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Abstract

A general asymptotic framework is developed for studying consistency properties of princi-
pal component analysis (PCA). Our framework includes several previously studied domains
of asymptotics as special cases and allows one to investigate interesting connections and
transitions among the various domains. More importantly, it enables us to investigate
asymptotic scenarios that have not been considered before, and gain new insights into the
consistency, subspace consistency and strong inconsistency regions of PCA and the bound-
aries among them. We also establish the corresponding convergence rate within each region.
Under general spike covariance models, the dimension (or number of variables) discourages
the consistency of PCA, while the sample size and spike information (the relative size of
the population eigenvalues) encourage PCA consistency. Our framework nicely illustrates
the relationship among these three types of information in terms of dimension, sample size
and spike size, and rigorously characterizes how their relationships affect PCA consistency.

Keywords: High dimension low sample size, PCA, Random matrix, Spike model

1. Introduction

Principal Component Analysis (PCA) is an important visualization and dimension reduction
tool which finds orthogonal directions reflecting maximal variation in the data. This allows
the low dimensional representation of data, by projecting data onto these directions. PCA
is usually obtained by an eigen decomposition of the sample variance-covariance matrix of
the data. Properties of the sample eigenvalues and eigenvectors have been analyzed under
several domains of asymptotics.

In this paper, we develop a general asymptotic framework to explore interesting tran-
sitions among the various asymptotic domains. The general framework includes the tradi-
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tional asymptotic setups as special cases, and furthermore it allows a careful study of the
connections among the various setups. More importantly, we investigate a wide range of
interesting scenarios that have not been considered before, and offer new insights into the
consistency (in the sense that the angle between estimated and population eigen directions
tends to 0, or the inner product tends to 1) and strong-inconsistency (where the angle tends
to π/2, i.e., the inner product tends to 0) properties of PCA, along with some technically
challenging convergence rates.

Existing asymptotic studies of PCA roughly fall into four domains:

(a) the classical domain of asymptotics, under which the sample size n → ∞ and the
dimension d is fixed (hence the ratio n/d → ∞). For example, see Girshick (1939);
Lawley (1956); Anderson (1963, 1984); Jackson (1991).

(b) the random matrix theory domain, where both the sample size n and the dimension
d increase to infinity, with the ratio n/d→ c, a constant mostly assumed to be within
(0,∞). Representative work includes Biehl and Mietzner (1994); Watkin and Nadal
(1994); Reimann et al. (1996); Hoyle and Rattray (2003) from the statistical physics
literature, as well as Johnstone (2001); Baik et al. (2005); Baik and Silverstein (2006);
Onatski (2012); Paul (2007); Nadler (2008); Johnstone and Lu (2009); Lee et al.
(2010); Benaych-Georges and Nadakuditi (2011) from the statistics literature.

(c) the high dimension low sample size (HDLSS) domain of asymptotics, which
is based on the limit, as the dimension d → ∞, with the sample size n being fixed
(hence the ratio n/d→ 0). HDLSS asymptotics was originally studied by Casella and
Hwang (1982), and rediscovered by Hall et al. (2005). PCA has been studied using
the HDLSS asymptotics by Ahn et al. (2007); Jung and Marron (2009).

(d) the increasing signal strength domain of asymptotics, where n, d are fixed and the
signal strength tends to infinity. Such a setting is studied in Nadler (2008).

PCA consistency and (strong) inconsistency, defined in terms of angles, are important
properties that have been studied before. A common technical device is the spike covariance
model, initially introduced by Johnstone (2001). This model has been used in this context
by, for example, Nadler (2008); Johnstone and Lu (2009); Jung and Marron (2009). Re-
cently, Ma (2013) formulates sparse PCA (Zou et al., 2006) through iterative thresholding
and studies its asymptotic properties under the spike model. An interesting, more general,
model has been considered by Benaych-Georges and Nadakuditi (2011).

Under the spike model, the first few eigenvalues are much larger than the others. A major
message of the present paper is that there are three critical features whose relationships drive
the consistency properties of PCA, namely

(1) the sample size: the sample size n encourages the consistency of the sample eigenvec-
tors, meaning that more samples tend towards more frequent consistency;

(2) the dimension: the dimension d discourages the consistency of the sample eigenvectors,
meaning that higher d tends towards less frequent consistency;

(3) the spike signal: the relative sizes of the several leading eigenvalues similarly encourage
the consistency.
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Our general framework considers increasing sample size n, increasing dimension d, and
increasing spike signal. We clearly characterize how their relationships determine the regions
of consistency and strong-inconsistency of PCA, along with the boundary in-between.

Note that the classical domain ((a) above) assumes increasing sample size n while fixing
dimension d; the random matrix domain ((b) above) assumes increasing sample size n and
increasing dimension d, while fixing the spike signal; the HDLSS domain ((c) above) fixes the
sample size, and increases the dimension and the spike signal; the increasing signal strength
domain ((d) above) assumes increasing the spike signal, while fixing the sample size and
the dimension; thus each of these three domains is a boundary case of our framework. Our
theorems, when restricted to these existing domains of asymptotics, are consistent with
known results.

In addition, our theorems go beyond these known results to demonstrate the transi-
tions among the existing domains of asymptotics, and for the first time to the best of our
knowledge, enable one to understand interesting connections among them. Finally, we also
establish novel results on rates of convergence.

Sections 3 and 4 formally state very general theorems for multiple component spike
models. For illustration purposes only, in this section we first consider Examples 1 and 2
under some strong assumptions, which provide intuitive insights regarding the much more
general theory presented in Sections 3 and 4. In addition, we use Example 3 to show the
application of our theoretical study to the factor model considered by Fan et al. (2013).

For Examples 1 and 2, to better demonstrate the connection with existing results, the
three types of features (sample size, dimension, and spike signal) and their relationships
are mathematically quantified by two indices, namely the spike index α and the sample
index γ. Within the context of these examples, we point out the significant contributions
of our results in comparison with existing results. The comparisons and connections are
graphically illustrated in Figure 1 and discussed below.

Example 1 Single-component Spike Model Assume that X1, . . . , Xn are sample vec-
tors from a d-dimensional distribution with zero mean and covariance matrix Σ, where the
entries of Σ−

1
2Xi are i.i.d. random variables with zero mean, unit variance and finite fourth

moment. (A special case: Xi is from the d-dimensional normal distribution N(0,Σ)). In
addition, assume that the sample size n = dγ (γ ≥ 0 is defined as the sample index), and
the covariance matrix Σ has the following eigenvalues:

λ1 = c1d
α, λ2 = · · · = λd = 1, α ≥ 0,

where the constant α is defined as the spike index.
Corollary B.2 in the supplementary materials, when applied to this example, shows that

the maximal sample eigenvector is consistent when α+ γ > 1 (grey region in Figure 1(A)),
and strongly inconsistent when 0 ≤ α + γ < 1 (white triangle in Figure 1(A)). These very
general new results nicely connect with many existing ones:

• Previous Results I - the classical domain:

Under the normal assumption, Theorem 1 of Anderson (1963) implied that for fixed
dimension d and finite eigenvalues, when the sample size n → ∞ (i.e. γ → ∞, the
limit on the vertical axis), the maximal sample eigenvector is consistent. This case is
the upper left corner of Figure 1(A).
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(A) Single Spike - Example 1.1 (B) Multi Spike - Example 1.2 
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Figure 1: General consistency and strong inconsistency regions for PCA, as a function of

the spike index α and the sample index γ. Panel (A) - single spike model in
Example 1: PCA is consistent in the grey region (α + γ > 1), and strongly
inconsistent on the white triangle (0 ≤ α + γ < 1). Panel (B) - multiple spike
model in Example 2: the first m sample PCs are consistent in the grey region
(α + γ > 1, γ > 0), subspace consistent on the dotted line (α > 1, γ = 0) on the
horizontal axis, and strongly inconsistent on the white triangle (0 ≤ α+ γ < 1).

• Previous Results II - the random matrix domain:

(a) Assuming normality, the results of Johnstone and Lu (2009) appear on the ver-
tical axis in Panel (A) where the spike index α = 0 (as they fix the spike infor-
mation): the first sample eigenvector is consistent when the sample index γ > 1
and strongly inconsistent when γ < 1.

(b) Again, under the normal assumption, Nadler (2008) explored the interesting
boundary case of α = 0, γ = 1 (i.e. d

n → c for a constant c) and showed that

< û1, u1 >
2 a.s−→ ((λ1−1)2−c)+

(λ1−1)2+c(λ1−1) , where û1 and u1 are the first sample and popula-

tion eigenvector. This result appears in Panel (A) as the single solid circle γ = 1
on the vertical axis. Our general framework doesn’t cover this boundary case and
this boundary result is a complement of our theoretical results.

• Previous Results III - the HDLSS domain:

(a) The theorems of Jung and Marron (2009) are represented on the horizontal axis
in Panel (A) when the sample index γ = 0 (as they fix the sample size): the
maximal sample eigenvector is consistent with the first population eigenvector
when the spike index α > 1 and strongly inconsistent when α < 1.
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(b) Under the normal assumption, Jung et al. (2012) deeply explored limiting behav-
ior at the boundary α = 1, γ = 0 (i.e. d

λ1
→ c for a constant c) and showed that

< û1, u1 >
2⇒ A

A+c , where “⇒ ” means convergence in distribution and A ∼ χ2
n,

the chi-squared distribution with n degrees of freedom. This result appears in
Panel (A) as the single solid circle α = 1 on the horizontal axis. This boundary
case is again a complement of our general framework.

• Our Results hence nicely connect existing domains of asymptotics, and give a much
more complete characterization for the regions of PCA consistency, subspace consis-
tency, and strong inconsistency. We also investigate asymptotic properties of the other
sample eigenvectors and all the sample eigenvalues.

Example 2 Multiple-component Spike Model Assume that the covariance matrix Σ
in Example 1 has the following eigenvalues:

λj =

{
cjd

α if j ≤ m,

1 if j > m,
α ≥ 0,

where m is a finite positive integer, the constants cj , j = 1, · · · ,m, are positive and satisfy
that cj > cj+1 > 1, j = 1, · · · ,m− 1.

Corollary B.1 in the supplementary materials, when applied to this example, shows that
the first m sample eigenvectors are individually consistent with corresponding population
eigenvectors when α + γ > 1, γ > 0 (the grey region in Figure 1(B)), instead of being
subspace consistent (Jung and Marron, 2009), and strongly inconsistent when α + γ < 1
(the white triangle in Panel (B)). This very general new result connects with many others
in the existing literature:

• Previous Results I - the classical domain:

Assuming normality, Theorem 1 of Anderson (1963) implied that for fixed dimension
d and finite eigenvalues, when the sample size n → ∞ (i.e. γ → ∞, the limit on the
vertical axis), the first m sample eigenvectors are consistent, while the other sample
eigenvectors are subspace consistent. This case is the upper left corner of Figure 1(B).

• Previous Results II - the random matrix domain:

The following results are under the normal assumption. Paul (2007) explored asymp-
totic properties of the first m eigenvectors and eigenvalues in the interesting boundary
case of α = 0, γ = 1, i.e., d

n → c with c ∈ (0, 1) and showed that < ûj , uj >
2 a.s−→

((λj−1)2−c)+
(λj−1)2+c(λj−1) for j = 1, · · · ,m. This result appears in Panel (B) as the solid cir-

cle γ = 1 on the vertical axis. This boundary case is a complement of our results
for multiple spike models with distinct eigenvalues (Section B.1 of the supplementary
materials). Paul and Johnstone (2012) considered a similar framework but from a
minimax risk analysis perspective. Nadler (2008); Johnstone and Lu (2009) did not
study multiple spike models.
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• Previous Results III - the HDLSS domain:

The theorems of Jung and Marron (2009) are valid on the horizontal axis in Panel (B)
where the sample index γ = 0. In particular, for this example, their results showed that
the first m sample eigenvectors are not respectively consistent with the corresponding
population eigenvectors when the spike index α > 1 (the horizontal dotted red line
segment), instead they are subspace consistent with their corresponding population
eigenvectors, and are strongly inconsistent when the spike index α < 1 (the horizontal
solid line segment). They and Jung et al. (2012) did not study the asymptotic behavior
on the boundary - the single open circle (α = 1, γ = 0) on the horizontal axis.

• Our Results cover the classical domain, and are stronger than what Jung and Mar-
ron (2009) obtained: the increasing sample size enables us to separate out the first
few leading eigenvectors and characterize individual consistency, while only subspace
consistency was obtained by Jung and Marron (2009).

Example 3 The Factor Model of Fan et al. (2013) Consider the following model:

yt = Bft + Et,

where yt = (yt,1, . . . , yt,d)
T is the d-dimensional response vector, B = (b1, . . . ,bd)

T is
the d × m (m is fixed) loading matrix, ft is the m × 1 vector of common factors, and
Et = (et,1, . . . , et,d)

T is the d-dimensional noise vector, t = 1, . . . ,T. The noise vector Et is
independent of ft. Then the population covariance matrix of yt is

Σ = Bcov(ft)B
T + ΣE,

where ΣE is the covariance matrix of Et. Fan et al. (2013) assumes that the first m eigen-
values of Bcov(ft)B

T increase with d as d → ∞, whereas all the eigenvalues of ΣE are
bounded. It then follows that λm(Σ) � λm+1(Σ) � · · · � λd(Σ) � 1, as d → ∞. Then our
theorems are applicable to this factor model when f1, . . . , fT is i.i.d., and E1, . . . ,ET is i.i.d..

Under the above assumptions of the factor model, we have d/(Tλm(Σ)) → 0. Then
according to our Theorem 1 (together with the third comment after the theorem), the first m
sample eigenvalues and eigenvectors are consistent. On the other hand, Fan et al. (2013)
proposed the consistent principal orthogonal complement thresholding (POET) estimator
for the covariance matrix Σ, which is obtained by keeping the first m sample eigenvalues
and eigenvectors, and thresholding the residual sample matrix. Hence, our theorem offers
another theoretical support on the consistency of their POET estimator.

The rest of the paper is organized as follows. Section 2 first introduces our notations and
relevant consistency concepts. Section 3 studies the PCA asymptotics of spike models with
increasing sample size n. We state the main results of our paper - Theorem 1 for multiple-
component spike models where the dominating eigenvalues are inseparable. Theorem 2 in
Section 4 then is about the HDLSS asymptotics of PCA, where the sample size n is fixed,
for spike models with inseparable eigenvalues. Section 5 contains some discussions about
the asymptotic properties of PCA when some eigenvalues equal to zero and the challenges
to obtain non-asymptotic results. Section 7 contains the technical proofs of Theorem 1 and
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the relevant lemmas. The supplementary materials contain the corresponding corollaries
of Theorems 1 and 2, for multiple-spike models with distinct eigenvalues and single spike
models, along with the proofs of Theorem 2 and all the corollaries.

2. Notations and Concepts

We now introduce some necessary notations, and define consistency concepts relevant for
our asymptotic study.

2.1 Notation

Let the population covariance matrix be Σ, whose eigen decomposition is

Σ = UΛUT ,

where Λ is the diagonal matrix of population eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λd, and U is the
matrix of the corresponding eigenvectors U = [u1, . . . , ud].

As in Jung and Marron (2009), assume that X1, . . . , Xn are i.i.d. d-dimensional random
sample vectors and have the following representation

Xi =
d∑
j=1

λ
1
2
j zi,juj , (1)

where the zi,j ’s are i.i.d. random variables with zero mean, unit variance, and finite fourth
moment. An important special case is that they follow the standard normal distribution.

Assumption 1 X1, . . . , Xn are a random sample having the distribution of (1).

Jung and Marron (2009) assumes that

Zi = (zi,1, · · · , zi,d)T , i = 1, · · · , n, (2)

are independent and the elements zi,j within Zi are ρ-mixing. This assumption leads to the
convergence in probability results under the HDLSS domain in Jung and Marron (2009).
Here we assume that the elements zi,j within Zi are also independent. This helps to get the
almost sure convergence results under our general framework, which includes the HDLSS
domain. Assumption 1 is necessary to satisfy the conditions of Lemma 1 - the Bai-Yin’s
law (Bai and Yin, 1993), which is important for our results, for example, Theorem 1.

Denote the sample covariance matrix by Σ̂ = n−1XXT , where X = [X1, . . . , Xn]. Note
that Σ̂ can also be decomposed as

Σ̂ = Û Λ̂ÛT , (3)

where Λ̂ is the diagonal matrix of sample eigenvalues λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂d, and Û is the
matrix of corresponding sample eigenvectors where Û = [û1, . . . , ûd].

Below we introduce asymptotic notations that will be used in our theoretical studies.
Let τ stand for either n or d, depending on the context. Assume that {ξτ : τ = 1, . . . ,∞}
is a sequence of random variables, and {aτ : τ = 1, . . . ,∞} is a sequence of constant values.
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• Denote ξτ = oa.s (aτ ) if limτ→∞
ξτ
aτ

= 0 almost surely.

• Denote ξτ = Oa.s (aτ ) if limτ→∞

∣∣∣ ξτaτ ∣∣∣ ≤M , where M is a positive constant.

• Denote almost surely ξτ � aτ if c2 ≤ limτ→∞
ξτ
aτ
≤ limτ→∞

ξτ
aτ
≤ c1 almost surely, for

two constants c1 ≥ c2 > 0.

In addition, we introduce the following notions to help understand the assumptions on
the population eigenvalues in our theorems and corollaries. Assume that {aτ : τ = 1, . . . ,∞}
and {bτ : τ = 1, . . . ,∞} are two sequences of real valued numbers.

• Denote aτ � bτ if limτ→∞
bτ
aτ

= 0.

• Denote aτ � bτ if c2 ≤ limτ→∞
aτ
bτ
≤ limτ→∞

aτ
bτ
≤ c1 for two constants c1 ≥ c2 > 0.

2.2 Concepts

We now list several concepts about consistency and strong inconsistency, some of which are
modified from the related concepts in Jung and Marron (2009) and Shen et al. (2013).

Let H be an index set, e.g. H = {m+ 1, · · · , d}, and then denote S = span{uk, k ∈ H}
as the linear span generated by {uk, k ∈ H}. Define angle(ûj , S) as the angle between the
estimator ûj and the subspace S, which is the angle between the estimator and its projection
onto the subspace (Jung and Marron, 2009). For further clarification, we provide a graphical
illustration of the angle in Section B of the supplement (Shen et al., 2015). As pointed out
earlier, let τ stand for either n or d, depending on the context.

• If as τ → ∞, angle(ûj , S)
a.s→ 0, then ûj is subspace consistent with S. If H only

includes one index j such that S = span{uj}, then angle(ûj , S)
a.s→ 0 is equivalent to

| < ûj , uj > |
a.s→ 1, and ûj is consistent with uj .

• If as τ →∞, | < ûj , uj > |
a.s→ 0, then ûj is strongly inconsistent with uj .

3. Cases with increasing sample size n

We study spike models with increasing sample size n → ∞ in this section. As such, the
eigenvalues λj and the dimension d depend on the sample size n, and will be denoted as

λ
(n)
j and d(n) throughout this section. They can be viewed as sequences of constant values

indexed by n. This section considers multiple-component spike models with inseparable
eigenvalues and presents the main theorem of our paper. Section B of the supplemen-
tary materials reports the corollaries for multiple component spike models with distinct
eigenvalues and single spike models.

We consider multiple spike models with m (a finite integer) dominating eigenvalues.
These m eigenvalues can be grouped into r tiers, where the eigenvalues within the same
tier have the same limit. To fixed ideas, the first m eigenvalues are grouped into r tiers
where there are ql(> 0) eigenvalues in the lth tier with

∑r
l=1 ql = m. Define q0 = 0,
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qr+1 = d(n)−
∑r

l=1 ql, and the index set of the eigenvalues in the lth tier as

Hl =

{
l−1∑
k=0

qk + 1,
l−1∑
k=0

qk + 2, · · · ,
l−1∑
k=0

qk + ql

}
, l = 1, · · · , r + 1. (4)

Assume the eigenvalues in the lth tier have the same limit δ
(n)
l (> 0), i.e.

Assumption 2 limn→∞
λ
(n)
j

δ
(n)
l

= 1, j ∈ Hl, l = 1, · · · , r.

According to the above assumption, the eigenvalues that are in the same tier will have
the same limit as n goes to infinity. As a result, we can show that the corresponding
sample eigenvectors can not be consistently estimated individually. This motives us to con-
sider subspace consistency. In addition, we assume that the first m population eigenvalues
from different tiers are asymptotically different, and dominate the additional population
eigenvalues beyond the first r tiers that have the same limit cλ:

Assumption 3 as n→∞, δ
(n)
1 > · · · > δ

(n)
r > λ

(n)
m+1 → · · · → λ

(n)
d(n) → cλ > 0.

For i < j, δ
(n)
i > δ

(n)
j means that limn→∞

δ
(n)
i

δ
(n)
j

> 1. This assumption allows δ
(n)
i → ∞ and

δ
(n)
i � δ

(n)
j , which is not the case in Paul (2007). Regarding the constant cλ, the second

remark after Theorem 1 discusses what happens when cλ = 0.
The above assumptions cover a general class of multiple spike models with tiered eigen-

values. A simple special case is the one where the eigenvalue matrix Λ is block diagonal:

for 1 ≤ h ≤ r, the h-th block of Λ is λ
(n)
h Iqh where Iqh is the qh × qh identity matrix, with

λ
(n)
1 > λ

(n)
2 > . . . > λ(n)r , q1 + q2 + . . .+ qr = m < d;

and the last block of Λ is cλId(n)−m with cλ < λ
(n)
r .

Under the above setup, Theorem 1 shows that the eigenvector estimates are either sub-
space consistent with the linear space spanned by the population eigenvectors, or strongly
inconsistent. As discussed in the Introduction, Theorem 1 considers the delicate balance

among the sample size n, the spike signal δ
(n)
l , and the dimension d(n), and character-

ize the various PCA consistency and strong-inconsistency regions. The three scenarios of
Theorem 1 are arranged in the order of a decreasing amount of signal:

• Theorem 1(a): If the amount of signal dominates the amount of noise up to the

rth tier, i.e. d(n)

nδ
(n)
r

→ 0, then the estimates for the eigenvectors in the first r tiers

are subspace consistent, and the estimates for the higher order eigenvectors are also
subspace consistent (but) at a different rate;

• Theorem 1(b): Otherwise, if the amount of signal dominates the amount of noise only

up to the hth tier (1 ≤ h < r), i.e. d(n)

nδ
(n)
h

→ 0 and d(n)

nδ
(n)
h+1

→∞, then the estimates for

the eigenvectors in the first h tiers are subspace consistent, and the estimates for the
other eigenvectors are strongly-inconsistent;
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• Theorem 1(c): Finally, if the amount of noise always dominates, i.e. d(n)

nλ
(n)
1

→∞, then

the sample eigenvalues are asymptotically indistinguishable, and the sample eigenvec-
tors are strongly inconsistent.

Before stating Theorem 1, we first introduce several notations. Define the subspace

Sl = span{uk, k ∈ Hl} for l = 1, · · · , r + 1 and denote δ
(n)
0 =∞ for every n.

Theorem 1 Under Assumptions 1, 2 and 3, as n→∞, the following results hold.

(a) If d(n)

nδ
(n)
r

→ 0, then
λ̂j

λ
(n)
j

a.s→ 1, j = 1, · · · ,m, and angle(ûj , Sl) = oa.s

({
δ
(n)
l

δ
(n)
l−1

∨ δ
(n)
l+1

δ
(n)
l

} 1
2

)
,

j ∈ Hl, l = 1, · · · , r − 1. In addition,

• If d(n)
n → 0, then angle(ûj , Sl) = oa.s

({
δ
(n)
l

δ
(n)
l−1

∨ 1

δ
(n)
l

} 1
2

)
, j ∈ Hl for l = r, and

oa.s

({
1

δ
(n)
r

} 1
2

)
for l = r + 1.

• If d(n)n → c, 0 < c ≤ ∞, then angle(ûj , Sl) = oa.s

({
δ
(n)
l

δ
(n)
l−1

} 1
2

)
∨Oa.s

({
d(n)

nδ
(n)
l

} 1
2

)
,

j ∈ Hl for l = r, and Oa.s

({
d(n)

nδ
(n)
r

} 1
2

)
for l = r + 1.

(b) If d(n)

nδ
(n)
h

→ 0 and d(n)

nδ
(n)
h+1

→ ∞, where 1 ≤ h < r, then
λ̂j

λ
(n)
j

a.s→ 1, j ∈ Hl, l = 1, · · · , h,

and the other non-zero
nλ̂j
d(n)

a.s→ cλ. In addition, angle(ûj , Sl) = oa.s

({
δ
(n)
l

δ
(n)
l−1

∨ δ
(n)
l+1

δ
(n)
l

} 1
2

)
,

j ∈ Hl for l = 1, · · · , h−1, and oa.s

({
δ
(n)
h

δ
(n)
h−1

} 1
2

)
∨Oa.s

({
d(n)

nδ
(n)
h

} 1
2

)
for l = h. Finally,

| < ûj , uj > | = Oa.s

({
nλ

(n)
j

d(n)

} 1
2

)
, j ∈ Hl, l = h + 1, · · · , r, and Oa.s

({
n
d(n)

} 1
2

)
,

j > m.

(c) If d(n)

nδ
(n)
1

→∞, then the non-zero
nλ̂j
d(n)

a.s→ cλ. In addition, | < ûj , uj > | = Oa.s

({
nλ

(n)
j

d(n)

} 1
2

)
,

j = 1, · · · ,m, and Oa.s

({
n
d(n)

} 1
2

)
, j > m.

The following comments can be made for the results of Theorem 1.

• Note that, for j ∈ H1, the subspace consistency rate for ûj is

{
δ
(n)
2

δ
(n)
1

} 1
2

. By defining

δ
(n)
0 =∞, the consistency rate expression

{
δ
(n)
l

δ
(n)
l−1

∨ δ
(n)
l+1

δ
(n)
l

} 1
2

remains valid for l = 1.

10
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• If cλ = 0 in Assumption 3, then that assumption can be rewritten as

δ∗
(n)
1 > · · · > δ∗(n)r > λ∗

(n)
m+1 → · · · → λ∗

(n)
d(n) = 1,

where δ∗
(n)
j =

δ
(n)
j

λ
(n)
d(n)

and λ∗
(n)
j =

λ
(n)
j

λ
(n)
d(n)

. We comment that the asymptotic properties of

ûj then depend on the rescaled eigenvalues λ∗
(n)
j , instead of the raw eigenvalues λ

(n)
j .

In particular, with cλ = 0, Theorem 1 can be slightly modified by replacing δ
(n)
j with

δ∗
(n)
j , “

nλ̂j
d(n)

a.s→ cλ” with “
nλ̂j

d(n)λ
(n)
d(n)

a.s→ 1”, and the strongly inconsistency rate

{
nλ

(n)
j

d(n)

} 1
2

with

{
nλ∗

(n)
j

d(n)

} 1
2

, respectively.

• In Assumption 3, if there is a big gap between δ
(n)
r and λ

(n)
m+1 such that δ

(n)
r � λ

(n)
m+1,

then λ
(n)
m+1 → · · · → λ

(n)
d(n) → cλ can be weakened to λ

(n)
m+1 � · · · � λ

(n)
d(n) � 1. It follows

that the consistency results of the first r tiers of sample eigenvalues in Scenario (a)
or the first h tiers in Scenario (b) remain the same, while all other results of the form
“

a.s−→ ” for the sample eigenvalues should be replaced by almost surely “ � ”. The
results for the sample eigenvectors remain the same.

• One needs λ
(n)
m+1 → · · · → λ

(n)
d(n) → cλ, or λ

(n)
m+1 � · · ·λ

(n)
d(n) � 1, to obtain general

convergence results for the non-spike sample eigenvalues λ̂j , j > m, under the wide

range of scenarios: d(n)
n → 0, d(n)

n → ∞, or limn→∞
d(n)
n = c (0 < c < ∞). When

one focusses only on the spike eigenvalues, a weaker assumption, such as the slowly
decaying non-spike eigenvalues assumed by Bai and Yao (2012), is sufficient. Then,

the spike condition δ
(n)
r � λ

(n)
m+1 is enough to generate the consistency properties of

λ̂j and ûj , j ≤ m in Scenario (a). In that case, the behaviors of the other sample

eigenvalues and eigenvectors are scenario specific, depending on whether d(n)
n → 0,

d(n)
n →∞, or limn→∞

d(n)
n = c (0 < c <∞).

• The cases covered by Theorem 1 are not studied in Paul (2007), where the eigenvalues
are considered to be individually estimable.

• In Theorem 1, the dimension d can be fixed. In addition, suppose ∞ > δ
(n)
1 > · · · >

δ
(n)
r > λ

(n)
m+1 → · · · → λ

(n)
d → cλ, and the eigenvalues satisfy Assumption 2. Then,

the results of Theorem 1(a) are consistent with the classical asymptotic subspace
consistency results implied by Theorem 1 of Anderson (1963).

4. Cases with fixed n

This section studies spike models when the sample size n is fixed. Now the eigenvalues are

denoted as λ
(d)
j , a sequence indexed by the dimension d. We first report here the theoretical

results for spike models with inseparable eigenvalues. The corresponding results for models
with distinct eigenvalues are presented in Section C of the supplementary materials.

11
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Theorem 2 summarizes the results for spike models with tiered eigenvalues. In compar-
ison with Jung and Marron (2009), we make more general assumptions on the population
eigenvalues, and obtain the convergence rate results; furthermore, we obtain almost sure
convergence, instead of convergence in probability.

Assume that as d → ∞, the first m eigenvalues fall into r tiers, where the eigenvalues
in the same tier are asymptotically equivalent, as stated in the following assumption:

Assumption 4 for fixed n, as d→∞, λ
(d)
j � δ

(d)
l , j ∈ Hl, l = 1, · · · , r.

Different from Assumption 2 for diverging sample size n, now with a fixed n, the eigen-
values within the same tier are assumed to be of the same order, rather than of the same
limit when n increases to ∞. As we will see below in Theorem 2, one can no longer sepa-
rately estimate the eigenvalues of the same order when n is fixed, which is feasible with an
increasing n as long as they do not have the same limit as shown in Theorem 1.

In addition, we assume that the population eigenvalues from different tiers are of different
orders and dominate the higher-order eigenvalues which are asymptotically equivalent:

Assumption 5 for fixed n, as d→∞, δ
(d)
1 � · · · � δ

(d)
r � λ

(d)
m+1 � · · · � λ

(d)
d � 1.

Note that for fixed n and d→∞, the assumption δ
(d)
l > δ

(d)
l+1 can not guarantee asymptotic

separation of the corresponding sample eigenvalues λ̂j for j ∈ Hl and j ∈ Hl+1. Thus, we
need to replace Assumption 3 with Assumption 5 in order to asymptotically separate the
first r subgroups of sample eigenvalues.

Before formally stating Theorem 2, we first introduce several notations. Denote δ
(d)
0 =∞

for every d, which is used to describe the subspace consistent rates. Consider the zi,j in (1),
and let

Z̃j = (z1,j , · · · , zn,j)T , j = 1, · · · , d. (5)

Define

K = lim
d→∞

∑d
j=m+1 λ

(d)
j

d
and A∗l =

1

n

∑
k∈Hl

Z̃kZ̃
T
k , l = 1, · · · , r, (6)

which are used to describe the asymptotic properties of the sample eigenvalues.

Theorem 2 Under Assumptions 1, 4 and 5, for fixed n, as d → ∞, the following results
hold.

(a) If d

δ
(d)
h

→ 0 and d

δ
(d)
h+1

→ ∞, where 1 ≤ h ≤ r, then for j ∈ Hl, l = 1, · · · , h, almost

surely

λmin(A∗l )×mink∈Hlλ
(d)
k ≤ λ̂j ≤ λmax(A∗l )×maxk∈Hlλ

(d)
k , (7)

and the other non-zero λ̂j satisfy
nλ̂j
d

a.s→ K. In addition, angle(ûj , Sl) = oa.s

({
δ
(d)
l

δ
(d)
l−1

∨ δ
(d)
l+1

δ
(d)
l

} 1
2

)
,

j ∈ Hl for l = 1, · · · , h−1, and oa.s

({
δ
(d)
h

δ
(d)
h−1

} 1
2

)
∨Oa.s

({
d

δ
(d)
h

} 1
2

)
for l = h. Finally,

| < ûj , uj > | = Oa.s

({
λ
(d)
j

d

} 1
2

)
, j ∈ Hl, l = h+ 1, · · · , r, and Oa.s

({
1
d

} 1
2

)
, j > m.

12
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(b) If d

δ
(d)
1

→∞, then the non-zero
nλ̂j
d

a.s→ K. In addition, | < ûj , uj > | = Oa.s

({
λ
(d)
j

d

} 1
2

)
,

j = 1, · · · ,m, and Oa.s

({
1
d

} 1
2

)
, j > m.

The following comments can be made about the results of Theorem 2.

• Even if the non-spike eigenvalues λ
(d)
j , j > m, decay slowly, the condition δ

(d)
1 �

· · · � δ
(d)
r � λ

(d)
m+1 can still guarantee the same properties for λ̂j and ûj , j ∈ Hl,

l ≤ h, in Scenario (a).

• Assumption 1 assumes that the zi,j ’s are i.i.d. rather than ρ-mixing as in Jung
and Marron (2009). Thus, convergence in probability in Jung and Marron (2009)
is strengthened to almost sure convergence here.

5. Discussions

Throughout the paper, we assume that the small eigenvalues have the same limit or are of

the same order as 1, i.e. λ
(n)
m+1 → · · · → λ

(n)
d(n) → cλ or λ

(n)
m+1 � · · · � λ

(n)
d(n) � 1. In fact, this

is a convenient choice. Our results remain valid when these small eigenvalues are not of the
same order, and even when some of them are 0. For example, suppose λd1+1 = · · · = λd = 0
for m + 1 < d1 < d. As shown in Section E of the supplementary material (Shen et al.,
2015), the asymptotic properties of PCA are independent of the basis choice for the d-
dimensional space. If the population eigenvectors uj , j = 1, . . . , d, are chosen as the basis
of the d-dimensional space, the population covariance matrix becomes

Σ = Λ =

(
Λ1 0d1×(d−d1)

0(d−d1)×d1 0(d−d1)×(d−d1)

)
, where Λ1 =

λ1 · · · 0
...

. . .
...

0 · · · λd1

 ,

and 0k×l is the k-by-l zero matrix. Then, the asymptotic properties of PCA under the pop-
ulation covariance matrix Σ is the same as those under the covariance matrix Λ1. Therefore,
we only need to replace the dimension d by the effective dimension d1, and all the earlier
results remain valid.

It would be interesting to explore non-asymptotic results under our general framework.
There have been interesting relevant progresses made recently. Koltchinskii and Lounici
(2016, 2015) consider a general framework that encompasses the spike model with fixed
spike sizes, and establish theorems about non-asymptotic properties of sample eigenval-
ues/eigenvectors under either Gaussian or centered subgaussian assumption. These results
pave the way to study non-asymptotic properties under our framework where the spike sizes
are allowed to grow and we only assume finite fourth moment.
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7. Proofs

We now provide the detailed proof for Theorem 1. To save space, the proofs for Theorem 2
and the corresponding corollaries of the two theorems (which are often similar, and simpler)
are provided in the supplement (Shen et al., 2015). We first provide some overview in
Section 7.1 and list four lemmas in Section 7.2, and then derive the asymptotic properties
of the sample eigenvalues and the sample eigenvectors in Sections 7.3 and 7.4, respectively.

We study the consistency and strong inconsistency of PCA through the angle or the
inner product between a sample eigenvector and the corresponding population eigenvec-
tor. We first note that this angle has a nice invariance property: it doesn’t depend on the
specific choice of the basis for the d-dimensional space, as discussed in details in the supple-
ment (Shen et al., 2015). Given this invariance property, for the rest of the paper, we choose
to use the population eigenvectors uj , j = 1, . . . , d(n), as the basis of the d-dimensional
space, which is equivalent to assuming that Xi, i = 1, . . . , n, is a d-dimensional random

vector with mean zero and a diagonal covariance matrix as Σ = Λ = diag{λ(n)1 , . . . , λ
(n)
d(n)}.

This will simplify our mathematical analysis, see for example (32) and (33).
Define jl to be the largest index in Hl and then jl =

∑l
k=0 qk, l = 1, · · · , r. Note that

jr =
∑r

k=0 qk = m. Since the first m eigenvalues are grouped into r tiers in Assumption 2,
then Assumption 2 can be rewritten as

λ
(n)
1

δ
(n)
1

→ · · · →
λ
(n)
j1

δ
(n)
1

→ 1, · · · ,
λ
(n)
jr−1+1

δ
(n)
r

→ · · · →
λ
(n)
jr

δ
(n)
r

→ 1. (8)

7.1 Overview

Our proof makes use of the connection between the sample covariance matrix Σ̂ and its dual

matrix Σ̂D, which share the same nonzero eigenvalues. Since Σ = Λ = diag{λ(n)1 , . . . , λ
(n)
d(n)},

then it follows from (1) and (5) that the dual matrix can be expressed as

Σ̂D = n−1XTX =
1

n

d(n)∑
j=1

λ
(n)
j Z̃jZ̃

T
j ,

where Z̃j is the n-dimensional random vector and its elements are i.i.d random variables
with zero mean, unit variance, and finite fourth moment. Furthermore, the dual matrix can
be rewritten as the sum of two matrices as follows:

Σ̂D = A+B, with A =
1

n

m∑
j=1

λ
(n)
j Z̃jZ̃

T
j , B =

1

n

d(n)∑
j=m+1

λ
(n)
j Z̃jZ̃

T
j . (9)

First, we study the asymptotic properties of the eigenvalues of A and B in Lemmas 3
and 4, respectively. Then, the Weyl Inequality and dual Weyl Inequality (Tao, 2010), now
restated as Lemma 2, enable us to establish the asymptotic properties of the eigenvalues of
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the dual matrix Σ̂D in Section 7.3. Finally, we derive the asymptotic properties of the sample
eigenvectors of Σ̂ in Section 7.4. Some intuitive ideas are provided in the supplement (Shen
et al., 2015) to help understanding the proof.

7.2 Lemmas

We list four lemmas that are used in our proof. Lemma 1 studies asymptotic properties of
the largest and smallest non-zero eigenvalues of a random matrix.

Lemma 1 Suppose B = 1
qV V

T where V is an p × q random matrix composed of i.i.d.
random variables with zero mean, unit variance and finite fourth moment. As q →∞ and
p
q → c ∈ [0,∞), the largest and smallest non-zero eigenvalues of B converge almost surely

to (1 +
√
c)2 and (1−

√
c)2, respectively.

Remark 1 Lemma 1 is known as the Bai-Yin’s law (Bai and Yin, 1993). As in Remark 1
of Bai and Yin (1993), the smallest non-zero eigenvalue is the p− q+ 1 smallest eigenvalue
of B for c > 1.

Lemma 2 is about the Weyl Inequality and the dual Weyl Inequality (Tao, 2010), which
appear below as the right-hand-side inequality and the left-hand-side inequality, respec-
tively.

Lemma 2 If A,B are p× p real symmetric matrices, then for all j = 1, . . . , p,
λj(A) + λp(B)
λj+1(A) + λp−1(B)

...
λp(A) + λj(B)

 ≤ λj(A+B) ≤


λj(A) + λ1(B)
λj−1(A) + λ2(B)

...
λ1(A) + λj(B)

 ,

where λj(·) is the j-th largest eigenvalue of the matrix.

Lemma 3 As n→∞, the eigenvalues of the matrix A in (9) satisfy

λj(A)

λ
(n)
j

a.s−→ 1, for j = 1, · · · ,m.

Proof Define the m-dimensional random vectors X∗i =
[
Im, 0m×(d−m)

]
Xi, i = 1, · · · , n.

Then, X∗i has mean zero and the following covariance matrix Σ∗:

Σ∗ =

λ
(n)
1 · · · 0
...

. . .
...

0 · · · λ
(n)
m

 .
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Let A∗ be the dual matrix of the matrix A. The sample covariance matrix of X∗i is

A∗ =
1

n

n∑
i=1

X∗iX
∗
i
T

= λ
(n)
1 ×


1
n

∑n
i=1 z

2
i,1 · · ·

{
λ
(n)
m

λ
(n)
1

} 1
2

1
n

∑n
i=1 zi,1zi,m

...
. . .

...{
λ
(n)
m

λ
(n)
1

} 1
2

1
n

∑n
i=1 zi,1zi,m · · · λ

(n)
m

λ
(n)
1

1
n

∑n
i=1 z

2
i,m

 , (10)

where the zi,j ’s are defined in (1).
Since A∗ is the dual matrix of A, then A and A∗ share the same non-zero eigenvalues.

Below we study the eigenvalues of A through the dual matrix A∗.
The i.i.d. and unit variance properties of the zi,j ’s yield that as n→∞,

1

n

n∑
i=1

zi,kzi,l
a.s−→
{

1 1 ≤ k = l ≤ m
0 1 ≤ k 6= l ≤ m . (11)

Denote bk = limn→∞
λ
(n)
k

λ
(n)
1

≤ 1, k = 1, · · · ,m. Then it follows from (10) and (11) that as

n→∞,

1

λ
(n)
1

A∗
a.s−→

1 · · · 0
...

. . .
...

0 · · · bm

 ,

which further yields
λ1(A)

λ
(n)
1

=
λ1(A

∗)

λ
(n)
1

a.s−→ 1. (12)

Similarly, for k = 2, · · · ,m, we have that as n→∞,

λ1(
1
n

∑m
j=k λ

(n)
j Z̃jZ̃

T
j )

λ
(n)
k

a.s−→ 1. (13)

Next we derive the upper and lower bounds for λk(A), k = 2, · · · ,m. According to
Lemma 2, we have the following inequality :

λk(A) = λk(
1

n

m∑
j=1

λ
(n)
j Z̃jZ̃

T
j ) ≤ λ1(

1

n

m∑
j=k

λ
(n)
j Z̃jZ̃

T
j ) + λk(

1

n

k−1∑
j=1

λ
(n)
j Z̃jZ̃

T
j ).

Since the rank of 1
n

∑k−1
j=1 λ

(n)
j Z̃jZ̃

T
j is at most k−1, then λk(

1
n

∑k−1
j=1 λ

(n)
j Z̃jZ̃

T
j ) = 0, which

together with (13), yields that

λk(A)

λ
(n)
k

≤ 1

λ
(n)
k

× λ1(
1

n

m∑
j=k

λ
(n)
j Z̃jZ̃

T
j ). (14)
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For the lower bound, it follows from Equation (5.9) in Jung and Marron (2009) that

λ1(
λ
(n)
k

n
Z̃kZ̃

T
k ) + λn(

1

n

m∑
j=k+1

λ
(n)
j Z̃jZ̃

T
j ) ≤ λk(A). (15)

Given that the rank of 1
n

∑m
j=k+1 λ

(n)
j Z̃jZ̃

T
j is at mostm withm < n, then λn( 1

n

∑m
j=k+1 λ

(n)
j Z̃jZ̃

T
j ) =

0, which together with (15), yields that

λk(A)

λ
(n)
k

≥ 1

λ
(n)
k

× λ1(
λ
(n)
k

n
Z̃kZ̃

T
k ). (16)

Note that as n→∞,

1

λ
(n)
k

× λ1(
λ
(n)
k

n
Z̃kZ̃

T
k ) =

1

n
Z̃Tk Z̃k

a.s−→ 1. (17)

It follows from (13), (14), (16) and (17) that, for k = 2, · · · ,m,

λk(A)

λ
(n)
k

a.s−→ 1, as n→∞. (18)

The combination of (12) and (18) proves Lemma 6.1.

Lemma 4 Assume that limn→∞
d(n)
n = c, where 0 ≤ c ≤ ∞, and let λmax(·) and λmin(·)

be the largest and smallest non-zero eigenvalues of the matrix, respectively. As n → ∞,
λmax(B) and λmin(B), where B in (9), satisfy

λmax(B) and λmin(B)
a.s→ cλ, for c = 0, (19)

n

d(n)
λmax(B) and

n

d(n)
λmin(B)

a.s→ cλ, for c =∞, (20)

and

λmax(B)
a.s→ cλ(1 +

√
c)2 and λmin(B)

a.s→ cλ(1−
√
c)2, for 0 < c <∞. (21)

Remark 2 If λ
(n)
m+1 → · · · → λ

(n)
d(n) is relaxed to λ

(n)
m+1 � · · · � λ

(n)
d(n), then “

a.s→ ” is replaced
by almost surely “ � ”.

Proof Define B∗ = 1
n

∑d(n)
j=m+1 Z̃jZ̃

T
j . The proof uses the following inequalities for k ≥ 1:

λ
(n)
d(n) × λk(B

∗) ≤ λk(B) ≤ λ(n)m+1 × λk(B
∗). (22)
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We first prove the right inequality of (22). Note that λ
(n)
m+1B

∗ can be rewritten as

λ
(n)
m+1B

∗ = B+B∗R, where B∗R = 1
n

∑d(n)
j=m+1(λ

(n)
m −λ(n)j )Z̃jZ̃

T
j and is a non-negative matrix.

It then follows from Lemma 2 that for k ≥ 1,

λ
(n)
m+1 × λk(B

∗) = λk(λ
(n)
m+1B

∗) ≥ λk(B) + λn(B∗R) ≥ λk(B),

which yields the right inequality of (22).

For the left inequality in (22), note thatB = λ
(n)
d(n)B

∗+B∗L, whereB∗L = 1
n

∑d(n)
j=m+1(λ

(n)
j −

λ
(n)
d(n))Z̃jZ̃

T
j and is a non-negative matrix. Lemma 2 implies that for k ≥ 1,

λk(B) ≥ λk(λ
(n)
d(n)B

∗) + λn(B∗L) ≥ λk(λ
(n)
d(n)B

∗) = λ
(n)
d(n) × λk(B

∗),

which yields the left inequality of (22).
Note that B∗ can be rewritten as B∗ = 1

nV V
T , where V = [Z̃m+1, · · · , Z̃d(n)] is an

n× (d(n)−m) matrix. If limn→∞
d(n)
n = limn→∞

d(n)−m
n =∞, then according to Lemma 1,

we have that
1

d(n)−m
λmax(V V T ) and

1

d(n)−m
λmin(V V T )

a.s→ 1.

It then follows that n
d(n)λmax(B∗) and n

d(n)λmin(B∗)
a.s→ 1, which, together with (22) and

λ
(n)
m+1 → λ

(n)
d(n) → cr, yields (20).

Now consider the case limn→∞
d(n)
n = limn→∞

d(n)−m
n = c <∞. Since B∗ = 1

nV V
T and

1
nV

TV share the non-zero eigenvalues, then we study the eigenvalues of B∗ through 1
nV

TV .
Applying Lemma 1 to 1

nV
TV yields that

λmax(
1

n
V TV )

a.s→ (1 +
√
c)2 and λmin(

1

n
V TV )

a.s→ (1−
√
c)2.

It then follows that λmax(B∗)
a.s→ (1 +

√
c)2 and λmin(B∗)

a.s→ (1 −
√
c)2. In addition, given

that λ
(n)
m+1 → λ

(n)
d(n) → cr and (22), then we have λmax(B)

a.s→ cr(1 +
√
c)2 and λmin(B)

a.s→
cr(1−

√
c)2 for 0 ≤ c <∞, which yields (19) (c = 0) and (21) (0 < c <∞) .

7.3 Asymptotic properties of the sample eigenvalues

We now study the asymptotic properties of the sample eigenvalues λ̂j for j = 1, · · · , [n ∧
d(n)], which are the same as those of the dual matrix Σ̂D, denoted as λj(Σ̂D) = λj(A+B).

7.3.1 Scenario (a) in Theorem 1

Scenario (a) contains three different cases: limn→∞
d(n)
n = 0, ∞, or c (0 < c < ∞). The

proofs are different for each case and are provided separately below.
Consider the first case: limn→∞

d(n)
n = 0. According to Lemma 2, we have that

λj(A)

λ
(n)
j

≤ λ̂j

λ
(n)
j

≤ λj(A)

λ
(n)
j

+
λ1(B)

λ
(n)
j

. (23)
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If λ
(n)
m → ∞, it follows from (19) that λ1(B)

λ
(n)
j

a.s→ 0 for j = 1, · · · ,m. Then the combination

of Lemma 3 and (23) proves that, as n→∞,

λ̂j

λ
(n)
j

a.s→ 1, j = 1, · · · ,m. (24)

If λ
(n)
m < ∞, according to Theorem 1 (c = 0) of Baik and Silverstein (2006), we still

have (24). In addition, according to Lemma 2, we have

λj(B) ≤ λ̂j ≤ λj(A) + λ1(B). (25)

Since the rank of A is at most m, then λj(A) = 0 for j ≥ m+ 1, which, together with (25),
yields that for j = m+ 1, · · · , [n ∧ (d(n)−m)],

λmin(B) ≤ λ̂j ≤ λmax(B). (26)

Thus it follows from (19) and (26) that as n→∞,

λ̂j
a.s→ cr, j = m+ 1, · · · , [n ∧ (d(n)−m)].

Now consider the second case: limn→∞
d(n)
n = ∞. Since d(n)

nλ
(n)
m

→ 0, then λ
(n)
m → ∞,

which, together with (20), (23) and Lemma 3, yields (24). Since limn→∞
d(n)
n = ∞, then

[n ∧ (d(n)−m)] = [n ∧ d(n)] = n as n→∞. It follows from (20) and (26) that

n

d(n)
λ̂j

a.s→ cr, j = m+ 1, · · · , [n ∧ d(n)].

Finally, consider the third case: limn→∞
d(n)
n = c (0 < c < ∞). Similarly, it follows

from d(n)

nλ
(n)
m

→ 0 that λ
(n)
m →∞, which, jointly with (21), (23) and Lemma 3, yields (24). In

addition, note that (21) and (26), and then almost surely we have

cr(1−
√
c)2 ≤ limn→∞λ̂j ≤ limn→∞λ̂j ≤ cr(1 +

√
c)2, j = m+ 1, · · · , [n ∧ (d(n)−m)].

All together, we have proven the consistency of the first m sample eigenvalues under
Scenario (a), as stated in (24).

7.3.2 Scenario (b) in Theorem 1

Given d(n)

nδ
(n)
h+1

→ ∞ and (8), then d(n)
n → ∞ and d(n)

nλ
(n)
j

→ 0 for j ∈ Hl, l = 1, · · · , h. Thus,

according to (20), we have that λ1(B)

λ
(n)
j

=
[

n
d(n)λ1(B)

] [
d(n)

nλ
(n)
j

]
a.s→ 0 for j ∈ Hl, l = 1, · · · , h.

Furthermore, it follows from Lemma 3 and (23) that as n→∞,

λ̂j

λ
(n)
j

a.s→ 1, j ∈ Hl, l = 1, · · · , h. (27)
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Note that (25) can be rewritten as

n

d(n)
λj(B) ≤ n

d(n)
λ̂j ≤

n

d(n)
λj(A) +

n

d(n)
λ1(B), (28)

which yields that for j = jh + 1, · · · , [n ∧ (d(n)−m)],

n

d(n)
λmin(B) ≤ n

d(n)
λ̂j ≤

n

d(n)
λj(A) +

n

d(n)
λmax(B). (29)

Note that for j = jh + 1, · · · , [n ∧ (d(n)−m)], we have

n

d(n)
λj(A) ≤ n

d(n)
λ
(n)
jh+1

(A) =

{
nδ

(n)
h+1

d(n)

}λ
(n)
jh+1

(A)

δ
(n)
h+1

 .

It then follows from d(n)

nδ
(n)
h+1

→ ∞ and Lemma 3 that n
d(n)λj(A)

a.s→ 0. Since d(n)
n → ∞, then

[n ∧ (d(n) −m)] = [n ∧ d(n)] = n, as n → ∞. Then it follows from (20) and (29) that as
n→∞

n

d(n)
λ̂j

a.s→ cλ, j = jh + 1, · · · , [n ∧ d(n)]. (30)

The combination of (27) and (30) yields the asymptotic properties of the non-zero sample
eigenvalues in Scenario (b).

7.3.3 Scenario (c) in Theorem 1

Since d(n)

nδ
(n)
1

→ ∞, then d(n)
n → ∞. According to (28), we have that for j = 1, · · · , [n ∧

(d(n)−m)],
n

d(n)
λmin(B) ≤ n

d(n)
λ̂j ≤

n

d(n)
λ1(A) +

n

d(n)
λmax(B). (31)

Since d(n)

nδ
(n)
1

→∞, it follows from (8) and Lemma 3 that

n

d(n)
λ1(A) =

[
nδ

(n)
1

d(n)

]
×

[
λ
(n)
1

δ
(n)
1

]
×

[
λ1(A)

λ
(n)
1

]
a.s→ 0.

Again note that [n ∧ (d(n) −m)] = [n ∧ d(n)] = n, as n → ∞. Then it follows from (20)
and (31) that

n

d(n)
λ̂j

a.s→ cλ, j = 1, · · · , [n ∧ d(n)].

7.4 Asymptotic properties of the sample eigenvectors

We first state two results that simplify the proof. As aforementioned, in light of the invari-
ance property of the angle, we choose the population eigenvectors uj , j = 1, . . . , d(n), as
the basis of the d-dimensional space. It then follows that uj = ej where the jth component
of ej equals to 1 and all the other components equal to zero. This suggests that

|< ûj , uj >|2=|< ûj , ej >|2= û2j,j , (32)
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and for any index set H,

cos [angle (ûj , span{uk, k ∈ H})] =
∑
k∈H

û2k,j . (33)

As a reminder, the population eigenvalues are grouped into r+ 1 tiers and the index set
of the eigenvalues in the lth tier Hl is defined in (4). Define

Ûk,l = (ûi,j)i∈Hk,j∈Hl , 1 ≤ k, l ≤ r + 1.

Then, the sample eigenvector matrix Û can be rewritten as the following:

Û = [û1, û2, · · · , ûd(n)] =


Û1,1 Û1,2 · · · Û1,r+1

Û2,1 Û2,2 · · · Û2,r+1
...

...
...

Ûr+1,1 Ûr+1,2 · · · Ûr+1,r+1

 .

To derive the asymptotic properties of the sample eigenvectors ûj , we consider the three
scenarios of Theorem 1 separately.

7.4.1 Scenario (b) in Theorem 1

Under Scenario (b), there exists a constant h ∈ [1, r], such that d(n)

nδ
(n)
h

→ 0 and d(n)

nδ
(n)
h+1

→∞.

In order to obtain the the subspace consistency properties in Scenario (b), according to
(33), we only need to show that as n→∞,

∑
k∈Hl

û2k,j = 1 + oa.s

{
δ
(n)
l

δ
(n)
l−1

∨
δ
(n)
l+1

δ
(n)
l

}
, j ∈ Hl, l = 1, · · · , h− 1, (34)

∑
k∈Hh

û2k,j = 1 + oa.s

{
δ
(n)
h

δ
(n)
h−1

}
∨Oa.s

{
d(n)

nδ
(n)
h

}
, j ∈ Hh, (35)

which are respectively equivalent to

∑
j∈Hl

∑
k∈Hl

û2k,j = |Hl|+ oa.s

{
δ
(n)
l

δ
(n)
l−1

∨
δ
(n)
l+1

δ
(n)
l

}
, l = 1, · · · , h− 1, (36)

∑
j∈Hh

∑
k∈Hh

û2k,j = |Hh|+ oa.s

{
δ
(n)
h

δ
(n)
h−1

}
∨Oa.s

{
d(n)

nδ
(n)
h

}
, (37)

where |Hl| is the number of elements in Hl and less than m. Since
∑

j∈Hl
∑

k∈Hl =∑
k∈Hl

∑
j∈Hl , then in order to obtain (36) and (37), we just need to prove that as n→∞,

∑
j∈Hl

û2k,j = 1 + oa.s

{
δ
(n)
l

δ
(n)
l−1

∨
δ
(n)
l+1

δ
(n)
l

}
, k ∈ Hl, l = 1, · · · , h− 1, (38)

∑
j∈Hh

û2k,j = 1 + oa.s

{
δ
(n)
h

δ
(n)
h−1

}
∨Oa.s

{
d(n)

nδ
(n)
h

}
, k ∈ Hh. (39)
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Therefore the proof of the subspace consistency contains two steps (38) and (39). Here we
first prove (39) and then (38).

The third step is to show the strong inconsistency in Scenario (b). Since λ̂j = 0 for
j > [n ∧ d(n)], then we only need to show the strong inconsistency of ûj , j < [n ∧ d(n)].
Here we will prove that as n→∞,

maxjh+1≤j≤[n∧d(n)]

{
d(n)

nλ
(n)
j

û2j,j

}
= Oa.s(1). (40)

The First Step: Proof of (39). Since

∑
j∈Hh

û2k,j = 1−
h−1∑
l=1

∑
j∈Hl

û2k,j −
d(n)∑

j=jh+1

û2k,j ,

then in order to obtain (39), we just need to show that as n→∞,

d(n)∑
j=jh+1

û2k,j = Oa.s

{
d(n)

nδ
(n)
h

}
, k ∈ Hh, (41)

h−1∑
l=1

∑
j∈Hl

û2k,j = oa.s

{
δ
(n)
h

δ
(n)
h−1

}
, k ∈ Hh. (42)

We first prove (41). Since
∑d(n)

j=jh+1 û
2
k,j ≤

∑jh
k=1

∑d(n)
j=jh+1 û

2
k,j for k ∈ Hh, then in order

to generate (41), we need to show that as n→∞,

jh∑
k=1

d(n)∑
j=jh+1

û2k,j = Oa.s

{
d(n)

nδ
(n)
h

}
. (43)

Since
∑d(n)

k=1 û
2
k,j =

∑d(n)
j=1 û

2
k,j = 1, then we have

d(n)− jl =

d(n)∑
j=jl+1

d(n)∑
k=1

û2k,j =

jl∑
k=1

d(n)∑
j=jl+1

û2k,j +

d(n)∑
k=jl+1

d(n)∑
j=jl+1

û2k,j ,

d(n)− jl =

d(n)∑
k=jl+1

d(n)∑
j=1

û2k,j =

d(n)∑
k=jl+1

jl∑
j=1

û2k,j +

d(n)∑
k=jl+1

d(n)∑
j=jl+1

û2k,j ,

which yields
jl∑
k=1

d(n)∑
j=jl+1

û2k,j =

d(n)∑
k=jl+1

jl∑
j=1

û2k,j . (44)

Let l = h in (44) and then (43) can be obtained through showing

d(n)∑
k=jh+1

jh∑
j=1

û2k,j = Oa.s

{
d(n)

nδ
(n)
h

}
. (45)
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Therefore, in order to show (41), we need to prove (45).

Before proving (45), we need some preparation. Denote S = Λ−
1
2 Û Λ̂

1
2 where Û is the

sample eigenvector matrix and Λ̂ is the sample eigenvalue matrix defined in (3). Define

Z = (Z1, · · · , Zn), (46)

where Zi is in (2). It follows from (1), (2) and (3) that SST = 1
nZZ

T . Since sk,j =

λ
(n)
k

− 1
2 λ̂

1
2
j ûk,j , then considering the k-th diagonal entry of the matrices SST = 1

nZZ
T on

the two sides leads to

1

λ
(n)
k

d∑
j=1

λ̂j û
2
k,j =

d∑
j=1

s2k,j =
1

n

n∑
i=1

z2i,k, k = 1, · · · , d(n). (47)

In addition, the j-th diagonal entry of STS is less than or equal to its largest eigenvalue,
i.e. λmax(SST ) = λmax( 1

nZZ
T ) = λmax( 1

nZ
TZ), which yields

λ̂j

d(n)∑
k=1

1

λ
(n)
k

û2k,j =

d(n)∑
k=1

s2k,j ≤ λmax(
1

n
ZTZ), j = 1, · · · , d(n). (48)

According to (48), we have that for l = 1, · · · , h,

λ̂jl ×
1

λ
(n)
m+1

×
jl∑
j=1

d(n)∑
k=m+1

û2k,j ≤
jl∑
j=1

λ̂j

d(n)∑
k=m+1

1

λ
(n)
k

û2k,j

≤
jl∑
j=1

λ̂j

d(n)∑
k=1

1

λ
(n)
k

û2k,j ≤ jl × λmax(
1

n
ZTZ),

which yields

d(n)∑
k=m+1

jl∑
j=1

û2k,j =

jl∑
j=1

d(n)∑
k=m+1

û2k,j ≤ jlλ
(n)
m+1 ×

δ
(n)
l

λ̂jl
× λmax(

1

d(n)
ZTZ)× d(n)

nδ
(n)
l

. (49)

Since d(n)
n = δ

(n)
h+1 ×

d(n)

nδ
(n)
h+1

→ ∞, it follows from Lemma 3 that λmax( 1
d(n)Z

TZ)
a.s→ 1.

According to (8) and (27),
δ
(n)
l

λ̂jl
=

δ
(n)
l

λ
(n)
jl

×
λ
(n)
jl

λ̂jl

a.s→ 1, l = 1, · · · , h. In addition, note that

jl(< m) is finite and λ
(n)
m+1 → cλ. Thus it follows from (49) that as n→∞,

d(n)∑
k=m+1

jl∑
j=1

û2k,j = Oa.s

{
d(n)

nδ
(n)
l

}
. (50)

From (47), we have that for l = 1, · · · , h,

1

λ
(n)
jh+1

× λ̂jl
m∑

k=jh+1

jl∑
j=1

û2k,j ≤
m∑

k=jh+1

1

λ
(n)
k

jl∑
j=1

λ̂j û
2
k,j

≤
m∑

k=jh+1

1

λ
(n)
k

d(n)∑
j=1

λ̂j û
2
k,j =

m∑
k=jh+1

1

n

n∑
i=1

z2i,k,
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which yields
m∑

k=jh+1

jl∑
j=1

û2k,j ≤
λ
(n)
jh+1

δ
(n)
l

×
δ
(n)
l

λ̂jl
×

m∑
k=jh+1

1

n

n∑
i=1

z2i,k. (51)

Since
λ
(n)
jh+1

δ
(n)
h+1

→ 1,
δ
(n)
l

λ̂jl

a.s→ 1 and
∑m

k=jh+1
1
n

∑n
i=1 z

2
i,k

a.s→ m− jh, it follows from (51) that as

n→∞,
m∑

k=jh+1

jl∑
j=1

û2k,j = Oa.s

{
δ
(n)
h+1

δ
(n)
l

}
. (52)

Since δ
(n)
h+1 <<

d(n)
n , it follows from (50) and (52) that as n→∞,

d(n)∑
k=jh+1

jl∑
j=1

û2k,j = Oa.s

{
d(n)

nδ
(n)
l

}
, l = 1, · · · , h. (53)

Letting l = h in (53) results in (45).
Until now we have proven (41). In order to finish the first step proof, we need to show

(42). Since 1
n

∑n
i=1 z

2
i,k

a.s→ 1, it follows from (47) that for k ∈ Hh,

1

λ
(n)
k

h−1∑
l=1

∑
j∈Hl

λ̂j û
2
k,j +

1

λ
(n)
k

∑
j∈Hh

λ̂j û
2
k,j +

1

λ
(n)
k

d(n)∑
j=jh+1

λ̂j û
2
k,j =

1

λ
(n)
k

d(n)∑
j=1

λ̂j û
2
k,j

a.s→ 1. (54)

Since
λ̂j

λ
(n)
k

a.s→
δ
(n)
l

δ
(n)
h

, k ∈ Hh, j ∈ Hl, (55)

and

1

λ
(n)
k

d(n)∑
j=jh+1

λ̂j û
2
k,j ≤

λ̂jh+1

λ
(n)
k

a.s→
δ
(n)
h+1

δ
(n)
h

→ 0,

it follows from (54) that for k ∈ Hh,

h−1∑
l=1

δ
(n)
l

δ
(n)
h

∑
j∈Hl

û2k,j +
∑
j∈Hh

û2k,j
a.s→ 1. (56)

According to (43), we have
∑d(n)

j=jh+1 û
2
k,j ≤

∑jh
k=1

∑d(n)
j=jh+1 û

2
k,j

a.s→ 0, which together with

h−1∑
l=1

∑
j∈Hl

û2k,j +
∑
j∈Hh

û2k,j +

d(n)∑
j=jh+1

û2k,j =
d∑
j=1

û2k,j = 1,

yields that for k ∈ Hh,
h−1∑
l=1

∑
j∈Hl

û2k,j +
∑
j∈Hh

û2k,j
a.s→ 1. (57)
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Since limn→∞
δ
(n)
l

δ
(n)
h

> 1 for l < h, it follows from (56) and (57) that
∑

j∈Hh û
2
k,j

a.s→ 1 for

k ∈ Hh, which together with (56), yields that for k ∈ Hh,

h−1∑
l=1

δ
(n)
l

δ
(n)
h

∑
j∈Hl

û2k,j
a.s→ 0. (58)

Since limn→∞
δ
(n)
l

δ
(n)
h

≥ limn→∞
δ
(n)
h−1

δ
(n)
h

for l ≤ h− 1, it follows from (58) that as n→∞,

h−1∑
l=1

∑
j∈Hl

û2k,j = oa.s

{
δ
(n)
h

δ
(n)
h−1

}
, k ∈ Hh,

which is (42).

The Second Step: Proof of (38). Below we illustrate how one can use (39) to prove
(38) for l = h− 1. Then through a similar procedure, the result for l = h− 1 in (38) can be
used to prove that (38) holds for l = h− 2, which is then iterated until finishing the proof
of (38).

Since ∑
j∈Hh−1

û2k,j = 1−
h−2∑
l=1

∑
j∈Hl

û2k,j −
d(n)∑

j=jh−1+1

û2k,j ,

then in order to obtain (38) for l = h− 1, we need to prove that as n→∞,

d(n)∑
j=jh−1+1

û2k,j = oa.s

{
δ
(n)
h

δ
(n)
h−1

}
, k ∈ Hh−1, (59)

h−2∑
l=1

∑
j∈Hl

û2k,j = oa.s

{
δ
(n)
h−1

δ
(n)
h−2

}
, k ∈ Hh−1. (60)

Now we show the proof of (59). Since jh < m is finite and
∑jh−1

j=1 =
∑h−1

l=1

∑
j∈Hl , it

follows from (42) that as n→∞,

jh∑
k=jh−1+1

jh−1∑
j=1

û2k,j =

jh∑
k=jh−1+1

h−1∑
l=1

∑
j∈Hl

û2k,j

 = oa.s

{
δ
(n)
h

δ
(n)
h−1

}
. (61)

Let l = h−1 in (53) to obtain that
∑d(n)

k=jh+1

∑jh−1

j=1 û
2
k,j = Oa.s

{
d(n)

nδ
(n)
h−1

}
. Since δ

(n)
h >> d(n)

n ,

it follows from (61) that as n→∞,

d(n)∑
k=jh−1+1

jh−1∑
j=1

û2k,j =

jh∑
k=jh−1+1

jh−1∑
j=1

û2k,j +

d(n)∑
k=jh+1

jh−1∑
j=1

û2k,j

= oa.s

{
δ
(n)
h

δ
(n)
h−1

}
+ Oa.s

{
d(n)

nδ
(n)
h−1

}
= oa.s

{
δ
(n)
h

δ
(n)
h−1

}
. (62)
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Let l = h− 1 in (44), which together with (62), proves that as n→∞,

jh−1∑
k=1

d(n)∑
j=jh−1+1

û2k,j =

d(n)∑
k=jh−1+1

jh−1∑
j=1

û2k,j = oa.s

{
δ
(n)
h

δ
(n)
h−1

}
. (63)

Since
∑d(n)

j=jh−1+1 û
2
k,j ≤

∑jh−1

k=1

∑d(n)
j=jh−1+1 û

2
k,j for k ∈ Hh−1, then (59) follows from (63).

Now we show the proof of (60) to finish the second step. Since 1
n

∑n
i=1 z

2
i,k

a.s→ 1, it
follows from (47) that for k ∈ Hh−1,

1

λ
(n)
k

h−2∑
l=1

∑
j∈Hl

λ̂j û
2
k,j +

1

λ
(n)
k

∑
j∈Hh−1

λ̂j û
2
k,j +

1

λ
(n)
k

d(n)∑
j=jh−1+1

λ̂j û
2
k,j =

1

λ
(n)
k

d(n)∑
j=1

λ̂j û
2
k,j

a.s→ 1. (64)

Since 1

λ
(n)
k

∑d(n)
j=jh−1+1 λ̂j û

2
k,j ≤

1

λ
(n)
k

λ̂jh−1+1
∑d(n)

j=jh−1+1 û
2
k,j and

λ̂jh−1+1

λ
(n)
k

a.s→ limn→∞
δ
(n)
h

δ
(n)
h−1

< 1

for k ∈ Hh−1, it follows from (59) that

1

λ
(n)
k

d(n)∑
j=jh−1+1

λ̂j û
2
k,j

a.s→ 0,

which together with (55) and (64), yields

h−2∑
l=1

δ
(n)
l

δ
(n)
h−1

∑
j∈Hl

û2k,j +
∑

j∈Hh−1

û2k,j
a.s→ 1, k ∈ Hh−1. (65)

In addition, since

h−2∑
l=1

∑
j∈Hl

û2k,j +
∑

j∈Hh−1

û2k,j +

d(n)∑
j=jh−1+1

û2k,j =

d(n)∑
j=1

û2k,j = 1,

it follows from (59) that

h−2∑
l=1

∑
j∈Hl

û2k,j +
∑

j∈Hh−1

û2k,j
a.s→ 1, k ∈ Hh−1. (66)

Note that limn→∞
δ
(n)
l

δ
(n)
h−1

> 1 for l < h − 1. Then the combination of (65) and (66) gives∑
j∈Hh−1

û2k,j
a.s→ 1 for k ∈ Hh−1, which together with (65), yields

h−2∑
l=1

δ
(n)
l

δ
(n)
h−1

∑
j∈Hl

û2k,j
a.s→ 0, k ∈ Hh−1. (67)

Since limn→∞
δ
(n)
l

δ
(n)
h−1

≥ limn→∞
δ
(n)
h−2

δ
(n)
h−1

for l ≤ h− 2, it follows from (67) that as n→∞,

h−2∑
l=1

∑
j∈Hl

û2k,j = oa.s

{
δ
(n)
h−1

δ
(n)
h−2

}
, k ∈ Hh,

26



General Framework for PCA Consistency

which is (60).

The Third Step: Proof of (40). According to (47), we have 1

λ
(n)
j

λ̂j û
2
j,j ≤ 1

n

∑n
i=1 z

2
i,j

for j = 1, · · · , d(n), which yields

λ̂j[n∧d(n)] ×maxjh+1≤j≤[n∧d(n)]

{
1

λ
(n)
j

û2j,j

}
≤ maxjh+1≤j≤[n∧d(n)]

{
λ̂j

λ
(n)
j

û2j,j

}

≤ max1≤j≤[n∧d(n)]

{
λ̂j

λ
(n)
j

û2j,j

}
≤ max1≤j≤[n∧d(n)]

{
1

n

n∑
i=1

z2i,j

}
. (68)

Select the first [n ∧ d(n)] rows of Z in (46) and denote the resulting random matrix as
Z∗. Since 1

n

∑n
i=1 z

2
i,j is the j-th diagonal entry of 1

nZ
∗Z∗T for 1 ≤ j ≤ [n∧ d(n)], it follows

that
1

n

n∑
i=1

z2i,j ≤ λmax(
1

n
Z∗Z∗T ), 1 ≤ j ≤ [n ∧ d(n)],

which yields

max1≤j≤[n∧d(n)]

{
1

n

n∑
i=1

z2i,j

}
≤ λmax(

1

n
Z∗Z∗T ).

Then from (68),{
n

d(n)
λ̂j[n∧d(n)]

}
×maxjh+1≤j≤[n∧d(n)]

{
d(n)

nλ
(n)
j

û2j,j

}
≤ λmax(

1

n
Z∗Z∗T ). (69)

Since d(n)
n →∞ here, [n∧ d(n)] = n. According to Lemma 1, we have λmax( 1

nZ
∗Z∗T )

a.s→ 4,
which together with (30) and (69), yields (40).

7.4.2 Scenario (a) in Theorem 1

Scenario (a) contains three different cases: limn→∞
d(n)
n = 0, ∞, or c (0 < c < ∞). The

proofs are slightly different for each case and are provided separately below.

Consider the case limn→∞
d(n)
n =∞. Since λ

(n)
j → cλ for j ∈ Hr+1, then d(n)

nδ
(n)
r

→ 0 and

d(n)

nλ
(n)
j

→∞ for j ∈ Hr+1. Thus h in (34) and (35) becomes r such that as n→∞,

∑
k∈Hl

û2k,j = 1 + oa.s

{
δ
(n)
l

δ
(n)
l−1

∨
δ
(n)
l+1

δ
(n)
l

}
, j ∈ Hl, l = 1, · · · , r − 1, (70)

∑
k∈Hr

û2k,j = 1 + oa.s

{
δ
(n)
r

δ
(n)
r−1

}
∨Oa.s

{
d(n)

nδ
(n)
r

}
, j ∈ Hr. (71)

Since jr = m, then (50) becomes that as n→∞,

d(n)∑
k=m+1

m∑
j=1

û2k,j = Oa.s

{
d(n)

nδ
(n)
r

}
,
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which together with (44), yields that

m∑
k=1

d(n)∑
j=m+1

û2k,j = Oa.s

{
d(n)

nδ
(n)
r

}
. (72)

Since

1 ≥
∑

k∈Hr+1

û2k,j = 1−
m∑
k=1

û2k,j ≥ 1−
m∑
k=1

d(n)∑
j=m+1

û2k,j , j > m, (73)

it follows from (72) that

∑
k∈Hr+1

û2k,j = 1 + Oa.s

{
d(n)

nδr

}
, j = m+ 1, · · · , [n ∧ d(n)]. (74)

Now consider the second case limn→∞
d(n)
n = c (0 < c < ∞). Note that the subspace

consistency of the sample eigenvectors in (70) only depends on the the asymptotic properties
of the sample eigenvalues λ̂j , j = 1, · · · ,m. According to Section 7.3.1, the asymptotic

properties of λ̂j , j = 1, · · · ,m, only depends d(n)

nδ
(n)
r

→ 0, and is the same as in the first case

limn→∞
d(n)
n =∞. Thus (70) remains valid here.

However, the subspace consistency of the other eigenvectors also depends on λ̂j , j > m,
whose properties are different from the first case. In fact (71) and (74) respectively become
that as n→∞,

∑
k∈Hr

û2k,j = 1 + oa.s

{
δ
(n)
r

δ
(n)
r−1

}
∨Oa.s

{
1

δ
(n)
r

}
, j ∈ Hr, (75)

∑
k∈Hr+1

û2k,j = 1 + Oa.s

{
1

δ
(n)
r

}
, j = m+ 1, · · · , [n ∧ d(n)]. (76)

In order to obtain (75), following the first step proof procedure in Section 7.4.1, we only
need to show that as n→∞,

m∑
k=1

d(n)∑
j=m+1

û2k,j = Oa.s

{
1

δ
(n)
r

}
. (77)

Since limn→∞
d(n)
n = c (0 < c < ∞), then (72) becomes (77). In addition, it follows from

(73) and (77) that (76) is established.

Note that we can combine the first and the second cases together as follows. If d(n)n → c,
0 < c ≤ ∞, then the combination of (71) and (75) provides

∑
k∈Hr

û2k,j = 1 + oa.s

{
δ
(n)
r

δ
(n)
r−1

}
∨Oa.s

{
d(n)

nδ
(n)
r

}
, j ∈ Hr,
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and the combination of (74) and (77) yields∑
k∈Hr+1

û2k,j = 1 + Oa.s

{
d(n)

nδr

}
, j = m+ 1, · · · , [n ∧ d(n)].

In addition, (70) remains valid for both cases. Thus it follows from (33) that we have
finished the proof of the second bullet point in Scenario (a).

Finally, consider the last case limn→∞
d(n)
n = 0. It is clear that (70) still holds. According

to (33), in order to finish the proof of the first bullet point in Scenario (a), we only need to
show that as n→∞,

∑
k∈Hr

û2k,j = 1 + oa.s

{
δ
(n)
r

δ
(n)
r−1

∨ 1

δ
(n)
r

}
, j ∈ Hr, (78)

∑
k∈Hr+1

û2k,j = 1 + oa.s

{
1

δ
(n)
r

}
, j = m+ 1, · · · , [n ∧ d(n)]. (79)

In fact, in order to prove (78) and (79), we need to replace (77) by that as n→∞,

m∑
k=1

d(n)∑
j=m+1

û2k,j = oa.s

{
1

δ
(n)
r

}
. (80)

It follows from (44) that

m∑
k=1

d(n)∑
j=m+1

û2k,j =

m∑
j=1

d(n)∑
k=m+1

û2k,j .

We also have
m∑
j=1

d(n)∑
k=m+1

û2k,j =

r∑
l=1

∑
j∈Hl

d(n)∑
k=m+1

û2k,j .

Then in oder to obtain (80), we only need to prove that as n→∞,

∑
j∈Hr

d(n)∑
k=m+1

û2k,j = oa.s

{
1

δ
(n)
r

}
, (81)

r−1∑
l=1

∑
j∈Hl

d(n)∑
k=m+1

û2k,j = oa.s

{
1

δ
(n)
r

}
. (82)

We now prove (81). Since the j-th diagonal entry of STS is between its largest and
smallest eigenvalue, then (48) becomes

λmin(
1

n
ZZT ) ≤ λ̂j

d(n)∑
k=1

1

λ
(n)
k

û2k,j =

d(n)∑
k=1

s2k,j ≤ λmax(
1

n
ZZT ), j = 1, · · · , d(n). (83)
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Since limn→∞
d(n)
n = 0, it follows from Lemma 1 that λmin( 1

nZZ
T ) and λmax( 1

nZZ
T )

a.s→ 1.

In addition, since
λ̂j

λ
(n)
j

a.s→ 1 for j = 1, · · · ,m (Section 7.3.1), it follows from (83) that

d(n)∑
k=1

λ
(n)
j

1

λ
(n)
k

û2k,j
a.s→ 1, j = 1, · · · ,m. (84)

Note that

d(n)∑
k=1

λ
(n)
j

1

λ
(n)
k

û2k,j =

r−1∑
l=1

∑
k∈Hl

λ
(n)
j

1

λ
(n)
k

û2k,j +
∑
k∈Hr

λ
(n)
j

1

λ
(n)
k

û2k,j +

d(n)∑
k=m+1

λ
(n)
j

1

λ
(n)
k

kû2k,j . (85)

According to (70), we have that∑
j∈Hl

∑
k∈Hl

û2k,j
a.s→ |Hl|, l = 1, · · · , r − 1,

which leads to

r−1∑
l=1

|Hl| =
d(n)∑
j=1

r−1∑
l=1

∑
k∈Hl

û2k,j ≥
r−1∑
l∗=1

∑
j∈Hl∗

r−1∑
l=1

∑
k∈Hl

û2k,j ≥
r−1∑
l=1

∑
j∈Hl

∑
k∈Hl

û2k,j
a.s→

r−1∑
l=1

|Hl|.

Then it follows that

∑
j∈Hr

r−1∑
l=1

∑
k∈Hl

û2k,j ≤
d(n)∑
j=1

r−1∑
l=1

∑
k∈Hl

û2k,j −
r−1∑
l∗=1

∑
j∈Hl∗

r−1∑
l=1

∑
k∈Hl

û2k,j
a.s→ 0. (86)

According to (86), we have that

r−1∑
l=1

∑
k∈Hl

λ
(n)
j

1

λ
(n)
k

û2k,j ≤
r−1∑
l=1

∑
k∈Hl

û2k,j ≤
∑
j∈Hr

r−1∑
l=1

∑
k∈Hl

û2k,j
a.s→ 0, j ∈ Hr. (87)

Since
λ
(n)
j

λ
(n)
k

→ 1 for k, j ∈ Hr, it follows from (85) and (87) that

∑
k∈Hr

û2k,j +

d(n)∑
k=m+1

λ
(n)
j

1

λ
(n)
k

û2k,j
a.s→ 1, j ∈ Hr. (88)

According to (86), we have that

1 ≥
∑
k∈Hr

û2k,j +

d(n)∑
k=m+1

û2k,j = 1−
r−1∑
l=1

∑
k∈Hl

û2k,j

≥ 1−
∑
j∈Hr

r−1∑
l=1

∑
k∈Hl

û2k,j
a.s→ 1, j ∈ Hr.
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Then it follows that ∑
k∈Hr

û2k,j +

d(n)∑
k=m+1

û2k,j
a.s→ 1, j ∈ Hr. (89)

Since limn→∞
λ
(n)
j

λ
(n)
k

> 1 for j ∈ Hr and k ≥ m+ 1, then combining (88) and (89) gives

∑
k∈Hr

û2k,j
a.s→ 1, j ∈ Hr,

which together with (88), yields

d(n)∑
k=m+1

λ
(n)
j

1

λ
(n)
k

û2k,j
a.s→ 0, j ∈ Hr. (90)

Since λ
(n)
k → cλ for k ≥ m+ 1 and

λ
(n)
j

δ
(n)
r

→ 1 for j ∈ Hr, it follows from (90) that as n→∞,

∑
j∈Hr

d(n)∑
k=m+1

û2k,j = oa.s

{
1

δ
(n)
r

}
,

which is (81).
We now show the proof of (82). According to (84), we have that for j ∈ Hl, l =

1, · · · , r − 1,

∑
k∈Hl

λ
(n)
j

1

λ
(n)
k

û2k,j +

d(n)∑
k=m+1

λ
(n)
j

1

λ
(n)
k

û2k,j ≤
d(n)∑
k=1

λ
(n)
j

1

λ
(n)
k

û2k,j
a.s→ 1. (91)

Since λ
(n)
j

1

λ
(n)
k

→ 1 for k, j ∈ Hl, it follows from (70) that

∑
k∈Hl

λ
(n)
j

1

λ
(n)
k

û2k,j →
∑
k∈Hl

û2k,j
a.s→ 1, k, j ∈ Hl,

which together with (91), yields

d(n)∑
k=m+1

λ
(n)
j

1

λ
(n)
k

û2k,j
a.s→ 0, j ∈ Hl, l = 1, · · · , r − 1. (92)

Since λ
(n)
k → cλ for k ≥ m+ 1 and

λ
(n)
j

δ
(n)
l

→ 1 for j ∈ Hl, it follows from (92) that as n→∞,

∑
j∈Hl

d(n)∑
k=m+1

û2k,j = oa.s

{
1

δ
(n)
l

}
, l = 1, · · · , r − 1. (93)

Since δ
(n)
l ≤ δ(n)r for l = 1, · · · , r − 1, (82) then follows from (93).
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7.4.3 Scenario (c) in Theorem 1

Finally, for Scenario (c) where d(n)

nδ
(n)
1

→ ∞, h in (40) equals to 0. Since j0 = 0, then (40)

becomes that as n→∞,

max1≤j≤[n∧d(n)]

{
d(n)

nλj
û2j,j

}
= Oa.s(1),

which yields the strong inconsistency of the sample eigenvectors in Scenario (c).
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