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Abstract

In Markov decision processes (MDPs), the variance of the reward-to-go is a natural measure
of uncertainty about the long term performance of a policy, and is important in domains
such as finance, resource allocation, and process control. Currently however, there is no
tractable procedure for calculating it in large scale MDPs. This is in contrast to the case of
the expected reward-to-go, also known as the value function, for which effective simulation-
based algorithms are known, and have been used successfully in various domains. In this
paper1 we extend temporal difference (TD) learning algorithms to estimating the variance
of the reward-to-go for a fixed policy. We propose variants of both TD(0) and LSTD(λ)
with linear function approximation, prove their convergence, and demonstrate their utility
in an option pricing problem. Our results show a dramatic improvement in terms of sample
efficiency over standard Monte-Carlo methods, which are currently the state-of-the-art.

Keywords: Reinforcement learning, Markov decision processes, variance estimation,
simulation, temporal differences

1. Introduction

In sequential decision making within the Markov Decision Process (MDP) framework,
whether in a planning setting (Puterman, 1994; Powell, 2011) or a reinforcement learning
setting (RL; Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998), the decision maker
ultimately obtains a policy π, often with some guarantees on its expected long-term perfor-
mance. This typical conclusion of the policy optimization process is the starting point of
our work.

We consider the policy π to be fixed2, and we are interested in understanding how π
performs in practice, with the natural quantity of interest being the reward-to-go from each
state of the system. The expected reward-to-go J , also known as the value function, is often

1. This paper extends an earlier work by the authors (Tamar et al., 2013).
2. This setting is also known as a Markov reward process.
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a part of an optimization process, and efficient methods for learning it are well known.
In many applications, however, looking at expectations is not enough, and it seems only
reasonable to estimate other statistics of the reward-to-go, such as its variance, denoted by
V . Quite surprisingly, this topic has received very little attention; at the current state-of-
the-art, the only solution for large-scale MDPs is a naive Monte-Carlo approach, demanding
extensive simulations of the long-term outcomes from each system state. In this paper we
explore much more efficient alternatives.

We further motivate policy evaluation with respect to the variance of the reward-to-go.
The variance is an intuitive measure of uncertainty, and common practice in many domains
such as finance, process control, and clinical decision making (Sharpe, 1966; Shortreed et al.,
2011). As we show in the paper, in an option pricing domain, the uncertainty captured by
the variance of the reward-to-go highlights important properties of the policy, that are not
visible by looking at the value function alone.

The variance may also be used for policy selection. In some practical situations, a
full policy-optimization procedure is not an option, and the agent can only select between
several predefined policies. For example, it may be that each policy is designed by an
expert (e.g., a private equity or investment fund), and the agent can simply select between
several policies, given the current features of the system (e.g., current economic indicators).
A related financial experiment in a non-sequential setting was reported by Moody and
Saffell (2001), which selected between several investment types, and which emphasized the
importance of incorporating variance-based objectives in the policy selection.

Finally, the value function has proved to be a fundamental ingredient in many policy
optimization algorithms. The variance of the reward-to-go may thus prove valuable for
risk aware optimization algorithms, a topic that has gained significant interest recently
(Filar et al., 1995; Mihatsch and Neuneier, 2002; Geibel and Wysotzki, 2005; Mannor and
Tsitsiklis, 2013). Therefore, the policy evaluation methods in this work may be used as a
sub-procedure in policy optimization. Since the conference publication of this work, this idea
has already been explored by Tamar and Mannor (2013) and Prashanth and Ghavamzadeh
(2013). Both Tamar and Mannor (2013) and Prashanth and Ghavamzadeh (2013) suggested
actor-critic algorithms, in which the critic uses the policy evaluation ideas introduced in
this paper. We are certain that risk-aware policy evaluation would play a major role in
future risk-aware optimization algorithms as well.

The principal challenge in policy evaluation arises when the state space is large, or
continuous. Then, solving Bellman’s equation for the value or its extension (Sobel, 1982)
for the variance becomes intractable. This difficulty is even more pronounced in the learning
setting, when a model of the process is not available, and the evaluation has to be estimated
from a limited amount of samples. Fortunately, for the case of the value function, effective
learning approaches are known.

Temporal Difference methods (TD; Sutton, 1988) typically employ function approxi-
mation to represent the value function in a lower dimensional subspace, and learn the
approximation parameters efficiently, by fitting the spatiotemporal relations in Bellman’s
equation to the observed (or simulated) data. TD methods have been studied extensively,
both theoretically (Bertsekas, 2012, Lazaric et al., 2010) and empirically (e.g., Tesauro,
1995, Powell, 2011, Section 14.5), and are considered to be the state-of-the-art in policy
evaluation.
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However, when it comes to evaluating additional statistics of the reward-to-go, such as
its variance, little is known. This may be due to the fact that the linearity of the expectation
in Bellman’s equation plays a key role in TD algorithms.

In this paper we present a TD framework for learning the variance of the reward-to-go,
using function approximation, in problems where a model is not available, or too large
to solve. To our knowledge, this is the first work that addresses the challenge of large
state spaces, by considering an approximation scheme for the variance. Our approach is
based on the following observation: the second moment of the reward-to-go, denoted by M ,
together with the value function J , satisfies a linear ‘Bellman-like’ equation. By extending
TD methods to jointly estimate J and M with linear function approximation, we obtain a
solution for estimating the variance, using the relation V = M − J2.

We propose both a variant of Least Squares Temporal Difference (LSTD; Boyan 2002)
and of TD(0) (Sutton and Barto, 1998) for jointly estimating J and M with linear function
approximation. For these algorithms, we provide convergence guarantees and error bounds.
In addition, we introduce novel methods for enforcing the approximate variance to be pos-
itive, through a constrained TD equation or through an appropriate choice of features. An
empirical evaluation of our approach on an American-style option pricing problem demon-
strates a dramatic improvement in terms of sample efficiency compared to Monte Carlo
techniques—the current state of the art.

A previous study by Sato et al. (2001) suggested TD equations for J and V , without
function approximation. Their approach relied on a non-linear equation for V , and it is
not clear how it may be extended to handle large state spaces. More recently, Morimura
et al. (2010) proposed TD learning rules for a parametric distribution of the return, albeit
without function approximation nor formal guarantees. In the Bayesian Gaussian process
temporal difference framework of Engel et al. (2005), the reward-to-go is assumed to have
a Gaussian posterior distribution, and its mean and variance are estimated. However, the
resulting variance is a product of both stochastic transitions and model uncertainty, and is
thus different than the variance considered here. For average reward MDPs, several studies
(e.g., Filar et al., 1989) considered the variation of the reward from its average. This mea-
sure of variability is not suitable for the discounted and episodic settings considered here.
A different line of work considers MDPs with a dynamic-risk measure (Ruszczyński, 2010).
In dynamic risk, instead of considering the reward-to-go as the random variable of interest,
the risk is defined iteratively over the possible future trajectories. In an optimization set-
ting, dynamic-risk has some favorable properties such as time-consistency, and a dynamic
programming formulation (Ruszczyński, 2010). However, the variance of the reward-to-go
considered here is considerably more intuitive, and leads to a much simpler approach.

This paper is organized as follows. In Section 2 we present our formal MDP setup.
In Section 3 we derive the fundamental equations for jointly approximating J and M , and
discuss their properties. A solution to these equations may be obtained by sampling, through
the use of TD algorithms, as presented in Section 4. As it turns out, our approximation
scheme may result in cases where the approximate variance is negative. We discuss this in
Section 5, and propose methods for avoiding it. Section 6 presents an empirical evaluation
on an option pricing problem, and Section 7 concludes, and discusses future directions.
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2. Framework and Background

We consider an episodic MDP3 (also known as a stochastic shortest path problem; Bertsekas
2012) in discrete time with a finite state space X , {1, . . . , n} and a terminal state x∗. A
fixed policy π determines, for each x ∈ X, a stochastic transition to a subsequent state
x′ ∈ {X ∪ x∗} with probability P (x′|x). We consider a deterministic and bounded reward
function r : X → R, and assume zero reward at the terminal state. We denote by xk the
state at time k, where k = 0, 1, 2, . . ..

A policy is said to be proper (Bertsekas, 2012) if there is a positive probability that
the terminal state x∗ will be reached after at most n transitions, from any initial state.
Throughout this paper we make the following assumption:

Assumption 1 The policy π is proper.

Let γ ∈ (0, 1] denote a discount factor. We emphasize that the case γ = 1, corresponding
to a non-discounted setting, is allowed, and much of our effort in the sequel is to handle
this special and important case. Let τ , min{k > 0|xk = x∗} denote the first visit time
to the terminal state, and let the random variable B denote the accumulated (and possibly
discounted) reward along the trajectory until that time

B ,
τ−1∑
k=0

γkr(xk).

In this work, we are interested in the mean-variance tradeoff in B, represented by the value
function

J(x) , E [B|x0 = x] , x ∈ X,

and the variance of the reward-to-go

V (x) , Var [B|x0 = x] , x ∈ X.

We will find it convenient to define also the second moment of the reward-to-go

M(x) , E
[
B2|x0 = x

]
, x ∈ X.

Our goal is to estimate the functions J(x) and V (x) from trajectories obtained by
simulating the MDP with policy π.

3. Approximation of the Variance of the Reward-To-Go

In this section we derive a projected equation method for approximating J(x) and M(x)
using linear function approximation. The approximation of V (x) will then follow from the
relation V (x) = M(x)− J(x)2.

Our starting point is a system of equations for J(x) and M(x), first derived by Sobel
(1982) for a discounted infinite horizon case, and extended here to the episodic case. The
equation for J is the well known Bellman equation for a fixed policy, and independent of
the equation for M .

3. In particular, any finite horizon MDP is an episodic MDP, for which our results apply. Extending these
results to the infinite horizon discounted setting is straightforward.
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Proposition 2 The following equations hold for x ∈ X

J(x) = r(x) + γ
∑
x′∈X

P (x′|x)J(x′),

M(x) = r(x)2 + 2γr(x)
∑
x′∈X

P (x′|x)J(x′) + γ2
∑
x′∈X

P (x′|x)M(x′).
(1)

Furthermore, under Assumption 1 a unique solution to Eq. (1) exists.

A straightforward proof is given in Appendix A.
At this point the reader may wonder why an equation for V is not presented. While such

an equation may be derived (see, e.g., Sobel 1982, Tamar et al. 2012), it is not linear. The
linearity of (1) in J and M is the key to our approach. As we show in the next subsection,
the solution to (1) may be expressed as the fixed point of a linear mapping in the joint space
of J and M . We will then show that a projection of this mapping onto a linear feature
space is contracting, thus allowing us to use the TD methodology to estimate J and M .

3.1 A Projected Fixed Point Equation in the Joint Space of J and M

For the sequel, we introduce the following vector notations. We denote by P ∈ Rn×n and
r ∈ Rn the episodic MDP transition matrix and reward vector, i.e., Px,x′ = P (x′|x) and
rx = r(x), where x, x′ ∈ X. Also, we define the diagonal matrix R , diag(r).

For a vector z ∈ R2n we let zJ ∈ Rn and zM ∈ Rn denote its leading and ending n
components, respectively. Thus, such a vector belongs to the joint space of J and M .

We define the mapping T : R2n → R2n by

[Tz]J = r + γPzJ ,

[Tz]M = Rr + 2γRPzJ + γ2PzM .
(2)

It may easily be verified that a fixed point of T is a solution to (1), and by Proposition 2
such a fixed point exists and is unique.

When the state space X is large, however, a direct solution of (1) is not feasible. A
popular approach in this case is to approximate J(x) by restricting it to a lower dimensional
subspace, and use simulation based TD algorithms to learn the approximation parameters
(Bertsekas, 2012). In this paper we extend this approach to the approximation of M(x) as
well.

We consider a linear approximation architecture of the form

J̃(x) = φJ(x)>wJ , M̃(x) = φM (x)>wM ,

where wJ ∈ Rl and wM ∈ Rm are the approximation parameter vectors, φJ(x) ∈ Rl and
φM (x) ∈ Rm are state dependent features, and (·)> denotes the transpose of a vector. The
low dimensional subspaces are therefore

SJ = {ΦJw|w ∈ Rl}, SM = {ΦMw|w ∈ Rm},

where ΦJ and ΦM are matrices whose rows are φJ(x)> and φM (x)>, respectively. We make
the following standard independence assumption on the features.
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Assumption 3 The matrix ΦJ has rank l and the matrix ΦM has rank m.

We now discuss how the approximation parameters wJ and wM are chosen. The idea
behind TD methods is to fit the approximate J̃ and M̃ to obey Eq. (1) in some sense.
Specifically, this is done by considering a projection of T onto the approximation subspaces
SJ and SM , and choosing J̃ and M̃ as the unique fixed point of this projected operator.
As outlined earlier, our ultimate goal is to learn wJ and wM from simulated trajectories
of the MDP. Thus, it is constructive to consider projections onto SJ and SM with respect
to a norm that is weighted according to the state occupancy in these trajectories. We now
define this projection.

For a trajectory x0, . . . , xτ−1, where x0 is drawn from a fixed distribution ζ0(x), and the
states evolve according to the MDP with policy π, define the state occupancy probabilities

qt(x) = P (xt = x), x ∈ X, t = 0, 1, . . . ,

and let

q(x) =
∞∑
t=0

qt(x), x ∈ X,

Q,diag(q).

We make the following assumption on the policy π and initial distribution ζ0

Assumption 4 Each state has a positive probability of being visited, namely, q(x) > 0 for
all x ∈ X.

Note that if ζ0 may be controlled (for example, if we have access to a simulator), Assumption
4 may be trivially satisfied by choosing a positive ζ0 for all states. Alternatively, if some state
has a zero probability of being visited under π, then it is irrelevant for policy evaluation,
and we can remove it from the state space. In this case, so long as Assumption 3 still holds
(i.e., the linear features remain identifiable) all our subsequent derivations remain valid.

For vectors in Rn, we recall the weighted Euclidean norm

‖y‖q =

√√√√ n∑
i=1

q(i) (y(i))2, y ∈ Rn,

and we denote by ΠJ and ΠM the projections from Rn onto the subspaces SJ and SM ,
respectively, with respect to this norm. Note that the projection operators ΠJ and ΠM are
linear, and may be written explicitly as ΠJ = ΦJ(Φ>JQΦJ)−1Φ>JQ, and similarly for ΠM .

For some z ∈ R2n we denote by Π the projection of zJ onto SJ and zM onto SM , namely

Π =

(
ΠJ 0
0 ΠM

)
. (3)

We are now ready to fully describe our approximation scheme. We consider the projected
fixed point equation

z = ΠTz, (4)
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and, letting z∗ denote its solution (which we will show to be unique), propose the approxi-
mate value function J̃ = z∗J ∈ SJ and second moment function M̃ = z∗M ∈ SM .

We shall now derive an important property of the projected operator ΠT , namely, that
it is a contraction. This leads to the uniqueness of z∗, and to a simple bound on the
approximation error. As in regular TD algorithms, this contraction property also underlies
the convergence of several sampling-based algorithms, to be presented in the next section.

We begin by stating a well known result (Proposition 7.1.1 of Bertsekas, 2012) regarding
the contraction properties of the projected Bellman operator ΠJTJ , where TJy = r+ γPy.

Lemma 5 (Proposition 7.1.1 of Bertsekas, 2012) Let Assumptions 1, 3, and 4 hold. The
linear operator P and the projected linear operator ΠJP are non-expansions in the ‖ · ‖q
norm, and satisfy

‖ΠJPy‖q ≤ ‖Py‖q ≤ ‖y‖q ∀y ∈ Rn.

In addition, ΠJP is a contraction in some norm, i.e., there exists some norm ‖ · ‖J and
some βJ < 1 such that

‖ΠJPy‖J ≤ βJ‖y‖J , ∀y ∈ Rn.

Lemma 5 immediately leads to the following result:

Lemma 6 Let Assumptions 1, 3, and 4 hold. Then, there exists some norm ‖ · ‖J and
some βJ < 1 such that

‖γΠJPy‖J ≤ βJ‖y‖J , ∀y ∈ Rn.

Similarly, there exists some norm ‖ · ‖M and some βM < 1 such that

‖γΠMPy‖M ≤ βM‖y‖M , ∀y ∈ Rn.

Note that for γ < 1, Lemma 6 holds with the norm ‖ · ‖q and contraction modulus γ,
by the non-expansiveness property of ΠJP in Lemma 5. The more difficult case γ = 1,
however, requires the expressions in Lemma 6.

Next, we define a weighted-norm on R2n, in which a parameter α balances between the
weight of the J components’ norm, and the weight of the M components’ norm, as defined
in Lemma 6. The intuition behind this weighted-norm, is that by carefully selecting the
balance α, we shall show that the contraction properties in Lemma 6 guarantee a contraction
property for the projected operator ΠT , in this norm.

Definition 7 For a vector z ∈ R2n and a scalar 0 < α < 1, the α-weighted norm is

‖z‖α = α‖zJ‖J + (1− α)‖zM‖M , (5)

where ‖ · ‖J and ‖ · ‖M are defined in Lemma 6.

Our main result of this section is given in the following proposition, where we show that
the projected operator ΠT is a contraction with respect to a suitable α-weighted norm.

Proposition 8 Let Assumptions 1, 3, and 4 hold. Then, there exists some 0 < α < 1 and
some β < 1 such that ΠT is a β-contraction with respect to the α-weighted norm, i.e.,

‖ΠTz1 −ΠTz2‖α ≤ β‖z1 − z2‖α, ∀z1, z2 ∈ R2n.
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Proof From the definition of ΠT in (2) and (3), we have that for any z1, z2 ∈ R2n we have
‖ΠTz1 −ΠTz2‖α = ‖ΠP(z1 − z2)‖α, where

ΠP =

(
γΠJP 0

2γΠMRP γ2ΠMP

)
.

Thus, it suffices to show that for all z ∈ R2n

‖ΠPz‖α ≤ β‖z‖α.

We will now show that ‖ΠPz‖α may be separated into two terms which may be bounded
by Lemma 6, and an additional cross term. By balancing α and β, this term may be
contained to yield the required contraction.

We have

‖ΠPz‖α =α‖γΠJPzJ‖J
+ (1− α)‖2γΠMRPzJ + γ2ΠMPzM‖M
≤α‖γΠJPzJ‖J + (1− α)‖γ2ΠMPzM‖M

+ (1− α)‖2γΠMRPzJ‖M
≤αβJ‖zJ‖J + (1− α)γβM‖zM‖M

+ (1− α)‖2γΠMRPzJ‖M ,

(6)

where the equality is by definition of the α weighted norm (5), the first inequality is from
the triangle inequality, and the second inequality is by Lemma 6. Now, we claim that there
exists some finite C such that

‖2γΠMRPy‖M ≤ C‖y‖J , ∀y ∈ Rn. (7)

To see this, note that since Rn is a finite dimensional real vector space, all vector norms are
equivalent (Horn and Johnson, 2012, Corollary 5.4.5) therefore there exist finite C1 and C2

such that for all y ∈ Rn

C1‖2γΠMRPy‖2 ≤ ‖2γΠMRPy‖M ≤ C2‖2γΠMRPy‖2,

where ‖ · ‖2 denotes the Euclidean norm. Let λ denote the spectral norm of the matrix
2γΠMRP , which is finite since all the matrix elements are finite. We have that

‖2γΠMRPy‖2 ≤ λ‖y‖2, ∀y ∈ Rn.

Using again the fact that all vector norms are equivalent, there exists a finite C3 such that

‖y‖2 ≤ C3‖y‖J , ∀y ∈ Rn.

Setting C = C2λC3 we get the desired bound. Let β̃ = max{βJ , γβM} < 1, and choose
ε > 0 such that

β̃ + ε < 1.
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Now, choose α such that α = C
ε+C . We have that

(1− α)C = αε,

and plugging this into (7) yields

(1− α)‖2γΠMRPy‖M ≤ αε‖y‖J . (8)

We now return to (6), where we have

αβJ‖zJ‖J + (1− α)γβM‖zM‖M + (1− α)‖2γΠMRPzJ‖M
≤αβJ‖zJ‖J + (1− α)γβM‖zM‖M + αε‖zJ‖J
≤(β̃ + ε) (α‖zJ‖J + (1− α)‖zM‖M ) ,

where the first inequality is by (8), and the second is by the definition of β̃. We have thus
shown that

‖ΠPz‖α ≤ (β̃ + ε)‖z‖α.

Finally, choose β = β̃ + ε.

Proposition 8 guarantees that the projected operator ΠT has a unique fixed point. Let
us denote this fixed point by z∗, and let w∗J , w

∗
M denote the corresponding weights, which

are unique due to Assumption 3

ΠTz∗ = z∗,

z∗J = ΦJw
∗
J ,

z∗M = ΦMw
∗
M .

(9)

In the next proposition, using a standard result of Bertsekas and Tsitsiklis (1996), we
provide a bound on the approximation error.

Proposition 9 Let Assumptions 1, 3, and 4 hold. Denote by ztrue ∈ R2n the true value
and second moment functions, i.e., [ztrue]J = J, and [ztrue]M = M . Then,

‖ztrue − z∗‖α ≤
1

1− β
‖ztrue −Πztrue‖α,

with α and β defined in Proposition 8.

Proof This result is similar to Lemma 6.9 in Bertsekas and Tsitsiklis (1996). We have

‖ztrue − z∗‖α≤‖ztrue −Πztrue‖α + ‖Πztrue − z∗‖α
= ‖ztrue −Πztrue‖α + ‖ΠTztrue −ΠTz∗‖α
≤‖ztrue −Πztrue‖α + β‖ztrue − z∗‖α.

Rearranging gives the stated result.
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Note that by definition, Πztrue is the best approximation we can hope for (in terms of
the α-weighted squared error) in our approximation subspace. Thus, the approximation
error ‖ztrue− z∗‖α is ultimately bounded by the choice of features, which in practice should
be chosen wisely.

At this point, the reader may question the usefulness of the projected fixed-point ap-
proximation over simpler approximation schemes, such as the direct projection Πztrue. As
we show in the next section, the projected fixed-point architecture supports a family of
sampling-based TD estimation algorithms, with efficient batch and online implementations.
Furthermore, as we show empirically in Section 6, these TD algorithms perform well in
practice, especially in the regime of a small sample size. For conventional TD algorithms,
these benefits are well-established (Bertsekas, 2012), and gave rise to their popularity. Here
we extend this to the variance of the reward-to-go.

4. Simulation Based Estimation Algorithms

In this section we propose algorithms that estimate J̃ and M̃ from sampled trajectories of
the MDP, based on the approximation architecture of the previous section.

We begin by writing the projected equation (9) in matrix form. First, let us write the
equation explicitly as

ΠJ (r + γPΦJw
∗
J) = ΦJw

∗
J ,

ΠM

(
Rr + 2γRPΦJw

∗
J + γ2PΦMw

∗
M

)
= ΦMw

∗
M .

(10)

Recalling the definition of Q, projecting a vector y onto Φw satisfies the following
orthogonality condition

Φ>Q(y − Φw) = 0.

We therefore have

Φ>JQ (ΦJw
∗
J − (r + γPΦJw

∗
J)) = 0,

Φ>MQ
(
ΦMw

∗
M −

(
Rr + 2γRPΦJw

∗
J + γ2PΦMw

∗
M

))
= 0,

which can be written as

Aw∗J = b, Cw∗M = d, (11)

with

A = Φ>JQ (I − γP ) ΦJ , b = Φ>JQr,

C = Φ>MQ
(
I − γ2P

)
ΦM , d = Φ>MQR

(
r + 2γPΦJA

−1b
)
,

(12)

and the matrices A and C are invertible since Proposition 8 guarantees a unique solution
to (9) and Assumption 3 guarantees the unique weights of its projection.

Let us now outline our proposed algorithms. The first algorithm is a variant of the Least
Squares Temporal Difference algorithm (LSTD; Boyan 2002), and aims to solve Eq. (11)
directly, by forming sample based estimates of the terms A, b, C, and d. This is a batch
algorithm that is known to make efficient use of data in its nominal version, and as we show
empirically, demonstrates efficient performance in our case as well. The second algorithm
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is a variant of online TD(0) (Sutton and Barto, 1998). In its nominal form, TD(0) has
been successfully used as the critic in actor-critic algorithms (Konda and Tsitsiklis, 2003).
Our extended TD(0) variant may be used similarly in a risk-adjusted actor-critic algorithm
(Tamar and Mannor, 2013; Prashanth and Ghavamzadeh, 2013). The third algorithm is
a variant of LSTD(λ), in which, similarly to standard LSTD(λ), Eq. (11) is extended to
its multi-step counterpart. The fourth algorithm is not based on the TD equation (11),
but uses least squares regression to estimate the direct projection Πztrue. We compare this
algorithm with the LSTD variants in Section 6.

4.1 A Least Squares TD Algorithm

Our first simulation-based algorithm is an extension of the LSTD algorithm (Boyan, 2002).
We simulate N trajectories of the MDP with the policy π and initial state distribution
ζ0. Let xk0, x

k
1, . . . , x

k
τk−1

and τk, where k = 0, 1, . . . , N , denote the state sequence and
visit times to the terminal state within these trajectories, respectively. We now use these
trajectories to form the following estimates of the terms in (12)

AN = EN

[
τ−1∑
t=0

φJ(xt)(φJ(xt)− γφJ(xt+1))>

]
,

bN = EN

[
τ−1∑
t=0

φJ(xt)r(xt)

]
,

CN = EN

[
τ−1∑
t=0

φM (xt)(φM (xt)− γ2φM (xt+1))>

]
,

dN = EN

[
τ−1∑
t=0

φM (xt)r(xt)
(
r(xt) + 2γφJ(xt+1)>A−1

N bN

)]
,

(13)

where EN denotes an empirical average over trajectories, i.e., EN [f(x, τ)] = 1
N

∑N
k=1 f(xk, τk).

The LSTD approximation is given by

ŵ∗J = A−1
N bN , ŵ∗M = C−1

N dN .

The next theorem shows that LSTD converges.

Theorem 10 Let Assumptions 1, 3, and 4 hold. Then ŵ∗J→w∗J and ŵ∗M→w∗M as N→∞
with probability 1.

The proof involves a straightforward application of the law of large numbers and is described
in Appendix B. For regular LSTD, O(1/

√
n) convergence rates were derived under certain

mixing conditions of the MDP by Konda (2002, based on a central limit theorem argument)
and Lazaric et al. (2010, based on a finite time analysis), and may be extended to the
algorithm presented here.

4.2 An Online TD(0) Algorithm

Our second estimation algorithm is an extension of the well known TD(0) algorithm (Sutton
and Barto, 1998). Again, we simulate trajectories of the MDP corresponding to the policy
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π and initial state distribution ζ0, and we iteratively update our estimates at every visit to
the terminal state. An extension to an algorithm that updates at every state transition is
also possible, but we do not pursue such here.

For some 0 ≤ t < τk and weights wJ , wM , we introduce the TD terms

δkJ(t, wJ , wM ) =r(xkt ) +
(
γφJ(xkt+1)> − φJ(xkt )

>
)
wJ ,

δkM (t, wJ , wM ) =r2(xkt ) + 2γr(xkt )φJ(xkt+1)>wJ

+
(
γ2φM (xkt+1)> − φM (xkt )

>
)
wM .

Note that δkJ is the standard TD error (Sutton and Barto, 1998). For the intuition behind
δkM , observe that M in (1) is equivalent to the value function of an MDP with stochastic
reward r(x)2 + 2γr(x)J(x′), where x′ ∼ P (x′|x). The TD term δkM is the equivalent TD
error, with φJ(x′)>wJ substituting J(x′). The TD(0) algorithm is given by

ŵJ ;k+1 = ŵJ ;k + ξk

τk−1∑
t=0

φJ(xt)δ
k
J(t, ŵJ ;k, ŵM ;k),

ŵM ;k+1 = ŵM ;k + ξk

τk−1∑
t=0

φM (xt)δ
k
M (t, ŵJ ;k, ŵM ;k),

where {ξk} are positive step sizes.
The next theorem shows that TD(0) converges.

Theorem 11 Let Assumptions 1, 3, and 4 hold, and let the step sizes satisfy

∞∑
k=0

ξk =∞,
∞∑
k=0

ξ2
k <∞.

Then ŵJ ;k → w∗J and ŵM ;k → w∗M as k →∞ with probability 1.

Proof The proof is based on representing the algorithm as a stochastic approximation,
and uses a result of Borkar (2008) to show that the iterates asymptotically track a cer-
tain ordinary differential equation (ODE). This ODE will then be shown to have a unique
asymptotically stable equilibrium exactly at w∗J , w

∗
M .

A straightforward expectation calculation (see (22) and (23) in Appendix B for the
derivation) shows that for all k we have

E

τk−1∑
t=0

φJ(xt)δ
k
J(t, wJ , wM )

 = Φ>JQr − Φ>JQ (I − γP ) ΦJwJ ,

E

τk−1∑
t=0

φM (xt)δ
k
M (t, wJ , wM )

 = Φ>MQR (r + 2γPΦJwJ)− Φ>MQ
(
I − γ2P

)
ΦMwM .

Letting ŵk = (ŵJ ;k, ŵM ;k) denote a concatenated weight vector in the joint space Rl × Rm
we can write the TD algorithm in a stochastic approximation form as

ŵk+1 = ŵk + ξk (z +Mŵk + δMk+1) , (14)

12



Learning the Variance of the Reward-To-Go

where

M =

(
Φ>JQ (γP − I) ΦJ 0

2γΦ>MQRPΦJ Φ>MQ
(
γ2P − I

)
ΦM

)
,

z =

(
Φ>JQr

Φ>MQRr

)
,

and the noise terms δMk+1 satisfy

E [δMk+1|Fn] = 0,

where Fn is the filtration Fn = σ(ŵm, δMm,m ≤ n), since different trajectories are inde-
pendent.

We first claim that the eigenvalues of M have a negative real part. To see this, ob-
serve that M is block triangular, and its eigenvalues are just the eigenvalues of M1 ,
Φ>JQ (γP − I) ΦJ and M2 , Φ>MQ

(
γ2P − I

)
ΦM . Lemma 6.10 of Bertsekas and Tsitsiklis

(1996), shows that under Assumptions 1 and 4, the matrix Q(γP − I) is negative definite
in the sense that x>(γP − I)x < 0 ∀x 6= 0 (Lemma 6.10 of Bertsekas and Tsitsiklis, 1996
is stated for the case γ = 1, but an extension to the simpler discounted case is trivial). By
Assumption 3, this implies that the matrices M1 and M2 are negative definite in the sense
that x>M1x < 0 ∀x 6= 0, and x>M2x < 0 ∀x 6= 0. Example 6.6 of Bertsekas, 2012 shows
that the eigenvalues of a negative definite matrix have a negative real part. It therefore
follows that the eigenvalues of M1 and M2 have a negative real part. Thus, the eigenvalues
of M have a negative real part.

Next, let h(w) = Mw + z, and observe that the following conditions hold.

Condition 1 The map h is Lipschitz.

Condition 2 The step sizes satisfy

∞∑
k=0

ξk =∞,
∞∑
k=0

ξ2
k <∞.

Condition 3 {δMn} is a martingale difference sequence, i.e., E [δMn+1|Fn] = 0.

The next condition also holds

Condition 4 The functions hc(w) , h(cw)/c, c ≥ 1 satisfy hc(w) → h∞(w) as c → ∞,
uniformly on compacts, and h∞(w) is continuous. Furthermore, the ODE

ẇ(t) = h∞(w(t))

has the origin as its unique globally asymptotically stable equilibrium.

This is easily verified by noting that h(cw)/c = Mw + c−1z, and since z is finite, hc(w)
converges uniformly as c → ∞ to h∞(w) = Mw. The stability of the origin is guaranteed
since the eigenvalues of M have a negative real part (Khalil and Grizzle, 1996).

Theorem 7 in Chapter 3 of Borkar (2008) states that if Conditions 1-4 hold, the following
condition holds
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Condition 5 The iterates of (14) remain bounded almost surely, i.e., supk ‖ŵk‖ <∞, a.s.

Finally, we use a standard stochastic approximation result that, given that the above
conditions hold, relates the convergence of the iterates of (14) with the asymptotic behavior
of the ODE

ẇ(t) = h(w(t)). (15)

Since the eigenvalues of M have a negative real part, (15) has a unique globally asymp-
totically stable equilibrium point (Khalil and Grizzle, 1996), which by (11) is exactly
ŵ∗ = (ŵ∗J , ŵ

∗
M ). Formally, by Theorem 2 in Chapter 2 of Borkar (2008) we have that

if Conditions 1, 2, 3 and 5 hold, then ŵk → ŵ∗ as k →∞ with probability 1.

It is interesting to note that despite the fact that the update of wM depends on wJ ,
the algorithm converges using a single time scale, i.e., the same step-size schedule, for
both wJ and wM . This is in contrast with, for example, actor critic algorithms, that
also have dependent updates but require multiple time-scales for convergence (Konda and
Tsitsiklis, 2003). An intuitive reason for this is that the update for wJ is independent of wM ,
therefore wJ will converge regardless, and wM will ‘track’ it until convergence. Asymptotic
convergence rates for TD(0) may also be derived along the lines of Konda (2002).

4.3 Multistep LSTD(λ) Algorithms

A common method in value function approximation (Bertsekas, 2012) is to replace the single-
step mapping TJ with a multistep version, that takes into account multi-step transitions.

For some 0 < λ < 1, the multistep Bellman operator T
(λ)
J is given by

T
(λ)
J (y) , (1− λ)

∞∑
l=0

λlT l+1
J (y) = (I − λγP )−1r + γP (λ,γ)y,

where P (λ,γ) = (1− λ)
∑∞

l=0 λ
lγlP l+1. The projected equation (10) then becomes

ΠJT
(λ)
J

(
ΦJw

∗(λ)
J

)
= ΦJw

∗(λ)
J .

Similarly, we may write a multistep equation for M

ΠMT
(λ)
M

(
ΦMw

∗(λ)
M

)
= ΦMw

∗(λ)
M , (16)

where

T
(λ)
M , (1− λ)

∞∑
l=0

λlT l+1
M∗ ,

and

TM∗ (y) , Rr + 2γRPΦJw
∗(λ)
J + γ2Py.

Note the difference between TM∗ and [T ]M defined earlier: we are no longer working on the
joint space of J and M but instead we have an independent equation for approximating J ,
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and its solution w
∗(λ)
J is part of Equation (16) for approximating M . We can also write T

(λ)
M

explicitly as:

T
(λ)
M (y) = (I − λγ2P )−1

(
Rr + 2γRPΦJw

∗(λ)
J

)
+ γ2P (λ,γ2)y,

where P (λ,γ2) = (1− λ)
∑∞

l=0 λ
lγ2lP l+1.

Proposition 7.1.1 of Bertsekas (2012) shows that for any 0 < λ < 1 and 0 < γ ≤ 1 the

projected operator ΠJP
(λ,γ) is a contraction in the ‖ · ‖q norm. Therefore, both ΠJT

(λ)
J

and ΠMT
(λ)
M are contractions with respect to the ‖ · ‖q norm, and both multistep projected

equations have a unique solution. In a similar manner to the single step version, the
projected equations may be written in matrix form

A(λ)w
∗(λ)
J = b(λ), C(λ)w

∗(λ)
M = d(λ), (17)

where

A(λ) = Φ>JQ
(
I − γP (λ,γ)

)
ΦJ , b(λ) = Φ>JQ(I − λγP )−1r,

C(λ) = Φ>MQ
(
I − γ2P (λ,γ2)

)
ΦM ,

d(λ) = Φ>MQ(I − λγ2P )−1R
(
r + 2γPΦJw

∗(λ)
J

)
.

Simulation based estimates A
(λ)
N and b

(λ)
N of the expressions above may be obtained by

using eligibility traces, as described in Section 6.3.6 of Bertsekas (2012), and the LSTD(λ)

approximation is then given by ŵ
∗(λ)
J = (A

(λ)
N )−1b

(λ)
N . By substituting w

∗(λ)
J with ŵ

∗(λ)
J

in the expression for d(λ), a similar procedure may be used to derive estimates C
(λ)
N and

d
(λ)
N , and to obtain the LSTD(λ) approximation ŵ

∗(λ)
M = (C

(λ)
N )−1d

(λ)
N . A convergence result

similar to Theorem 10 may also be obtained. Due to the similarity to the LSTD procedure
in (13), the details are omitted. Finally, we note that a straightforward modification of the
TD(0) algorithm to a multistep TD(λ) variant is also possible, using eligibility traces and
following the procedure described in Section 6.3.6 of Bertsekas (2012).

4.4 A Direct Least Squares Regression Algorithm

We conclude this section with a simple regression style algorithm, which is not based on the
TD approximation architecture of Section 3, but to our knowledge has not been proposed
before.

As before, we let xk0, x
k
1, . . . , x

k
τk−1

denote the state sequence of the k′th simulated tra-
jectory, and define the regression targets as

B̂k
t =

τk−1∑
i=t

γi−tr(xkt ).

Our approximation weights are now given by the solutions to the least squares problems

ŵ∗J = arg min
wJ

N∑
k=1

τk−1∑
t=0

(
φJ(xkt )

>wJ − B̂k
t

)2
,
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and

ŵ∗M = arg min
wM

N∑
k=1

τk−1∑
t=0

(
φM (xkt )

>wM −
(
B̂k
t

)2
)2

.

It may easily be verified that the approximate value J̃ and second moment M̃ of such a
procedure converge, as N →∞, to the direct approximations ΠJJ and ΠMM , respectively.
We further explore this algorithm and its relation to TD based algorithms in the empirical
evaluation of Section 6.

5. Non Negative Approximate Variance

The TD algorithms of the preceding section approximate J and M by the solution to the
fixed point equation (9). While Proposition 9 shows that the approximation errors of J̃
and M̃ are bounded, it does not guarantee that the approximated variance Ṽ , given by
M̃ − J̃2, is non-negative for all states. A trivial remedy is to set all negative values of Ṽ to
zero; however, by such we lose information in these states. In this section we propose two
alternative approaches to this problem. The first is through the choice of features, where
we show that for the direct approximation ΠJJ and ΠMM , we can choose features that
guarantee non-negative variance.

The second approach is based on the observation that non-negativeness of the variance
may be written as a linear constraint in the weights for M . By adding such constraints to the
projection in the fixed point equation (9), we obtain a different approximation architecture,
in which non-negative variance is inherent. We show that this approximation scheme may
be computed efficiently.

5.1 A Suitable Features Approach

For this section consider the direct approximation of J and M , as in Section 4.4, where we
have J̃ = ΠJJ and M̃ = ΠMM . We investigate conditions under which M̃(x)− J̃(x)2 ≥ 0
for all x ∈ X.

Consider the following assumptions on the features:

Assumption 12 The same features are used for J and M , i.e., ΦJ = ΦM .

Assumption 13 The features are able to exactly represent a constant function, i.e., there
exists w such that φJ(x)>w = 1 for all x ∈ X.

We claim that Assumptions 12 and 13 suffice for guaranteeing non-negative approximate
variance.

Proposition 14 Let Assumptions 12 and 13 hold. Then M̃(x)− J̃(x)2 ≥ 0 for all x ∈ X.

Proof First, by definition we have

V (x) = M(x)− J(x)2 ≥ 0. (18)

Next, observe that Assumption 12 implies ΠJ = ΠM .
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Let x ∈ X, and recall that the projection operator is linear, thus we can write

J̃(x) =
∑
i∈X

J(i)ωx(i), M̃(x) =
∑
i∈X

M(i)ωx(i), (19)

where ωx(i) are the projection weights for state x. Let ω̄x =
∑

i∈X ωx(i). We have

J̃(x)2 = ω̄2
x

(∑
i∈X

J(i)
ωx(i)

ω̄x

)2

≤ ω̄2
x

∑
i∈X

J(i)2ωx(i)

ω̄x
≤ ω̄x

∑
i∈X

M(i)ωx(i) = ω̄xM̃(x),

where the first inequality is by Jensen’s inequality, the second inequality is by (18), and the
equalities are by (19). Thus, ω̄x ≤ 1 guarantees Ṽ (x) ≥ 0. We now claim that Assumption
13 guarantees ω̄x = 1 for all x. To see this, consider a constant value function J = 1 for
all states; clearly we have J̃ = 1, as the weighted Euclidean error for this approximation is
zero. Plugging in (19) gives

∑
i∈X ωx(i) = 1 for all x.

Proposition 14 concerns the approximation architecture itself, and not the estimation pro-
cedure. Therefore, it applies to the algorithms discussed above only asymptotically.

Many popular linear function approximation features such as grid tiles and CMAC’s
(Sutton and Barto, 1998) are able to represent a constant function. For these schemes,
Ṽ (x) ≥ 0 is guaranteed. For other schemes, we can guarantee Ṽ (x) ≥ 0 by simply adding a
constant feature to the feature set. Thus, at least for the direct approximation, it appears
that a non-negative approximate variance is easily obtained. Whether a similar proce-
dure may be applied to the fixed-point approximation is currently not known. However,
Proposition 9 suggests that at least when the contraction modulus is small, the fixed-point
approximation should behave similarly to the direct approximation. In the next section we
propose a different approach, which modifies the fixed-point approximation to guarantee
non-negative variance, regardless of the choice of features.

5.2 A Linearly Constrained Projection Approach

In this section we show that by adding linear constraints to the projected fixed point equa-
tion, we can guarantee a non-negative approximate variance. This modified approximation
architecture admits a computationally efficient solution by a modification of the LSTD
algorithm of Section 4.

First, let us write the equation for the second moment weights (10) with the projection
operator as an explicit minimization

w∗M = arg min
w

‖ΦMw −
(
Rr + 2γRPΦJw

∗
J + γ2PΦMw

∗
M

)
‖q.

Observe that a non-negative approximate variance in some state x may be written as a
linear inequality in w∗M (but non-linear in w∗J)

φM (x)>w∗M − (φJ(x)>w∗J)2 ≥ 0.

We propose to add such inequality constraints to the projection operator. Let {x1, . . . , xs}
denote a set of states in which we demand that the variance be non-negative. Let H ∈ Rs×m
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denote a matrix with the features −φ>M (xi) as its rows, and let g ∈ Rs denote a vector with
elements −(φJ(xi)

>w∗J)2. We write the non-negative-variance projected equation for the
second moment as

w+
M =

{
arg minw ‖ΦMw −

(
Rr + 2γRPΦJw

∗
J + γ2PΦMw

+
M

)
‖q

s.t. Hw ≤ g
. (20)

Here, w+
M denotes the weights of M̃ in the modified approximation architecture. We now

discuss whether a solution to (20) exists, and how it may be obtained.
Let us assume that the constraints in (20) admit a feasible solution:

Assumption 15 There exists w such that Hw < g.

Note that a trivial way to satisfy Assumption 15 is to have some feature vector that
is positive for all states. To see this, let i+ denote the index of the positive feature
vector, and choose w to be all zeros, except for the i+ element, which should satisfy
wi+ < − (max1≤i≤s |gi|) /

(
max1≤i≤sHi,i+

)
.

Equation (20) is a form of projected equation studied by Bertsekas (2011), the solution
of which exists, and may be obtained by the following iterative procedure

wk+1 = ΠΞ,ŴM
[wk − ηΞ−1(Cwk − d)], (21)

where C and d are defined in (12), Ξ is an arbitrary positive definite symmetric matrix,
η ∈ R is a positive step size, and ΠΞ,ŴM

denotes a projection onto the convex set ŴM =
{w|Hw ≤ g} with respect to the Ξ weighted Euclidean norm.

The following lemma, which is based on a convergence result of Bertsekas (2011), guar-
antees that for γ < 1, the iteration (21) converges. For the non-discounted setting a similar
result may be obtained by using the multi-step approach with λ > 0, as detailed in Tamar
et al. (2013).

Lemma 16 Assume γ < 1, and let Assumptions 1, 3, 4, and 15 hold. Then (20) admits a
unique solution w+

M , and there exists η̄ > 0 such that ∀η ∈ (0, η̄) and ∀w0 ∈ Rm the iteration
(21) converges at a linear rate to w+

M (i.e., ‖wk − w+
M‖ converges to 0 at least as fast as a

geometric progression).

Proof Bertsekas (2011) shows that projected fixed-point equations of the form

w∗ =

{
arg minw ‖Φw − Tlin(Φw∗)‖q
s.t. w ∈ Ω

,

where Tlin(y) = Aliny + blin is a contracting linear operator, and Ω is a polyhedral set, may
be solved iteratively by

wk+1 = ΠΞ,Ω[wk − ηΞ−1(Clinwk − dlin)],

where ΠΞ,Ω projects onto Ω w.r.t. the norm ‖y‖Ξ =
√
y>Ξy for an arbitrary symmetric

and positive-definite matrix Ξ, Clin = Φ>Q(I − Alin)Φ and dlin = Φ′Qblin. Specifically, the
convergence result of Bertsekas (2011) shows that when Tlin is a contraction in the ‖ · ‖q
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norm, Ω is polyhedral, and Φ is full rank, there exists η̄ > 0 such that for all η ∈ (0, η̄), and
for all w0 ∈ Rm, the preceding iteration converges at a linear rate to the unique solution of
the projected fixed point equation described above.

Substituting Tlin(y) with TM (y) = Rr+ 2γRPΦJw
∗
J +γ2Py, and Ω with the set defined

by Hw ≤ g, we obtain the projected fixed point equation (20), and the corresponding itera-
tion (21). To apply the convergence result, the full-rank of ΦM is guaranteed by Assumption
3, and the contraction of TM in the ‖ · ‖q norm is guaranteed by Lemma 5, since P is a
non-expansion and γ < 1.

Generally, C, d, and w∗J are not known in advance, and should be replaced in (21) with
their simulation based estimates, CN , dN , and ŵ∗J , proposed in the previous section. The
convergence of these estimates, together with the result of Lemma 16, lead to the following
result; the proof is detailed in Appendix C.

Theorem 17 Consider the algorithm in (21) with C, d, and w∗J replaced by CN , dN , and
ŵ∗J , respectively, and with k(N) replacing k for a specific N . Also, let the assumptions in
Lemma 16 hold, and let η ∈ (0, η̄), with η̄ defined in Lemma 16. Then wk(N) → w+

M as
N → ∞ and k(N) → ∞ almost surely. Namely, for any ε̄ > 0 w.p. 1 there is a N(ε̄)
such that for any N > N(ε̄) there is a k(N, ε̄), such that for all k > k(N, ε̄) we have
‖wk;N − w+

M‖ ≤ ε̄.

We remark that we do not know how to quantify how the linear constraints affect
the approximation error. While intuitively our constraints add prior information that is
‘correct’ in some sense (since we know that the true variance is positive), it is not hard to
construct examples where the constraints actually increase the error. In the following, we
provide an illustration of the linearly constrained projection approach on a toy problem. We
qualitatively show that the method effectively produces a non-negative solution, without
significantly affecting the approximation error.

Consider the Markov chain depicted in Figure 1, which consists of n states with reward
−1 and a terminal state x∗ with zero reward. Assume no discounting, i.e., γ = 1. The
transitions from each state is either to a subsequent state (with probability p) or to a
preceding state (with probability 1−p), with the exception of the first state which transitions
to itself instead. We chose to approximate J and M with polynomials of degree 1 and 2,
respectively, i.e., ΦJ(x) = [1, x]> and ΦM (x) = [1, x, x2]>. For such a small problem, the
fixed point equation (17) may be solved exactly, yielding the approximation depicted in
Figure 2 (dotted line), for p = 0.7, N = 30, and λ = 0.95. Note that the variance, in
Figure 2C, is negative for the last two states. Using algorithm (21) we obtained a positive
variance constrained approximation, which is depicted in Figure 2 (dashed line). Note how
the approximate variance has been adjusted to be positive for all states.

6. Experiments

In this section we present numerical simulations of policy evaluation for an option pricing
domain. We show that in terms of sample efficiency, our LSTD(λ) algorithm significantly
outperforms the current state-of-the-art. We begin by describing the domain and its mod-
eling as an MDP, and then present our policy evaluation results. We emphasize that our
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Figure 1: An example Markov chain.
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Figure 2: Value, second moment and variance approximation.

results only concern policy evaluation, and not policy optimization. The following MDP
description is given for the purpose of presentation completeness.

6.1 Option Pricing

An American-style put option (Hull, 2006) is a contract which gives the owner the right, but
not the obligation, to sell an asset at a specified strike price K on or before some maturity
time t∗. Letting xt denote the price (state) of the asset at time t ≤ t∗, the immediate payoff
of executing the option at that time is therefore max (0,K − xt). Assuming Markov state
transitions, an optimal execution policy may be found by solving a finite horizon MDP,
and the expected profit under that policy is termed the ‘fair’ price of the option. Since the
state space is typically continuous, an exact solution is infeasible, calling for approximate,
sampling based techniques (Longstaff and Schwartz, 2001; Tsitsiklis and Van Roy, 2001; Li
et al., 2009).

The option pricing problem may be formulated as an MDP as follows. To account for
the finite horizon, we include time explicitly in the state, thus, the state at time t is {xt; t}.
The action set is binary, where 1 stands for executing the option and 0 for continuing to hold
it. Once an option is executed, or when t = t∗, a transition to a terminal state takes place.
Otherwise, the state transitions to {xt+1; t + 1} where xt+1 is determined by a stochastic
kernel P (xt+1|xt, t). In our experiments we used a Bernoulli price fluctuation model (Cox
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et al., 1979),

xt+1 =

{
fuxt, w.p. p

fdxt, w.p. 1− p
,

where the up and down factors, fu and fd, are constant. The reward for executing u = 1
at state x is r(x) , max (0,K − x) and zero otherwise. Note that by definition, for any
state x in which the policy decides to execute, the reward-to-go is deterministic and equal
to r(x). Thus, we only need to estimate J and V for states in which the policy decides to
hold. We focus on ‘in-the-money’ options, in which K is equal to the initial price x0, and
set T = 20.

A policy π was obtained using the LSPI algorithm (Lagoudakis and Parr, 2003; Li et al.,
2009) with 2-dimensional (for x and t) radial basis function (RBF) features, as detailed in
Tamar et al. (2014). It is well-known (Duffie, 2010), and intuitive, that the optimal policy
(in terms of expected return) for the put option has a threshold structure—the policy
executes if the price is below some boundary x̄t, and holds otherwise. It is also known,
that x̄t is monotonically increasing in t. Our policy π has such a structure as well. We
emphasize, however, that the specific method of generating the policy π is not the focus of
this work, as we are only interested in evaluating π. Thus, any policy generation method
could have been used, and LSPI was chosen for convenience. In the following, we evaluate
the value functions J and V for π.

6.2 Results

We now present our policy evaluation results for the put option domain. MATLAB R©

code for reproducing these results is available on the web-site https://sites.google.

com/site/variancetdcode/.
We first calculate the ‘true’ value function J and standard deviation of reward-to-go√

V , as shown in Figure 3. These plots were obtained using Monte Carlo (MC), by taking
the empirical average and standard deviation of the reward of 10, 000 trajectories starting
from 323 equally spaced points in the state space for which the policy π decides to hold,
a total of N = 3, 230, 000 trajectories. To our knowledge, an MC approach is the current
state-of-the-art for obtaining an estimate of V .

Note the exercise boundary x̄t, emphasized with a dashed line in the value function
plot. For x smaller than x̄t, the policy decides to exercise, therefore the value is linear in x
and the variance is zero. Also note the discontinuous ridges on the J and

√
V plots. These

ridges are due to the discrete transition model, and occur when a transition to the next state
(or the state following the next state) crosses the exercise boundary. To the risk-sensitive
decision maker, these ridges are important, as they separate states with roughly the same
expected return but with very different variance.

In Figure 4 we show the RMS error of the approximation
√
Ṽ (compared to the ‘true’√

V ) computed using the LSTD(0) algorithm of Section 4, for different budgets of sample
trajectories N . We tested two popular feature sets: RBF features with 77 equally spaced
centers, and tile features with 600 uniform non-overlapping tiles. In both cases the same
features were used for both J and M . The sample trajectories were simulated independently,
starting from uniformly distributed initial states. We compare our results to MC estimates
obtained with the same trajectories.
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Figure 3: True value function J and standard deviation of the reward-to-go
√
V .

As can be seen, by exploiting relations between states and using the generalization
capabilities of the function approximation, LSTD is able to fully exploit the data, and
performs significantly better than MC for relatively small sample sizes. On the other hand,
LSTD is limited by the expressiveness of its function approximation, and its error is therefore
bounded.

Note that for N ≤ 323 the MC estimate is meaningless, as the empirical standard
deviation cannot be calculated from only one sample. LSTD however, is able to provide a
reasonable result. Also note that the LSTD estimate is defined over the whole state-space,
whereas the MC estimate is only defined for the discrete set of evaluation points.

To further appreciate the advantage of function approximation, we provide a visual

comparison of the approximated standard deviation of reward-to-go
√
Ṽ . In Figure 5 we

plot
√
Ṽ obtained using a budget of N = 2000 sample trajectories starting from uniformly

distributed states. In the left plot, we show the results of LSTD(λ) with RBF features
(with 77 equally spaced centers in x and t). The variance in states where the policy decides
to execute was set to zero manually, as there is no need to estimate it. In comparison, on
the right plot we present the results of a Monte Carlo algorithm, with the same amount of
data trajectories N = 2000. Clearly, LSTD(λ) makes better use of the limited data, with
a plot that is much more similar to the true standard deviation (Figure 3; right). More
importantly, the relevant structure in

√
V outlined above is clear in the LSTD(λ) result (up

to a smoothness limitation of the RBFs), yielding important information for the decision
maker.

In Figure 6 we consider the LSTD(λ) algorithm with the tile features discussed above,

and explore the effect of λ on the RMS error in
√
Ṽ . As in regular LSTD, λ can be seen to

trade off estimation bias and variance (Bertsekas, 2012). In addition, we compare LSTD(λ)
to the direct least squares algorithm of Section 4.4. For the case of the value function J , it is
well-known (Bertsekas, 2012) that the direct approximation is equivalent to the limit λ→ 1.
Our results suggest that a similar relation holds for the variance V as well. Furthermore,
these results highlight the superior performance of the TD approach in the small sample
size regime.
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7. Conclusion

We presented an extension of the TD framework for policy evaluation in MDPs with respect
to the variance of the reward-to-go. Our framework deals with the curse of dimensionality by
using function approximation, and uses a bootstrapping technique, based on an extension
of the Bellman equation to the second moment, to achieve good performance even for a
small sample size. We presented both formal guarantees and empirical evidence that this
approach is useful in problems with a large state space, and limited sample budget.

A natural extension of this work is to consider higher moments, and statistical properties
such as skewness and kurtosis of the reward-to-go. An extension of Bellman’s equation to
higher moments was proposed by Sobel (1982), and it may be used to derive TD equations
similarly to the work presented here. This may also be useful for optimizing the expectation
of a general function f of the accumulated reward E [f (B)], by looking at the first few terms
in the Taylor expansion of f . It would be interesting to see whether a TD approach may
be developed for other risk measures such as the value at risk or semi-deviation.

Another interesting direction is to use the variance of the reward-to-go to guide feature
selection, or feature modification. For example, consider tile features. A large variance-to-
go for states that belong to a particular tile may indicate that the value function in that
tile varies greatly, and therefore it may be beneficial to split the tile into smaller segments.
Of course, another explanation for the variance may be the inherent stochasticity of the
system. Thus, a thoughtful feature-selection method should take that also into account. In
a related topic, the variance of the reward-to-go may also be used to guide exploration, since
intuitively, states with higher variance should be allocated more exploration resources, to
potentially decrease the variance, if possible.
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We conclude with a discussion on policy optimization with respect to a mean-variance
tradeoff. While a naive variance-penalized policy iteration algorithm may be easily con-
ceived, its usefulness should be questioned, as it was shown to be problematic for the stan-
dard deviation adjusted reward (Sobel, 1982) and the variance constrained reward (Mannor
and Tsitsiklis, 2013). An alternative approach is to pursue locally optimal policies by using a
gradient based method. Tamar et al. (2012) proposed policy gradient algorithms for a class
of variance related criteria, and showed their convergence to local optima. These algorithms
may be extended to use the variance function in an actor-critic type scheme (Sato et al.,
2001), and recent work has extended these ideas to large-scale MDPs by employing function
approximation, and using the TD policy evaluation algorithms presented here (Tamar and
Mannor, 2013; Prashanth and Ghavamzadeh, 2013).
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Appendix A. Proof of Proposition 2

Proof The equation for J(x) is well-known, and its proof is given here only for complete-
ness. Choose x ∈ X. Then,

J(x) = E [B|x0 = x]

= E

[
τ−1∑
k=0

γkr(xk)

∣∣∣∣∣x0 = x

]

= r(x) + E

[
τ−1∑
k=1

γkr(xk)

∣∣∣∣∣x0 = x

]

= r(x) + γE

[
E

[
τ−1∑
k=1

γk−1r(xk)

∣∣∣∣∣x0 = x, x1 = x′

]]
= r(x) + γ

∑
x′∈X

P (x′|x)J(x′),

where we excluded the terminal state from the last sum since reaching it ends the trajectory.
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Similarly,

M(x) = E
[
B2|x0 = x

]
= E

(τ−1∑
k=0

γkr(xk)

)2
∣∣∣∣∣∣x0 = x


= E

(r(x0) +
τ−1∑
k=1

γkr(xk)

)2
∣∣∣∣∣∣x0 = x


= r(x)2 + 2r(x)E

[
τ−1∑
k=1

γkr(xk)

∣∣∣∣∣x0 = x

]
+ E

(τ−1∑
k=1

γkr(xk)

)2
∣∣∣∣∣∣x0 = x


= r(x)2 + 2γr(x)

∑
x′∈X

P (x′|x)J(x′) + γ2
∑
x′∈X

P (x′|x)M(x′).

The uniqueness of the value function J for a proper policy is well known, cf. Proposition
3.2.1 in Bertsekas (2012). The uniqueness of M follows by observing that in the equation
for M , M may be seen as the value function of an MDP with the same transitions but
with reward r(x)2 + 2γr(x)

∑
x′∈X P (x′|x)J(x′). Since only the rewards change, the policy

remains proper and Proposition 3.2.1 in Bertsekas (2012) applies.

Appendix B. Proof of Theorem 10

Proof Let φ1(x), φ2(x) be some vector functions of the state. We claim that

E

[
τ−1∑
t=0

φ1(xt)φ2(xt)
>

]
=
∑
x

q(x)φ1(x)φ2(x)> ≡ Φ>1 QΦ2, (22)

where Φ1 and Φ2 are matrices with rows φ1(x) and φ2(x), respectively. To see this, let 1(·)
denote the indicator function and write

E

[
τ−1∑
t=0

φ1(xt)φ2(xt)
>

]
= E

[
τ−1∑
t=0

∑
x

φ1(x)φ2(x)>1(xt = x)

]

= E

[∑
x

φ1(x)φ2(x)>
τ−1∑
t=0

1(xt = x)

]

=
∑
x

φ1(x)φ2(x)>E

[
τ−1∑
t=0

1(xt = x)

]
.

Now, note that the last term on the right hand side is an expectation (over all possible
trajectories) of the number of visits to a state x until reaching the terminal state, which is
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exactly q(x) since

q(x) =
∞∑
t=0

P (xt = x)

=

∞∑
t=0

E[1(xt = x)]

= E

[ ∞∑
t=0

1(xt = x)

]

= E

[
τ−1∑
t=0

1(xt = x)

]
,

where the third equality is by the dominated convergence theorem (Grimmett and Stirzaker,
2001, Sec. 5.6), and last equality follows from the absorbing property of the terminal state.
Similarly, we have

E

[
τ−1∑
t=0

φ1(xt)φ2(xt+1)>

]
=
∑
x

∑
x′

q(x)P (x′|x)φ1(x)φ2(x′)> ≡ Φ>1 QPΦ2, (23)

since

E

[
τ−1∑
t=0

φ1(xt)φ2(xt+1)>

]
= E

[
τ−1∑
t=0

∑
x

∑
x′

φ1(x)φ2(x′)>1(xt = x, xt+1 = x′)

]

= E

[∑
x

∑
x′

φ1(x)φ2(x′)>
τ−1∑
t=0

1(xt = x, xt+1 = x′)

]

=
∑
x

∑
x′

φ1(x)φ2(x′)>E

[
τ−1∑
t=0

1(xt = x, xt+1 = x′)

]
,

and

q(x)P (x′|x) =
∞∑
t=0

P (xt = x)P (x′|x)

=

∞∑
t=0

P (xt = x, xt+1 = x′)

=
∞∑
t=0

E[1(xt = x, xt+1 = x′)]

= E

[ ∞∑
t=0

1(xt = x, xt+1 = x′)

]

= E

[
τ−1∑
t=0

1(xt = x, xt+1 = x′)

]
.
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Since trajectories between visits to the recurrent state are statistically independent, the law
of large numbers together with the expressions in (22) and (23) suggest that the approximate
expressions in (13) converge to their expected values with probability 1, therefore we have

AN→A, bN→b,
CN→C, dN→D,

and

ŵ∗J ;N = A−1
N bN→A−1b = w∗J ,

ŵ∗M ;N = C−1
N dN→C−1d = w∗M .

Appendix C. Proof of Theorem 17

To show the convergence of the simulation-based version of (21) to a solution of (20), we
need to bound the effect of simulation noise on the fixed point of (21). The difficulty, is that
simulation noise affects both the terms in the update, C and d, and terms in the projection
step—the set ŴM onto which we project. In addition, the noise in C and d effectively adds
noise to the weights q of the norm in (20), which should also be bounded.

We begin by proving several intermediate results. The first concerns the continuity of
fixed points of contraction operators.

Lemma 18 Let T1 be a γ-contraction in the q1 norm, and T2 be a γ-contraction in the q2

norm. Assume that there exists some δ′ such that

‖T1x− T2x‖q1 ≤ δ + δ′‖x‖q1 , ∀x.

Let x∗1 and x∗2 denote the fixed points of T1 and T2, respectively. Then the following holds:

‖x∗2 − x∗1‖q1 ≤
δ + δ′‖x∗2‖q1

1− γ
.

Proof We have

‖x∗2 − x∗1‖q1 = ‖T2x
∗
2 − x∗1‖q1

= ‖T2x
∗
2 + T1x

∗
2 − T1x

∗
2 − x∗1‖q1

≤ ‖T1x
∗
2 − x∗1‖q1 + ‖T2x

∗
2 − T1x

∗
2‖q1

≤ ‖T1x
∗
2 − T1x

∗
1‖q1 + δ + δ′‖x∗2‖q1

≤ γ‖x∗2 − x∗1‖q1 + δ + δ′‖x∗2‖q1 .

Rearranging, gives:

‖x∗2 − x∗1‖q1 ≤
δ + δ′‖x∗2‖q1

1− γ
.

The following results concerns the sensitivity of weighted Euclidean-norm projections.
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Lemma 19 Let ‖ ·‖q and ‖ ·‖q′ denote weighted Euclidean-norms on Rn with weights q > 0
and q′ > 0, respectively. Let Π and Π′ denote projections onto a closed and convex set
S ⊂ Rn, w.r.t. the norms ‖ · ‖q and ‖ · ‖q′, respectively. For any x ∈ Rn we have:

‖Πx−Π′x‖2q ≤ 2‖q − q′‖∞
(
‖Πx− x‖22 + ‖Π′x− x‖22

)
.

Proof If x ∈ S the result is trivial. We assume in the following x /∈ S. Let Q = diag(q)
and Q′ = diag(q′). For any x, y ∈ Rn we have∣∣‖x− y‖2q − ‖x− y‖2q′∣∣ =

∣∣∣(x− y)>Q(x− y)− (x− y)>Q′(x− y)
∣∣∣

=
∣∣∣(x− y)>(Q−Q′)(x− y)

∣∣∣
≤

n∑
i=1

|qi − q′i|(xi − yi)2

≤ ‖q − q′‖∞‖x− y‖22.

(24)

Therefore, we have that

‖Π′x− x‖2q′ ≥ ‖Π′x− x‖2q − ‖q − q′‖∞‖Π′x− x‖22. (25)

Now, let H denote the hyper-plane that is orthogonal to the projection error Πx − x, and
passes through Πx:

H
.
=
{
y ∈ Rn : (y −Πx)>Q(x−Πx) = 0

}
,

and let L denote a line that passes through x and Π′x:

L
.
=
{
y ∈ Rn : y = x+ z(Π′x− x), z ∈ R

}
.

By properties of the projection Πx (Hiriart-Urruty and Lemaréchal, 2013) we have (y −
Πx)>Q(x−Πx) ≤ 0 ∀y ∈ S. Since (x−Πx)>Q(x−Πx) > 0, it follows that H separates
x from S. Since Π′x ∈ S, H also separates x from Π′x. Let p∗ denote the intersection of L
and H. By the previous arguments, p∗ exists, and

Π′x− x = α(p∗ − x), (26)

with α ≥ 1. Now, we have

‖Π′x− x‖2q = ‖α(p∗ − x)‖2q
= α2‖p∗ − x‖2q
= α2‖p∗ −Πx‖2q + α2‖Πx− x‖2q
≥ α2‖p∗ −Πx‖2q + ‖Πx− x‖2q′ − ‖q − q′‖∞‖Πx− x‖22,

where the last equality is by the Pythagorean theorem, which holds due to the orthogonality
of H to the error Πx− x, and the inequality is since α ≥ 1, and (24). Plugging in (25), we
obtain:

‖Π′x− x‖2q′ − ‖Πx− x‖2q′ ≥ α2‖p∗ −Πx‖2q − ‖q − q′‖∞
(
‖Πx− x‖22 + ‖Π′x− x‖22

)
. (27)
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However, by definition of the projection Π′x, we must have ‖Π′x− x‖2q′ − ‖Πx− x‖2q′ ≤ 0,
therefore rearranging (27) leads to:

α2‖p∗ −Πx‖2q ≤ ‖q − q′‖∞
(
‖Πx− x‖22 + ‖Π′x− x‖22

)
. (28)

Now, let H ′ denote a parallel hyper-plane to H that passes through Π′x:

H ′
.
=
{
y ∈ Rn : (y −Π′x)>Q(x−Πx) = 0

}
.

Also, let L′ denote the line between x and Πx:

L′
.
= {y ∈ Rn : y = x+ z(Πx− x), z ∈ R} .

By definition, H ′ is orthogonal to L′; denote by p∗∗ their intersection. By triangle similarity
(the triangles {x,Πx, p∗} and {x, p∗∗,Π′x}), and (26) we have

‖Π′x− p∗∗‖2q
‖Πx− p∗‖2q

=
‖Π′x− x‖2q
‖p∗ − x‖2q

= α2, (29)

therefore, using (28)

‖Π′x− p∗∗‖2q = α2‖p∗ −Πx‖2q ≤ ‖q − q′‖∞
(
‖Πx− x‖22 + ‖Π′x− x‖22

)
. (30)

From the Pythagorean theorem (by the orthogonality of H ′ to L′) we have:

‖Π′x−Πx‖2q = ‖Πx− p∗∗‖2q + ‖Π′x− p∗∗‖2q , (31)

and
‖Π′x− x‖2q = ‖Π′x− p∗∗‖2q + ‖p∗∗ − x‖2q ,

and from the last equation we also have

‖Π′x− x‖2q ≥ ‖p∗∗ − x‖2q .

Now, from the last inequality:

‖Π′x− x‖2q ≥ ‖p∗∗ − x‖2q
≥ ‖p∗∗ −Πx‖2q + ‖Πx− x‖2q
≥ ‖p∗∗ −Πx‖2q + ‖Πx− x‖2q′ − ‖q − q′‖∞‖Πx− x‖22,

where the second inequality is since x, Πx, and p∗∗ are on L′, therefore ‖p∗∗ − x‖q =
‖p∗∗−Πx‖q +‖Πx−x‖q, and the last inequality is by (24). Proceeding similarly as in (27),
we plug in (25) to obtain:

‖Π′x− x‖2q′ − ‖Πx− x‖2q′ ≥ ‖p∗∗ −Πx‖2q − ‖q − q′‖∞
(
‖Πx− x‖22 + ‖Π′x− x‖22

)
, (32)

and similarly to (28), by definition of the projection Π′x, we must have ‖Π′x−x‖2q′−‖Πx−
x‖2q′ ≤ 0, therefore rearranging (32) leads to:

‖p∗∗ −Πx‖2q ≤ ‖q − q′‖∞
(
‖Πx− x‖22 + ‖Π′x− x‖22

)
. (33)
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Finally, plugging in (30), and (33) in (31) we obtain

‖Π′x−Πx‖2q ≤ 2‖q − q′‖∞
(
‖Πx− x‖22 + ‖Π′x− x‖22

)
.

We now proceed with the proof of Theorem 17. To simplify the presentation, we break
the proof into several parts.
In part 1, we show show that the sampled version of algorithm (21) with N samples corre-
sponds to solving (20) with PN , a sampled version of the transition matrix, replacing P .
In part 2, we show that for each N , algorithm (21) would converge (in k) by Lemma 16 to
a fixed point of the sampled projected equation.
In part 3, we show that the solution of the sampled projected equation converges (in N)
to the the solution of the original projected equation. We do this by showing a continuity
of the solution w.r.t. P and its derived quantities, q and w∗J , from which convergence then
follows by the law of large numbers.
In part 4, we collect our convergence results in k and N and complete the proof.

C.1 A Sampled Version of Eq. (21)

Let S+ = {ΦMw|w ∈ Rm, Hw ≤ g} denote the set onto which we project in the modified
projection (20), and let Π+

q denote a projection onto S+ w.r.t. the q-weighted Euclidean
norm. Note that S+ is a convex set, therefore Π+

q is a non-expansion in the ‖ · ‖q norm
(Hiriart-Urruty and Lemaréchal, 2013). Furthermore, we can write Eq. (20) as follows:

w+
M = Π+

q T
+w+

M ,

where T+(w) = Rr + 2γRPΦJw
∗
J + γ2PΦMw.

After we have observed N trajectories, let PN denote the corresponding empirical tran-
sition matrix, given by:

PN (x′|x) =

(
1∑N
k=1 τk

)
N∑
k=1

τk−1∑
t=0

1(xkt = x, xkt+1 = x′),

and let ζ0;N denote the empirical initial state distribution, i.e.,

ζ0;N (x) =

(
1

N

) N∑
k=1

1(xk0 = x).

Also, let qN denote the state occupancy probabilities in an MDP with P and ζ0 replaced
by PN and ζ0;N (cf. the definition of q in Section 3). For large enough N , qN satisfies
Assumption 4.

Let ŵ∗J = A−1
N bN , with AN and bN defined in (13); for large enough N , ŵ∗J is well defined

(Boyan, 2002).

Furthermore, let gN denote a vector with elements −(φJ(xi)
>ŵ∗J)2.
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We define the set S+
N = {ΦMw|w ∈ Rm, Hw ≤ gN}, and denote by Π+

qN
a projection

onto S+
N w.r.t. the qN -weighted Euclidean norm. We also define the operator

T+
N (w)

.
= Rr + 2γRPNΦJ ŵ

∗
J + γ2PNΦMw,

which is the sampled version of T+. Note that T+
N is a γ2-contraction.

Consider now the following projected fixed point equation:

w+
M ;N = Π+

qN
T+
Nw

+
M ;N , (34)

and the iterative procedure

wk+1;N = ΠΞ,ŴM ;N
[wk;N − ηΞ−1(CNwk;N − dN )], (35)

where CN and dN are defined in (13), Ξ is an arbitrary positive definite matrix, η ∈ R is a
positive step size, and ΠΞ,ŴM ;N

denotes a projection onto the convex set ŴM ;N = {w|Hw ≤
gN} with respect to the Ξ weighted Euclidean norm.

C.2 Convergence in k

By definition, the sampled CN , dN , qN and ŵ∗J correspond to their non-sampled counterparts
C, d, q and w∗J , respectively, on an MDP with the empirical probabilities PN and ζ0;N

replacing P and ζ0. As a result, applying Lemma 16 to Eq. 35, we have that wk;N converges
to w+

M ;N . Therefore, for each N and δ > 0 there exists some k(N, δ) such that for all
k > k(N, δ)

‖wk;N − w+
M ;N‖ ≤ δ. (36)

C.3 Convergence in N

We will now show that as N →∞, w+
M ;N → w+

M .
Let ε, ε̃ > 0. We claim that w.p. 1, there exists N(ε, ε̃), such that for all N > N(ε, ε̃) we

have
‖Π+

q T
+w −Π+

qN
T+
Nw‖q ≤ ε+ ε̃‖w‖q, ∀w. (37)

We now prove (37). First, we have:

‖Π+
q T

+w −Π+
qN
T+
Nw‖q = ‖Π+

q T
+w + Π+

q T
+
Nw −Π+

q T
+
Nw −Π+

qN
T+
Nw‖q

≤ ‖Π+
q T

+w −Π+
q T

+
Nw‖q︸ ︷︷ ︸

A

+ ‖Π+
q T

+
Nw −Π+

qN
T+
Nw‖q︸ ︷︷ ︸

B

. (38)

C.3.1 A Bound on (A):

We have:

‖Π+
q T

+w −Π+
q T

+
Nw‖q ≤ ‖T

+w − T+
Nw‖q

= ‖2γRPΦJw
∗
J − 2γRPNΦJ ŵ

∗
J + γ2(P − PN )ΦMw‖q

≤ ‖2γRPΦJw
∗
J − 2γRPNΦJ ŵ

∗
J‖q + ‖γ2(P − PN )ΦMw‖q

, η1(N) + ‖γ2(P − PN )ΦMw‖q
≤ η1(N) + η2(N)‖w‖q,

(39)
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where the first inequality is by the non-expansion property of the projection, and the third
inequality is by defining η2(N) as the ‖ · ‖q induced matrix norm of γ2(P − PN )ΦM (Horn
and Johnson, 2012, Definition 5.6.1).

C.3.2 A Bound on (B):

Denote by Π̂+
q a projection onto S+

N w.r.t. the q-weighted Euclidean norm. We have

‖Π+
q T

+
Nw −Π+

qN
T+
Nw‖q = ‖Π+

q T
+
Nw + Π̂+

q T
+
Nw − Π̂+

q T
+
Nw −Π+

qN
T+
Nw‖q

≤ ‖Π+
q T

+
Nw − Π̂+

q T
+
Nw‖q︸ ︷︷ ︸

B1

+ ‖Π̂+
q T

+
Nw −Π+

qN
T+
Nw‖q︸ ︷︷ ︸

B2

.

C.3.3 A Bound on (B1):

We bound B1 using a result of Yen (1995), which gives a general Lipschitz bound for per-
turbations of projections onto convex polyhedra (S+

N by definition is a convex polyhedron).
By theorem 2.1 of Yen (1995), for all w, there exists a constant K such that

‖Π+
q T

+
Nw − Π̂+

q T
+
Nw‖q ≤ K‖g − gN‖2 , η3(N). (40)

C.3.4 A Bound on (B2):

We bound B2 using Lemma 19, which yields:

‖Π̂+
q T

+
Nw −Π+

qN
T+
Nw‖

2
q ≤ 2‖q − qN‖∞

(
‖Π̂+

q T
+
Nw − T

+
Nw‖

2
2 + ‖Π+

qN
T+
Nw − T

+
Nw‖

2
2

)
.

By norm equivalence on finite-dimensional spaces, there exists λ such that ‖x‖2 ≤ λ‖x‖q
and ‖x‖2 ≤ λ‖x‖qN for all x. Therefore

‖Π̂+
q T

+
Nw −Π+

qN
T+
Nw‖

2
q ≤ 2‖q − qN‖∞λ2

(
‖Π̂+

q T
+
Nw − T

+
Nw‖

2
q + ‖Π+

qN
T+
Nw − T

+
Nw‖

2
qN

)
.

For any ŝ ∈ S+
N we now have, by definition of the projections Π̂+

q and Π+
qN

:

‖Π̂+
q T

+
Nw −Π+

qN
T+
Nw‖

2
q ≤ 2‖q − qN‖∞λ2

(
‖ŝ− T+

Nw‖
2
q + ‖ŝ− T+

Nw‖
2
qN

)
.

As before, by norm equivalence on finite-dimensional spaces, there exists λ̃ such that
‖x‖qN ≤ λ‖x‖q for all x, therefore

‖Π̂+
q T

+
Nw −Π+

qN
T+
Nw‖

2
q ≤ 2‖q − qN‖∞λ2(1 + λ̃2)‖ŝ− T+

Nw‖
2
q ,

and setting λ̄ =
√
λ2(1 + λ̃2) we have

‖Π̂+
q T

+
Nw −Π+

qN
T+
Nw‖q ≤

√
2‖q − qN‖∞λ̄‖ŝ− T+

Nw‖q
≤
√

2‖q − qN‖∞λ̄
(
‖ŝ‖q + ‖T+

Nw‖q
)

≤
√

2‖q − qN‖∞λ̄ (‖ŝ‖q + C + ‖w‖q) ,

where the constant C exists since T+
N is linear and a contraction. Therefore, setting η4(N) =√

2‖q − qN‖∞λ̄ (‖ŝ‖q + C) and η5(N) =
√

2‖q − qN‖∞λ̄ we have

‖Π̂+
q T

+
Nw −Π+

qN
T+
Nw‖q ≤ η4(N) + η5(N)‖w‖q. (41)
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C.3.5 Proof of (37):

We now return to (38), where, using (39), (40), and (41) we have

‖Π+
q T

+w −Π+
qN
T+
Nw‖q ≤ η1(N) + η2(N)‖w‖q + η3(N) + η4(N) + η5(N)‖w‖q.

The uniform convergence of empirical distributions (Van der Vaart, 2000, Theorem 19.1)
guarantees that PN and ζ0;N uniformly converge to P and ζ0 w.p. 1, respectively, and
therefore qN → q and ŵ∗J → w∗J w.p. 1. Therefore, for every ε, ε̃ > 0, w.p. 1 there is some
N(ε, ε̃) such that for N > N(ε, ε̃) we have η1(N)+η3(N)+η4(N) ≤ ε, and η2(N)+η5(N) ≤ ε̃,
therefore Eq. (37) holds.

Using Lemma 18 and Eq. (37) we have that for N > N(ε, ε̃)

‖w+
M ;N − w

+
M‖q ≤

ε+ ε̃‖w+
M‖q

1− γ
. (42)

C.4 Convergence in k and N

Finally, using (42) and (36) we have that for any ε̄ > 0, w.p. 1 there is a N(ε̄) such that for
any N > N(ε̄) there is a k(N, ε̄), such that for all k > k(N, ε̄)

‖wk;N − w+
M‖ ≤ ε̄.
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