound of this interval can grow for great k, if [D (1− ε)] > 1 and this is the case
for D ≥ 2. So the MD LSTM cell can have an exploding gradient for D ≥ 2. When the
weights to the FGs are initialized with small values, we have ypppφ,d ≈ 0.5. Then we have an
exploding gradient when D ≥ 3, when the training is starting. In the worst case we have
yp
pp
φ,d ≈ 1 and the derivative in (25) goes for great k to

∂s
pppk
c

∂s
pppin
c
≈

√
D

√
2π

D−1
k

1−D
2 (D)Dk .

A.4 Proof of 17

Proof Let c be an MD LSTM Stable cell of dimension D ≥ 2 (for D = 1 the proof is
equivalent to the 1D case of the LSTM cell), ppp,ppp1, ppp2, pppin, pppout ∈ ND, pppin ≤ pppout arbitrary
dates and hc = tanh the sigmoid function. Besides ε > 0 is a later chosen value.
In the first step we want to show that there are activations of the forget gates, so that

∂sp
pp
c

∂s
pppin
c
∈
tr

{ [
(1− (D − 1)ε)2‖ppp−pppin‖1 , 1

]
for pppin ≤ ppp ≤ pppout

[0, ε] otherwise
(26)

is fulfilled. The prove is done using induction over k = ‖ppp−pppin‖1. The base k = 0 is clear.
Let be k ≥ 1. We define

Pppp :=
{
d ∈ {1, . . . , D} | ppp−d ≥ pppin

}
the set of dimensions d, in which are pppin-ppp

−
d -paths. Note, that this set cannot be empty,

because ppp > pppin for k ≥ 1. When we have a dimension d ∈ Pppp then
∥∥ppp−d − pppin∥∥1

= k− 1 and
we assume

∂s
ppp−d
c

∂s
pppin
c
∈
tr

[
(1− (D − 1)ε)2‖ppp−d −pppin‖1 , 1

]
=
[
(1− (D − 1)ε)2(k−1) , 1

]
. (27)

When we choose the activations of the LGs to be

yp
pp
λ,d ∈

{
[1− ε, 1) for d ∈ Pppp and pppin < ppp ≤ pppout

(0, ε] otherwise ,
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we can estimate
∑
d∈Pppp y

ppp
λ,d∑D

d′=1 y
ppp

λ,d′
∈ (1− (D − 1)ε, 1], because

1 ≥
∑

d∈Pppp y
ppp
λ,d∑D

d′=1 y
ppp
λ,d′

=

∑
d∈Pppp y

ppp
λ,d∑

d∈Pppp y
ppp
λ,d +

∑
d∈{1,...,D}\Pppp y

ppp
λ,d′

(28)

≥ |Pppp| (1− ε)
|Pppp| (1− ε) + (D − |Pppp|)︸ ︷︷ ︸

≤D−1

ε

≥ |Pppp| (1− (D − 1)ε)

|Pppp| (1− (D − 1)ε) + (D − 1) ε

≥ (1− (D − 1)ε)
|Pppp|

|Pppp| − ε(D − 1) (|Pppp| − 1)

≥ (1− (D − 1)ε).

Setting the FG to

yp
pp
φ ∈

{
[1− ε, 1) for pppin < ppp ≤ pppout

(0, ε] otherwise (29)

we can estimate the derivative for pppin ≤ ppp ≤ pppout using (27),(28) and (29) to

∂sp
pp
c

∂s
pppin
c

=
tr
yp
pp
φ


∑
d∈Pppp

∂s
ppp−d
c

∂s
pppin
c

yp
pp
λ,d∑D

d′=1 y
ppp
λ,d′

+
∑

d∈{1,...,D}\Pppp

∂s
ppp−d
c

∂s
pppin
c

yp
pp
λ,d∑D

d′=1 y
ppp
λ,d′︸ ︷︷ ︸

=0


∈
tr

(
(1− ε) (1− (D − 1)ε)2(k−1) (1− (D − 1)ε), 1

)
⇒ ∂sp

pp
c

∂s
pppin
c
∈
tr

(
(1− (D − 1)ε)2k , 1

)
(30)

so (26) is fulfilled for pppin ≤ ppp ≤ pppout.
If we have ppp < pppin in (26), the derivative is 0, because we have a causal system.
For ppp > pppout the FG is closed (see (29)), and using the upper bounds of (27) and (28) we
get

∂sp
pp
c

∂s
pppin
c

=
tr
yp
pp
φ

 D∑
d=1

∂s
ppp−d
c

∂s
pppin
c

yp
pp
λ,d∑D

d′=1 y
ppp
λ,d′

 (31)

∈
tr

(0, ε]

and (26) is fulfilled.
In the second step let ppp1 ≤ ppp2 be the date, for which we want to calculate the truncated
gradient ∂s

ppp2
c

∂y
ppp1
cin

. We choose the IG activation as

ypppι ∈
{

[1− ε, 1) if ppp = pppin
(0, ε] otherwise (32)
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and we get ∂sp
pp
c

∂yp
pp
cin

= yp
pp
ι . Using (30), (31) and (32), we can estimate the partial derivative by

∂s
ppp2
c

∂y
ppp1
cin

=
∂s

ppp2
c

∂s
ppp1
c

∂s
ppp1
c

∂y
ppp1
cin

⇒ ∂s
ppp2
c

∂s
ppp1
c
∈
tr

{ [
(1− ε)(1− (D − 1)ε)2‖ppp2−pppin‖1 , 1

]
for ppp1 = pppin and pppin ≤ ppp2 ≤ pppout

[0, ε] otherwise
.

and setting

ε := min

{
δ,

(
1− (1− δ)

1
2‖pppin−pppout‖1+1

)
1

D − 1

}
the conditions of Definition 11 are fulfilled.

A.5 Proof of 18

Proof Let c be a MD LSTM Stable cell of dimension D with the internal state sc and
pppin, ppp ∈ ND, pppin ≤ ppp two arbitrary dates and ‖pppin − ppp‖1 = k. Let all gate activations be
arbitrary in [0, 1]. We show that

∂sp
pp
c

∂s
pppin
c
∈
tr

[0, 1] (33)

is fulfilled ∀k ∈ N using induction over k. For the base case k = 0 we get ∂sp
pp
c

∂s
pppin
c

= ∂s
pppin
c

∂s
pppin
c

= 1.
Let (33) be fulfilled for k − 1. That means if ppp−d ≥ pppin we have

∥∥ppp−d − pppin∥∥1
= k − 1 and

this leads to ∂s
ppp−
d
c

∂s
pppin
c
∈
tr

[0, 1]. If ppp−d � pppin then there is no pppin-ppp
−
d -path and we have ∂s

ppp−
d
c

∂s
pppin
c

= 0

for this dimension. Then we can calculate the derivative

0
∂sp

pp
c

∂s
pppin
c

=
tr
yp
pp
φ

D∑
d=1

∂s
ppp−d
c

∂s
pppin
c

yp
pp
λ,d

D∑
d′=1

yp
pp
λ,d′

∈

[
0,max
d∈Pppp

{
∂s

ppp−d
c

∂s
pppin
c

yp
pp
λ,d

D∑
d′=1

yp
pp
λ,d′︸ ︷︷ ︸

≤1

}]

∈
tr

[0, 1] ,

which gives us the desired interval.

A.6 Proof of 20

Proof
NEG: The cell has an NEG, because all gates have the same bounds as the MD Stable cell.
NVG: To prove the NVG, we use the proof of Theorem 17. The difference between the MD
Stable cell and the MD Leaky cell is that the activations of the FG and IG are dependent
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on each other for the Leaky cell. Let pppin, ppp ∈ ND, pppin ≤ ppp be two arbitrary dates like in
Theorem 17. The IG has just the a restriction that for ppp = pppin it has to hold ypppι ∈ [1− ε, 1)
. Here, the FG can have an arbitrary activation, so we chose ypppφ = 1−ypppι . For all ppp > pppin the
FG have to be in the ranges, shown in (29), while the IG has no restriction and we choose
yp
pp
ι = 1− ypppφ, so the MD Leaky cell has the NVG.
COD: The proof that the MD Leaky cell allows COD can be done by estimating the bounds
of spppc . From the update equations of the cell we get

∣∣∣sppp−c ∣∣∣ ≤ max
i=1,...,D

∣∣∣∣sppp−dc ∣∣∣∣ .
Now we can estimate the internal state using the ranges ypppcin ∈ [−1, 1], recursion over ppp

|spppc | =
∣∣∣(1− ypppφ

)
ypppcin + yp

pp
φs
ppp−
c

∣∣∣ ≤ max

{∣∣ypppcin∣∣ , ∣∣∣∣sppp−1c ∣∣∣∣ , . . . , ∣∣∣∣sppp−Dc ∣∣∣∣} ≤ max
qqq<ppp

{∣∣yqqqcin∣∣} ≤ 1

and get spppc ∈ [−1, 1]. To fulfill the derivatives in Definition 12, for δ1 we choose ypppω ∈ [1− ε, 1)
and get

δ1 ≤ min
sp
pp
c

{
h′c (spppc)

}
(1− ε) = h′c (1) (1− ε). (34)

For δ2 we choose ypppω ∈ (0, ε] and get

δ2 ≥ max
sp
pp
c

{
h′c (spppc)

}
ε = ε. (35)

To fulfill the derivatives in Definition 12 we use (34), (35) and h′c (1) > 1
3 and with

ε ≤ δ2 < δ1 ≤ h′c (1) (1− ε)

⇒ ε ≤ 1

4
<

h′c (1)

h′c (1) + 1

the COD is proven.

Appendix B. Theory to Create First Order MD Cells

If one wants to take a closer look at the theory of linear shift invariant (LSI)-systems and
their frequency analysis and analyse a first order LSI-system regarding its free selectable pa-
rameters using the F- and Z-transform, it is highly recommended to be familar with these
theories (for a good overview and more details see Poularikas, 2000; Schlichthärle, 2000).
Adding the knowledge of reducing the MD case to the 1D case (see Section 5) we create new
cell types for the MD case.
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B.1 Analysing a First Order LSI-System

The update equations of a first order LSI-system with one input u, one internal state x and
one output y can be written as

x[n] = h1(u[n], x[n− 1]) = α0u[n] + α1x[n− 1], (36)
y[n] = h2(x[n], x[n− 1]) = b0x[n] + b1x[n− 1] (37)

with the free selectable coefficients α0, α1, b0, b1 ∈ R. Let U(z) = Z {u[n]} be the Z-
transformed signal of u[n] and X(z), Y (z) respectively. Then we can write the so called
transfer functions

H1(z) :=
X(z)

U(z)
=

α0

1− α1z−1
,

H2(z) :=
Y (z)

X(z)
= b0 + b1z

−1,

H(z) :=
Y (z)

U(z)
= H2(z)H1(z).

To analyse (36) and (37) according their frequency response we use the relationship between
the F-transform and the Z-transform:

Remark 22 Let u[n] = ejωn be a harmonic input sequence with the imaginary number
j2 = −1 and H(z) = Y (z)

U(z) be a transfer functions of an LSI-system. When the poles of H(z)

are inside the circle |z| = 1, we can change from Z- to F-transform using the substitution

H(ω) = H(z)

∣∣∣∣
z=ejω

with the harmonic sequence y[n] = H(ω)u[n] = H(ω)ejωn with the same frequency ω but
with a different amplitude and a different phase dependent on the frequency ω.

We only want to analyse the amplitude of this harmonic sequence

|y[n]| =
∣∣H(z)ejωn

∣∣ = |H(z)| = |H2(z)| |H1(z)|

and do that by analysing both transfer functions H1(z) and H2(z) separately.
The amplitude of H1(ω) = H1(z)|z=ejω is calculated by

|H1(ω)| = |α0|√
(1− α1 cos(ω))2 + α2

1 sin2(ω)
.

Like mentioned before, in many tasks, the information signal has a low frequency. To have
the largest amplitude at ω = 0 we have to choose α1 ≥ 0. As mentioned in Remark 22
the poles of H1(z) = α0

1−α1z−1 = zα0
z−α1

have to be in the circle |z| = 1, so we have the
additional constraint |α1| < 1. This leads to the bounds α1 ∈ [0, 1). But for α1 → 1 we
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Γ

c

cin

yI(t)

yH(t− 1)

ι, φ

yI(t) yH(t− 1)

ω0

yI(t) yH(t− 1)

ω1

yI(t) yH(t− 1)

λ ×sc(t)ycin(t)

×

+ yc(t)

memory
sc(t−1)

Figure 5: Schematic diagram of a one-dimensional LeakyLP cell: The internal state is a
convex combination of the new input cin and the previous state sc(t − 1). The
previous state sc(t − 1) and the current state sc(t) are gated (ω0 and ω1) and
accumulated afterwards. The output is squashed by tanh into the interval [−1, 1].

have H1 (0) → ∞, so we have to choose α0 dependent on α1. We set a maximum gain of
max
ω
|H1(ω)| = |H1(0)| = 1, so we get the constraint

|α0| ≤ 1− α1. (38)

In the same way we analyse H2(z):

|H2(ω)| =
∣∣b0 + b1e

−jω∣∣ =

√
(b0 + b1 cos(ω))2 + b21 sin2(ω)

To get the maximal gain at low frequency the parameters b0 and b1 must have the same
sign.

B.2 Creating a First Order Cell

With these constraints for the parameters we now can define a new cell type. The parame-
ters α0, α1, b0, b1 should be activations of gates like in LSTM cells. We have to find the right
activation functions to fulfill the inequalities above. Using the weight-space symmetries in
a network with at least one hidden layer (Bishop, 2006, 5.1.1), without loss of generality we
set α0, α1, b0, b1 ≥ 0. To fulfill the bounds for H1, we set α1 as activation of a gate with
activation function flog. So we have α1 ∈ (0, 1). This is comparable with the FG in the
previous sections. To select the α0 we choose α0 := 1− α1 (see (38)). So the value of α0 is
comparable with the activation of the IG. For H2 we set both values b0, b1 as activations of
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a gate with activation function flog which leads to max
ω
|H2(ω)| = max {b0 + b1} = 2, so the

amplitude response is bounded by 2.

With these bounds we can define a cell with a cell input ypppcin = u[n], a previous internal
state sppp

−
c = x[n− 1], an internal state spppc = x[n] and a cell output ypppc = y[n]. We substitute

the coefficients by time dependent gate activations

α0 := 1− ypppφ = yp
pp
ι IG

α1 := yp
pp
φ FG

b0 := yp
pp
ω0 OG

b1 := yp
pp
ω1 OG of the previous internal state

which leads to the transfer functions

H
yp
pp
φ

1 (z) =
α0

1− α1z−1
=

1− ypppφ
1− ypppφz−1

,

H
yp
pp
ω0

;yp
pp
ω1

2 (z) = b0 + b1z
−1 = ypppω0

+ ypppω1
z−1,

H(z) = Hyp
pp
φ;yp

pp
ω0

;yp
pp
ω1 (z) =

Y (z)

U(z)
= α0

b0 + b1z
−1

1− α1z−1
=

1− ypppφ
1− ypppφz−1

(
ypppω0

+ ypppω1
z−1
)
. (39)

and the update equations

x[n] =α0u[n] + α1x[n− 1] ⇔ spppc = (1− ypppφ)ypppcin + yp
pp
φs
ppp−
c ,

y[n] =b0x[n] + b1x[n− 1] ⇔ ypppc = ypppω0
spppc + ypppω1

sppp
−
c . (40)

The output of the cell is already bounded in [−2, 2], but to fulfill Definition 9 we change
(40) to

ypppc = hc

(
ypppω0

spppc + ypppω1
sppp
−
c

)
(41)

with hc = tanh to ensure ypppc ∈ [−1, 1]. This additional non-linearity is not necessary but
leads to a better performance. This new cell type called MD Leaky lowpass (LeakyLP) cell
is defined in Definition 21. A block diagram of a 1D LeakyLP cell is shown in Figure 5 and
different frequency responses in Figure 6.

B.3 General First Order MD Cells

With the theory of this section we can easily create new cell types. In general, a cell has a
number of gates γ1, γ2, . . . ∈ Γc. For D = 1 a previous state sppp

−
c is given directly. Otherwise

the previous state is calculated as trainable convex combination of D previous states, like
described in Section 5. In Table 7 cell layouts are depicted whereby type A is the cell
developed in Section 7 (compare to (39)). For the other types we briefly want to describe
the main ideas.
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Figure 6: Frequency response of H1 (dashed), H2 (dotted) and H (solid) for special param-
eters. Top-left: The frequency response of an IIR filter is able to block even low
frequency signals, but it cannot be zero at f = 0.5. Top-right: The frequency
response of an FIR filter cannot be lower than the lightgray dotted line, but for
f = 0.5 it can be zero. Bottom: When these both filters are concatenated, the
resulting frequency response can combine the benefits of each filter.

B.3.1 The MD Butterworth Lowpass Filter

The cell of type B is a special case of the LeakyLP cell. When we set ypppω0 = yp
pp
ω1 = 0.5 there

is a direct relation between the cutoff frequency of a discrete Butterworth lowpass filter and
the activation of ypppφ: Let fcutoff be the frequency, where amplitude response is reduced to
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1√
2
of the maximal gain. We can calculate fcutoff by

fcutoff =
1

π
arctan

(
1− ypppφ
1 + yp

pp
φ

)
(42)

⇔ yp
pp
φ =

1 + tan(πfcutoff)

1− tan(πfcutoff)

with the bounds fcutoff ∈ (0, 0.5) and ypppφ ∈ (−1, 1) (for more details see Schlichthärle, 2000,
2.2;6.4.2). For ypppφ ∈ (0, 1) we get fcutoff ∈ (0, 0.25). In Figure 7 (left) we can see, that even
for a negative value of ypppφ and a highpass characteristic of H1(z) the impulse response H(z)
has a lowpass characteristic.

B.3.2 Adding an Additional State Gate

In B.2 we fulfilled (38) for the MD LeakyLP cell by setting α0 := 1 − α1, so α0 is directly
connected with α1. Another solution would be to add an additional value γ ∈ (0, 1) and
choose α0 := γ (1− α1). So we can extend the MD LeakyLP cell by adding an additional
gate γ4 for the previous state (see type C). Unfortunately this does not lead to a better
performance and one more gate has to be calculated.

B.3.3 Another Solution for the Output

The cell of type D is another solution to choose b0 and b1 in Section B.2. For the LeakyLP
cell we calculate the output as described in (41). Now we set b0 = γp

pp
2γ

ppp
3 and b1 =

(
1− γppp2

)
γp
pp
3 ,

and get

ypppc = γp
pp
3

(
γp
pp
2s
ppp
c +

(
1− γppp2

)
sppp
−
c

)
.

This cell actually works as well as the MD LeakyLP cell and has the same number of gates.
In this case we do not need a squashing function hc, because we already have ypppc ∈ [−1, 1].

B.3.4 An MD Cell as MD PID-Controller

Type E has a completely different interpretation: In controlling engineering a PID-controller
gets an error as input. In our case the gate activations have to decide, if the proportional
(P), the integral (I) or the derivative (D) term of the error is important for the output.
When γp

pp
1 ≈ 0 we have ypppcin ≈ sp

pp
c so the internal state is proportional to the input. Then

γp
pp
2 gates the proportional part (P) of the input. The second gate γppp3 gates the difference

between the last and the current input, which can be seen as a discrete derivative (D). If
γp
pp
1 ≈ 1 the internal state is an exponential moving average of ypppcin which is an integral term.

So γppp2 gates a mainly integral part of the input (I), whereas γppp3 gates a mainly proportional
part of the input (P). Dependent on γppp1 type E can be a PD-controller, a PI-controller or
a mix of these both. In Figure 7(right) can be seen the frequency response of this cell for
different gate activations.
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Type gint (·) gout (·) H(z) for hc (x) = x

A
(
1− γppp1

)
yp
pp
cin + γp

pp
1s
ppp−
c hc

(
γp
pp
2s
ppp
c + γp

pp
3s
ppp−
c

)
(1−γppp1 )

1−γppp1z−1

(
γp
pp
2 + γp

pp
3z
−1
)

B
(
1− γppp1

)
yp
pp
cin + γp

pp
1s
ppp−
c

sp
pp
c+sp

pp−
c

2
(1−γppp1 )

1−γppp1z−1
1+z−1

2

C
(
1− γppp1

)
yp
pp
cin + γp

pp
1γ

ppp
4s
ppp−
c hc

(
γp
pp
2s
ppp
c + γp

pp
4s
ppp−
c

)
(1−γppp1 )

1−γppp1γ
ppp
4z
−1

(
γp
pp
2 + γp

pp
3z
−1
)

D
(
1− γppp1

)
yp
pp
cin + γp

pp
1s
ppp−
c γp

pp
3

(
γp
pp
2s
ppp
c +

(
1− γppp2

)
sp
pp−
c

)
(1−γppp1 )

1−γppp1z−1γ
ppp
3

(
γp
pp
2 +

(
1− γppp2

)
z−1
)

E
(
1− γppp1

)
yp
pp
cin + γp

pp
1s
ppp−
c hc

(
γp
pp
2s
ppp
c + γp

pp
3

(
sp
pp
c − sppp

−
c

))
(1−γppp1 )

1−γppp1z−1

(
γp
pp
2 + γp

pp
3

(
1− z−1

))
Table 7: Update equations and transfer function for different cell layouts. The column spppc

contains the update equations to calculate the internal state and column ypppc contains
the update equation for the output. These equations lead to the transfer function
H(z) = Hγp

pp
1 ,γ

ppp
2 ,...(z).
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Figure 7: Frequency response of H1 (dashed), H2 (dotted) and H (solid) for special lay-
outs and parameters of Table 7. Left (type B): A butterworth lowpass fil-
ter with a negative gate activation γp

pp
0 = −0.5 leads to the cutoff frequency

fcutoff = 1
π arctan

(
1+0.5
1−0.5

)
≈ 0.3976. Right (type E): Different frequency responses

of a PID controller. Having a fixed γppp0 = 0.5 the frequency response is dependent
on the activations of γppp1 and γppp2 and can have lowpass (black), allpass (gray) and
highpass (lightgray) characteristic.
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